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i
ABSTRACT

The conditional maxi mumIikelihood nmethod of estimating
stock-m xture conposition is described for discrete
characters. Conputer prograns were devel oped for severa
general - purpose, nonlinear optimzation algorithns,
speci alized to searching for the conditional maxi num
|1 kelihood estimate (CMLE) ; and their perfornances were
conpared for hyPotheticaI and real-world stock m xtures.
Measures of pertormance were search tine, failure rate, and
stability of CMLE distributions as the criterion for stopping
search (guaranteed percent achi eved of the maxi num of the
l'i kel'i hood function, or GPA) was increased. -,

-Prograns based on the conjugate gradient (with square
root transformof stock conposition) and expectation
maxi m zation al gorithms were superior in reliability and
speed. Iteratively-reweighted | east squares prograns produced
the nost stable CMLE distributions because their termnal GPAs
typically exceeded that specified by nore than other prograns.
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| NTRODUCTI ON

The practice of evaluating stock contributions to m xed-
stock fisheries fromthe traits of individuals in catches and
escapenents has beconme commonpl ace in North American fisheries
for Pacific salnmon (Oncorhynchus spp.). Gowth patterns on
scales (e.g., Fukuhara et al. 1962; Cook and Lord 1978;
Marshal | et al. 1984), genotypic variation identified by
el ectrophoresis of enzymatic proteins (e.g., Gant et al
1980, Uter et al. 1987, Shaklee et al. 1990, Bartley et al.
1992, Wlnmot et al. 1994), presence of parasites (Mles et al
1990), and combinations of these characters (Wod et al. 1989,
Pella et al. in press) have been used in such assessments.
Concerns regardi ng eval uations of stock contributions in
Pacific salnmon fisheries froma coastw de vieMﬁoint ( Shakl ee
and Phel ps 1990) and recent applications to other species and
locales with [atest genetic techniques for identifying
genotypes (Wrgin et al. 1993, Bowen et al. 1995) i1llustrate
the expanding breadth of this research area.

The preferred nethod of estimating conposition of stock
mxtures fromtraits of individuals is that of maximm
|'i kel i hood (Fournier et al. 1984, MIlar 1987, Pella and
Ml ner 1987). The maximum |ikelihood estimate is the stock
conposi tion (proportions or percentages) for which the
l'i kelihood function for traits of individuals observed in the
stock and catch sanples is nmaximzed with respect to the
unknown stock proportions from the potentially contributing,
or baseline, stocks composing the catch. Traits may include
discrete characters and continuous variables. A discrete
trait may be qualitative or quantitative; but, in either case,
individuals classify to one of its types or categories (e.g.
genotypes of a genetic locus, presence or absence of parasite
Infection, and nunmbers of circuli on scales). [Individuals
sharing the sane type for each trait classify to the sane
multiple character type. Continuous traits are quantitative
and categories occur only because of |limted accuracy of the
measuring device (e.g., length, weight, and distance between
points on the body or scale). A continuous trait may be
converted to a discrete trait by partitioning its range into
intervals, but this change, is not necessary nor even
recommended.  However, for sinplicity, only discrete
characters with limted nunbers of types are used in this
st udy.

The |ikelihood maxi m zation considered will treat the
relative frequencies of nultiple character types in the
basel ine stocks, the baseline character distributions, as
known and equal to their estimates from the baseline sanples.
Al t hough the baseline character distributions could also be
treated as unknowns to be estinmated concurrently with stock
conposition (Fournier et al. 1984, Pella and Mlner 1987),
this relaxation of assunptions woul d make conputation of
m xture conposition nore conpl ex because uni que m xture
conposition estinmates could not be guaranteed (Snouse et al.
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1990, Xu et al.. 1994). The maxi mumlikelihood estimate of
stock conposition may be said to be conditional on the
basel ine distributions of characters.

