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Efficient interval estimation for age-adjusted
cancer rates
Ram C Tiwari National Cancer Institute, NIH, Bethesda, MD, USA, Limin X Clegg Office
of Healthcare Inspections, OIG, Department of Veterans Affairs, Washington, DC, USA and
Zhaohui Zou Information Management Services, Inc., Silver Spring, MD, USA

The age-adjusted cancer rates are defined as the weighted average of the age-specific cancer rates, where the
weights are positive, known, and normalized so that their sum is 1. Fay and Feuer developed a confidence
interval for a single age-adjusted rate based on the gamma approximation. Fay used the gamma appro-
ximations to construct an F interval for the ratio of two age-adjusted rates. Modifications of the gamma
and F intervals are proposed and a simulation study is carried out to show that these modified gamma
and modified F intervals are more efficient than the gamma and F intervals, respectively, in the sense that
the proposed intervals have empirical coverage probabilities less than or equal to their counterparts, and
that they also retain the nominal level. The normal and beta confidence intervals for a single age-adjusted
rate are also provided, but they are shown to be slightly liberal. Finally, for comparing two correlated
age-adjusted rates, the confidence intervals for the difference and for the ratio of the two age-adjusted rates
are derived incorporating the correlation between the two rates. The proposed gamma and F intervals
and the normal intervals for the correlated age-adjusted rates are recommended to be implemented in the
Surveillance, Epidemiology and End Results Program of the National Cancer Institute.

1 Introduction

Despite rapid advances in medicine, cancer continues to be a major public health concern
in the US and around the world. The total number of deaths due to cancer continues
to rise, even though the age-adjusted mortality rates for many common cancer sites
continue to decline.1 Many public and private agencies dealing with cancer and related
issues depend on these statistics for planning and resource allocation. Such figures have
important social and economic ramifications, from deciding which programs get funded,
to deciding how funds are allocated among various programs. Having reliable and accu-
rate confidence intervals (CIs) for the means of the age-adjusted cancer mortality and
incidence rates for recent years is very important for everyone concerned. The higher the
coverage probabilities of the CIs, the more conservative the CIs are. Therefore, a desir-
able property of these CIs is that while retaining the nominal level, they have coverage
probabilities as close to the nominal level as possible.

In the US, the data on cancer mortality are obtained from death certificates. Due to
administrative and procedural delays, these data become fully available to the public
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from the National Center for Health Statistics (NCHS) after approximately three years.
The cancer incidence and mortality data are also available from the Surveillance,
Epidemiology and End Results (SEER) Program of the National Cancer Institute
(NCI). The SEER Program is an authoritative source for the cancer incidence and sur-
vival data in the US Population data are available from the US Census Bureau. The
American Cancer Society (ACS) publishes reports on cancer trends in their widely cir-
culated annual publication,2 Cancer Facts & Figures, which is also available online:
http://www.cancer.org/.

The state-level age-adjusted cancer (incidence or mortality) rates are given by

ri =
J∑

j=1

wj
dij

nij
, i = 1, . . . , I

where dij and nij are the number of cancer (incidence or mortality) counts and the count
of mid-year population for the age-group j and the state i, respectively, and the wj are
the normalized proportion of mid-year population for the age-group j in the standard
population, so that

∑J
j=1 wj = 1. In the SEER Program, for each of the 51 regions (50

states and Washington D.C.) in the US, there are 19 standard age-groups consisting of
0−<1, 1−4, 5−9, . . . , 85+. The US-level age-adjusted cancer (incidence or mortality)
rates are given by

r =
J∑

j=1

wj
dj

nj

with dj = ∑I
i=1 dij and nj = ∑I

i=1 nij. The SEER Program contains age-adjusted mor-
tality rates, based on the 2000 US standard population, for the US and for each of the
51 regions by cancer sites. The age-adjusted mortality rates for a selected number of
cancer sites and a number of countries in the world are also reported in the Cancer
Facts & Figures publication.2 These age-adjusted rates are based on the World Health
Organization’s world standard population. Thus, the results of this paper, even though
discussed in the context of the age-adjusted mortality rates for the US, apply to similar
data sets for other countries.

For each i (i = 1, . . . , I), let d(−i)j = dj − dij and n(−i)j = nj − nij and define

r(−i) =
J∑

j=1

wj
d(−i)j

n(−i)j

to be the age-adjusted rate for the rest of the US after deleting the region i.
Let Dij, Dj, D(−i)j, Ri, R(−i) and R denote the random variables whose realiza-

tions are dij, dj, d(−i)j, ri, r(−i) and r, respectively. We assume that Dij are independent
Poisson random variables3 with parameters λij, that is, Dij ∼ind Po(nijλij). Note that by
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the moment generating function, D(−i)j ∼ Po(
∑I

i′ �=i ni′jλi′j) and Dj ∼ Po(
∑I

i=1 nijλij).

Let ξij = nij/nj, ξ(−i)j = ∑I
i′ �=i ξi′j and ξj = nj/n, where n = ∑J

j=1 nj = ∑I
i=1
∑J

j=1 nij.
Let µi, µ(−i), µ, vi = σ 2

i /n, ν(−i) = σ 2
(−i)/n and v ≡ σ 2/n be the means and variances

of Ri, R(−i) and R, respectively, and let and ρi/n be the Cov(Ri, R), where their explicit
expressions are derived in Appendix A. Let wij = wj/nij and define the estimates of µi,
µ(−i), µ, σ 2

i , σ 2
(−i), σ 2 and ρi as

µ̂i = ri; µ̂(−i) = r(−i); µ̂ = r

σ̂ 2
i = n

J∑

j=1

w2
ijdij; σ̂ 2

(−i) = n
J∑

j=1

w2
j

d(−j)

n2
(−j)

σ̂ 2 = n
J∑

j=1

w2
j

dj

n2
j

; ρ̂i = n
J∑

j=1

wij
wj

nj
dij

For a rare cancer site, as the observed total counts di are very small with dij = 0 plausibly
for several j, the value of ri is either close to 0 or equal to 0. As we will see subse-
quently, when ri = 0, the gamma intervals of Fay and Feuer4 is not defined. To avoid
such situations, we introduce a correction factor, which amounts to distributing a count
of 1 uniformly to all J categories, and hence adding 1/J, the expected value under multi-
nomial distribution with parameters 1 and cell probabilities 1/J, to dij, j = 1, . . . , J, in
calculation of the estimates of µi, σ 2

i and ρi. We redefine ri as

r̃i =
J∑

j=1

wij

(
dij + 1

J

)
= ri + w̄i

where w̄i = 1/J
∑J

j=1 wij and modify the estimates of µi, σ 2
i , σ 2

(−i) and ρi accordingly
by replacing dij by (dij + 1/J). Thus,

µ̃i = r̃i; σ̃ 2
i = n

J∑

j=1

w2
ij

(
dij + 1

J

)
; ρ̃i = n

J∑

j=1

wij
wj

nj

(
dij + 1

J

)

