

Notice: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information ap-
paratus, product, or process disclosed, or represents that its use would not infringe on privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontrac-
tors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or
any of their contractors.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND 2006-3866P
Issued by Sandia National Laboratories for NNSA’s Office of Advanced Simulation & Computing, NA-114.

For more information, contact Robert Meisner at bob.meisner@nnsa.doe.gov

ON THE COVER:
This Parallel Volume Rendering of a cross-wind fire simulation shows the temperature of gases. This
150 million degree-of-freedom simulation uses loosely coupled SIERRA framework’s codes: Fuego/
Syrinx/Calore. It models objects in cross-wind fire (one fluid and participating media radiation
region; two conducting regions). The simulation was run on 2,048 Red Storm processors. An ASC
supercomputer, Red Storm is located at Sandia National Laboratories in Albuquerque, New Mexico.
The simulation is a part of a qualification test plan for system testing to be conducted at the new
Thermal Test Complex Cross Wind Facility at Sandia.

The ParaView scalable visualization tool was used to generate the rendering, using 64 nodes of a
Linux-based visualization cluster integrated with the Red Storm environment.

Advanced

Simulation &

Computing

Total Cost of Ownership of Linux/Open Source
Software in the Advanced Simulation and
Computing Program:
A Quantitative and Qualitative Analysis
of the Strategy

Authors:
Robert Meisner, NA-114,
Office of Advanced Simulation and Computing
NNSA Defense Programs

Charles Slocomb
NNSA/SAIC

Doug East
Lawrence Livermore National Laboratory

Jim Ang
Sandia National Laboratories

M’hamed A. Jebbanema
Los Alamos National Laboratory

A Publication of the Office of Advanced Simulation & Computing,

NNSA Defense Programs

 The Advanced Simulation and Computing Program
(ASC) is the cornerstone of the Stockpile Stewardship
Program (SSP)—one of the most highly integrated technical
programs designed to maintain the safety and reliability
of the U.S. nuclear stockpile. ASC
provides simulation capabilities (in the
absence of underground testing) and
computational resources to (a) support
the annual stockpile assessment and
certification, (b) study advanced nuclear-
weapons design and manufacturing
processes, (c) analyze accident scenarios
and weapons aging, and (d) provide the
tools to enable Stockpile Life Extension
Program (SLEPs) and the resolution
of Significant Finding Investigations
(SFIs). These responsibilities require
a portfolio of balanced resources
including hardware, simulation soft-
ware, and computer science solutions.

 This report focuses on the latter
and addresses the importance of
adopting a common operating system
across the three National Nuclear Security Administration
(NNSA) defense laboratories that contribute to the ASC
Program.

Value of a Common Operating System
 The computational environment at the NNSA national
defense laboratories that meets mission needs2 must satisfy
three primary requirements: performance, functionality,
and usability and security. The performance of the overall
computational system (e.g., compute, move data, store,
and visualize) must be sufficient to meet the demands of
weapons simulations. The functionality and usability of
the systems (e.g., operating system, system software such
as schedulers, and file systems and software that allows the
users to make efficient use of the system such as compilers,

debuggers, libraries, and performance analysis tools) must
be adequate to enable weapons physicists and engineers
to develop the detailed simulation models necessary to
address weapons problems. The system security must be

robust to ensure that classified work
is protected. This must be done at a
cost that aligns computing with the
other priorities of the program to
meet mission needs.

 Central to meeting the above
requirements is the acquisition of
high-end computer systems that
balance the total cost of ownership
(including initial cost of the system,
continuing software and hardware
maintenance, and integration costs)
with expectations of performance
and usability. In section 2, we
present a table that compares the
costs of the commodity hardware /
open source software strategy with
the vendor systems strategy for all
three NNSA weapons laboratories

and demonstrates that the overall costs for Linux systems
are substantially less than those for vendor systems.

