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ABSTRACT

The conditional maximum likelihood method of estimating
stock-mixture composition is described for discrete
characters. Computer programs were developed for several
general-purpose, nonlinear optimization algorithms,
specialized to searching for the conditional maximum
likelihood estimate (CMLE) ; and their performances were
compared for hypothetical and real-world stock mixtures.
Measures of performance were search time, failure rate, and
stability of CMLE distributions as the criterion for stopping
search (guaranteed percent achieved of the maximum of the
likelihood function, or GPA) was increased.-,,

-Programs based on the conjugate gradient (with square
root transform of stock composition) and expectation
maximization algorithms were superior in reliability and
speed. Iteratively-reweighted least squares programs produced
the most stable CMLE distributions because their terminal GPAs
typically exceeded that specified by more than other programs.



 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



V

CONTENTS

ABSTRACT . . . . . .

LIST OF TABLES . . .

LIST OF FIGURES . . .

INTRODUCTION . . . .

. .

. .

. .

. .

THE LIKELIHOOD FUNCTION .

ALGORITHMS . . . . . . .
Steepest Ascent . .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .
Iteratively Reweighted Least
Expectation Maximization .
Conjugate Gradient

METHODS . . . . . . . .
Experiment I . . .
Experiment II . .

RESULTS AND DISCUSSION
Experiment I .
Experiment II

CONCLUSION . . . .

ACKNOWLEDGMENTS . .

CITATIONS . . . . .

TABLES . . . . . .

FIGURES . . . . . .

APPENDIX . . . . .

.

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
Squares

.

.

iii

vi

viii

1

3

8
8

10
14
16

20
22
24

25
26
28

30

34

35

39

55

63



vi

LIST OF TABLES

Table 1 .-Stock-specific and loci-shared relative
allele frequencies (RAFs) of alleles A, B,
C, D, and E at their respective loci for
the five-stock diverse and similar
baselines of Experiment I. . . . . . . . . . . 41

Table 2 .-Features of real-world data sets used in
Experiment II: number of baseline stocks,
number of characters observed, range of
baseline sample sizes, mixture sample
size, and literature source of
information. . . . . . . . . . . . . . . . . . 41

Table 3 .-Number of the four mixture sample size
cells (50, 150, 250, or 500) of Experiment
I for which search by programs (GIRLS-D,
GIRLS-B, STEEP, EM, CONJA-L, and CONJA-S)
for stock composition estimates failed to
achieve specified standard values of the
stopping criterion (GPA of 10%, 50%. and
90%) for one or more of the 25 bootstrap
resamplings, by number of baseline stocks
(5, 15, and 50) and baseline (Diverse or
Similar) (upper table); and the
corresponding total number of failures per
100 total resamplings (lower table). . . . . . 42

Table 4 .-Fastest programs* in effective search time
for finding the 25 bootstrap stock
composition estimates with specified
standard values of the stopping criterion
(GPA of 10%, 50%, and 90%) given number of
baseline stocks (5, 15, and 50), mixture
sample size (50, 150, 250, and 500) and
baseline (Diverse or Similar). . . . . . . . . 43

Table 5 .-Fastest programs* in total search time for
finding the 25 bootstrap stock composition
estimates with specified standard values
of the stopping criterion (GPA of 10%,
50%, and 90%) given number of baseline
stocks (5, 15, and 501, mixture sample
size (50, 150, 250, and 500), and baseline
(Diverse or Similar). . . . . . . . . . . . . . 44

Table 6.-Maximum discrepancies" among stocks of
bootstrap mean estimated mixture
percentages [max   ave   I in relation to
number of stocks in the diverse baselines
(5, 15, or 501, specified standard values
of the stopping criterion (GPA of 10%,



vii

50%, and 90%), and mixture sample size (50
and 500). . . . . . . . . . . . . . . . . . . . 45

Table 7.--Maximum discrepanciesa among stocks of
bootstrap standard errors of estimated
mixture percentages [max (  s,)] in relation
to number of stocks in the diverse
baselines (5, 15, or 501, specified
standard values of the stopping criterion
(GPA of 10%, 50%, or 90%), and mixture
sample size (50 and 500). . . . . . . . . . . . 46

Table 8.--Maximum discrepancies" among stocks of
bootstrap mean estimated mixture
percentages [max (  ave    I in relation to
number of stocks in the similar baselines
(5, 15, or 501, specified standard values
of the stopping criterion (GPA of 10%,
50%, or 90%), and mixture sample size (50
and 500). . . . . . . . . . . . . . . . . . 47

Table 9.--Maximum discrepancies" among stocks of
bootstrap standard errors of estimated
mixture percentages [max (  S )] in relation
to number of stocks in the similar
baselines (5, 15, or 501, specified
standard values of the stopping criterion
(GPA of 10%, 50%, and 90%), and mixture
sample size (50 and 500). . . . . . . . . . . . 48

Table 10 .-Performances of programs (CONJA-S, EM,
and GIRLS-B) on real-world data sets used
in Experiment II: average effective
search time, average total search time,
average guaranteed percent achieved, and
failure rate for 1000 resamplings at
specified standard values of the stopping
criterion (GPA of 10%, 50%, and 90%). . . . . . 49

Table 11 .-Averages (ave), standard deviations (s),
and upper (         ) and lower          ) 95%
confidence bounds from the bootstrap
distributions (1000 resamplings) of
estimated stock group (groups' are denoted
as B, A+B, A+B+C, and D) percentages for
the Columbia River chinook salmon mixture
by programs CONJA-S, EM, and GIRLS-B for
specified standard values of the stopping
criterion (GPA of 10%, 50%, and 90%). . . . . . 50

Table 12 .-Averages (ave), standard deviations (s),
and upper             )and lower           
confidence bounds from the bootstrap
distributions (1000 resamplings) of
estimated individual stock' percentages for



viii

the Columbia River chinook salmon mixture
by the program CONJA-S for specified
standard values of the stopping criterion
(GPA of 10%, 50%, and 90%). . . . . . . . . . . 51

Table 13 .-Averages (ave), standard deviations (s),
and upper            ) and lower (        ) 95%
confidence bounds from the bootstrap
distributions (1000 resamplings) of
estimated stock group (groups are summer
and fall runs) percentages for the Yukon
River chum salmon mixture by programs
CONJA-S, EM, and GIRLS-B for specified
standard values of the stopping criterion
(GPA of 10%, 50%, and 90%). . . . . . . . . . . 52

Table 14 .-Averages (ave), standard deviations (s) ,
and upper            ) and lower (       ) 95%
confidence bounds from the bootstrap
distributions (1000 resamplings) of
estimated stock group (groups* are denoted
as A-G and H-M) percentages for the West

Coast sockeye salmon mixture by programs
CONJA-S, EM, and GIRLS-B for specified
standard values of the stopping criterion
(GPA of 10%, 50%, and 90%). . . . . . . . . . . 53

Table 15. -Averages (ave), standard deviations (s),
and upper             and lower         ) 95%
confidence bounds from the bootstrap
distributions (1000 resamplings) of
estimated stock group (groups* are denoted
by letters A through M) percentages for
the West Coast sockeye salmon mixture by
the program CONJA-S for specified standard
values of the stopping criterion (GPA of
10%, 50%, and 90%). . . . . . . . . . . . . . . . 54

LIST OF FIGURES

Figure 1. -Support function values achieved by two
of the programs (GIRLS-B and EM) and total
search time required of the processor. . . . . 57

Figure 2. -For diverse baseline mixtures, average
effective search times required by the six
programs--CONJA-S, EM, GIRLS-B,. GIRLS-D,
STEEP, and CONJA-L--to achieve standard
stopping criterion (GPA) values for
varying numbers of baseline stocks and
mixture sample sizes. . . . . . . . . . . . . . 58



ix

Figure 3 .-For similar baseline mixtures, average
effective search times required by the six
programs--CONJA-S, EM, GIRLS-B, GIRLS-D,
STEEP, and CONJA-L--to achieve standard
stopping criterion (GPA) values for
varying numbers of baseline stocks and
mixture sample sizes. . . . . . . . . . . . . . 59

Figure 4 .-For diverse baseline mixtures, average
total search times required by the six
programs--CONJA-S, EM, GIRLS-B, GIRLS-D,
STEEP, and CONJA-L--to achieve standard
stopping criterion (GPA) values for
varying numbers of baseline stocks and
mixture sample sizes. . . . . . . . . . . . . . 60

Figure 5. -For similar baseline mixtures, average
total search times required by the six
programs--CONJA-S, EM, GIRLS-B, GIRLS-D,
STEEP, and CONJA-L--to achieve standard
stopping criterion (GPA) values for
varying numbers of baseline stocks and
mixture sample sizes. . . . . . . . . . . . . . 61



INTRODUCTION

The practice of evaluating stock contributions to mixed-
stock fisheries from the traits of individuals in catches and
escapements has become commonplace in North American fisheries
for Pacific salmon (Oncorhynchus spp.). Growth patterns on
scales (e.g., Fukuhara et al. 1962; Cook and Lord 1978;
Marshall et al. 1984), genotypic variation identified by
electrophoresis of enzymatic proteins (e.g., Grant et al.
1980, Utter et al. 1987, Shaklee et al. 1990, Bartley et al.
1992, Wilmot et al. 1994), presence of parasites (Moles et al.
1990), and combinations of these characters (Wood et al. 1989,
Pella et al. in press) have been used in such assessments.
Concerns regarding evaluations of stock contributions in
Pacific salmon fisheries from a coastwide viewpoint (Shaklee
and Phelps 1990) and recent applications to other species and
locales with latest genetic techniques for identifying
genotypes (Wirgin et al. 1993, Bowen et al. 1995) illustrate
the expanding breadth of this research area.

The preferred method of estimating composition of stock
mixtures from traits of individuals is that of maximum
likelihood (Fournier et al. 1984, Millar 1987, Pella and
Milner 1987). The maximum likelihood estimate is the stock
composition (proportions or percentages) for which the
likelihood function for traits of individuals observed in the
stock and catch samples is maximized with respect to the
unknown stock proportions from the potentially contributing,
or baseline, stocks composing the catch. Traits may include
discrete characters and continuous variables. A discrete
trait may be qualitative or quantitative; but, in either case,
individuals classify to one of its types or categories (e.g.,
genotypes of a genetic locus, presence or absence of parasite
infection, and numbers of circuli on scales). Individuals
sharing the same type for each trait classify to the same
multiple character type. Continuous traits are quantitative
and categories occur only because of limited accuracy of the
measuring device (e.g., length, weight, and distance between
points on the body or scale). A continuous trait may be
converted to a discrete trait by partitioning its range into
intervals, but this change, is not necessary nor even
recommended. However, for simplicity, only discrete
characters with limited numbers of types are used in this
study.