Conputations for determning the conditional maximm
| i kelihood estinmate (CMLE) and its precision are extensive.
Just the calculation of the CM.E fromthe observed catch and
basel i ne sanPIes requi res a high-speed conmputer for virtually
all practical applications. t hough standard error in the
CMLE caused by sanmpling of the catch can be evaluated with
m ni mal conputation by using Mllar's infinitesinmal jackknife
estimator (MIllar 1987), any sanpling errors in the baseline
character distributions are ignored. To evaluate variation in
stock conposition estimtes caused by both sanpling of the
catch and inperfect know edge of the baseline character
distributions, the bootstrap method (Efron 1982) is _
recomrended (Fournier et al. 1984). Bootstrap resanpling of
basel ine and catch sanples with conputation of the CM.E for
each set of derived sanples accounts for sanpling error from
both sources. The enpirical CMLE distributions from
boot strapping are used to estimte CME standard errors, and
also to provide confidence intervals for stock composition
Efron and Tibshirani (1986) suggest roughly 25 resanplings are
sufficient to calculate standard errors for statistics such as
the CMLE, but that confidence intervals require 250 to 1,000
resanplings. Cearly, bootstrapping for precision of the CME
i ncreases the amount of conputation of CMLEs nanyfol d, but
ot her studies also require,.heavy conputation of CMEs.

Nunerical experinments are advisable prior to actual catch
sanpling to judge the feasibility of a research program for
determ ning stock conposition with satisfactory accuracy and
preci sion ?Pella and Mlner 1987). These experinments shoul d
i nclude sinulated baseline sanpling with baseline. character
di stributions from avail abl e baseline sanples and sinul at ed
sanpling of their mxtures of known stock conposition. The
CMLE of stock composition of any sinulated m xture is conputed
for each set of baseline and mixture sanples. The sinulated
sanplings are repeated many tines to generate enpirica
distributions of the CMLEs for conparison with the known stock
conposition. The decision to begin sanpling catches conposed
of the baseline stocks depends on finding satisfactory
preci sion and accuracy of the CMLEs as judged fromtheir
distributions for the sinmulated situations.

After catch sanpling begins, further nunerical
experinments are prudent to check that fit of the m xture node
(Mulligan et al. 1988, Pella et al. in press) is satisfactory.
Lack of fit could indicate that inportant stocks in the
catches are not included in the baseline or that baseline
character distributions have changed between tines of sanpling
basel i ne stocks and catches.
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Efficient algorithms for finding CMLEs are needed to make
good use of conputer resources. Sinple determnation of the
CMLE from observed sanples requires substantial conputation
and bootstrapping, feasibility studies, and tests of fit
i ncrease conputation of CMLEs manyfold. The demand for
conputer usage can limt the research. Therefore, a report
follows describing the specialization of several genera
mat hemati cal procedures to CMLE conputation, together with an
eval uation of their performances when encoded i n conputer
prograns witten by us. No claimis made that the efficacy of
t he conputer programs cannot be inproved, but considerable
effort was directed to this end. Therefore, our conparison of
program performances provi des a nmeasure of what can be
achi eved by each algorithm

The following material is organized into four sections.
First, generic sanples and their [ikelihood function are
descri bed for which the nmaxim zing stock conposition nust be
found. Second, algorithns for finding this CME are
discussed. Third, the specific sanples and performance
criteria for conparing the algorithns are described. Finally,
perforq?nces of computer prograns for the algorithnms are
report ed.

THE LI KELI HOOD FUNCTI ON

The situation nodeled is a mxture of c¢c stocks or
Bopulations, conposed of proportions p;, Py ., ., and p. fromthe
aseline stocks. The feasible values for p = (p;, p»...pPo)
(note that any vector is a colum and its transpose, denoted
by superscript T, is a row) constitute the stock composition
space; to be feasible, the elements of p nust lie between 0
and 1 and their sum nmust equal 1.

To begin our analysis, a random sanple of individuals is

obtained fromthe mxture, and they are conpared using a set
of characters. [The situation in which characters are mssing
for some sanpled individuals will not be considered here, but
the nethods bel ow have been extended el sewhere (e.g., Pella
1986) to deal with this circumstance.] Some individuals of
the mxture sanple may be simlar or share the sane types for
all characters; other individuals nay be unique in their
character conbinations. Suppose H distinct character
conbi nations are observed in the mxture sanple and that m,

,...,and myindividuals of the total mindividuals conposing
T%e m xture sanple have these nultiple character types. Let
the true relative frqguenc of the hth character conbination
inthe ith stock be g". gin practice, the relative
frequencies of character conbinations in stocks are unknown,
and estimates obtai ned from baseline sanples are substituted
for unknown values.) Then the relative frequency of the hth
character conbination in the mxture is
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l,);pi Ghi -

The likelihood function of the mxture sanple is that-of a
mul tinomal probability function for the H categories

L(p) = ﬁ (ipig};i)mb . (1)
h=1 1i=1

The natural logarithmof the |ikelihood function, or the
support function (Edwards 1972), is