 The major elements of computer software that must
be available are the operating system, system software that
makes the system efficient in running user software, and
software tools that allow the user to make efficient use of
the system. Until recently, the only viable choice has been to
acquire vendor hardware coupled with a vendor proprietary
operating system. The remaining system software and
software tools have been supplied by the vendor, by a third-
party company or by one of the laboratories before doing
their own development effort.

 After acquiring the computer system, it must be
integrated into the overall computing environment so that
the system can be accessed by the user community

Total Cost of Ownership1 of Linux/Open Source Software in the
Advanced Simulation and Computing Program:

A Quantitative and Qualitative Analysis of the Strategy

1 See glossary for definitions. In our analysis, we assumed that the overhead costs (facility, consulting) are not significantly different for high-
end Linux systems and high-end vendor systems, so those costs were not included.

2 See The ASC Strategy: the Next Ten Years; NA-ASC-100R-Vol. #1 Rev. 0, August 2004

INTRODUCTION

1

of the laboratory and so that the computing system
has access to the laboratory’s network storage system,
visualization systems, and other services of the local
computing environment. For the past decade, the vendor
operating systems have been based on Unix, which
has provided a significant benefit for integration and
user interface. Even so, with each new procurement of
a computer system, it has been necessary to learn the
intricacies of the new system software and hardware, to
integrate the system into the overall computing, network,
visualization and storage environments, to develop the
custom software that reflects the local needs, and to make
the inevitable fixes to the proprietary software that come
with using the system in a high-end scientific environment
that is not duplicated anywhere else in the world. This
repeated integration is costly and inefficient and puts a
large burden on the end user, whose primary objective is to
focus on the simulations and not to learn and debug a new
computing system.

 The laboratories are moving toward the use of open
source software3 to address the proliferation of divergent
system software implementations and produce a more
stable user interface that is consistent over multiple systems.
With the Linux/open source environment, the envisioned
ASC sites’ strategy is to do the difficult integration work
once, incorporate it into the open source software, and
repeatedly use it when new high-end systems are acquired.
The major assumption that drives the move to open source
systems is that a stable environment controlled by the
laboratories will increase user, system programmer, and
system administrator productivity. The ASC capacity

clusters4 show the greatest potential for benefit from a move
to Linux/open source systems.

 While the capability platform5 procurements
are developed over many years and priority has been
overwhelmingly given to performance over continuity of the
user environment, efforts have been made to leverage Linux
in the most recently acquired capability platforms, e.g., Red
Storm (in its service partition and Reliability, Availability,
and Serviceability subsystem), and BG/L (in its service
partition). Much of the work done for capacity platforms
will be transferable directly to new capability platforms that
use Linux (as some will).

 Becoming a part of the open source environment has
other major advantages. The most obvious is that there
is a large cadre of programmers, both inside the ASC
complex and in the computing world at large, continually
adding new features and fixing bugs for Linux and other
open source software. This work for open source software
makes the software more capable and is paid for by the
institutions for whom the programmers work, in contrast
to vendor software development, which is charged back to
the end customer. Of course, the large and growing body of
programmers who know the Linux/open source software
can be hired by the national laboratories to work on their
computers without the extensive training that may be
required for vendor-proprietary software.

 Continuity of systems is also cited as a critical issue
by the weapons code developers and code physicists and,
although there are no data to support it in this study,
Linux/open source potentially will provide an enormous
increase in user productivity over the long term.

System Integration
 The major cost, besides the initial acquisition cost, of
deploying a high-performance computing (HPC) system is
not acquisition of the operating system or support software,
but the integration required to make the target system work
correctly and most efficiently in the environment of the
laboratories. The integration work required to implement
a Linux system is similar to that required for proprietary
systems, but in the Linux case, the laboratories are the
primary integrator and tester and do not depend on a vendor
for essential integration work. Included in the deployment
are the costs of integrating all the systems (storage,

3See Glossary for definition.
4See Glossary for definition.
5See Glossary for definition.

2

visualization) and software (compilers, debuggers, libraries,
performance tools) to ensure that they work together and
perform at a reasonable level.