Note that r̃i ≈ ri for common cancer sites as w̄i ≈ 0. Let

ν̂i = σ̂ 2
i

n
; ν̃i = σ̃ 2

i

n
; ν̂ = σ̂ 2

n

The objectives of this paper include the construction of CIs for parameters such as
i) the mean µi of the age-adjusted rate for the region i; ii) the mean µ of the age-adjusted
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rate for the US; iii) the ratio of the mean age-adjusted rates µi/µi′ for region i to region
i′; iv) the ratio of the mean age-adjusted rates µi/µ(−i) for region i to the rest of the US;
v) the ratio of the mean age-adjusted rates µi/µ for region i to the US; and vi) the
difference of the mean age-adjusted rates µi − µ, between region i and the US. Fay and
Feuer4 derived a CI for µi (or µ) assuming that a mixture of Poisson distributions can be
approximated by a gamma distribution and compared the performance of the gamma
intervals with the approximate bootstrap confidence (ABC) intervals5−7 and the ‘chi-
squared’ intervals of Dobson et al.8 through simulations. They observed that the gamma
intervals retained at least the nominal coverage and were more conservative than the ABC
intervals and chi-squared intervals. We propose a modification of the gamma interval
for µi (or µ) developed by Fay and Feuer4 and derive new CIs for µi (and µ) based on
the beta and normal approximations of Ri (and R).

Fay9 used the gamma approximation of Fay and Feuer4 and developed a CI, based on
an approximate F distribution, for the ratio of two age-adjusted rates that can be applied
to µi/µi′ and µi/µ(−i), but not to µi/µ as the age-adjusted rate for the US involves the
counts from the region i. We also propose a modification of the F interval of Fay9. We use
the normal approximations of Ri/Ri′ , Ri/R(−i), Ri/R and Ri − R, taking into account
the correlation between Ri and R, and construct the CIs for µi/µi′ , µi/µ(−i), µi/µ and
µi − µ. It is important to mention that for comparing the state and US level age-adjusted
rates, the current procedure10 is to use the normal CI for µi − µ based on ρi = 0. For
simulations, we use the observed age-adjusted mortality rates for the 51 regions and the
US for year 2002 from the SEER Program for a rare cancer site, the tongue cancer.

The rest of the paper is organized as follows. In Section 3, we briefly review the works
of Fay and Feuer4 and Fay9 and present the modified gamma and F intervals. We also
derive the CIs for the ratio of the means of the two age-adjusted rates namely the age-
adjusted rates of any two regions, any region to the rest of the country, any region to
the entire country and for the difference of the means of the age-adjusted rates between
a region and the country. Simulations are carried out in Section 4, and we discuss our
findings in Section 5. The conclusions are presented in Section 6.

2 Confidence intervals for age-adjusted rates

2.1 Gamma and F approximations
Note that if X ∼ Po(θ), then for an integer x ≥ 0,

P(X ≥ x|θ) =
∫ θ

0
fZ(z|x, 1) dz

where Z ∼ G(x, 1) =d 1/2χ2
2x and, in general, G(α, β) =d β/2χ2

2α (allowing non-
integer degrees of freedom) has density

fZ(x|α, β) = 1
βα�(α)

exp
(

− x
β

)
xα−1, x > 0
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with mean E(Z) = αβ and variance Var(Z) = αβ2. Let x be the observed value of X
and let (L(x; α), U(x, α)) denote the 100(1 − α)% CI for θ , where L(x; α) is obtained
by solving the equation

P(X ≥ x|θ = L(x; α)) = α

2

and U(x, α) is obtained by solving

P(X ≤ x|θ = U(x; α)) = α

2

or equivalently by solving

P(X > x|θ = U(x; α)) = P(X ≥ x + 1|θ = U(x; α)) = 1 − α

2

Thus, L(x; α) = 1/2(χ2
2x)

−1(α/2) and U(x; α) = 1/2(χ2
2(x+1))

−1(1 − α/2). Fay and
Feuer4 called the interval (L(x; α), U(x; α)) ‘exact’ while others, for example, Johnson
and Kotz,11 use the term ‘approximate’ interval.

Let wi(1) ≤ · · · ≤ wi(J) be the ordered values of wij, j = 1, . . . , J. Fay and Feuer4

assumed that a mixture of Poisson distributions is approximately distributed as a gamma
distribution; that is,

P




J∑

j=1

wijDij ≥ y|µi, νi



 ≈
∫ µi

0
fZi

(
z
∣∣∣∣
y2

νi
,
νi

y

)
dz

where Zi ∼ G(y2/νi, νi/y). This assumption essentially means that the distribution of
a linear combination of independent Poisson random variables is approximately dis-
tributed as a gamma random variable with the mean and variance of the gamma
distribution equal to the mean and variance of the linear combination, respectively.
Fay and Feuer4 used this approximation to construct approximate 100(1 − α)% CIs for
the true age-adjusted rates µi.

The lower confidence limit L(ri; α) was obtained by solving the equation

α

2
= P




J∑

j=1

wijDij ≥ ri|µi, νi



 ≈
∫ L(µi;νi)

0
fZi

(
z
∣∣∣∣
r2

i

νi
,
νi

ri

)
dz

This yields

L(ri; ν̂i; α) = G−1

(
α

2
;

r2
i

ν̂i
,
ν̂i

ri

)
= ν̂i

2ri

(
χ2

2r2
i /ν̂i

)−1 (α

2

)

where G−1 is the inverse function of the gamma distribution function and (χ2
l )−1(α)

denotes the 100αth percentile of the chi-squared distribution with l degrees of freedom.
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Note that when ri = 0, L(ri; ν̂i; α) is not defined. For the upper confidence limit U(ri; α),
Fay and Feuer4 solved the equation

1 − α

2
= P




J∑

j=1

wijDij > ri|µi, νi



 ≥ P




J∑

j=1

wijDij ≥ ri + wi(J)|µi, νi





≈
∫ U(µi;νi)

0
fZi

(
z
∣∣∣∣
(ri + wi(J))

2

νi + w2
i(J)

,
νi + w2

i(J)

ri + wi(J)

)
dz

resulting in

U(ri; ν̂i, wi(J); α) = G−1

(
1 − α

2
;

r2
i

ν̂i
,
ν̂i

ri
, wi(J)

)

= ν̂i + w2
i(J)

2(ri + wi(J))

(
χ2

(2(ri+wi(J))
2/ν̂i+w2

i(J))

)−1
(

1 − α

2

)

Fay and Feuer4 performed simulations to study the performance of their gamma CIs
(L(ri; ν̂i; α), U(ri; ν̂i; wi(J); α)) and found that the upper confidence limits were more
conservative than those based on the ABC intervals5−7 and the chi-squared intervals of
Dobson et al.,8 henceforth referred to as DKES intervals. For completeness the ABC and
DKES intervals are given in Appendix B.