H
log L(p) =Y m, log( ilpighi) . (2)
h=1 1=

The sane val ues for stock proportions nmaximze both the

l'i kel i hood and support functions. The stock conposition

vect or, " = (P Ps. .. po).. Which maxinizes the |ikelihood
function is called thé conditional maxinum |ikelihood estinate
(CMLE) and will be denoted as

o ~

BT=(By By B

Any types of individuals not observed in the mxture
sanple are not involved in the likelihood function, and we
w || aggregate such types under an index value of HH (my, =
O, for future reference. In particular, the relative
frequency of this category in the ith stock is

91,1 = 1_)?19}11: i1=1,2,.,cC. (3)

Next, the neaning and inplications of a geonetric
property of the support function called concavity (Fournier et
al. 1984, Mllar 1987) are examned: first, to approximte
the support function along an arbitrary line in the stock
conposition space; and second, to bound the anount by which
the likelihood, function, evaluated at an arbitrary point in
t he stock conposition space, mght increase at the E.  The
approxi mati on and bound are for use with the algorithns |ater.

The approxi mati on and bound are devel oped by considering
any two points in the stock conposition space, say Py, = (P

Paorer s Pc(o))T and p; = (Piayr P2y _'“I_pc(l))T' Let Ap = p; - po-
Then the line in the stock conposition space passing through pg
and p; can be witten as

P = PotAbp,-

where the scalar, i, assunes values such that pis feasible.
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Along the line in Equation 4, derivatives of the support
function of any order with respect to i, evaluated at x= 0,
can be witten as

a = d"loglL
OA" =0
n
(5)
VIR
=(-1)7%(n-1)! fmh e

h=1
i);lpi (0)9ni

The second derivative, a,is always negative provided certain
conditions on the relative frequencies are nmet which are
described shortly. | f these conditions are net, we know from
extrema theory of elementary cal culus that the support
function along the line is concave downward. The term concave
downward means that a tangent |line drawn to a point on the
support function and in the plane determ ned by that point and
the |line passing through p, and p,would |ie above the support
function except at the point of tangency. The feasible
points, p, and p,were arbitrary, and so the support function
I's everywhere concave downward 1n the stock conposition space.
Fournier et al. (1984) and MIlar (1987) denobnstrated this
concavity property by other neans.

~ The concavity property is certain only if the second
derivative, a, is negative, which requires that

.ﬁ Ap;gy;
i=1

cannot equal zero for all h=1 2, . . . H |If w wite the
relative frequencies of the H observed character conbinations
in each stock as a colum of an H by ¢ matrix, G this

requi rement can be shown to be equivalent to |inear

i ndependence of the colums of G In nore tangible terns,

col um i ndependence for G neans that the relative frequencies
of the Hobserved character conbinations for any one of the
stocks cannot be witten as a |inear conbination of the
corresponding relative frequencies for the renaining stocks.
As an exanple, such a failure would occur if the relative
frequenci es of the Hobserved character conbinations were
identical for two stocks.

The inplications of the concavity property are far
reaching. The existence of a single point, B, in the stock
conmposi tion space that nmaxim zes the |ikelihood function is
guar anteed because of concavity(Fournier et al. 1984, MI|lar
1987). That a single CM.LE occurs is easily seen fromthe
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previ ous description of the behavior of the support function
between arbitrary Points in the stock conposition space. If
two | ocal maxinma of the support function occurred, an
intervening mninmumalong the line joining the two | ocal
maxi m zing points in the stock conposition space would be
necessary. Again we know from el enentary cal culus that the
second derivative of the support function would have to becone
positive at the mninmum but the second derivative is always
negative.

A Taylor's series is often used to approxi mate a
function. The Taylor's series approxi mation of arbitrary
order, N, for the support function at any point, p,along the
line passing through two points, p,and p,IsS

logL (p) =logL(po)+ﬁanA“/n!, (6)

n=1

where X was defined in Equation 4 and a,was defined in
Equation 5. The profile of the support function along an
arbitrary line in the stock conposition space can be
aﬁproxinated to an arbitrary degree of accuracy by increasing
the value of N

Furthernore, the concavity property can be used to
determ ne how nuch the value of the likelihood function at an
arbitrary point in the stock conposition space m ght be
increased at the CMLE.  The tangent plane to the support
function at p, contains all tangent lines at p, The support
function is concave downward at p,in any direction and so lies
entirely below any of the tangent lines. Therefore, the |eve
of the tangent plane to the support function at p,nust equal
or exceed the value of the support function everywhere in the
stock conposition space.