 For example, the integration of the Lightning system at
Los Alamos required that several ingredients of the system
merge for the first time—a new file system, the message
passing software, and the system scheduling software. This
integration requires both Linux system administrators
and operating system developers to cooperate to uncover
problems as they arise and to identify and fix functionality
and performance issues. The same has been true for
systems at Lawrence Livermore and Sandia.

 The defense laboratories do a significant amount
of development work on Linux and other open source
software to meet their own needs (as described above) and
donate that software to the open source community. If the
developed software is accepted into the open source Linux
distribution, the maintenance issues for this software are
reduced because then it does not need to be reintegrated
with each new release. In the several years we have been
using laboratory-produced software on our Linux system,
a need to get industry’s buy-in to new software developed
has been recognized and is the mode of operation used for
most new code development projects. This helps reduce the
long-term support burden. Improvements to the software
written by the laboratories’ programming staff may be
made by the whole community, increasing the leverage of
the local system programmers. Of course if the laboratory-
developed enhancements to the core Linux software are
not accepted into the Linux distribution, it becomes the
responsibility of the host organization to incorporate their
changes into each new Linux operating system distribution
with the accompanying configuration management
challenges and incremental cost. Any software written for
the Linux kernel distribution, whether accepted into the
kernel distribution or not, becomes publicly licensed and is
a part of the public domain. It cannot be made proprietary
and cannot be restricted in use.

 Reuse is the key to savings. While reuse is the vision,
in actual practice, it can be a challenging activity — one
that requires ongoing effort — which can offset (some) of
the cost-benefits of open source vs. proprietary software
approaches.

 Each defense laboratory has taken a different approach
to integrating Linux-based systems into its computing
environments because of individual differences in mission
requirements and in existing computing infrastructure.

 In recent years, Sandia’s mission needs were focused
on production capacity systems that have a balance of
cost, stability, and performance for the size (n =1 to
128 nodes with dual processor nodes) of problems they
address. This usage model aligns well with a large critical
mass of industry and academic scientific computing users;
that is, most jobs are between 4 and 64 nodes and can use
standard-release Linux software. Since it was not necessary
to add laboratory-developed capabilities for scalability
performance to a vanilla software stack, the porting costs
for most Sandia MPI applications was minimal. The recent
addition of Thunderbird to Sandia’s user environment
requires that the baseline commodity Linux software stack
be modified to improve the scalability of these systems to
address problems beyond 1,000 processors.

 Both Los Alamos and Lawrence Livermore require
capacity computing systems with a very large number of
processors compared to most other scientific organizations
(their capacity systems currently have more than 1000
processors). Modifications to the released version of the
Linux operating system may be necessary or desirable to
ensure that the capacity cluster can be made useful in the
high-end scientific computing environment of the defense
laboratories. Supporting the system management, user job
scheduling, and applications programming needs for such
large systems have required modifications to the kernel
that are not included in the standard release. This requires
significant technical expertise. Lawrence Livermore
attempts to minimize and isolate kernel changes so that the
software provided by third-party vendors is unaffected. Los
Alamos attempts to provide a more manageable computing
environment at the expense of making kernel modifications,
which require third-party vendors to test and then
demonstrate that their software works with the modified
operating system.

3

 Each defense laboratory has experience with systems
running Linux and has seen a qualitative and quantitative
advantage to that approach. Many, if not most, of the
vendors providing systems that the laboratories can use
to address their problems use the Linux operating system,
and the work that the laboratories have done can be
incorporated into their environments.

 Our total cost of ownership analysis for these systems
is detailed in the Appendix, “Supporting Data.” We have
focused on the cost per teraFLOP for vendor systems and
Linux systems. The total cost of support and integration
for each type of system and total cost including hardware
acquisition was provided by the three defense laboratories.
The dollar values given in the table for the hardware and
support costs are based on the actual acquisition costs
as reflected in contracts with vendors. The other costs
are estimated costs, based on the expert judgment of the
laboratory representatives in this study.