Fay and Feuer4 have mentioned that when the weights wij for all j are equal to a con-
stant, ci > 0, say, the CI for µi = E(

∑J
j=1 wijDij) = ciE(Di) is (ciL(di; α), ciU(di : α))

exact with Di ∼ Po(
∑J

j=1 nijλij). However, note that since wij = wj/nij depend on both
the standards wj and on the mid-year populations nij, the condition that wij are equal
to a constant for all j is not easily satisfied. For example, a sufficient condition for this
condition to hold is that wj are all equal and nij are all equal. Another sufficient con-
dition for wij to be equal to a constant for all j is to assume nij is proportional to wj,
independent of i, for all j. If a populous state like California or New York has the age-
group distribution of its population similar to that of the entire US, then for that state,
one may expect nij to be proportional to wj and hence the CI for µi to be exact.

Since wi(l) ≤ wi(l+1), we have

P




J∑

j=1

wijDij > ri|µi, νi



 ≥ P




J∑

j=1

wijDij ≥ ri + wi(l)|µi, νi





≥ P




J∑

j=1

wijDij ≥ ri + wi(l+1)|µi, νi



 , l = 1, . . . , J − 1
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Thus proceeding as above, one can construct the upper confidence limits
U(ri; ν̂i; wi(1); α), U(ri; ν̂i; wi(2); α), . . . , U(ri; ν̂i, wi(J); α) varying from being the most
liberal upper limit to the most conservative upper limit. In fact, there are an infinite
number of choices for such an upper confidence limit.

As a compromise, we propose an upper limit that is based on the mean w̄i =
1/J

∑J
j=1 wij and that depends on all wi(l), l = 1, . . . , J. As mentioned earlier, this

assumes distributing a count of 1 uniformly to all J age-groups. Thus,

1 − α

2
= P




J∑

j=1

wijDij > ri|µi, νi



 ≥ P




J∑

j=1

wijDij ≥ ri + w̄i|µi, νi





= P




J∑

j=1

wijDij ≥ r̃i|µi, νi





Now, assuming that (dij + 1/J)have means equal to their variances, similar to the Poisson
distribution, so that

Var




J∑

j=1

wij

(
dij + 1

J

)

 =
J∑

j=1

w2
ij

(
dij + 1

J

)

using the gamma approximation, the upper confidence limit for µi is given by

U(r̃i; ν̃i; w̄i; α) = ν̃i

2r̃i
(χ2

(2r̃2
i /ν̃i)

)−1
(

1 − α

2

)

Therefore, the proposed gamma CI for µi is (L(ri; ν̂i; α), U(r̃i; ν̃i; w̄i; α)). Another
approximation of the upper confidence limit based on the mean w̄i can be obtained
by using (ν̂i + w̄2

i ) instead of ν̃i. This results in the following CI: (L(ri; ν̂i; α), U(r̃i; ν̂i +
w̄2

i ; w̄i; α)). Through simulations (not shown here), we found that these two intervals
performed very similarly. Therefore, we will focus only on (L(ri; ν̂i; α), U(r̃i; ν̃i; w̄i; α)).
Note that the lower limits of the gamma interval of Fay and Feuer4 and the modi-
fied gamma intervals are the same. We shall define the CI for µi when ri = 0 as (0,
U(r̃i; ν̃i; w̄i; α)), thus ensuring a coverage probability of at least (1 − α).

Fay9 developed a confidence interval for the ratio of two age-adjusted rates, µi/µi′ , for
µi, µi′ > 0, based on Ri = ∑J

j=1 wijDij and Ri′ = ∑J
j=1 wi′jDi′j, where Dij and Di′j are

independent. Assuming the gamma approximations for Ri and Ri′ , Fay9 used the result
that, conditional on Dij + Di′j = tj, the distribution of Dij is a binomial distribution with
parameters tj and nij(λij/λi′j)/nij(λij/λi′j) + ni′j. For constructing the lower confidence
limit for µi/µi′ , Fay9 assumed that µi is distributed as gamma with mean ri and variance
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ν̂i and that µi′ is distributed as gamma with mean (ri′ + Wi′) and variance (ν̂i′ + W2
i′)

and used the result that, conditional on tj,
(

ri′ + Wi′

ri

)
µi

µi′
∼ F((2r2

i /ν̂i),(2(ri′+Wi′ )2/(ν̂i′+W2
i′ )))

where Wi′ = maxj:di′j<tj{wi′j} and for independent χ2
m =d G(m/2, 2) and χ2

n =d

G(n/2, 2), F(m,n) =d (χ2
m/m)/(χ2

n/n) denotes the F distribution with numerator degrees
of freedom (d.f.) m and the denominator d.f. n with density given by

g(x|m, n) = �((m + n)/2)

�(m/2)�(n/2)

(m
n

)m/2 x(m/2)−1

(1 + (m/n)x)(m+n)/2 , 0 < x < ∞

Since the numerator and the denominator chi-squared random variables in
F((2r2

i )/ν̂i),(2(ri′+Wi′ )2/(ν̂i′+W2
i′ ))

depend on tj, the unconditional distribution of µi/µi′ is
a mixture of F distributions, and not an F distribution.

The lower confidence limit is
ri

ri′ + Wi′
F−1

((2r2
i )/ν̂i,(2(ri′+Wi′ )2)/(ν̂i′+W2

i′ ))

(α

2

)

where F−1
(a,b)

(p) is the pth percentile of F(a,b). Now, assuming that µi is distributed as
gamma with mean (ri + Wi) and variance (ν̂i + W2

i ) and that µi′ is distributed as gamma
with mean ri′ and variance ν̂i′ , Fay9 derived the upper confidence limit to be

ri + Wi

ri′
F−1

((2(ri+Wi)2)/(ν̂i+W2
i ),(2r2

i′ )/ν̂
′
i ))

(
1 − α

2

)

Note that this approximation cannot be readily applied for constructing CIs for the ratios
µi/µ, that is, the ratios of the age-adjusted rates for the regions i to the US age-adjusted
rates, as the latter depends on the former ones.

We propose a modification in the above CI for µi/µi′ . For the lower limit, we assume
that µi is distributed as gamma with mean ri and variance ν̂i and that µi′ is distributed
as gamma with mean r̃i′ and variance ν̃i′ and since the two distributions are independent
chi-squares, we have (

r̃i′

ri

)
µi

µi′
∼ F((2r2

i )/ν̂i,(2r̃2
i′ )/ν̃i′ )

This results in the lower limit to be ri/r̃i′ F−1
((2r2

i )/ν̂i,(2r̃2
i′ )/ν̃i′ )

(α/2). Similarly, the upper limit

can be obtained. The proposed CI for µi/µi′ is
(

ri

r̃i′
F−1

((2r2
i )/ν̂i,(2r̃2

i′ )/ν̃i′ )

(α

2

)
,

r̃i

ri′
F−1

((2r̃2
i )/ν̃i,(2r2

i′ )/ν̂i′ )

(
1 − α

2

))
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Another CI for µi/µi′ using (ri + w̄i) and (ν̂i + w̄2
i ) instead of ri and ν̃i is given by

(
ri

ri′ + w̄i′
F−1

((2r2
i )/ν̂i,(2(ri′+ŵi′ )2)/(ν̂i′+w̄2

i′ ))

(α

2

)
,

ri + w̄i

ri′
F−1

((2(ri+w̄i)2)/(ν̂i+w̄2
i ),(2r2

i′ )/ν̂
′
i )

(
1 − α

2

))

Once again, we mention that this interval performs similarly to the above one, and we
will not focus on this. We further remark that, unlike as in Fay,9 these intervals do not
assume the dependence of the wij on tj.