The likelihood maximization considered will treat the
relative frequencies of multiple character types in the
baseline stocks, the baseline character distributions, as
known and equal to their estimates from the baseline samples.
Although the baseline character distributions could also be
treated as unknowns to be estimated concurrently with stock
composition (Fournier et al. 1984, Pella and Milner 1987),
this relaxation of assumptions would make computation of
mixture composition more complex because unique mixture
composition estimates could not be guaranteed (Smouse et al.
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1990, Xu et al.. 1994). The maximum likelihood estimate of
stock composition may be said to be conditional on the
baseline distributions of characters.

Computations for determining the conditional maximum
likelihood estimate (CMLE) and its precision are extensive.
Just the calculation of the CMLE from the observed catch and
baseline samples requires a high-speed computer for virtually
all practical applications. Although standard error in the
CMLE caused by sampling of the catch can be evaluated with
minimal computation by using Millar's infinitesimal jackknife
estimator (Millar 1987), any sampling errors in the baseline
character distributions are ignored. To evaluate variation in
stock composition estimates caused by both sampling of the
catch and imperfect knowledge of the baseline character
distributions, the bootstrap method (Efron 1982) is
recommended (Fournier et al. 1984). Bootstrap resampling of
baseline and catch samples with computation of the CMLE for
each set of derived samples accounts for sampling error from
both sources. The empirical CMLE distributions from
bootstrapping are used to estimate CMLE standard errors, and
also to provide confidence intervals for stock composition.
Efron and Tibshirani (1986) suggest roughly 25' resamplings are
sufficient to calculate standard errors for statistics such as
the CMLE, but that confidence intervals require 250 to 1,000
resamplings. Clearly, bootstrapping for precision of the CMLE
increases the amount of computation of CMLEs manyfold, but
other studies also require,.heavy computation of CMLEs.

Numerical experiments are advisable prior to actual catch
sampling to judge the feasibility of a research program for
determining stock composition with satisfactory accuracy and
precision (Pella and Milner 1987). These experiments should
include simulated baseline sampling with baseline. character
distributions from available baseline samples and simulated
sampling of their mixtures of known stock composition. The
CMLE of stock composition of any simulated mixture is computed
for each set of baseline and mixture samples. The simulated
samplings are repeated many times to generate empirical
distributions of the CMLEs for comparison with the known stock
composition. The decision to begin sampling catches composed
of the baseline stocks depends on finding satisfactory
precision and accuracy of the CMLEs as judged from their
distributions for the simulated situations.

After catch sampling begins, further numerical
experiments are prudent to check that fit of the mixture model
(Mulligan et al. 1988, Pella et al. in press) is satisfactory.
Lack of fit could indicate that important stocks in the
catches are not included in the baseline or that baseline
character distributions have changed between times of sampling
baseline stocks and catches.
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Efficient algorithms for finding CMLEs are needed to make
good use of computer resources. Simple determination of the
CMLE from observed samples requires substantial computation,
and bootstrapping, feasibility studies, and tests of fit
increase computation of CMLEs manyfold. The demand for
computer usage can limit the research. Therefore, a report
follows describing the specialization of several general
mathematical procedures to CMLE computation, together with an
evaluation of their performances when encoded in computer
programs written by us. No claim is made that the efficacy of
the computer programs cannot be improved, but considerable
effort was directed to this end. Therefore, our comparison of
program performances provides a measure of what can be
achieved by each algorithm.

The following material is organized into four sections.
First, generic samples and their likelihood function are
described for which the maximizing stock composition must be
found. Second, algorithms for finding this CMLE are
discussed. Third, the specific samples and performance
criteria for comparing the algorithms are described. Finally,
performances of computer programs for the algorithms are
reported.

THE LIKELIHOOD FUNCTION

The situation modeled is a mixture of c stocks or
populations, composed of proportions pl, p2, .,., and pc from the
baseline stocks. The feasible values for pT = (pl, p2, . . . pc)
(note that any vector is a column and its transpose, denoted
by superscript T, is a row) constitute the stock composition
space;  to be feasible, the elements of pT must lie between 0
and 1 and their sum must equal 1.

To begin our analysis, a random sample of individuals is
obtained from the mixture, and they are compared using a set
of characters. [The situation in which characters are missing
for some sampled individuals will not be considered here, but
the methods below have been extended elsewhere (e.g., Pella
1986) to deal with this circumstance.] Some individuals of
the mixture sample may be similar or share the same types for
all characters; other individuals may be unique in their
character combinations. Suppose H distinct character
combinations are observed in the mixture sample and that m,,
m2 ,..., and mH individuals of the total m individuals composing
the mixture sample have these multiple character types. Let
the true relative frequency of the hth character combination
in the ith stock be ghi. (In practice, the relative
frequencies of character combinations in stocks are unknown,
and estimates obtained from baseline samples are substituted
for unknown values.) Then the relative frequency of the hth
character combination in the mixture is



The likelihood function of the mixture sample is that-of a
multinomial probability function for the H categories,

The natural logarithm of the likelihood function, or the
support function (Edwards 1972), is

(1)

(2 )

The same values for stock proportions maximize both the
likelihood and support functions. The stock composition
vector, pT = (p1, p2, ..., pc), which maximizes the likelihood
function is called the conditional maximum likelihood estimate
(CMLE) and will be denoted as

Any types of individuals not observed in the mixture
sample are not involved in the likelihood function, and we
will aggregate such types under an index value of H+l (mH+1 =
O), for future reference. In particular, the relative
frequency of this category in the ith stock is

(3)

Next, the meaning and implications of a geometric
property of the support function called concavity (Fournier et
al. 1984, Millar 1987) are examined: first, to approximate
the support function along an arbitrary line in the stock
composition space; and second, to bound the amount by which
the likelihood, function, evaluated at an arbitrary point in
the stock composition space, might increase at the CMLE. The
approximation and bound are for use with the algorithms later.

The approximation and bound are developed by considering
any two points in the stock composition space, say p0 = (p1(0),

Then the line in the stock composition space passing through p0
and p1 can be written as

where the scalar,    assumes values such that p is feasible.
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Along the line in Equation 4, derivatives of the support
function of any order with respect to   , evaluated at   = 0,
can be written as

The second derivative, a,, is always negative provided certain

(5)

conditions on the relative frequencies are met which are
described shortly. If these conditions are met, we know from
extrema theory of elementary calculus that the support
function along the line is concave downward. The term concave
downward means that a tangent line drawn to a point on the
support function and in the plane determined by that point and
the line passing through p0. and p1 would lie above the support
function except at the point of tangency. The feasible
points, p0 and pl, were arbitrary, and so the support function
is everywhere concave downward in the stock composition space.
Fournier et al. (1984) and Millar (1987) demonstrated this
concavity property by other means.

The concavity property is certain only if the second
derivative, a2, is negative, which requires that

cannot equal zero for all h = 1, 2, . . . H. If we write the
relative frequencies of the H observed character combinations
in each stock as a column of an H by c matrix, G, this
requirement can be shown to be equivalent to linear
independence of the columns of G. In more tangible terms,
column independence for G means that the relative frequencies
of the H observed character combinations for any one of the
stocks cannot be written as a linear combination of the
corresponding relative frequencies for the remaining stocks.
As an example, such a failure would occur if the relative
frequencies of the H observed character combinations were
identical for two stocks.

The implications of the concavity property are far
reaching. The existence of a single point,    , in the stock
composition space that maximizes the likelihood function is
guaranteed because of concavity(Fournier et al. 1984, Millar
1987). That a single CMLE occurs is easily seen from the
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previous description of the behavior of the support function
between arbitrary points in the stock composition space. If
two local maxima of the support function occurred, an
intervening minimum along the line joining the two local
maximizing points in the stock composition space would be
necessary. Again we know from elementary calculus that the
second derivative of the support function would have to become
positive at the minimum; but the second derivative is always
negative.

A Taylor's series is often used to approximate a
 function. The Taylor's series approximation of arbitrary
order, N, for the support function at any point, p, along the
line passing through two points, p0 and p1, is

where   was defined in Equation 4 and a,, was defined in
Equation 5. The profile of the support function along an
arbitrary line in the stock composition space can be
approximated to an arbitrary degree of accuracy by increasing
the value of N.

Furthermore, the concavity property can be used to
determine how much the value of the likelihood function at an
arbitrary point in the stock composition space might be
increased at the CMLE. The tangent plane to the support
function at p0 contains all tangent lines at po. The support
function is concave downward at p0 in any direction and so lies
entirely below any of the tangent lines. Therefore, the level
of the tangent plane to the support function at p0 must equal
or exceed the value of the support function everywhere in the
stock composition space.

The tangent plane at p0 is given by

(7)                    

where   p, is the change in the ith stock proportion
a t  p o . The first partial derivative of the support

from that
function at

p with respect to the ith stock proportion is called the
gradient or score for the ith stock and is given by

(8)
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This derivative is evaluated at p0 = (p1(0), p2(0), . . . pc(0))
T in the

expression for the tangent plane. The maximum value
attainable by logLTAN over feasible values of  p  occurs
when       pi. is set to 1 - pi*(0), where i

* is the stock index for
which the partial derivative of the support function at p0 is
greatest. The   pi for the indices not equal to i* must be set
to -pi(o), for the new point to be' in the stock composition
space. The corresponding point, p, in the stock composition
space is that for which only the i*th stock occurs. T h e  v a l u e
of logLTAN for this choice   of    p, which represents an upper
limit for the maximum value of the support function, is

Then we know from Equation 9 that the likelihood function
value at p0 is within exp(m-si*(p0) 100% of the maximum
possible value, that is,

(9)

(10)

This bound for proximity to the maximum value of the
likelihood function will be referred to as the guaranteed
percent achieved (GPA).

The bound for possible increase in the support function,
GPA, established here by elementary argument, generally agrees
closely with, but is smaller (less precise) than, that
developed through more technical mathematics by Lindsay (1983)
(also see Roeder et al. 1989), namely,

The difference between the bounds decreases either with
increase in sample size, decrease in si* (p0) , or magnitude of
either bound. For fishery applications with mixture samples
of at least 25 fish, the discrepancy ( ≤ 1 percentage point)
between bounds has no practical significance when GPA is 10%
or more.
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ALGORITHMS

Algorithms described here for computing the CMLE of a set
of baseline and mixture-samples begin at an arbitrary guess of
the mixture composition. In theory, search progresses toward
the CMLE through an iterative sequence of successive feasible
guesses, each derived from the preceding guess, and each with
corresponding increased likelihood value until the CMLE is
found.

Specializations of four general-purpose optimization
'procedures for finding the CMLE are considered. The first
three algorithms are called steepest ascent, expectation
maximization, and iteratively reweighted least squares; each
conducts the search directly in the original stock composition
space. The fourth and last algorithm is the conjugate
gradient, which we use to search both in the logarithm-
transformed stock composition space as was done by Fournier
et al. (1984) as well as in the square root-transformed stock
composition space.