 The Appendix shows that the cost per teraFLOP of
vendor systems is about twice the cost for Linux systems
for the systems examined ($2,754k/teraFLOP for vendor
systems versus $1,413k/teraFLOP for Linux systems). The
Q system6 is now 3.5 years old. If we value Q according
to today’s costs, using Moore’s law,7 today’s cost would be
about one-fourth of its original cost. That would make the
vendor systems total cost of ownership (TCO) $2,182k/
teraFLOP versus the Linux TCO of $1,413k/teraFLOP—
still a significant difference.

 Another comparison of interest comes from the
columns labeled “Vendor System ongoing cost per year” and
“Linux ongoing cost per year.” These show that the ongoing
cost per year (summed across the three laboratories)
to operate the vendor systems is $8,867k per year and
$5,402k/yr to operate the Linux systems. This is also a
significant cost savings to operate the Linux systems for
a year.

 The following table summarizes the data gathered from
the laboratories:

 Not all teraFLOPs provide the same simulation
power, but we believe that this comparison, which uses
information from systems that we own and with which we
have experience, provides insights that allow us to make
informed future decisions. Q, Purple and Red Storm were
acquired as capability systems. The ASC Program, because
of the nature of its mission requirements, needs systems
that are the most capable at the time of acquisition. Since
the vendors who provided them were willing to build a
system that may have been one of a kind, total costs were
higher than for those computer systems sold in large
quantities to universities and industries.

 The Linux systems acquired by the laboratories are also
high-end. They typically use commodity parts to construct
the system (including central processing units (CPUs),
networks, and memories) and the laboratories assume more
of the integration costs. These make the user environment
complete and functional by doing essentially all of the
integration into the target computing environment. The
laboratory role also includes taking the Linux system that
is not fully developed for high-end systems and ensuring
that it is maintainable, that jobs can be efficiently scheduled
across the large number of processors, that users are
able to debug their software to run on a large number of
processors. The laboratories also handle all the other tasks
that are affected by the use of thousands of processors
instead of tens of processors. Acquiring a system that is
mostly comprised of commodity hardware and open source
software makes the initial cost of the system lower but
increases the burden on the laboratories to make the system
work. Additional costs include testbeds that are acquired to
give the system development staff a place to do development
without unduly disrupting the work environment for
software developers.

ANALYSIS

6See Glossary for definition.
7See Glossary for definition.

Total cost of
ownership

Out-year
annual costs

Vendor $2182k/teraFLOP $8867k/yr

Linux/open source $1413k/teraFLOP $5402k/yr

4

 This study shows that the total cost of ownership for
Linux systems is considerably less than that for vendor
systems. Comparing the vendor proprietary systems
with the Linux systems implemented at the laboratories,
even when we bring the value of Q to what it would cost
today, shows that the cost to implement and operate Linux
systems is about 35% less than implementation of a vendor
system and the cost to operate the Linux system is about
39% less.

 With the new Tri-Laboratory Capacity Computing
(TLCC), in which the integration costs will be done once
and the successive systems will be able to fully utilize
the software, the Linux capacity systems should be even
less expensive. There is a major advantage to amortizing
the integration costs over multiple sets of hardware, and
reuse of the software will considerably reduce the cost of
ownership. If the laboratories were also able to better share
the software that they have developed for Linux, the total
cost to the NNSA would be even further reduced.

SUMMARY

5

BG/L—Blue Gene Light, an ASC capability system at
Lawrence Livermore Laboratory. For further information,
see http://www.llnl.gov/asc/platforms/bluegenel/.

Capability platforms—a classification of the large
parallel computing systems wherein the system is dedicated
to, or capable of being dedicated to, a single calculation.
Capability machines are characterized by a job mix with
few simultaneous jobs, with individual jobs utilizing 40% or
more of the system’s compute nodes.

Capability computing - The use of the most powerful
supercomputers to solve the largest and most demanding
problem, in contrast to capacity computing. The main figure
of merit, metric, in capability computing is time to solution.