2.2 Normal approximations
Define Rij = Dij/nij(= Dij/(nξijξj)). Let n → ∞ so that 0 < ξij, ξj < 1. Note that

0 < λij < ∞. Then as min{nijλij} → ∞,

√
n
(

ξijξj

λij

)1/2

(Rij − λij) −→ind N(0, 1), i = 1, . . . , I; j = 1, . . . , J

That is, Rij are independent and asymptotically normally distributed, Rij ∼
AN(λij, λij/(nξijξj)). The other asymptotic results based on Rij, 100(1 − α)% CIs for
µi, µ, µi/µi′ , µi/µ, µi/µ(−i) and µi − µ, and their logarithmic and logit transforma-
tions are presented in Appendix C. In particular, the 100(1 − α)% CIs for µi/µ, and
µi − µ, based on the correlated age-adjusted rates, are given by

µi

µ
=





µ̂i

µ̂
± zα/2

√
(σ̂ 2

i µ̂2 + σ̂ 2µ̂2
i − 2ρ̂iµ̂iµ̂)

√
nµ̂4





∨ 0

µi − µ = µ̂i − µ̂ ± zα/2

√
σ̂ 2

i + σ̂ 2 − 2ρ̂i√
n

where a ∨ b = max(a, b). When ρi = 0, which is true iff λij = 0 for all j, these CIs reduce
to (see, e.g., Ries et al.10 for the CI of µi − µ when ρi = 0)

µi

µ
=
{

µ̂i

µ̂
± zα/2

1√
n

√
1
µ̂4 (σ̂ 2

i µ̂2 + σ̂ 2µ̂2
i )

}
∨ 0, µi − µ = µ̂i − µ̂ ± zα/2

√
σ̂ 2

i + σ̂ 2

√
n

Since ρi > 0, the length of the CI for µi − µ, ignoring the adjustment for ρi, is wider,
and hence the interval is more conservative.

2.3 Beta approximations
In general, the age-adjusted rates are less than 1 and equal to 1 if and only if there is

one age-group with both the values of cancer counts and population at risk for that age
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group equal to 1, which is not a practical case. A rationale for the beta approximation
is as follows. Let Ri = ∑J

j=1 wjRij, where Rij = Dij/nij. Let Dij and D̄ij be independent
Poisson random variables with means nijλij and nij(1 − λij), respectively. Then the dis-
tribution of Dij|Dij+D̄ij=nij,λij

∼ Bin(nij, λij), a binomial distribution with parameters nij

and λij.12 Using the result, given in Appendix D, we can approximate the distribution of
Ri by a beta distribution with parameters âi and b̂i, Be(âi, b̂i), where

âi = r̃i

(
r̃i(1 − r̃i)

ν̃i
− 1

)
, b̂i = (1 − r̃i)

(
r̃i(1 − r̃i)

ν̃i
− 1

)

We define an approximate 100(1 − α)% CI for µi as (LR̄i
, UR̄i

), where LR̄ and UR̄ are
obtained by solving the following incomplete beta integrals:

∫ LR̄i

0
B(x|âi, b̂i) dx = α

2
,
∫ UR̄i

0
B(x|âi, b̂i) dx = 1 − α

2

Here, B(x|a, b) is the density of a beta distribution, Be(a, b), with parameters a and b.

3 Examples and simulations

As an illustration, age-adjusted tongue cancer mortality rates were calculated for each
of the regions. Tongue cancer occurs mostly among the elders. The 2002 mortality
data for tongue cancer, even though available from the NCHS, were obtained from
the SEER Program of the NCI (see the web site: www.seer.cancer.gov). We carried out
two different simulation studies to evaluate the performance of the proposed gamma,
beta and normal (with lower limits truncated at 0) intervals with the gamma interval
of Fay and Feuer.4 In the first simulation study, we took the true means of the Poisson
distributions of Dij to be the observed values of deaths in the (i, j)th cell, where i stands
for the 51 regions of the US (50 states and Washington DC) and j stands for the 19
age-groups, to be (i = 1, . . . , 51; j = 1, . . . , 19). Therefore, the true value of µi is the
observed value of the age-adjusted rate for each i. From the Poisson distributions, we
generated 10 000 values of dij, and obtained the observed values of the age-adjusted
rates Ri using the normalized weights wj, based on the 2000 US standard population,
so that

∑J
j=1 wj = 1. We computed approximate 95% CIs for µi for each of the 51

regions using the gamma intervals of Fay and Feuer4 and the proposed gamma, beta and
normal intervals. Additionally, we compared the F interval of Fay9 for µi/µ(−i) with the
proposed F and normal intervals (with left limits truncated at 0). We compared the age-
adjusted rate of each of the 51 regions with the rest of US age-adjusted rate. Once again,
we chose the year 2002 tongue cancer mortality age-adjusted rates for the 51 regions.
The simulations were carried out assuming the 2000 standard population generating dij
from independent Poisson with mean equal to the observed dij.
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Table 1 gives the results of the first simulation study. Columns 2 and 3 of the table
give the observed (true) tongue cancer mortality counts and age-adjusted rates (per
100 000 mid-year population) for the 50 states, the District of Columbia, and the four
Census Bureau Regions (Northwest, Midwest, West, and South). Column 3 presents the
empirical coverage probabilities of the 95% CIs for the (simulated) age-adjusted rates
based on the gamma, modified gamma, beta, and normal approximations. Column 5
shows the observed (true) ratios of age-adjusted rates of each of the 51 regions with the
rest of the US Column 6 gives the empirical coverage probabilities of the 95% CIs for
the (simulated) rate ratios based on F modified F and normal approximations.

Both the modified gamma and modified F intervals are more efficient than their coun-
terparts because their empirical coverage probabilities are at least 95%, but are lower
than for the gamma and the F intervals. The beta and normal intervals are slightly liberal
as they do not perform well as they have empirical coverage probabilities less than 95%
for a number of regions.