Steepest ascent, iteratively reweighted least squares,
and conjugate gradient perform two steps at each iteration of
the search: first, a line of movement from the present guess
of the CMLE in the stock composition space or its transform is
determined; and second, the optimal distance of movement along
this line is approximated. The expectation maximization
algorithm does not explicitly separate operations for
direction and distance.

Descriptions of the algorithms are outlined next, but
details of the computations are left for the appendix.

Steepest Ascent

The simplest algorithm in terms of principles underlying
the search for the CMLE is steepest ascent. We believe our
application of the algorithm to maximizing the stock mixture
likelihood function as well as the specifics of constraining
the search to the feasible stock composition space is
original. At each point, p, occurring in the search for the
CMLE, the direction chosen is that for which the local
increase in the support function is greatest, provided that
movement in that direction is within the stock composition
space. If the boundaries of the stock composition space are
not interfering with movement, the direction of greatest
increase is a vector pointing along the mean-corrected
gradient vector,

(11)
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where si is given in Equation 8 evaluated at p and   is the
arithmetic average of the si. The demonstration that the mean-
corrected gradient vector is the direction of greatest
increase is a simple extension of showing S = (sl, s2, . . . sc)

T

is the direction of greatest increase without constraints
(e.g., see Rao 1984); we must add the constraint that the sum
of the pi equals 1.

Boundaries interfere with movement if one or more of-the
stock proportions have been driven to near zero during the
search and the corresponding gradients remain positive.
Boundary stocks are disengaged from the remaining interior
stocks at least temporarily in order to continue searching
efficiently. Permissible direction of greatest increase is
'along a modified, mean-corrected gradient vector with zeros
for boundary stocks; the modified, mean-corrected gradients
for the interior stocks are computed as the differences of
their gradients in Equation 8 and the arithmetic average of
these interior stock gradients. The guess of stock
proportions for the boundary stocks is temporarily fixed at
the values reached when the boundaries were approached. The
search continues parallel to such boundaries until the
gradient of the support surface for one of the boundary stocks
is greater than the average of the gradients of the interior
stocks. Thereafter, the search is allowed to move away from
this stock boundary to the interior again.

The present guess of the CMLE and the direction of
movement determine a line in the stock composition space. The
optimal distance of movement along the line from the present
guess in the direction chosen is then determined as that
corresponding to the maximum value of the Taylor's series
approximation to the support function described earlier. In
the approximation Equation 6, the present guess, p, is taken
as p0, and the mean-corrected gradient vector or its
modification at boundaries is taken as   p. The maximum value
of the approximation occurs when the first derivative of the
approximation with respect to   equals zero. This derivative
is a polynomial equation in    of order N-l. The minimum,
positive, real number solution is chosen as the optimal step
size,         opt. The next guess is computed as p = p0 +    p, with  
equal to the smaller of        opt or           the largest permissible
step size before encountering a boundary. The order of the
approximation, N, is set equal to the smallest of integers 2,
3, or 4, for which an increase in the support function is
found.

Iteratively Reweighted Least Squares

Two versions of the iteratively reweighted least squares
algorithm-basic and difference-are possible, depending upon
the mode of incorporating the constraint that the stock
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proportions sum to one. The basic version makes clear the
regression nature of conditional maximum likelihood estimation
of stock-mixture composition and is described here -for the
first time.

The basic version is obtained by use of the method of
Lagrange from calculus for solving extremal problems with
constraints., We begin by forming the Lagrange function from
the support function,

(12)

The scalar constant, 8, is the multiplier for the constraint.
The derivatives of the Lagrange function with respect to the
stock proportions, can be written as

( 1 3 )

where sj is the gradient from Equation 8 evaluated at p.

The conditions (Kuhn and Tucker 1951) that must be
satisfied by the CMLE and guarantee that the solution,   
satisfying them is the CMLE are as follows:

(14)

The value for the multiplier at the CMLE is obtained by
multiplying each derivative of the Lagrange function by the
corresponding pj and summing these products. The sum of these
products is m + θ  and must equal zero at the CMLE by the Kuhn-
Tucker conditions. Therefore, the value of the multiplier at
the CMLE equals the negative of m., and the vector of
gradients of the Lagrange function at the CMLE can be written
as S-m-1, where 1 is a column vector of c "1"s. The gradient
vector, S, for arbitrary p can be written as
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Therefore, we see from Equation 14 that the vector of
gradients of the Lagrange function at the CMLE must satisfy

(16)

The solution for the CMLE from the vector of gradients of
the Lagrange function is related to weighted least squares and
Fisher's method of scoring. If equality held for each row in
Equation 16 and R were known, the vector of gradients of the
Lagrange function at the CMLE would take the form of the
system of normal equations for the weighted least squares
regression problem: find the unconstrained value of p that
minimizes the weighted sum of squares,

( 1 7 )

or equivalently, which maximizes- The
solution would be

(18)

Jennrich and Ralston (1978) noted that more generally the
gradients of the support function at maximum likelihood
estimates for the regular exponentialfamily of distributions,
which includes the multinomial distribution used here, take
the form of normal equations. The observed relative
frequencies of the multiple character types in the mixture
sample, yh, are fit to their expected values,

using as weights the inverses of the expected numbers of the
multiple character types in the mixture sample. The basic
version of the algorithm successively approximates the CMLE by
constrained solution to the least squares regression problem
described, using for unknown elements of the matrix, R, at any
iteration, values computed from the immediately preceding
approximation of the CMLE.

Furthermore, if we sought to iteratively determine
unconstrained p that maximizes the support function, Equation
2, by Fisher's method of scoring, the solution, Equation 18,
also would be a new approximation of the CMLE when R was
computed from the previous approximation. The matrix GTRG is
Fisher's information matrix, and GTRy is the score vector.
Therefore, we shall be finding successive constrained
approximations for the CMLE by the method of scoring. As
such, the algorithm uses both the first and second order
derivatives of the support function.
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The vector of gradients of the Lagrange function
satisfies the set of constraints, Equation 16, rather than
corresponding equalities. These constraints are more
difficult to solve than equalities from which p could be
computed directly by Equation 18. Therefore, the constraints
are converted to another equation system by introducing
nonnegative variables called slack variables in linear
programming because they take up the slack of the inequalities
to modify them to equalities. The Kuhn-Tucker conditions for'
maximizing Q(p) for feasible p are equivaient to the following
equation system:

(19)

w h e r e
and

    are slack variables.

The constraint that the stock proportions must sum to one was
incorporated earlier in the Lagrange function, Equation 12,
and is not repeated here.

The solution to this system can be determined by a
modification of the simplex algorithm of linear programming
(e.g., see Rao 1984), provided an initial feasible solution is
available. No such solution will ordinarily be evident.
Therefore, we introduce artificial variables z1, z2, . . . zc, which
provide an obvious initial solution to an expanded equation
system and which are later forced to zero for the original
system to be solved. The final problem to solve is the
following:

maximize

subject to

( 2 0 )
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This system has the obvious initial solution p1 = p2 = . . =
pc = 0, t1 = t2 = ... = tc = 0, and z1 = z1 = ... = zc = 1. Now the
solution to the original equation system, Equation 16, can be
determined by application of the simplex algorithm with one
modification: ti is not permitted to become a basic variable
whenever pi is already a basic variable, and vice-versa, for i
= 1, 2, ..., c. This modification ensures the product Piti = 0.
The optimal solution satisfies the Kuhn-Tucker conditions and
is guaranteed to be the CMLE if the support function is
concave downward and R is known. The procedure described
above is an application of Wolfe's (1959) algorithm for
quadratic programming described in Hillier and Lieberman
(1967).

The solution found would be the CMLE if R were known.
However, the diagonal elements of R depend on the unknown
CMLE. Therefore, finding the CMLE requires an iterative
procedure. We begin with a guess of the CMLE, compute R from
the guess, and then find the CMLE conditioned on the guess.
The procedure is prone to overshooting, or passing beyond the
CMLE, if the guess is far from the CMLE. Therefore, we use
the line search based on the Taylor's series approximation to
the support function along the line joining the initial guess
with the CMLE conditioned on the guess to find the next guess.
The line search is conducted as described under the steepest
ascent algorithm. However, now    equals pl-p0 if we call p0
the initial guess at an iteration and p1 the CMLE conditioned
on that guess. The value of the next guess is used to compute
R once again, and the process is continued until convergence.

The second version of the iteratively reweighted least
squares algorithm, the difference version, was first described
in detail by Pella (1986) and in broad outline by Pella and
Milner (1987), and it is easily described now that the first
version is familiar. The stock proportion pc is eliminated to
remove the redundancy that the stock proportions sum to one,
thereby obviating the Lagrange function. Then the likelihood
function is written as
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Now the gradient can be written in the following form:

( 2 2 )

The vectors p and S now
c-l columns, and R is a

Again the gradient
Kuhn-Tucker conditions:

have c-l elements, D has H+1 rows and
square H+1 matrix defined earlier.

vector at the CMLE must satisfy the

(23)

The CMLE is found by converting this system of
constraints to a linear programming problem by adding slack
and artificial variables:

( 2 4 )

The second form of the algorithm can again be shown to be
a constrained form of weighted regression, as well as a
constrained form of Fisher's method of scoring.

Expectation Maximization

The expectation maximization algorithm is a general
method of solving for maximum likelihood estimates (Dempster
et al. 1977). The method was first applied to the
maximization of the stock mixture likelihood function,
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Equation 1, by Milner et al. (1981). The idea underlying the
algorithm in this application is that the CMLE of stock
proportions would be obvious and could be calculated
explicitly if the stock origins of the individuals in the
mixture sample were known. In fact, if the numbers of
individuals from each stock in the mixture sample were known,
the CMLE would simply be the observed proportions of the
mixture sample from each stock, or

( 2 5 )

where

         is the number of individuals of character combination
h originating from stock i, and

m is the total number of individuals in the mixture
sample.

The information regarding the characters is no longer useful
for estimating stock composition-because the numbers from each
stock in the mixture sample are sufficient statistics, as can
be easily shown by the factorization theorem [e.g., see
Lehmann (1983) for a general discussion of the factorization
theorem].

Of course, the values of the         are unknown, but their
expected values conditioned on the present guess of stock
composition,                                   can easily be
computed. Bayes's theorem provides the probability that an
individual of type h is from stock i, and this probability
multiplied by mh equals the expected number from stock i,

( 2 6 )

If the expected value at Equation 26 is substituted for the
unknown value of mh

(il in Equation 25, the resulting equation
for the new guess of stock proportions, p(1), = (p1(1), p2(1), ...

where si was defined at Equation 8. Next, the numerical values
of the old guess (p(0) ) are replaced by those of the new guess
(p(1)) for use on the right-hand side of Equation 27 to compute
yet another new guess. The process is guaranteed to converge
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to the CMLE provided the initial guess comprises only positive
(>O) proportions and the concavity property holds for the
likelihood function (Redner and Walker 1984).