Capacity clusters—a classification of parallel computing
systems that are not used as capability machines. A job mix
of many simultaneous jobs characterizes capacity machines.
Historically, today’s capability platforms become tomorrow’s
capacity machines as technology progresses.

Capacity computing - The use of smaller and less expensive
high-performance systems to run parallel problems with more
modest computational requirements, in contrast to capability
computing. The main figure of merit, metric, in capacity
computing is the cost/performance ratio.

Lightning system—Lightning, a Linux cluster system at
Los Alamos National Laboratory, has 1,408 dual-processor
AMD Opteron nodes with a Myrinet interconnect and a
peak speed of 13.3 teraFLOPs. Lightning has 77 terabytes
of temporary high-speed parallel storage and enjoys an
award-winning architecture developed at Los Alamos
(Science Appliance) and a software suite (Clustermatic) that
can completely manage a cluster.

Linux—An operating system developed by Linus
Torvalds, a student at the University of Helsinki in Finland.
Linus’ interest in Minix, a small UNIX system led to the
development of the Linux Kernel which is at the heart of all
Linux systems.

For more information, see http://www.linux.org/info/
index.html

Moore’s Law—The observation made in 1965 by Gordon
Moore, co-founder of Intel, that the number of transistors
per square inch on integrated circuits had doubled every year
since the integrated circuit was invented. Moore predicted
that this trend would continue for the foreseeable future.

In subsequent years, the pace slowed down a bit, but data
density has doubled approximately every 18 months, and
this is the current definition of Moore’s Law, which Moore
himself has blessed. Most experts, including Moore himself,
expect Moore’s Law to hold for at least another two decades.
(Source: Webopedia)

National Defense Laboratories—Los Alamos
National Laboratory (Los Alamos, New Mexico), Lawrence
Livermore National Laboratory (Livermore, California), and
Sandia National Laboratories (Albuquerque, New Mexico).

NNSA—National Nuclear Security Administration, a semi-
autonomous agency within DOE.

Open source software—Computer programs or
operating systems for which the source code is publicly
available are referred to as open-source software. Inherent in
the open source philosophy is the freedom of a distributed
community of programmers to modify and improve
the code. The most widely known example of open-
source software is the Linux operating system. For more
information, see http://iet.ucdavis.edu/glossary.cfm

Glossary

6

Purple—Purple is an ASC capability system located at
Lawrence Livermore National Laboratory:100-teraFLOPs
system. A huge machine, it is based on symmetric shared-
memory multiprocessors (SMP) containing more than
12,000 next-generation IBM Power5 microprocessors.

Q system—A 30-teraFLOPs ASC supercomputer system
located at Los Alamos National Laboratory was installed in
2000 as a 12.3-teraFLOPs system.
Red Storm—A 40-teraFLOPs ASC capability system,
located at Sandia National Laboratories.

TeraFLOP—A teraFLOP is a measure of a computer’s
speed and can be expressed as:

• A trillion floating point operations per second
• 10 to the 12th power floating point operations per

second (FLOPs)
• 2 to the 40th power flops.

Today’s fastest parallel computing operations are capable
of teraFLOP speeds. Scientists have begun to envision
computers operating at petaflop speeds.

Thunderbird—A 4,096-node Dell high-performance
capacity computer cluster located at Sandia National
Laboratories will provide more than 8,000 processors of
compute capacity. The aggregated capacity of the computer
will have approximately 24 terabytes memory and a speed of
60 teraFLOPs.