In the second simulation study, we considered the effect of randomly generated values
of wij and dij on the performance of the gamma, beta and normal intervals. Here, the
subscript i does not play any role, and is treated as a dummy variable, but it is kept for the
sake of notational consistency. We generated 19 numbers, corresponding to the J = 19
age-groups, from the uniform U(0, 1) distribution and standardized them (and called
them wij; j = 1, . . . , 19) so that

∑19
j=1 wij is a very small number, say, equal to 5.0 × 10−6.

We again generated 19 numbers from U(0, 1) and standardized them (and called them
dij; j = 1, . . . , 19) so that their sum is small,

∑19
j=1 dij = 20 . These standardized numbers

were taken to be the values of the true means λij, j = 1, . . . , 19.
Then, we simulated 10 000 values of dij from the Poisson distributions with means

λij, j = 1, . . . , 19. From these, we calculated the age-adjusted rates ri and the 95% CIs
for µi using the gamma and normal intervals. We also calculated the variance of wij.
We repeated the entire process 500 times. Note that we could have standardized the sum∑19

j=1 wij to any other small number, but we chose it to be 5.0 × 10−6 so that it was
similar to what we have based on the 2000 US standard population and the 2002 age-
adjusted rates. We also could have standardized the sum

∑19
j=1 dij to any other number

than 20 possibly to 50, but we kept it to 20 to see the effect of small sample size; that is,
the small number of total mortality counts for the region, i.

Note that out of 10 000 intervals, corresponding to each one of the 500 replications, it
is expected that approximately 9500 intervals would contain the true mean µi and 500
would not; that is, it is expected that approximately 250 values of the lower limits would
be above the true mean µi and about the same number of the upper limits would be below
the true mean µi. In Figures 1 and 2, we plotted the 500 values of the variance of the
normalized weights wij on the x-axis, and the frequencies of the lower and upper limits of
µi for the Fay and Feuer4 intervals, modified gamma, beta and normal intervals that fell,
respectively, above and below the true mean µi, were plotted on the y-axis. In Figure 3,
we plotted both the lower and the upper limits against the variance of wij. Note that
the two solid lines in Figure 3 correspond to the lower and upper 95% confidence limits
for true proportion, p, based on Bin(10 000, 0.05), and then rescaled by multiplying by
10 000; that is 10 000(0.05 ± 1.96

√
0.05 × 0.95/10000) ≈ (457, 543). Thus the expected
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Table 1 Comparisons of empirical coverage probabilities for 95% CIs for the age-adjusted mortality rates
of states/Census Bureau Regions and ratios of these rates to the rest of the US for tongue cancer

State/region True True rate Coverage of 95% CI (rate) Coverage of 95% CI (ratio)
count (per 100 000)

Modified True Modified
Gamma gamma Beta Normal ratio F F Normal

Alaska 1 0.25 97.0 97.0 97.0 99.3 0.38 97.0 97.0 99.3
Wyoming 3 0.56 98.8 98.8 96.5 98.9 0.87 98.8 98.8 99.0
Montana 4 0.41 98.0 98.0 95.3 99.2 0.63 98.1 98.1 99.1
Vermont 4 0.58 98.1 98.1 95.0 99.3 0.89 98.3 98.3 99.2
Delaware 5 0.60 98.8 98.8 96.9 96.1 0.92 98.7 98.7 96.1
Rhode Island 5 0.45 98.6 98.6 96.6 95.2 0.69 98.4 98.4 96.1
Washington DC 6 1.06 97.9 96.4 94.1 97.2 1.62 97.9 96.8 97.0
Utah 6 0.34 97.3 96.7 94.8 96.8 0.52 97.7 96.8 96.6
Nebraska 8 0.46 96.8 96.8 95.1 94.9 0.70 96.8 96.7 95.2
South Dakota 8 0.92 97.7 97.1 95.1 96.2 1.42 97.7 97.1 96.2
New Mexico 9 0.48 96.8 96.2 94.4 96.5 0.73 97.0 96.4 96.2
West Virginia 9 0.41 97.5 97.5 95.7 96.4 0.62 97.8 97.6 96.5
North Dakota 10 1.51 97.6 97.6 96.1 95.7 2.32 97.2 97.0 95.7
Hawaii 12 0.89 96.7 96.3 94.9 95.8 1.37 96.8 96.5 95.9
Iowa 12 0.36 96.7 96.2 94.6 95.4 0.56 96.7 96.2 95.5
Idaho 13 1.05 96.5 96.1 94.6 95.6 1.61 96.5 96.0 95.5
Kansas 13 0.46 96.8 96.5 95.0 95.3 0.70 96.7 96.4 95.4
Maine 14 0.93 97.8 97.1 95.9 95.7 1.43 97.5 97.0 95.9
New Hampshire 14 1.10 97.1 96.6 95.1 95.7 1.69 97.0 96.6 95.7
Mississippi 15 0.53 96.4 96.2 95.0 95.0 0.81 96.7 96.4 95.4
South Carolina 16 0.40 96.6 96.4 95.1 95.5 0.61 96.5 96.2 95.4
Colorado 18 0.51 96.7 96.3 95.4 95.3 0.77 96.7 96.3 95.4
Oklahoma 19 0.52 96.5 96.2 95.3 95.0 0.80 96.7 96.2 95.2
Alabama 20 0.43 96.8 96.4 95.1 95.9 0.65 96.8 96.6 95.8
Arkansas 22 0.74 96.7 96.5 95.3 95.7 1.14 96.6 96.3 95.5
Kentucky 22 0.52 96.6 96.4 95.2 95.5 0.80 96.4 96.3 95.5
Louisiana 25 0.58 95.7 95.5 94.4 95.0 0.89 95.8 95.6 94.9
Arizona 26 0.47 96.4 96.1 95.0 95.7 0.72 96.3 96.2 95.5
Nevada 26 1.21 96.4 95.6 94.7 94.9 1.88 96.5 95.6 94.9
Connecticut 27 0.69 96.3 96.0 94.6 95.3 1.06 96.1 95.9 95.3
Oregon 27 0.75 96.2 96.0 95.0 95.2 1.15 96.3 96.1 95.2
Minnesota 31 0.63 96.1 95.9 95.0 95.1 0.96 95.9 95.8 95.0
Missouri 36 0.59 96.0 95.9 94.9 95.2 0.91 96.1 95.9 95.2
Georgia 38 0.52 96.3 95.9 95.2 95.1 0.79 96.3 96.0 95.1
Virginia 38 0.53 96.3 96.1 95.2 95.3 0.81 96.2 96.1 95.3
Massachusetts 39 0.56 96.2 96.0 95.2 95.3 0.85 96.3 96.1 95.3
Maryland 40 0.75 96.1 96.0 95.2 95.5 1.16 96.4 96.2 95.5
Indiana 42 0.67 96.0 95.8 95.0 95.3 1.03 96.0 95.9 95.3
Wisconsin 43 0.75 95.6 95.5 94.5 94.8 1.16 95.6 95.5 94.8
Washington 47 0.80 95.9 95.7 94.9 95.2 1.23 95.9 95.7 95.2
Tennessee 50 0.83 96.0 95.9 94.9 95.2 1.28 96.0 95.9 95.2
North Carolina 53 0.64 96.0 95.9 95.2 95.3 0.99 96.2 96.1 95.4
New Jersey 59 0.65 96.0 95.8 95.2 95.3 1.00 96.1 95.9 95.3
Illinois 65 0.53 95.6 95.6 94.9 95.0 0.80 95.5 95.5 94.9
Ohio 68 0.56 95.9 95.8 95.1 95.2 0.86 96.0 95.9 95.3
Michigan 76 0.75 95.4 95.3 94.5 94.6 1.16 95.4 95.3 94.8
Pennsylvania 86 0.60 95.9 95.8 95.0 95.3 0.91 95.9 95.8 95.2
New York 118 0.59 95.9 95.8 95.3 95.3 0.90 95.7 95.6 95.2
Texas 140 0.76 95.8 95.7 95.2 95.2 1.19 95.5 95.4 95.2
Florida 145 0.70 96.1 96.0 95.5 95.5 1.09 95.8 95.7 95.3
California 254 0.81 95.7 95.6 95.3 95.3 1.28 95.8 95.7 95.4
Northeast 366 0.62 95.7 95.6 95.3 95.2 0.94 95.7 95.7 95.2
Midwest 412 0.61 95.6 95.5 95.2 95.2 0.93 95.2 95.2 94.8
West 446 0.74 95.6 95.6 95.4 95.3 1.18 95.7 95.6 95.4
South 663 0.64 95.0 95.0 94.8 94.9 0.98 95.2 95.1 95.0
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Figure 1 Number of upper limits below true mean (over 10 000 replications).