Description of three algorithms that search directly in
the stock composition space is complete, and next considered
is an algorithm that searches in transformations of that
space.

Conjugate Gradient

The search path of the steepest ascent algorithm tends to
zigzag in the parameter space rather than follow a direct
route to the maximizing point. The reason for this zigzag
behavior is that the search proceeds stepwise from each point
of the path in the direction of the local gradient, reaching a
new point corresponding to a local maximum along that
direction;- The local gradient at this new point must be
perpendicular to the preceding direction of movement;
otherwise, the new point could not have been a local maximum.
Therefore, the next direction chosen from this new point is at
right angles to the preceding direction. This search pattern
can be inefficient, and reducing zigzagging to a more direct
path would presumably speed the search.

The conjugate gradient algorithm of Fletcher and Reeves
(1964) also uses only the gradient to conduct the search but
is more efficient than steepest ascent if the likelihood
surface is approximately quadratic. Instead of using only the
local gradient at the present point to determine the new
direction, the conjugate gradient algorithm uses a linear sum
of local gradients at all points so far included in the
search. In effect, the direction chosen is moderated by
previous directions. Rounding errors, however, accumulate in
the linear sum of local gradients, so it is necessary to
restart the algorithm periodically; Fletcher and Reeves (1964)
recommend a restart every c+l iterations if c baseline stocks
occur.

Fournier et al. (1984) first used the conjugate gradient
algorithm to search for the CMLE and noted that the search is
theoretically unconstrained in the logarithm-transformed stock
composition space:

( 2 8 )

Although the transformation has the theoretical advantage that
the search in the u-space is unconstrained, in practice,
guesses in the u-space must be constrained because the
logarithms of stock proportions near zero become negative and
arbitrarily large. Fournier et al. (1984) also observed that
in retransforming to the stock composition space,

(29)
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the ui can be scaled arbitrarily to produce the same point, p.
Therefore, the constraint was imposed that

This constraint was effected by adding to the support function
a penalty term that increased with the discrepancy from the
equality. The search was conducted in the u-space; and at
termination, the retransformation, Equation 29, was used to
determine the CMLE.

In our implementation of the conjugate gradient algorithm
with logarithm-transformation of the stock composition space,
the search is begun with a feasible guess p, this guess is
transformed to u by Equation 28, a new value for u is found,
and the new u is transformed back to a feasible p by Equation
29 before the next iteration of the search. The process
obviates any constraints- in the u-space other than limiting
magnitude of large negative u-values corresponding to stock
proportions near zero.

Gradients at u in the transformed-space can be expressed
in terms of p in the untransformed space as follows:

The direction of movement from u equals a linear sum of
current and preceding gradient vectors; however, if any
component of u is less than -20, the corresponding direction
of movement, if negative, is set to zero to constrain
magnitude of large negative u-values (see Appendix).

The line in the transformed stock composition space
passing through arbitrary point u0 with direction Au is

(31)

Along this line the nth order derivative of the support
function with respect to   , evaluated at    = 0, will be
denoted as bn. The line search for the optimum step size from
u0 in the direction, Au, is accomplished by an Nth (N ≤ 4) order
Taylor's series approximation for the support function at u,
along the line. The approximation is

( 3 2 )



The first four derivatives of the support function with
respect to  , evaluated at   = 0, are as follows:

The maximum of this approximation occurs when its first
derivative with respect to    equals zero. This derivative is
a polynomial equation in    of order N-l. The minimum,
positive, real solution is chosen as the optimal step size,,

and the next guess is computed as                      The order of
the approximation, N, is set equal to the smallest of 2, 3, or
4, for which an increase in the support function is found.

We also implemented the conjugate gradient algorithm
using a square root transformation of the stock composition
space. A square root transformation avoids the necessity of
constraining the solution away from the boundaries in the
transformed space. The only constraint on the square root
parameters is that the sum of their squares equals 1, and this
constraint is automatically satisfied by the transformation
and retransformation at each iteration of the search. If we
let

(34)

the transformation is defined for all feasible values of the
stock composition space including zero. The retransformation,
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(35)

again assures that only feasible points of the stock
composition space are included. The gradients corresponding
to Equation 30 for the square root transformation are as

follows:

( 3 6 )

The derivatives for the line search corresponding to Equation
33 are as follows:

The line search in the square root-transformed space is
conducted-nearly the same as in the logarithm-transformed
space; however, elements of the direction vector are not
constrained.

A final caveat in searching for the CMLE is required when
the type composition of the mixture and baseline samples
requires certain of the baseline stocks be present in the
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mixture. No algorithm can include points p in the search for
which mixture proportions of such stocks equal zero. For
example, if a type in the mixture sample is unique to one
baseline stock, that stock's proportion in the mixture must
never be allowed to equal exactly zero. Assuming the initial
guess of   is an interior point of the stock composition
space, neither the steepest ascent, the expectation
maximization, nor the conjugate gradient with logarithm
transform of p will allow elements of p to equal exactly zero.
Unless constrained, the search by the other algorithms does
allow elements of p to equal zero, and so verification that
all mixture types remain possible with each new guess of   is
required. If a point in the search results in a zero
probability for one or more types of the mixture sample, the
search must be drawn an arbitrarily short distance back from
the boundary toward the previous permissible guess. Details
are provided in the appendix for the applicable algorithms.

This concludes the description and motivation for the
various algorithms. Next, methods for comparing performances
of computer programs based on the algorithms are described.
The computer programs, sketched in the appendix, will be
denoted by abbreviations for the algorithms: STEEP for
steepest ascent; EM for expectation maximization; GIRLS-B and
GIRLS-D for the basic and difference versions of iteratively
reweighted least squares, respectively; and CONJA-L and CONJA-
S for conjugate gradient with logarithm or square root
transformation, respectively.

METHODS

Two experiments were conducted to evaluate the computer
programs. First, their performances were explored under
hypothetical situations allowing complete control over numbers
of baseline stocks and their character distributions as well
as size and stock composition of mixture samples'. Second, a
subset of the programs from the first experiment was applied
to actual baseline and mixture samples reported in fisheries
literature. The algorithms and measures of their performances
were incorporated into previous stock-mixture analysis
software (Masuda et al. 1991) so as to determine average
performances on repeated application to any set of baseline
and mixture samples perturbed by bootstrap resampling (Efron
1982). Computations were performed on a COMPAQ DESKPRO
486/501 under MS-DOS 6, using executable modules created by
Lahey's F77L-EM/32 Fortran language and the Lahey/Ergo OS/386
Operating System.

'Reference to trade names does not imply endorsement by the National
Marine Fisheries Service, NOAA.
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Performance of any computer program depends on search
completeness specified, or the degree to which the likelihood
function is to be maximized. In theory, search completeness
is easy to define by referring a found value of the likelihood
function to its 'maximum, but in practice the maximum of the
likelihood function is generally never known. Instead, the
GPA at Equation 10 is the only absolute measure of search
completeness and generally a GPA of 100% is not achievable
because of rounding errors caused by limited numerical
precision of the computer.

Three criteria are used to compare performances of the
programs during computation of CMLEs for any set of related
baseline and mixture samples within the experiments: speed,
failure rate, and stability (with respect to increase in
specified GPA) of CMLE distributions. Search speed is
measured by processor time required to achieve the specified
GPA. Search failure rate is measured by the number and
percentage of design cells within an experiment or the number
and percentage of trials within cells for which a program is
unable to achieve the specified GPA. Stability of CMLE
distributions is quantified from descriptive statistics of
CMLE distributions (averages, standard deviations, and 2.5 and
97.5 percentiles) resulting from a range of specified GPAs;
these descriptive statistics are commonly used to evaluate
statistical bias and precision from bootstrapping in actual
assessments of mixture composition. Ideally, specified GPA
would not affect CMLB distributions produced by a program; but
practically, the distributions change as higher GPAs are
specified. Stability measures based on. the statistics differ
between the two experiments and are described with the
experiments below.

Total processor time used in searching comprised
effective search time and stopping-rule time, Progress of the
search toward the maximum of the likelihood function, as
indicated by the GPA, must be checked to determine whether the
specified GPA has been met and the search can be stopped.
Effective search time includes only processor time required to
perform computations of the search algorithm. Stopping-rule
time is the additional processor time needed to evaluate the
GPA and test whether the specified GPA has been achieved. In
the experiments next described, the stopping rule was
evaluated with each new point p along the search. The symbol
      denotes the total processor time used in the search by a
program to achieve a GPA of     (GPAs specified were 10%, 50%,
and 90% and are termed standard values) of the maximum of the
likelihood function; the corresponding notation for effective
search time required is E,. Time was recorded in units of
centiseconds (cs).



22

Experiment I

The first experiment formed a design with five factors:
1) algorithms; 2) number of stocks in the baseline-5, 15, or
50; 3) baseline stock differences, small or large; 4) mixture
sample size-50, 150, 250, or 500 individuals; and 5)
specified standard GPAs-10%, 50%, and 90%. Ranges for number
of stocks in the baseline and for mixture sample size include
cases of practical interest for fisheries applications. A
single set of original random baseline and mixture samples per
cell of this design was generated by methods described below.
Then, this set of original samples was bootstrapped, or
resampled with replacement, 25 times to create sets of
bootstrap samples with sizes equal to those of the original
set. The programs were allowed to search for the CMLEs of
each of the 25 bootstrap sets until either the specified GPA
had been achieved or effective search time exceeded 5 minutes
(5 minutes was greater than fivefold the average effective
search time required by successful algorithms for the most
demanding experimental conditions). The average effective
(E10, E50, E90) and average total (T10, T50, T90) search times
required by each program to find the 25 CMLEs for each
bootstrap sample set were determined for corresponding
specified standard GPAs if the program achieved specified GPA.

Distributions of the 25 CMLEs for any cell of the design
that were obtained at standard GPAs were compared with those at
GPA of 99% (if the search achieved GPA of 99%). Denote by
ave     and s    the vectors of stock averages and standard
deviations of estimated proportions, respectively, from the 25
CMLEs when specified GPA equaled       . The measures of stability
used are the maxima among stocks of the differences between the
vectors of averages and standard deviations at specified
standard GPAs and corresponding vectors at GPA of 99%, that is,
maximum coordinates of 1)       ave, =   ave      - ave         and
2)       =                        for      = 10, 50, and 90. The two greatest
discrepancies will be denoted as max              ) and max           
respectively.