Total Cost of Ownership (TCO)—Below are
two definitions:

1. Model that helps IT professionals understand and
manage the budgeted (direct) and unbudgeted (indirect)
costs incurred for acquiring, maintaining and using
an application or a computing system. TCO normally
includes training, upgrades, and administration as well
as the purchase price. Lowering TCO through single-
point control is a key benefit of server-based computing.

 www.e-formation.co.nz/glossary.asp

2. Refers to the administrative costs associated with
computer hardware and software purchases, deployment
and configuration, hardware and software updates,
training, maintenance, and technical support.

 www.asu.edu/it/w2k/glossary.html

Glossary (continued)

7

 In the following tables, we estimate the total cost of
ownership for the last high-end system that was integrated
into the computing environment for each of the laboratories
and for the last high-end Linux system that was integrated.
Each entry in the table reflects the sum of the costs at each
individual laboratory. The cost per teraFLOP is the sum of
the costs for an assumed seven-year lifetime divided by the
total teraFLOPs for the systems analyzed.

 The column headings describe the phases for the
vendor systems and for the Linux systems.

 The first columns, for “Vendor System Integration” and
for “Linux Systems Integration” summarize the integration
costs. Integration, for the purposes of this discussion, is the
work that is necessary to be done on a system that makes it
ready for limited availability to users.

 The second column, “Vendor System Cost Through
the End of Vendor Agreement”) gives the costs after the
initial system integration and through the acquisition
agreement. For Red Storm, that is through the 4th year.
For Q and Purple that is through the 3rd year. The third
column (“Vendor System Ongoing Cost to End of 7-Year
Period”) gives the costs from the end of the period covered
by the vendor acquisition agreement to the system’s end of
life (defined here as seven years). So the total lifetime cost
for vendor systems is the sum of the first three columns
including the acquisition cost.

 The Linux systems do not have the same complexity in
the acquisition agreement, so the ongoing costs start right
after the integration period and the TCO is the sum of the
integration costs for the first year, the next six years, and
the initial acquisition cost. Again the system’s lifetime is
assumed for simplicity to be seven years (although it would
be remarkable to cost-effectively run these systems for so
long).

 We have also estimated the expected integration cost
of the TLCC procurement, the goal of which is to provide
the same basic capacity computing platform to all three
defense laboratories. The TLCC platforms may be a different
architecture (different processor, different interconnect) than
the Linux systems already integrated and so the integration
costs will be higher. The plan is to acquire multiple systems
with this architecture to minimize the initial integration costs
of the subsequent systems.

 The columns labeled “Vendor System Ongoing Cost
Per Year” and “Linux Ongoing Cost Per Year” reflect the
yearly cost to operate the systems after the initial costs of

integration and other system services that have been included
as part of the initial acquisition cost (such as maintenance
and system analysts) have been completed. In this analysis,
we are assuming that the ongoing cost to maintain future
Linux systems will be the same as for past Linux systems.

 The components of cost of ownership that we have
identified and attempted to quantify in the table include the
following:

System Programmers—Laboratory programmers who
make changes or additions to the operating system or the
user environment or do integration work that requires
deep knowledge of the system involved. Usually the system
programmer staff is responsible for all of the systems
of a particular kind. For example, the Linux system
programmers are responsible for all of the Linux systems at
a site, and when changes are made, those changes are relayed
to all the Linux systems. This is true for both vendor-
supplied systems and for Linux systems. For purposes of
this analysis, we have estimated the amount of effort that
was required for the integration of the system (usually
requiring more system programmer effort) and the amount
of effort that is required to keep the system running.

System Administrators (managers)—Laboratory
computing experts who ensure that the system is configured
to meet laboratory needs and who are responsible for
keeping the system running efficiently and meeting user
needs. System administrators usually are responsible for
multiple systems. For this analysis, we have estimated the
amount of effort that was required to initially make the
system usable (usually requiring more system administrator
effort) and the amount of effort that is required to keep the
system running.

Vendor Analysts—Vendor representatives who work at the
laboratories whose responsibilities include interfacing with
the vendor, ensuring the correct operation of the system,
and acting as an expert resource to laboratory people. There
are vendor analysts for both vendor proprietary and for
Linux systems.

System Software Purchase—The original cost of the
operating system software.

Hardware/Software Maintenance Dollars—These are
costs, either that the laboratories paid a vendor or that were
incurred in house for software and hardware maintenance.