Figure 2 Number of lower limits above true mean (over 10 000 replications).
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Figure 3 Number of CIs not covering true mean (over 10 000 replications).

numbers of the lower and upper limits of µi that fall above and below the true mean
are between 457 and 543. In Figure 4, we plotted the lengths of the simulated intervals
against the variance of wij.

From Figures 1–4, we observe that the modified gamma intervals have empirical cov-
erage at least 95%, but slightly lower than the gamma intervals of Fay and Feuer,4 the
beta and normal intervals (with lower limits truncated at 0 if they were negative) also
have empirical coverage probabilities very close to 95%, and their widths are lower than
the gamma intervals. The coverage probabilities of the upper limits of both the beta and
modified gamma intervals are identical and at least 97.5%, but slightly lower than the
gamma intervals of Fay and Feuer.4 The lower limits of the normal intervals are slightly
more conservative than those for gamma, while the upper limits of the normal inter-
vals are least conservative. The advantage of using modified gamma intervals over the
gamma intervals is clear from Figure 3, wherein the gamma intervals show a coverage
probability of around 97% as the variance wij increases, the modified intervals show the
coverage probability staying slightly higher than 95%. Overall, from these simulation
studies, the gamma intervals of Fay and Feuer4 are more conservative than the proposed
gamma. The beta intervals are slightly more liberal than both the modified gamma and
the gamma intervals of Fay and Feuer.4 The normal intervals are more liberal than the
beta intervals.

In simulations, when the Poisson means were 0, as the observed dij were 0, we set the
simulated values of Dij to be equal to 0. This is because Dij are non-negative random
variables with the means and variances equal and if the mean of a Dij is 0 then that Dij
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Figure 4 Length of CIs.

is 0 with probability 1. Of course, when Dij have positive means, there is a good chance
that the simulations could still result in 0 for the simulated values of Dij. We considered
another simulation study where we took the Dij to be Poisson with means nijra,j, with
ra,j = ∑I

i=1 dij/nj as the observed 2002 US age-specific mortality rates for tongue cancer.
Note that in this case, µi = ∑J

j=1 wij(nijra,j) is a constant, independent of both i and j,
and the ratio of the means of two age-adjusted rates is 1. The results of this study were
very similar to those given in Table 1.

Next, we studied the performance of the 95% normal intervals for the ratios µi/µ
and the differences µi − µ, and their coverage probabilities were close to 0.95. As an
illustration, Figure 5 gives the plots of the number of CIs that do not contain the ratio
of the observed age-adjusted mortality rates for Arkansas to the US, for the normal
intervals, with lower limits truncated at 0 and with ln(µi/µ) transformation. For com-
parison, we also plotted these numbers for both the F and modified F intervals, ignoring
the dependence of Ri on R. The Figure 5 shows that the F intervals are very conservative,
the modified F intervals and the normal intervals based on the logarithmic transforma-
tion have coverage probabilities close to 0.95, and the normal intervals with lower limits
truncated at 0 are slightly liberal. Of course, both the F and modified F intervals do not
incorporate the crucial assumption of the dependence between Ri and R, and may not
be appropriate in this context.

We also applied the normal CIs for µi − µ, to compare if the 2002 esophagus age-
adjusted mortality rates for each of the 51 regions were equal to or not to the US
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Figure 5 Number of CIs not covering true ratio of 2002 age-adjusted mortality rates for Arkansas to US for
tongue cancer (over 10 000 replications).

age-adjusted rate using the 2002 esophagus mortality data. We found that the age-
adjusted rates for Ohio and Pennsylvania were different from the US when we applied
the normal CIs for µi − µ with correlated Ri and R, as the CIs did not contain 0; whereas
when we applied the CIs for µi − µ based on the uncorrelated Ri and R, the age-adjusted
rates for the two states were equal to that of the US as the CIs contained 0. For the other
49 regions, the two CIs produced results that were in agreement.

4 Discussion

The advantage of the modified gamma and F intervals is that they depend on all wij
rather than just the largest value wi(J) . The F intervals are based on the ratio of two
chi-squared distributions that are independent and, unlike Fay,9 do not depend on the
restrictions dij + di′j = tj for all j. Also, the advantage of using the estimates of µ̃i, σ̃ 2

i
and ρ̃i, based on the continuity correction factor, over their counterparts µ̂i, σ̂ 2

i and ρ̂i,
is more for the rare cancer sites. Without the adjustment for the continuity correction,
the normal and beta CIs for µi, for the tongue cancer site, were observed to be liberal,
especially for the regions with small mortality counts.

In Figures 1–4, we reported the performance of the gamma, modified gamma, beta
and normal (with lower limits truncated at 0) intervals. We also studied, but did not
report, the performance of the ABC, DKES, and normal intervals for µi based on the
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transformations ln(− ln(Ri)) and ln(Ri/(1 − Ri)). We observed that both the gamma
and modified gamma intervals always retained the nominal coverage of at least 0.95,
with the modified gamma intervals being less conservative than the gamma intervals.
None of the other intervals retained the nominal coverage. The DKES intervals were
next with the empirical coverage probabilities closer to the nominal value of 0.95, and
then the beta intervals, the ABC intervals, the normal (with lower limits truncated at
0) intervals, the normal intervals based on ln(− ln(Ri)), and the normal intervals based
on ln(Ri/(1 − Ri)), in that order. Similarly, for the CIs for the ratios of the means of
two (uncorrelated) age-adjusted rates, both the F intervals of Fay9 and the modified F
intervals retained the nominal coverage of at least 0.95, with the modified F being less
conservative of the two. The normal intervals (with lower limits truncated at 0) have
coverage probabilities very close to 0.95 followed by the normal intervals based on the
transformation ln(Ri/R(−i)).