The original set of random baseline stock and mixture
samples was generated by computer. Five hypothetical,
independent genetic loci, each with two alleles labeled (for
discussion) A and a, B and b, ... and E and e, were the basis
of estimation. The relative frequencies of upper case alleles
A, B, C, D, and E (or the complementary relative frequencies
of lower case alleles a, b, c, d, and e) were identical for
all loci of a stock, but these relative allele frequencies
(RAFs) differed among stocks. Neither the number of
characters nor their independence is significant to the
comparison of program performances, but the number of baseline
stocks and degree of character differentiation among them
affect program performance.
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Original baseline samples were generated for 5, 15, and
50 stocks at two levels of character differences among the
stocks, as were original mixture samples of subsets of the
baseline stocks. The baselines of stocks with greater
character differences will be termed diverse baselines, and
those with lesser character differences, similar baselines.
RAFs used to generate original baseline and mixture samples
for five stocks are specifically provided (Table 1). The RAFs
for 15 and 50 stocks can be succinctly reported by developing
a notation. The stock-specific and loci-shared RAFs for five
stocks of the diverse and similar baselines (Table 1) can be
condensed as follows: ranges = 0.8, 0.6; first stock RAFs =
0.2, 0.4; diverse baseline intervals = 0.2 (4); similar
baseline intervals = 0.1 (2), 0.2 (2). In this notation,
"ranges = x, y" provides the range of stock RAFs used for
diverse (range = x) and similar (range = y) baselines. The
notation, "first stock RAFs = x, y", refers to the first stock
RAFs for diverse (RAF = x) and similar (RAF = y) baselines.
Also "diverse (or similar) baseline intervals = x1 (yl), x2
(y2) ,..., xn (yn)" provides the n distinct differences between
RAFs (xis) of successive adjacent stock pairs and the numbers
of adjacent stock pairs with those differences (yis), beginning
with the difference between the first and second stocks and
ending with that between the penultimate and last stocks. The
condensed description for 15 stocks was as follows: ranges =
0.933, 0.7; first stock RAFs = 0.067, 0.3; diverse baseline
intervals = 0.067 (9), 0.066 (5); similar baseline intervals =
0.033 (5), 0.034 (2), 0.067 (5), 0.066 (2). The condensed
description for 50 stocks was as follows: ranges = 0.98,
0.74; first stock RAFs = 0.02, 0.26; diverse baseline
intervals = 0.02 (49); similar baseline intervals. = 0.01 (24),
0.02 (25).

An original baseline sample of 100 fish was drawn for
each stock of each cell of the experimental design. T h e
genotype of each fish was generated by randomly and
independently drawing two alleles at each locus and repeating
such draws independently among the five loci. The
probabilities of drawing the various alleles (A, a, B, b, ..., E,
e) were the RAFs in the preceding paragraph. Among the 100
fish, the random numbers of the two alleles at each of the
five loci constituted the original baseline sample.

Mixtures were constructed with some baseline stocks
missing because commonly the CMLEs of real-world applications
indicate baseline stocks are missing from mixtures. Mixtures
composed of equal contributions by 3 of 5, 8 of 15, or 25 of
50 baseline stocks underlaid the original mixture samples.
Alternating stocks from the baseline tables (e.g., Table 1 and
unreported analogues for 15 and 50 baseline stocks),
subsequent to the first stock, were absent.
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Original mixture samples of several sizes ranging from 50
to 500 individuals were drawn, depending on the cell of the
experimental design. An original mixture sample was drawn in
two stages: 1) a multinomial sample of numbers from each
stock was drawn from the specified stock mixture, and 2) the
genotype of each mixture individual, given its stock origin
from the previous step, was generated from the appropriate
baseline stock RAF as had been done to generate the original
baseline stock samples.

The original set of random baseline stock and mixture
samples of each cell were resampled with replacement 25 times
to create derived sets of bootstrap samples for comparing
program performances. Each bootstrap sample set was used to
estimate stock composition of the mixture by each program. 
The correct genetic model of independence of loci and Hardy-
Weinberg equilibrium was used to compute by stock the relative
frequencies of genotypes observed in the mixture sample [i.e.,
the ghi in Equation I], using the random RAFs observed in the
bootstrap baseline samples.

All programs were provided the same initial guess (with
all stocks present) for any maximization trial. In theory,
time required by any of the algorithms to find the CMLE at
specified GPA may be affected by the starting guess, but
eventual success should be certain. The initial guess was
far-removed from the stock composition of the original mixture
sample (and from the CMLE anticipated) in order to test
capability of the programs to locate the CMLE. Initial
guesses attributed most of the contribution to the first
stock. For five stocks, the guess was 0.6 for the first stock 
and 0.1 for each of the other stocks. For 15 stocks, the
guess was 0.86 for the first stock and 0.01 for each of the
other 14 stocks. For 50 stocks, the guess was 0.51 for the
first stock and 0.01 for each of the other 49 stocks.

Experiment II

In the second experiment, three of the six
programs-CONJA-S, EM, and GIRLS-B-were selected for further
comparison based on their diversity of search methods and
performance in Experiment I. The three programs computed
CMLEs for three real mixed-fishery data sets comprising
baseline and mixture samples (Table 2) : 1) Columbia River
chinook salmon (0. tshawytscha); 2) Yukon River chum salmon
(O. keta); and 3) West Coast sockeye salmon (0. nerka).
Characters observed for individuals from the first two data
sets comprised electrophoretic observations on allozymes, and
those of the third data set included allozymes, a brain
parasite, and freshwater age of individuals. Numbers of
stocks in the baselines ranged from 14 to 73; numbers of
characters ranged from 4 to 19; and size of mixture samples
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ranged from 197 to 1,597. Further details of the data sets
can be found in the original publications (Table 2).

One thousand bootstrap CMLEs were computed from
resamplings of baseline and mixture samples of each data set
for each of the standard GPAs specified. For each mixture
analysis, all three programs were provided the same initial
guess of equal proportions from the baseline stocks. Search
was terminated if either the specified GPA was achieved or
effective search time exceeded 5 minutes. Performances were
compared with many of the same criteria used in Experiment I:
failure rate of a program to achieve specified GPA, and
average effective and total search times needed per bootstrap
resampling. Average GPA achieved per resampling was also
recorded. Several characteristics of the bootstrap
distributions of estimated individual stock or stock group
proportions were examined including means, standard
deviations, and the upper and lower 95% confidence bounds
(i.e., the 2.5 and 97.5 percentiles of the bootstrap
distribution) from the percentile method (Efron 1982). Stock
group proportions were estimated by summing estimates of
individual baseline stock percentages over stocks comprising
groups (the basis for grouping was similarity of baseline
character distributions) defined in the source publications.

RESULTS AND DISCUSSION

Generally, for each algorithm and set of baseline and
mixture samples, the increase of the likelihood function
between successive guesses decreased as the search continued,
as did the distance between successive guesses. The gradients
of the support function in feasible directions all tended to
zero as the maximum was approached. (Gradients in nonfeasible
directions could remain large and even positive, implying
greater likelihood function values could have been obtained
with infeasible choices for p.) In theory, search progress of
increasing likelihood function values would be uninterrupted
until the CMLE was found; in practice, rounding errors
intervened and the search sometimes regressed temporarily to a
reduced value for the likelihood function. The search led
only to a neighborhood of the CMLE beyond which numerical
precision used in computations limited further progress.

Typical time series of support, function values achieved
by the programs were initially rapidly increasing curves with
a following asymptote (i.e., the rate of increase in value of
the support function during the search decreased as the search
for the CMLE advanced) (Fig. 1). In the example illustrated,
EM initially achieved greater values for the support function
(Fig. 1, left) than did GIRLS-B until about 50 centiseconds
(cs) of total search time. Shortly thereafter, GIRLS-B
surpassed support function values found by EM (Fig. 1, right).
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The critical times, TlO, T5O, and T9O, at which 10%, 50%, and 90%
of the maximum of the likelihood function were first known
from the GPA (Equation 10) to be achieved by EM are
illustrated as well (Fig. 1, right).

GIRLS-B achieved a final support function value of
-2182.283917 after 138 cs; at this point, the GPA showed for
the first time that the program was within 99% of the maximum
of the likelihood function. Similarly, EM continued to find
increasing values of the support function until 451 cs, at
which time the support function value was slightly less than
that found by GIRLS-B, -2182.284001. At this point in the
search, the GPA showed for the first time that EM was within
99% of the maximum of the likelihood function. GIRLS-B
required 6 iterations whereas EM required 156 iterations
during the search. Stepwise increases in support function
value and GPA by EM during the search were smaller than for
GIRLS-B, so EM could detect GPA achievement of 99%. at a
smaller value of the support function than GIRLS-B.

The maximum support value for this example was found, by
STEEP (performance not illustrated) after 403 cs and equaled
-2182.283773; at this point GPA showed STEEP was only within
90% of the maximum of the likelihood function. Therefore,
although a higher value of the likelihood function was found
by STEEP than by GIRLS-B or EM, knowledge that this value was
nearer than 99% of the maximum possible value could not be
obtained without comparison to results of the other programs.
Subsequent rounding errors also prevented STEEP from achieving
a self-determined GPA of 99%. The measures of performance
illustrated by this example are next used in program
evaluation by Experiment I and Experiment II.

Experiment I

Interacting effects of number of baseline stocks and
their character differences, GPA, and size of the mixture
sample were evident either from occurrence of failures to
achieve specified GPA or from processing times required by the
-programs. Failure rates by programs to achieve specified GPA
differed substantially and ranged from no failures by EM and
CONJA-S to numerous failures by CONJA-L (Table 3). Excluding
CONJA-L, cell failures were rare at GPAs of 10% and 50%; only
GIRLS-D had such a cell failure (Table 3, upper half), and
that cell failure was due to a single failure among the 25
resamplings for that cell (Table 3, bottom half). Cell
failures increased at GPA of 90% for GIRLS-D, GIRLS-B, and
STEEP, but GIRLS-B had at most one resampling failure per
failing cell. Among programs with cell failures, GIRLS-D,
STEEP, and CONJA-L (but not GIRLS-B) tended to fail more often
with increase in number of baseline stocks, and only CONJA-L
(Table 3, 15 stocks) showed much evidence of more frequent
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failure for similar baseline than diverse baseline. Failures
by the programs among the 1,800 resamplings for the entire
experiment were generally rare: CONJA-S, 0 (0%); EM, 0 (0%);
GIRLS-B, 2 (0.1%); GIRLS-D, 12 (0.7%); and STEEP, 78 (4.3%).
(CONJA-L computations, unlike those of the other programs,
were interrupted in numerous cells due to arithmetic errors or
overflows; so its experiment resampling failures were not
determined.)

