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Lattice SUSY

Old problem. T

Difficult. SUSY extends Poincaré — broken by
discretization.

Folklore: Impossible to put SUSY on lattice exactly.

Leads to (very) difficult fine tuning — lots of relevant
SUSY breaking counterterms...

Way out!

|
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Motivations ?

- N

# Rigorous definition of SUSY QFT - like lattice QCD.

# Dynamical SUSY breaking. Predicting soft terms in
MSSM ...

# Gauge-gravity duality ? Eg. large N strongly coupled
N =4 SYM and type |l string theory in 5d AdS.
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New Ideas

-

Topological twisting

Orbifolding/deconstruction (D. B. Kaplan, M. Unsal, A.
Cohen, ...)

Focus on former. Emphasizes geometry. Continuum
limit clear.

Warning: Tricks work only for no. SUSYs Q multiple 2
... In D = 4 unique theory: N' =4 SYM

|
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Example: Twisting in 2D

Simplest theory contains 2 fermions )},
Global symmetry: SOr orenz(2) X SOR(2)
Twist: decompose under diagonal subgroup
Consider fermions as matrix

AL — Ve,
Natural to expand:

W = gl + Vv + X127172

scalar, vector and tensor (twisted) components!

o |
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Twisted supersymmetry

-

# Twisted theory has scalar SUSY Q.
® {Q.Q} = yup, implies:

s Q?=0

» {Q7 QM} — p,u
o Plausible: S = QA(®, V)

Basic idea of lattice theory: discretize twisted formulation,
exact (scalar) SUSY only requires Q% = 0
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Example: @ =4 SYMIn 2D
-

In twisted form (adjoint fields AH generators)

1 — 1
S = ?Q/TI’ (X,LLVF,LLI/ + n[D,UnD,LL] _ 57705)

QA, = Yy
QiY, = 0
QA, = 0
QX/W — _?,uu
On = d
Qd = 0

LNote: complexified gauge field A, = A, +:B,
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Action

-

Q@-variation, integrate d:

-

_ 1 _
= —/Tr (‘ Iy + Q[DuvD ] — X P ¥y _77Du¢u>
Rewrite as
1
S = 9—2 /Tr (—ij +2B,D,D,B, — |B,, B,/]2 + LF)

where

NS

—Dy —1By D1 +1B4 (]
Lp = ( X12 ) . |
Dy —1tB1 Dy —1iDBy ()
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Moral
f.’ Twisting changes spins fields: T

» Scalars become vectors. Naturally embedded Iin
complexified connection

» Fermions integer spins. Form components of
Kéahler-Dirac field.

# Twisted entire Lorentz symmetry with R-symmetry —
maximal twist. Necessary for lattice.

o Flat space - twisting just change of variables.

o |
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Lattice ?

A, (x) — U, (n). Complexified Wilson links.

Natural fermion assignment — n on sites, 1, links, x12
diagonal links of cubic Ilattice.

Fields pick up non-standard U(/N) gauge
transformations:
n(x) — Gx)nx)G(x)
Yu(x) = GG (x + p)
Xur(X) = G(x+ p+ 1) xuw(x)G(x)
Uy (x) — GEULX)GT(x + p)
Un(x) — Gx+ p)U,(x)GT(x)

Choice of orientations ensure G.I J
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Lattice supersymmetry

fAs In continuum:
QU = Yy
leu = 0
QU, = 0
QX,uV f/fj
Qn = d
Od = 0

Note: 0% = 0 still.

o



Derivatives

-

D fo(x) = Ux)folx+ p) — Fo(x)Uu(x + 1)
D, fux) = ful)Uu(x) — Up(x — ) fulx — p)

ForU,(z) =14 A,(x) + ... reduce to adjoint covariant
derivatives

Fow = DU (%) = U (x)U, (x + 1) — Uy (x)Uu(x + 1)
Remarkably satisfy exact Bianchi identity:
€vpa D\ +) Ty =0
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o

Recap
Discretize twisted version of continuum SYM T
Need subgroup of R-symmetry to match SO(D).

Ensures all fermions represented by integer spin forms.
Natural map to lattice.

In flat space: twisted formulation completely equivalent
to usual theory

Absence of fermion doubling — twisted fermions fill out
Kéahler-Dirac field (like staggered quarks)

Lattice theory G.I, possesses exact Q and a point group
symmetry which is subgroup of twisted rotational
symmetry.

|
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Bonuses

- N

#» Topological subsector:
< O(z1)...0(xy) > independent of coupling ¢4, and
points x1 ... xn If QO = 0. Eg

0 <O >
0g?

=< Q(AO) >=0

# Novel gauge invariance properties of lattice theory
strongly constrains possible counter terms — reduces
substantially fine tuning needed to get full SUSY In
continuum limit.

o |
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°

O =16 SYMIn 4D
-

Twist: diagonal subgroup of SOr,renz(4) X SOR(4)
Again after twisting regard fermions as 4 x 4 matrix.

To represent 10 bosons of AV = 4 theory with complex
connections is most natural in five dimensions.

Fermion counting requires multiplet (n, ¥4, xa») Where
a,b=1...5

Action contains same 9-exact term as for Q = 4 plus
new Q-closed piece.

|
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Detalls

Dimensional reduction to 4D — A5 plus imag parts of
A,,p=1...4yield 6 scalars of N’ =4

® Fermions: xaup — Xuw ® Uy ha — ¥y BT
® 5=0A- %feabcdeXdeﬁchb

Twisted action reduces to Marcus topological twist of
N = 4 (GL-twist). Equivalent to usual theory in flat

space.
ldentical to © = 16 orbifold action (Kaplan, Unsal)

|
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Transition to lattice

-

Introduce cubic lattice with unit vectors
pl =4at,a=1...4. Additional vector

ps = (—1,—1,—1,—1).
Notice: ) u, = 0. Needed for G.l.