We may mention that the beta intervals can be viewed as approximation to Bayesian
credible intervals for µi. Assume that 0 < λij < 1 are small so that Dij ∼ind Bin(nij, λij).
Further assume that λij are independent with prior π(λij) ∝ 1, 0 < λij < 1. Then the
posterior distributions are given by

λij|nij, rij ∼ind Be(nijrij + 1, nij(1 − rij) + 1) ≈ Be(nijrij, nij(1 − rij))

and we can approximate the posterior means and variances of µi = ∑J
j=1 wijλij by r̃i and

ν̃i. Now, the credible intervals can be obtained as follows. Generate G∗ (large) Markov
chain Monte Carlo (MCMC) values on λ

(g)
ij , g = 1, . . . , G∗, using Gibbs sampler, from

the posterior distributions of λij, and compute the G∗ values of µi, namely, µ
(g)
i =

∑G∗
g=1 wijλ

(g)
ij , and then construct the 100(1 − α)% credible interval for µi from the

empirical distribution of {µ(g)
i }, by ordering these values from the smallest to the largest

and taking the credible interval to be the 100(α/2)th and 100(1 − α/2)th ordered values.
We performed MCMC simulations and constructed the credible intervals for the 2002
age-adjusted mortality rates for the tongue cancer for the 51 regions of the US and found
that the credible intervals were more liberal than the beta intervals in Table1.

The assumption that the mortality or incidence counts are independent Poisson is used
by many, for example, see Brillinger,3 and is perhaps a consequence of the underlying
birth/death (continuous) Poisson process model. We have not seen any analyses for the
age-adjusted rates for the case of correlated Dij. However, as pointed out by a referee,
it is quite possible for neighboring states to have common socio-economic and other
factors resulting in correlated Dijs. This is an important topic for future research.

5 Conclusion

We presented CIs for the means of the cancer age-adjusted rates for the 51 regions, µi,
for the US µ, for the ratios of the means µi/µi′ , µi/µ(−i), µi/µ and for the differences
µi − µ. We developed modifications of the gamma interval of Fay and Feuer,4 and
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the F interval of Fay,9 and proposed new CIs based on the beta and normal intervals.
Simulations were carried out to compare the performance of these intervals in terms of
their empirical coverage probabilities, and results showed that the modified gamma and
F intervals performed better than the gamma interval of Fay and Feuer4 and the F interval
of Fay9 in terms of retaining the nominal coverage. The other intervals such as the DKES,
ABC, beta, and the truncated normal intervals were shown to be good competitors. The
modified gamma and F intervals are going to replace the gamma and F intervals in the
SEER Program. In addition, for comparing µi and µ, the normal intervals for µi − µ
that incorporate the correlation between Ri and R are also recommended to replace the
ones that are based on the uncorrelated Ri and R in the SEER Program.10 Even though
the results of this paper are presented in the context of constructing the CIs for the (true)
age-adjusted mortality rates based on data from the SEER Program, they can be applied
to similar data from other countries as well.
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Appendix A: Means and variances of Ri, R(−i) and R, and of their
ratios, and the covariance between Ri and R

We can rewrite Ri, R(−i) and R as

Ri = 1
n

J∑

j=1

wj
Dij

ξjξij
; R(−i) = 1

n

J∑

j=1

wj
D(−i)j

ξjξ(−i)j
; R = 1

n

J∑

j=1

wj
Dj

ξj

Let

σ 2
i =

J∑

j=1

w2
j

λij

ξjξij
; σ 2

(−i) =
J∑

j=1

w2
j

(∑I
i′ �=i ξi′jλi′j

ξjξ
2
(−i)j

)
;

σ 2 =
J∑

j=1

w2
j

(∑I
i=1 ξijλij

ξj

)
; ρi =

J∑

j=1

w2
j
λij

ξj

Then,

µi ≡ E(Ri) =
J∑

j=1

wjλij; µ(−i) ≡ E(R(−i)) =
J∑

j=1

wj

∑I
i′ �=i ξi′jλi′j

ξ(−i)j
;

µ ≡ E(R) =
J∑

j=1

wj

( I∑

i=1

ξijλij

)

vi ≡ Var(Ri) = σ 2
i

n
; ν(−i) = σ 2

(−i)

n
;

v ≡ Var(R) = σ 2

n
; Cov(Ri, R) = ρi

n

Using the delta-method, the means and variances of the ratios Ri/Ri′ , Ri/R(−i) and Ri/R
are given by

E
(

Ri

Ri′

)
≈ µi

µi′
; E

(
Ri

R(−i)

)
≈ µi

µ(−i)
; E

(
Ri

R

)
≈ µi

µ

Var
(

Ri

Ri′

)
≈ σ 2

i µ2
i′ + σ 2µ2

i

nµ4
i′

; Var
(

Ri

R(−i)

)
≈ σ 2

i µ2
(−i) + σ 2µ2

i

nµ4
(−i)

Var
(

Ri

R

)
≈ σ 2

i µ2 + σ 2µ2
i − 2ρiµiµ

nµ4



566 RC Tiwari, LX Clegg and Z Zou

Appendix B: ABC and DKES intervals

The ABC intervals are4

LABC(µi; α) = µ̂i + z0i − zα/2

{1 − ai[z0i − zα/2]}2

σ̂i√
n

UABC(µi; α) = µ̂i + z0i + zα/2

{1 − ai[z0i + zα/2]}2

σ̂i√
n

where zα/2 = �−1(1 − α/2) is the upper α/2th percentile point of the standard normal
distribution function, �, ai = z0i = (

∑J
j=1 w3

ijdij)/(6ν̂
3/2
i ). The DKES intervals are4

LDKES(µi; α) = µ̂i + σ̂i√
n
∑J

j=1 dij



1
2

(
χ2

2(
∑J

j=1 dij)

)−1 (α

2

)
−

J∑

j=1

dij





UDKES(µi; α) = µ̂i + σ̂i√
n
∑J

j=1 dij



1
2

(
χ2

2(1+∑J
j=1 dij)

)−1 (
1 − α

2

)
−

J∑

j=1

dij





Appendix C: Asymptotic normality and confidence intervals based
on Rij

Let R = (R11, . . . , R1J, . . . , RI1, . . . , RIJ)
T, R̄ = (R1, . . . , RI, R)T,µ = (µ1, . . . , µI, µ)T

and let
∑ = ((σij)) be (I + 1) × (I + 1) matrix with σii = σ 2

i , σi,I+1 = σI+1,i = ρi and
σii′ = 0 for i �= i′. Here the superscript T denotes the transpose. Since R can be expressed
as R̄ = AR for an appropriately defined matrix A, we have