An increase in mixture sample size generally increased
effective search time needed by EM, STEEP, CONJA-L, and CONJA-
S to achieve specified GPA for diverse and similar baselines
(Figs. 2 and 3). Regardless of baseline kind, the GIRLS
programs also required increasing effective search time with
increase in mixture sample size to achieve GPA if 5 stocks
were present in the baseline, but time required remained
roughly constant or declined with increase of mixture sample
size for 15 or 50 stocks (Figs. 2 and 3). First-place
finishes or ties (finish times were ties if they differed by
less than 1 centisecond) for minimum effective time required
to complete the 25 bootstrap resamplings for each of the 72
experimental cells show that the CONJA-S and EM programs
performed best most frequently (Table 4). Numbers of first-
place finishes by program were as follows: CONJA-S, 48; EM,,
23; GIRLS-B, 3; GIRLS-D, 3; STEEP, 0; and CONJA-L, 0. EM was
generally best at combinations of lower number of baseline
stocks, lower mixture sample size, and lower GPA. CONJA-S
superseded EM as number of baseline stocks, mixture sample
size, and GPA increased. The GIRLS-B and GIRLS-D programs
showed in first-place only at the largest mixture sample size
and then only at the higher GPAs and lower baseline stock
numbers.

The outcome for total search time is in broad agreement
with that for effective search time but with CONJA-S becoming
even more dominant. Increase in mixture sample size generally
increased total search time required by EM, STEEP, CONJA-L,
and CONJA-S to achieve specified GPA for either baseline kind
(Figs. 4 and 5). For either baseline kind, the GIRLS programs
also required increasing total time with increase in mixture
sample size to achieve GPA if 5 stocks were present in the
baseline, but time required remained roughly constant or
declined with increase of mixture sample size for 15 or 50
stocks (Figs. 4 and 5). First-place finishes or ties for
minimum total time required to complete the 25 bootstrap
resamplings for each of the 72 experimental cells show that
the CONJA-S and EM programs performed best most frequently
(Table 5). Numbers of first-place finishes by program were as
follows: CONJA-S, 62; EM, 12; STEEP, 5; GIRLS-D, 5; GIRLS-B,
5; and CONJA-L, 1. CONJA-S was generally best with a higher
number of baseline stocks, higher mixture sample sizes, and
higher GPA. EM was displaced by CONJA-S in total search time
performance from experimental combinations intermediate to the
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two algorithms' strengths in effective search time
performance. The GIRLS-B and GIRLS-D programs again showed in
first-place only at the largest mixture sample size. STEEP
performed well only at the smaller mixture sample sizes.

Discrepancies between the bootstrap distributions of
stock composition estimates (average and standard deviation)
at specified standard GPAs as compared to 99% differed more
among programs when mixture samples were small (m = 50) than
when they were large (m = 500); necessarily, maximum
discrepancies decreased with increase in specified GPA.
Relative performance of programs was similar for diverse
(Tables 6 and 7) and similar baselines (Tables 8 and 9).
Consistently, smaller discrepancies by the GIRLS programs were
evident when the GPA was specified at 10% especially, but also
at 50%. Among the remaining programs, CONJA-S generally had
the smallest discrepancies, and EM, the largest. Differences
among programs in stability can be explained largely by the
differences in their stepwise rates of convergence and
terminal GPAs: GIRLS-B and GIRLS-D, which satisfy the
specified GPA in relatively few steps with large GPA increases
between steps, usually exceed by greater amounts the specified
GPA at the end of search than do programs that require higher
numbers of steps having smaller GPA increases between steps.
Differences in maximum discrepancies among all programs at
specified GPA of 90% were small.

Experiment II

Effective and total search time required for the three
real-world data sets by CONJA-S, EM, and GIRLS-B differed
substantially (Table 10). CONJA-S was the fastest program in
effective and total search time at all specified GPAs for all
three data sets. Comparing speeds of the other two programs,
EM was much faster than GIRLS-B for two of the data sets
(Yukon River chum salmon and West Coast sockeye salmon), but
slower for the other set (Columbia River chinook salmon).
Relative speed of the programs depended on specified GPA and
search time measure, either effective or total; and speed
ranges given next reflect this dependence. For the Columbia
River chinook salmon data, CONJA-S was roughly two to seven
times as fast as EM (CONJA-S required between approximately
one-half and one-seventh the amount of effective or total
search time used by EM, depending on specified GPA) and about
twice as fast as GIRLS-B. For the Yukon River chum salmon
data, CONJA-S was almost two to four times as fast as EM and
50 to 85 times as fast as GIRLS-B. For West Coast sockeye
salmon, CONJA-S was one to three times as fast as EM and over
40 times as fast as GIRLS-B. The speed advantage of CONJA-S
generally increased with increase of specified GPA, and was
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slightly greater for total search time than effective search
time.

Neither CONJA-S nor EM failed on any data set at any
specified GPA up to the maximum attempted, 90%. On the other
hand, GIRLS-B failed at low rates (<3% of resamplings) for two
of the data sets (Columbia River chinook salmon and West Coast
sockeye salmon) but did not fail on the third (Yukon River
chum salmon) (Table 10). Average GPA achieved per resampling
by each of the programs always equaled or exceeded that
specified, even when failures (GIRLS-B) occurred (Table 10).
EM average GPA agreed closely with specified GPA, while CONJA-
S and GIRLS-B average GPAs exceeded that specified. These
differences between average GPA achieved and that specified
are due to the differences in the stepwise rate of convergence
among the programs. GIRLS-B and CONJA-S satisfied the
specified GPA in relatively few steps with large GPA increases
between steps and usually exceeded by greater amounts the
specified GPA at the end of search than did EM, which required
more steps having smaller GPA increases between steps.

Statistics of the bootstrap distributions for estimated
stock percentages comprising the three salmon mixtures-
Columbia River chinook salmon, Yukon River chum salmon, and
West Coast sockeye salmon-showed that the finer the stock
mixture was separated into its components, the greater were
the changes in the distributions as specified GPA varied. At
coarsest resolution when the mixture composition was assessed
for only a few major stock groups, neither the program used
nor GPA specified had meaningful effect on the bootstrap
distributions. Details are presented next.

Contributions from four Columbia River chinook salmon
stock groups were assessed (Table 11) from estimated mixture
percentages of their component-stocks. Average estimates of 
stock group percentages, their standard deviations, and their
upper and lower 95% confidence bounds differed only slightly
(50.5%) between all GPAs and programs. Maximum discrepancy in
average estimates for stock groups among GPAs and programs was
only 0.1%, for lower confidence bounds was only 0.5%, for
upper confidence bounds was only 0.4%, and for standard
deviations was only 0.19%. Estimates for the fourteen
component stocks computed for the Columbia River chinook
salmon mixture by CONJA-S for standard GPAs (Table 12) show
greater discrepancies than when stocks were consolidated.
Maximum discrepancy in average estimates for stocks among GPAs
was 0.1% (stocks RR, CA, and LW); for lower confidence bounds,
0.7% (stock KO); for upper confidence intervals, 1.8% (stock
LS) ; and for standard deviations, 0.32% (stock CA).

Bootstrap estimates for summer run and fall run groups of
the Yukon River chum salmon mixture were also computed (Table
13) from individual stock contribution estimates. Average
estimates of stock group percentages, standard deviations, and
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upper and lower 95% confidence bounds differed at most by 2.3%
among all GPAs and programs (Table 13). Maximum discrepancy
in average estimates for stock groups among GPAs and programs
was only 0.3%, for lower or upper confidence bounds was 2.3%,
and for standard deviations was 1.10%.

Statistics for bootstrap distributions of composition
estimates for two major consolidations of stock groups (A-G
and H-M) (Table 14) as well as the thirteen individual groups
(A through M) (Table 15) were computed from individual stock
contribution estimates for the West Coast sockeye salmon
mixture. Maximum discrepancy in average estimates for
consolidations of stock groups among GPAs and programs was
only 0.3%, for lower or upper confidence bounds was 0.4%, and
for standard deviations was 0.04% (Table 14). Estimates for
the thirteen component stock groups (A through M) computed by
CONJA-S for standard GPAs (Table 15) show far greater
discrepancies than occurred when component groups were
consolidated. Maximum discrepancy in average estimates for
stock groups among GPAs was 2.5% (group J); for lower
confidence bounds, 6.4% (group L); for upper confidence
intervals, 8.5% (group J); and-for standard deviations, 3.96%
(group J).

CONCLUSION

Several general-purpose optimization algorithms have been
specialized to compute the CMLE of stock composition from
characters of individuals in mixtures. This study reviews
these algorithms, describes others, and compares performances
of implementing computer programs. The original application
to genetic information by staff of the former Northwest and
Alaska Fisheries Science Center of the National Marine
Fisheries Service used the expectation maximization algorithm
(Milner et al. 1981). Next, scientists of the Pacific
Biological Station of Canada Department of Fisheries and
Oceans used the conjugate gradient algorithm with logarithm-
transformed stock proportions (Fournier et al. 1984). Most
recently, researchers of the Auke Bay Laboratory of the Alaska
Fisheries Science Center have used the iteratively reweighted
least-squares algorithm suggested by Pella (1986) and Pella
and Milner (1987) as well as a variant described here. The
present study introduces two other specializations of general-
purpose algorithms: steepest ascent and conjugate gradient
with square root transformation of stock proportions.

The numerical precision (i.e., number of decimal places)
to which the stock proportions composing -the CMLE can be
determined by any of the algorithms is limited by computing
machinery and programming languages used; Increasing
precision costs rapidly increasing computer time. A
compromise between precision and number of CMLE evaluations
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required in a study is necessary to control total computer
time needed. In this study, search for a particular CMLE was
stopped when either a time limit was reached or a criterion of
proximity to the maximum of the conditional likelihood
function was satisfied. The proximity criterion was the
guaranteed percent achieved (GPA), which is the minimum
percentage that the current likelihood function value during
search represents of the maximum possible likelihood function
value. Generally, achieving a GPA of 100% was not possible
because of rounding errors in computations. Other criteria
for stopping search could have been 1) relative change in the
likelihood function between iterations or 2) sum of absolute
values of components of the gradient vector (in feasible
directions). None of the stopping criteria was ideal because
none delimited a region within the stock composition space
wherein the CMLE occurred.

Program performances were studied under hypothetical
(Experiment I) and real-world (Experiment II) stock mixtures.
Three performance measures were used: speed, failure rate,
and stability of CMLE distributions as specified GPA was
increased. These measures are important when computing
numerous CMLEs to describe distributions of stock. composition
estimates by simulation- and bootstrapping studies. The ideal
algorithm would be fastest, have the lowest failure rates, and
have most stable CMLE distributions. Although no program
excelled at every performance measure, overall performance of
CONJA-S recommends its use in time-consuming studies.
Findings from both experiments showed that CONJA-S was either
fastest by far or only slightly slower than the fastest
program for all situations examined. The good speed of CONJA-
S held for total search time and effective search time. Under
hypothetical situations of Experiment I, the EM was usually
slightly faster than CONJA-S for cases with lower numbers of
baseline stocks, smaller mixture samples, lower specified GPA,
and the diverse baseline. The good speed of EM was unexpected
considering previous mention of the slow convergence of the
expectation maximization algorithm in mixture problems (e.g.,
Redner and Walker 1984 and Roeder et al. 1989). CONJA-S
supplanted EM for cases with larger numbers of baseline
stocks, larger mixture samples, higher specified GPA, and the
similar baseline. The remaining programs (GIRLS-D, GIRLS-B,
STEEP, and CONJA-L) were fastest in only a few cells of
Experiment I. In all three real-world applications of
Experiment- II, CONJA-S was fastest of the three programs
examined (CONJA-S, EM, and GIRLS-B). The CONJA-S superiority
in speed was greater as the specified GPA increased.