Assign fields to links in cubic lattice (plus diagonals). Eg
Xab(x) lives on link from (x + pq + 1) — x.

Derivatives similar to Q = 4. eg
Dg™ f(x) = Ua(x) f(x + ) — f(x)Ua(x)

|
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Simulations

-

Integrate out fermions. Resulting Pf [Mg(A)] simulated
using RHMC alg. (lattice QCD)

Use pbc — SUSY exact. Z = W Witten index -
Q-invariance exhibits topological invariance .

Preliminary results from single core code. Parallel code
now finished..

Test SUSY, I.R divergences, check sign problems.
D =2with Q@ =4and D = 4 with 9 = 16.

|
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Supersymmetric Ward identity

-

(9 In Zpbc

Q-exactness ensures that I 0
D

Ensures: < kSp >= 3V (N? — 1)(Nbosons — 1)
Example: D =0 SU(2)

K kSpB exact K kSpB exact

1.0 | 4.40(2) | 4.5 1.0 | 13.67(4) | 13.5

10.0 | 4.47(2) | 4.5 10.0 | 13.52(2) | 13.5

100.0 | 4.49(1) | 4.5 100.0 | 13.48(2) | 13.5
Q=4 Q=16

|
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Vacuum stabllity - flat directions

fIs integration over moduli space B, B, = 0 divergent ?

xxxxxxxxxxxxx

P(lambda)
P(lambda)

lambda

Q=1 Q=16

D = 0. SU(2). Periodic bcs. Eigenvalues of M,EZ/{M —1

Scalars localized close to origin. Power law tails.
p(Q@=14) ~ 3, p(Q=16) ~ 15 (Staudacher et al.)

o |
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Pfafflan phase

-

Simulation uses |Pf(U/)|. Measure phase «(U).

< Qe >phase quenched
< e® >phase quenched

<0 >=

SU(2) D = 2: 42,

Q S% Sp S5 COS (v
4 | 70.61(4) 65(5) 72.0 -0.016(6)
16 | 214.7(4) | 214.6(3) | 216.0 | 0.999994(3)

ia(Uy) > phase quenched pbc= W =0 for Q=47

SUSY breaking (Tong et. al) ?

o |
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Fermion eigenvalue distribution

SU(2) D = 2: 22

2 T T T 2 T T T T T
1~ — L —
= w
2 E
e - g o .
- - S - |
2 i | | | i 2 . | . | | .
-2 -1 0 1 2 -2 -1 0 1 2
Re(lambda) Re(lambda)

Non-zero density for Q@ = 4 close to origin — linked to log

divergence of < §\? > ?
Potential Goldstino ?
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N =4 SYM in four dimensions

Initial results encouraging: 6000 trajs on SU(2) 24 lattice

(1000 hrs)

Sp/SEA = 0.98 < cos (a) >= 0.98(1)

Re(lambda)

P(lambda)

lambda

Larger lattices currently under study using parallel code.

o
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Applications: holography

11111111111

Example of gauge-gravity duality: Thermodynamics of
N — oo, T — 0 AdSs black hole reproduced by N’ = 4 SYM
theory reducedto D =1

o |

Exact lattice supersymmetry — p. 24



Renormalization
;.

# Gauge invariance

attice symmetries: T

& O-symmetry.

# Point group symmetry - eg. natural lattice for V' = 4 is
Aj.

# Exact fermionic shift symmetry.

Conclusion: Renormalized action contains same operators
as bare theory except for SUSY mass term.
Examine flows at 1-loop - in progress (with J. Giedt)

o |
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Future

-

Nonperturbative exploration N' = 4 YM. Tests of
AdSCFT. Supersymmetric Wilson loops.

But — what residual fine tuning needed to get full SUSY
asa— 07

Dimensional reductions — duality between strings with
Dp-branes and (p + 1)-SYM ?

Add fermions in fundamental .. (Matsuura, Sugino Iin
D = 2 recently).

Break N =4 to N =1 a la Strassler ..

|
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Marcus twist
- -

S = /TI’ (_?ILLVFIU,V + % [5,&7 ZD,LL}2 T % [ga Qﬂz + (DM¢)T(DM¢)

— X,uVD[,uwu] — @/,I,D,Uzﬁ _ @,u [¢7 %L]
— Dby — 1 0.7] = X Puthy — X |05 X ])

educes to:



Vacuum stability - trace mode

fCorrespondance to continuum requires
U,=1+al, + O0(a?).
For U(N) this is not true < +Tr M,E(x)uu(x) >~ 0.5
det (U (2)Uy, () — O
Vacuum instability — det(ujzuu) ~ eBi implies Bg — —00

Q=4D=0U(2) m=0.1

Exact latt

|
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Truncation

N N

Cannot cure with mass m? " Tr (Ui, — 1)?

m | < MZLZ/lM >
0.01 | 0.45(2)
0.1 | 0.57(6)
0.5 | 0.38(2)

Sp(eBulf) ~ 498251, ) any {U,}
Exponential effective potential for Bg.

Fix ? - truncate to SU(N) = S ~ 0(a)
Also removes exact O mode in fermion op.

o |
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