√
n(R̄ − µ) −→ N(I+1) (0,�)

where
∑ = A[Cov(R)]AT and Np(b, B) denotes a p-dimensional multivariate normal

distribution.
Thus for any non-null (I + 1)-column vector a,

√
naT(R̄ − µ) −→ N(0, aT�a)
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In particular, by choosing a appropriately, we have

Ri =
J∑

j=1

wjRij ∼ind AN

(
µi,

σ 2
i

n

)

R(−i) =
J∑

j=1

wj

(∑I
i′ �=i ξi′jRi′j

ξ(−i)′j

)
∼ AN

(
µ(−i),

σ 2
(−i)

n

)

R =
J∑

j=1

wj

( I∑

i=1

ξijRij

)
∼ AN

(
µ,

σ 2

n

)

Ri

Ri′
∼ AN

(
µi

µi′
,
σ 2

i µ2
i′ + σ 2

i′ µ
2
i

nµ4
i′

)
;

Ri

R(−i)
∼ AN

(
µi

µ(−i)
,
σ 2

i µ2
(−i) + σ 2

(−i)µ
2
i

nµ4
(−i)

)

Ri

R
∼ AN

(
µi

µ
,
σ 2

i µ2 + σ 2µ2
i − 2ρiµiµ

nµ4

)

(Ri − R) ∼ AN

(
µi − µ,

σ 2
i + σ 2 − 2ρi

n

)

µi =
{
µ̂i ± zα/2

σ̂i√
n

}
∨ 0; µ =

{
µ̂ ± zα/2

σ̂√
n

}
∨ 0

µi

µi′
=





µ̂i

µ̂i′
± zα/2

√
(σ̂ 2

i µ̂2
i′ + σ̂ 2

i′ µ̂
2
i )√

nµ̂4
i′





∨ 0

µi

µ
=





µ̂i

µ̂
± zα/2

√
(σ̂ 2

i µ̂2 + σ̂ 2µ̂2
i − 2ρ̂iµ̂iµ̂)

√
nµ̂4





∨ 0

µi

µ(−i)
=





µ̂i

µ̂(−i)
± zα/2

√
(σ̂ 2

i µ̂2
(−i) + σ̂ 2

(−i)µ̂
2
i )

√
nµ̂4

(−i)





∨ 0

µi − µ = µ̂i − µ̂ ± zα/2

√
σ̂ 2

i + σ̂ 2 − 2ρ̂i√
n

where a ∨ b = max(a, b).
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Since 0 ≤ Ri ≤ 1 and 0 ≤ Ri/R(−i) ≤ ∞ with probability 1, the following transforma-
tions are commonly used to transform the range of these random variables to (−∞, ∞)
and their results on the asymptotic normality yield:

ln(− ln Ri) ∼ AN

(
ln(− ln(µi)),

σ 2
i

n(µi ln µi)2

)

log it(Ri) ≡ ln
(

Ri

1 − Ri

)
∼ AN

(
ln
(

µi

1 − µi

)
,

σ 2
i

n(µi(1 − µi))2

)

ln
(

Ri

R(−i)

)
∼ AN

(
ln
(

µi

µ(−i)

)
,

1
n

[
σ 2

i

µ2
i

+ σ 2
(−i)

µ2
(−i)

])

Based on these transformations, the CIs for µi, µi/µ(−i) and µi/µ are given as follows:

I)

µi = exp
{
− exp

[
ln(− ln(µ̂i)) ± zα/2

σ̂i

(µ̂i ln µ̂i)
√

n

]}

II)

µi =
[

1 + exp
{
−
[

ln
(

µ̂i

1 − µ̂i

)
± zα/2

σ̂i

(µ̂i(1 − µ̂i))
√

n

]}]−1

III)

µi

µ(−i)
= exp




ln
(

µ̂i

µ̂(−i)

)
± zα/2

[
1
n

[
σ̂ 2

i

µ̂2
i

+ σ̂ 2
(−i)

µ̂2
(−i)

]]1/2





IV)

µi

µ
= exp




ln
(

µ̂i

µ̂

)
± zα/2

µ̂

µ̂i

[
1
n

σ̂ 2
i µ̂2 + σ̂ 2µ̂2

i − 2ρ̂iµ̂µ̂i

µ̂4

]1/2





The CIs in III) above, were also derived by Breslow and Day.13 Note that we will use µ̃i,
ν̃i and ρ̃i instead of µ̂i, ν̂i and ρ̂i.
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Appendix D: Beta approximations of Rij and Ri

Using the relation that14

x∑

k=0

(n
k

)
pk(1 − p)n−k = �(n + 1)

�(x + 1)�(n − x)

∫ 1−p

0
tn−x−1(1 − t)x dt

=
∫ 1−p

0
B(t|n − x, x + 1) dt

=
∫ 1

p
B(t|x + 1, n − x) dt

It then follows that

P(Rij ≥ rij|(Dij + D̄ij) = nij, λij) =
∫ λij

0
B(t|nijrij + 1, nij(1 − rij)) dt

Another heuristic argument for the beta approximation for Rij is based on the gamma
or chi-squared approximation of a Poisson distribution. Let χ2

k and αχ2
k denote a chi-

squared random variable with k degrees of freedom and a re-scaled (by a factor α > 0)

χ2
k random variable. Note that χ2

k =d G(k/2, 1), and if χ2
r and χ2

s are independent,
χ2

r /(χ2
r + χ2

s ) =d χ2
r /(χ2

r+s) ∼ Be(r/2, s/2), and that χ2
r /(χ2

r + χ2
s ) and χ2

r + χ2
s are

independent with χ2
r + χ2

s =d χ2
r+s.

Since Dij and D̄ij are independent, distributed as Po(nijλij) and Po(nij(1 − λij)),
respectively, and their distributions can be approximated by independent chi-squared
distributions 1/2χ2

2([nijrij]+1) and 1/2χ2
2(nij−[nijrij]), where [x] denotes the integer value of

x, we have

Dij

Dij + D̄ij
�

1/2χ2
2([nijrij]+1)

1/2χ2
2([nijrij]+1) + 1/2χ2

2(nij−[nijrij])

=
χ2

2([nijrij]+1)

χ2
2([nijrij]+1) + χ2

2(nij−[nijrij])
∼ Be([nijrij] + 1, nij − [nijrij]).

Thus, Rij ∼ Be([nijrij] + 1, nij − [nijrij]). We can now approximate the distribution of
Ri = ∑J

j=1 wjRij by a beta distribution, Be(âi, b̂i), where

âi = r̃i

(
r̃i(1 − r̃i)

ν̃i
− 1

)
, b̂i = (1 − r̃i)

(
r̃i(1 − r̃i)

ν̃i
− 1

)