Failures to achieve specified GPA differed substantially
among programs. CONJA-S and EM had no failures to achieve
specified GPA up to 90% among the total 1,800 trials of
Experiment I and 3,000 trials of Experiment II. GIRLS-B had
next lowest failure rates with 2 of 1,800 (0.1%) trials of
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Experiment I and 40 of 3,000 (1.3%) trials for Experiment II.
GIRLS-D, STEEP and CONJA-L had increasing failures rates for
Experiment I and were not examined further in Experiment II.
Preliminary experimentation (not reported) showed that all the
programs failed for some trials during both Experiment I and
Experiment II if the value of the likelihood function was not
allowed to decrease (search to regress) between iterations of
the search. In theory, the algorithms advance with
uninterrupted increase to the maximum of the likelihood
function; but in practice, rounding errors in computations
cause temporary decrease (real or apparent) in likelihood
values during search. Therefore, search was not stopped for
such decrease in likelihood value.

Stability of CMLE distributions was measured by comparing
statistics of resampling distributions obtained at a range of
specified GPAs. Ideally, the stock composition distributions
would be independent of the specified GPA so that a low GPA
could be specified with concomitant low search time. When the
required level of stock detail was to the individual stock as
in Experiment I, the superior performances of the GIRLS
programs were evident; differences in means and standard
deviations of CMLE distributions between specified GPA of 10%,
50%, and 90% as compared with 99% were smallest among all
programs. CONJA-S was best among the remaining programs, and
EM was the worst. The relative performances reflected
differences in numbers of steps and corresponding GPA
increments between steps. The GIRLS programs required few
steps to achieve specified GPA, which resulted in large GPA
increments between steps; the EM program required many steps,
which resulted in small GPA increments. The final GPA at
termination when specified GPA was achieved tended to be
greater for a program using fewer steps; and as a result,
stability for such a program was higher. Differences in
stability were caused by differences in GPA achieved rather
than GPA specified.

Stability of stock composition distributions to the level
of individual stocks may often be unnecessary. Such stock
composition estimates may have too large sampling variation to
be of practical use. If so, stocks should be combined into
groups with similar characteristics, and the CMLE estimate for
individual stocks should be summed over stocks of any group to
provide the CMLE for groups. In the real-world examples for
which stock detail demanded was only to the level of
similarity groups, the differences in stability performance
among programs was less evident and apparently of little
practical consequence. Even differences in group CMLE
distributions among GPAs of 10%, 50%, and 90% appeared
inconsequential.

Certain caveats and considerations may be helpful in
choosing among the algorithms. Two warnings are first issued.
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First, this study was limited to line search (for algorithms
other than the expectation maximization) based on
approximating the support function by a Taylor's series along
a line in the original stock composition space or in a
transform of that space. The supposition for this choice was
that such an approximation, if sufficiently accurate, would
provide a fast line search. However, other approaches to line
search are possible (e.g., Press et al. 1989), and these may
well be more certain of success than the method chosen.
Second, the algorithms are implemented by our FORTRAN coding,
which may contain errors. The GIRLS programs have been used
by numerous organizations for several years. Coding errors
have been reported, corrected by us, and revisions returned to
all known users. Although reports of GIRLS program errors
have not occurred recently, detection of errors is difficult
and some may remain. The other programs are not so well
tested. Naturally, any errors remaining could affect
performance.

Several final reflections to assist in selection of an
algorithm conclude this discussion. First, complexity of the
algorithm weighs against its use unless a trustworthy coding
with required features is already available. If original
coding must be developed, expectation maximization is
simplest; iteratively reweighted least squares, most complex;
and the conjugate gradient with square root transform,
intermediate. The superior speed of the conjugate gradient
with square root transform together with its reliable
maximizing of the likelihood function justifies its greater
complexity compared to expectation maximization. Input and
output procedures and features for conducting simulations and
bootstrapping constitute a significant amount of coding for
any of the programs. Therefore, complexity of the algorithm
becomes relatively less important if a versatile program
including such procedures and features is required. Second,
the iteratively reweighted least squares algorithm can easily
be modified to include additional linear constraints on the
stock proportions by adding to the constraint equation set.
Such modification can be used to compute likelihood profiles
for stock group contributions to a mixture', for example.
Third, the iteratively reweighted least squares algorithm
becomes more efficient as mixture sample size increases
(contrary to the other algorithms). Conceivably, advances in
sampling technology will permit large mixture samples favoring
use of this algorithm. Fourth, and last, another criterion
that could have been used for comparing algorithms is their
computer memory requirement. Determining the minimal amount
of memory required by each algorithm would have been

2Richard Gates, CFMD, Genetics, 333 Raspberry Road, Anchorage, AK 99518-
1599, pers. commun., 15 November 1994.
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technically difficult, although clearly the GIRLS programs
require more than the other programs. More importantly, the
criteria chosen are more constraining to analysis of stock
composition than memory capacity. Readily-available,
inexpensive computer memory chips for personal computers (386
machines or higher) with limited memory allow use of the
executable modules developed for any of the algorithms during
this study. However, performances of the algorithms including
speed and convergence properties are not easily modified, and
those properties can be limiting in practical applications 
even using fast mainframe computers.
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Table 1. -Stock-specific and loci-shared relative allele
frequencies (RAFs) of alleles A, B, C, D, and E at
their respective loci for the five-stock diverse and
similar baselines of Experiment I.a

aThe range and intervals of the proportions for diverse and similar baselines
are as follows: diverse (range = 0.8; intervals = 0.2) and similar (range =
0.6; intervals 1 and 2 = 0.1 and intervals 3 and 4 = 0.2).

Table 2 .-Features of real-world data sets used in Experiment
II: number of baseline stocks, number of characters
observed, range of baseline sample sizes, mixture
sample size, and literature source of information.

Baseline Baseline Mixture Refer-
Data set stocks Characters sizes size ence*

*a = Pella and Milner (1987); b = Wilmot et al. (1994); c = Pella et al. (in
press).

 Preceding page blank 



42

Table 3. -Number of the four mixture sample size cells (50, 150, 250, or
500) of Experiment I for which search by programs (GIRLS-D, GIRLS-
B, STEEP, EM, CONJA-L, and CONJA-S) for stock composition estimates
failed to achieve specified standard values of the stopping
criterion (GPA of 10%, 50%, and 90%) for one or more of the 25
bootstrap resamplings, by number of baseline stocks (5, 15, and 50)
and baseline (Diverse or Similar) (upper table); and the
corresponding total number of failures per 100 total resamplings
(lower table).

Number of cells with failures

Number of resampling failures among cells
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Table 4 .-Fastest programs* in effective search time for finding
the 25 bootstrap stock composition estimates with
specified standard values of the stopping criterion
(GPA of 10%, 50%, and 90%) given number of baseline
stocks (5, 15, and 50), mixture sample size (50, 150,
250, and 500) and baseline (Diverse or Similar).

Fastest program in effective search time
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Table 5 .-Fastest programs* in total search time for finding the
25 bootstrap stock composition estimates with
specified standard values of the stopping criterion
(GPA of 10%, 50%, and 90%) given number of baseline
stocks (5, 15, and 50), mixture sample size (50, 150,
250, and 500), and baseline (Diverse or Similar).

Fastest program in total time
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Table 6 .-Maximum discrepancies" among stocks of bootstrap mean
estimated mixture percentages [max            ) ] in relation
to number of stocks in the diverse baselines (5, 15,
or 50), specified standard values of the stopping
criterion (GPA of 10%, 50%, and 90%), and mixture
sample size (50 and 500).

aDiscrepancies were computed as absolute differences between bootstrap means
resulting from specified standard GPAs and that when GPA of 99% was specified.
Bootstrap means were based on 25 resamplings of original baseline stock and
mixture samples of Experiment I.
bBecause some of the programs did not attain the GPA of 99%, the means from
GIRLS-B with GPA of 99% were used to compute differences.
cGPA was not achieved.
dBecause some of the programs did not attain the GPA of 99%, the means for
GIRLS-B with GPAs of 94, 98, and 98% for 5, 15, and 50 stocks, respectively,
were used to compute differences.
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Table 7 .-Maximum discrepancies" among stocks of bootstrap
standard errors of estimated mixture percentages [max
(AS,)] in relation to number of stocks in the diverse
baselines (5, 15, or 50), specified standard values of
the stopping criterion (GPA of 10%, 50%, or 90%), and
mixture sample size (50 and 500).

aDiscrepancies were computed as absolute differences between bootstrap standard
errors resulting from specified standard GPA and that when GPA of 99% was
specified. Bootstrap standard errors were based on 25 resamplings of original
baseline stock and mixture samples of Experiment I.
bBecause some of the programs did not attain the GPA of 99%, the standard errors
from GIRLS-B with GPA of 99% were used to compute differences.
cGPA was not achieved.
dBecause some of the programs did not attain the GPA of 99%, the standard errors
from GIRLS-B with GPAs of 94, 98, and 98% for 5, 15, and 50 stocks,
respectively, were used to compute differences.
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Table 8.--Maximum discrepancies" among stocks of bootstrap mean
estimated mixture percentages [max          l in relation
to number of stocks in the similar baselines (5, 15,
or 50), specified standard values of the stopping
criterion (GPA of 10%, 50%, or 90%), and mixture
sample size (50 and 500).

aDiscrepancies were computed as absolute differences between bootstrap means
resulting from specified standard GPA and that when GPA of 99% was specified.
Bootstrap means were based on 25 resamplings of original baseline stock and
mixture samples of Experiment I.
bBecause some of the programs did not attain the GPA of 99%, the means from
GIRLS-B with GPA of 99% were used to compute differences.
cGPA was not achieved
dBecause some of the programs did not attain the GPA of 99%, the means from
GIRLS-B with GPAs of 96 and 98% for 5 and 15 stocks, respectively, were used to
compute differences.
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Table 9.--Maximum discrepancies" among stocks of bootstrap
standard errors of estimated mixture percentages [max
(As,)] in relation to number of stocks in the similar
baselines (5, 15, or 50), specified standard values of
the stopping criterion (GPA of 10%, 50%, and 90%), and
mixture sample size (50 and 500).

aDiscrepancies were computed as absolute differences between bootstrap standard
errors resulting from specified standard GPA and that when GPA of 99% was
specified. Bootstrap standard errors were based on 25 resamplings of original
baseline stock and mixture samples of Experiment I.
bBecause some of the programs did not attain the GPA of 99%, the standard errors
from GIRLS-B with GPA of 99% were used to compute differences.
cGPA was not achieved.
dBecause some of the programs did not attain the GPA of 99%, the standard errors
from GIRLS-B with GPAs of 96 and 98% for 5 and 15 stocks, respectively, were
used to compute differences.