Third-Party Software Purchase— Cost of purchasing
the third party software that runs on the system, such as
debuggers, schedulers, compilers, and libraries.

APPENDIX— Supporting Data

8

Open Source Software— (Tools, file systems, I/O
development and integration). Cost of people for
integration and on-going support for open source software.

Interconnect Support—Includes network and interconnect
software support, such as MPI

Hardware Acquisition Cost—is the cost of the hardware
only part of the system. It is a number that we derived from
the total vendor bid for the system by subtracting from
the total cost those costs that are not directly hardware,
such as hardware maintenance, software costs, software
maintenance, and vendor support personnel.

 The following table shows the total tri-lab costs
comparing vendor proprietary system costs with initial and
continuing Linux/open source costs.

Notes:
1. Costs are in $k.
2. Full-Time Equivalent (FTE) costs normalized to years @
 $280 per FTE.
3. Vendor systems: Purple 100TF, Red Storm 41.5 TF,
 Q 20 TF. The sum is 161.5 TF.
4. Linux Systems: Thunder 19.94TF, NWCC 16.5 TF,
 Lightning 13.3TF. The sum is 49.74TF.

TCO
Components Phases

Vendor
System

Integration

Vendor
System Cost
Through End

of Vendor
Agreement

Vendor System
Ongoing Cost to

End of 7-Year
Period

Vendor
System

Ongoing Cost
Per Year

Linux
System

Integration

Tri-laboratory
Capacity

Computing
Integration

Linux Ongoing
for 6 years

Beyond Year of
Acquisition

Linux
Ongoing Cost

Per Year

System Programmers 1,050 3,906 2226 1022 946 2696 5460 910
System
Administrators
(managers)

2,975 6,300 7980 2940 1470 2030 13020 2170

Vendor Analysts 0 3,000 3000 1000 409 409
System Software
Purchase 0 0 0 0 25 300 50

Hardware/Software
Maintenance $s 2360 13050 9132 3044 125 360 6594 1099

Third Party Software
$s 590 553 413 161 750 750 2052

Open Source
Software (Tools, file
systems, I/O development
and integration)

560 1540 980 420 747 1587 1848 308

Interconnect
Support 560 980 700 280 519 1079 2130 355

Hardware
Acquisition Cost 382,983 32,912

Total 391,078 29,329 24431 8867 37,878 8936 32412 5402
Lifetime Cost 444,838 70,290
Total Cost of
Ownership/TF 2754 1,413

Note 1: The SNL Vendor System Integration is for Red Storm.
Note 2: The SNL Vendor System Ongoing is per Cray contract and support of SNL developed capabilities.
Note 3: The SNL Linux Integration is for NWCC (Nuclear Weapons Commodity Cluster), a commodity turn key cluster similar to a 1SU TLCC system.
Note 4: The SNL Linux Ongoing is for NWCC (Nuclear Weapons Commodity Cluster), a commodity turn key cluster similar to a 1SU TLCC system.
Note 5: The SNL Linux Ongoing maintenance fees are per HP contract.
Note 6: The SNL Linux + 1 generally assumes activities to extend scale commodity clusters to address mid-range capability problems.

Note 6: The LLNL Vendor System Integration is for Purple.
Note 7: The LLNL Vendor System Ongoing is per Purple contract.
Note 8: The LLNL Linux Integration is for Thunder.
Note 9: The LLNL Linux Ongoing costs (esp. staffing) attempt to isolate or amortize only those associated with Thunder.
Note 10: The LLNL Linux + 1 assumes a TLCC-like architecture which is new to LLNL and therefore has a similar level of integration complexity as Thunder.

Note 11: The LANL Vendor System Integration is for Q.
Note 12: The LANL Vendor System Ongoing is per Q contract.
Note 13: The LANL Linux Integration is for Lightning.
Note 14: The LANL Linux Ongoing is for Lightning.

9

10

Thunderbird

Lightning

Thunder