Table 10. -Performances of programs (CONJA-S, EM, and GIRLS-B) on real-world data sets
used in Experiment II: average effective search time, average total search
time, average guaranteed percent achieved, and failure rate for 1000
resamplings at specified standard values of the stopping criterion (GPA of
10%, 50%, and 90%). All times are in centiseconds.

Effective time Total time % achieved Failure rate (%)

GPA to stop

'Search for the CMLE was stopped on one or more resamplings because the effective search time exceeded 5 min.



Table 11.--Averages (ave), standard deviations (s), and upper                  )and lower           95%
confidence bounds from the bootstrap distributions (1000 resamplings) of
estimated stock group (groups* are denoted as B, A+B, A+B+C, and D)
percentages for the Columbia River chinook salmon mixture by programs CONJA-S,
EM, and GIRLS-B for specified standard values of the stopping criterion (GPA
of 10%, 50%, and 90%).

'Groups are defined in Table 10.1 of Pella and Milner (1987).

a



Table l2.--Averages (ave), standard deviations (s), and upper                  and lower         
confidence bounds from the bootstrap distributions (1000 resamplings) of
estimated individual stock* percentages for the Columbia River chinook salmon
mixture by the program CONJA-S for specified standard values of the stopping
criterion (GPA of 10%, 50%, and 90%).

'Stocks are those in Table 10.1 of Pella and Milner (1987).



Table 13 .-Averages (ave), standard deviations (s), and upper                 and lower                  
confidence bounds from the bootstrap distributions (1000 resamplings) of
estimated stock group (groups are summer and fall runs) percentages for the
Yukon River chum salmon mixture by programs CONJA-S, EM, and GIRLS-B for
specified standard values of the stopping criterion (GPA of 10%, 50%, and
90%).



Table 14.--Averages (ave), standard deviations (s), and upper                and lower                     
confidence bounds from the bootstrap distributions (1000 resamplings) of
estimated stock group (groups* are denoted as A-G and H-M) percentages for the
West Coast sockeye salmon mixture by programs CONJA-S, EM, and GIRLS-B for
specified standard values of the stopping criterion (GPA of 10%, 50%, and
90%).

'A-G = groups A through G; H-M = groups H through M (Pella et al. in press).



Table 15.--Averages (ave), standard deviations (s), and upper           and lower             
confidence bounds from the bootstrap distributions (1000 resamplings) of
estimated stock group (groups* are denoted by letters A through M) percentages
for the West Coast sockeye salmon mixture by the program CONJA-S for specified
standard values of the stopping criterion (GPA of 10%, 50%, and 90%).

* see Pella et al. (in press).
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Figure 1. -Support function values achieved by two of the programs (GIRLS-B and EM) and
total search time required of the processor. Data are from a cell of
Experiment I. Early (left) and complete search (right) are illustrated using
different scales for the support function. Levels of the support function
guaranteed to equal at least 10%, 50%, and 90% of the maximum value (MAX) for
the likelihood function correspond to critical search times, T10, T50, and T90,     
illustrated here for EM (right).



Figure 2.-For diverse baseline mixtures, average effective search times required by the
six programs-CONJA-S, EM, GIRLS-B, GIRLS-D, STEEP, and CONJA-L-to achieve
standard stopping criterion (GPA) values for varying numbers of baseline
stocks and mixture sample sizes. Cells are plotted if average GPA equaled or
exceeded that specified.



Figure 3.--For similar baseline mixtures, average effective search times required by the
six programs-CONJA-S, EM, GIRLS-B, GIRLS-D, STEEP, and CONJA-L-to achieve
standard stopping criterion (GPA) values for varying numbers of baseline
stocks and mixture sample sizes. Cells are plotted if average GPA equaled or
exceeded that specified.



Figure 4.--For diverse baseline mixtures, average total search times required by the six
programs-CONJA-S, EM, GIRLS-B, GIRLS-D, STEEP, and CONJA-L-to achieve
standard stopping criterion (GPA) values for varying numbers of baseline

stocks and mixture sample sizes. Cells are plotted if average GPA equaled or
exceeded that specified.



Figure 5.--For similar baseline mixtures, average total search times required by the six
programs-CONJA-S, EM, GIRLS-B, GIRLS-D, STEEP, and CONJA-L-to achieve
standard stopping criterion (GPA) values for varying numbers of baseline
stocks and mixture sample sizes. Cells are plotted if average GPA equaled or
exceeded that specified.'
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Essential steps included in the programs STEEP, GIRLS-B,
GIRLS-D, EM, CONJA-L, and CONJA-S are outlined next.
initial point in the search is denoted as p(0), with typical
element j denoted as Pj(0).

STEEP (Steepest Ascent)

We define two sets of stock indices, boundary indices,
and interior indices at any point p of the search to allow

    efficient continuation of searching after boundaries are
encountered or closely approached. The boundary set B = {iI,
i 2 ,  . . . , ib} is composed of stock indices for which 0 ≤ pi < δ if
i belongs to B. The number of indices contained in B is n(B)
= b ≥ 0. The value of δ is arbitrary but meant to be small,
and we use 10-7. The interior set B* = {ib+1, ib+2, ..., ic} is
composed of the remaining stock indices for which δ ≤ pi ≤ 1 if
i belongs to B*. The number of indices contained in B* is
n(B*) = (c-b) ≥ 1.

The program performs the following steps:

1) Computes the gradient vector S = (sl, s2, ..., sc)
T, where the

gradients are given by Equation 8 evaluated at p = p(0).

2) Finds the average gradient (   ) for interior stocks and,
if applicable (b > 0), the largest gradient (s*) among
boundary stocks together with the corresponding stock
index, i*, or

3) If S* ≤   , goes to step 4; if S* >  , adds the index i* to
B* and deletes the index i* from B. Then recomputes,    and
continues to the next step.

4) Computes the corrected gradient vector, So = (s°1, s°2, ...,
s°c)

T
, where

5) Finds the maximum permissible step size,         together
with the limiting interior stock index, i+, as follows:
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6)

7)

8)

9)

Computes the optimum step size         from the line search
based on the Taylor's series approximation to the support
function.

Chooses a step size λ =          if                 Otherwise,
chooses λ =            removes the index i+ from B*, and adds
the index i+ to B.

Computes the new point in the search path p(1) = p(0) +      

Sets p(0) = p(1). If specified GPA is achieved at p(0),
stops the search; otherwise, returns to step 1.

GIRLS-B or GIRLS-D (Iteratively Reweighted Least Squares Basic
and Difference Versions)

1)

2)

3)

4)

5)

1)

2)

3)

Computes S from Equation 8 and R (see Equation 15) using
p = p(0), and either GTRG and GTRy -(see Equation 15 of
basic version) or DTRD and DTRy (see Equation 22 of
difference version).

Solves equation system, Equation 20 or 24, for p = p(1).

Uses the line search based on the Taylor's series to find
the optimum step size         along the line passing
through p(0) and p(1). Sets a counter K = 0.

Computes p(2), = p(0) + (0.99          w h e r e    P  =  p ( 1 )  -  p ( 0 ) .
Verifies p(2) is feasible and that the probabilities of
all observed types in the mixture sample remain positive,
i.e.,         > 0 for each h = 1, ..., H. If both
conditions are satisfied, goes to step 5. Otherwise,
sets K = K + 1 and returns to the beginning of this step.

S e t s  p ( 0 )  =  p ( 2 ) .             If specified GPA is achieved at p(0),
stops the search; otherwise, returns to step 1.

EM (Expectation Maximization)

Computes S = (sl, s2, ..., sc)
T where si is given by Equation

8 evaluated at p = p(0).

Computes p(1), using Equation 27.

S e t s  p ( 0 ) ,  =  p ( 1 )  - If specified GPA is achieved at p(0),
stops the search; otherwise, returns to step 1.
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CONJA-L or CONJA-S (Conjugate Gradient with Logarithm or
Square Root Transform)

1) Computes                                                    equal to the gradient   
using Equation 30 (CONJA-L) or Equation 36 (CONJA-S)
evaluated at p = p(0). Sets the first search direction in
the transformed stock composition space, D(O) = (d1

(0), d2
(O),

   = equal to           (CONJA-S); or (CONJA-L) sets           
          unless both log Pi(0) < -20 and                 (in which case,
sets di

(0) = 0) i = 1, 2, ..., c.

2) Computes the optimum step size,      from the line search
in the transformed stock composition space based on the
Taylor's series approximation to the support function at
u(0) with direction D

(0) (see Equation 32). u(0) is computed
from p(0) using Equation 28 (CONJA-L) or Equation 34
(CONJA-S). Sets a counter J = 0.

3) Computes the new point in the search path in the transformed
stock composition space u(1) = u(0) + (0.99)              

4) Sets a counter k = 1. Computes p(1), corresponding to u(l)
by Equation 29, and goes to step 5 (CONJA-L) ; or (CONJA-
S) computes p(1) corresponding to u(1) by Equation 35 and
verifies that probabilities of all observed types in the
mixture sample remain positive, i.e.,            > 0 for
each h = 1, ..., H. If the condition is satisfied, goes to
step 5. Otherwise, sets J = J + 1 and returns to step 3.

5) Computes the gradient      by Equation 30 (CONJA-L) or
Equation 36 (CONJA-S), evaluated at p = p(k), which is
denoted as        , and sets the kth search direction, D(k), to

Sets the counter J = 0. Goes to the next step (CONJA-S) ;
or (CONJA-L) modifies the direction vector D(k) above by
setting di

(k) = 0 if log (Pi(k)) < -20 and di
(k) < 0, i = 1, 2,

..., C.

6) Finds the next point in the transformed space, u(k+1) = u(k)
+ (0.99                , by line search in the transformed stock
composition space based on the Taylor's series
approximation to the support function at u(k) with
direction D(k) (see Equation 32). Computes p(k+1) from u(k+1)
by Equation 29 and goes to step 7 (CONJA-L); or (CONJA-S)
computes p(k+1) from u(k+l) by Equation 35 and verifies that
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probabilities of all observed types in the mixture sample
remain positive, i.e.,                 > 0 for each h = 1, . . . H.
If the condition is satisfied, goes to step 7.
Otherwise, sets J = J + 1 and returns to the beginning of
this step.

7) If specified GPA is achieved, stops; otherwise, continues
on to the next step 8.

8) If k < c, sets k = k + 1 and repeats steps 5, 6, and 7.
Otherwise, restarts the search at step 1 using the last
p o i n t  p ( c + 1 )

found in the search as p(0).
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