The tangent plane at p,is given by

Ap; ., (7)
Po

10GLyyy (Ap) =1ogL (p,) + £ S8

1

where a p, is the change in the ith stock proportion from that
at p,. The first partial derivative of the support function at
pwith respect to the ith stock proportion is called the
gradient or score for the ith stock and is given by

(8)
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This derivative is evaluated at po:(pir‘o), pZOI, Co pc(o))T in the
expression for the tangent plane. e maximum val ue

attai nable by loglLy over feasible values of &p occurs
when  Azp. IS set to 1 - proy Where i 1S the stock index for

which the partial derivative of the support function at p,is
greatest. The a p; for the indices not equal to i* nust be set

to -pi(g, for the new point to be' in the stock conposition

space.  The corresponding point, p, in the stock conposition

space is that for which only the i*th stock occurs. The value
of logL fOr this choice of &p, which represents an upper
[imt for the maxi numval ue of the support function, is

logL(p,) —m + f: m, Ihi”

h=1
lépi (0) Fhi 9)

=1logL(p,) -m +5;-(Py) .

Then we know from Equation 9 that the |ikelihood function

value at p,is within exp(m-s.(py) 100% of the maximum
possi bl e value, that is,

L(p,)
L(p)

2exp(m -s;.(pP,)) . (10)

Thi s bound for proxim’_tY to the maxi num val ue of the
l'i kelihood function will be referred to as the guaranteed
percent achieved (GPA).

The bound for possible increase in the support function,
GPA, established here by elenentary argument, generally agrees
closely with, but is smaller (less precise) than, that
devel oped through nore technical nmathematics by Lindsay (1983)
(al so see Roeder et al. 1989), nanely,

" L(p,) 5 (Si‘(Po) )-m..

ml

The difference between the bounds decreases either with
increase in sanple size, decrease in s;* (p), Or nagnitude of
ei ther bound. For fishery applications with mxture sanples
of at least 25 fish, the discrepancy ( £1 percentage point)

bet ween bounds has no practical significance when GPA is 10%
or nore.
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ALGORI THVS

Al gorithms described here for conputing the CMLE of a set
of baseline and m xture-sanples begin at an arbitrary guess of
the mixture conposition. In theory, search progresses toward
the CMLE through an iterative sequence of successive feasible
guesses, each derived fromthe preceding guess, and each with
?orrfsponding increased |ikelihood value until the CME is

ound.

Speci al i zati ons of four general -purpose optimzation
"procedures for finding the CMLE are considered. The first
three algorithns are called steepest ascent, expectation
maximzation, and iteratively reweighted |east squares; each
conducts the search directly in the original stock composition
space. The fourth and last algorithmis the conjugate
gradient, which we use to search both in the logarithm
transforned stock conposition space as was done by Fournier
et al. (1984) as well as in the square root-transformed stock
conposi tion space.

St eepest ascent, iteratively reweighted |east squares,
and conjugate gradient performtwo steps at each iteration of
the search: first, a line of novenent fromthe present guess
of the CMLE in the stock conposition space or its transformis
determ ned; and second, the optinal distance of novenent al ong
this line is approximated. The expectation maxi m zation
al gorithm does not explicitly separate operations for
direction and distance.

~Descriptions of the algorithnms are outlined next, but
details of the conputations are left for the appendix.

St eepest Ascent

The sinplest algorithmin terns of principles underlying
the search for the CMLE is steepest ascent. W believe our
apEIipation of the algorithmto nmaximzing the stock m xture
1 kelihood function as well as the specifics of constraining
the search to the feasible stock conposition space is
original. At each point, p, occurring in the search for the
CMLE, the direction chosen is that for which the | ocal
increase in the support function is greatest, provided that
nmovenment in that direction is within the stock conposition
space. | f the boundaries of the stock conposition space are
not interfering with novenent, the direction of greatest
increase is a vector pointing along the nean-corrected
gradi ent vector,
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where s; is given in Equation 8 evaluated at p and sis the

arithnetic average of the s;. The denonstration that the mean-
corrected gradient vector is the direction of greatest .
increase is a sinple extension of showing S = (s;, S, . . . S

is the direction of greatest increase wthout constraints
(e.g., See Rao 1984); we nust add the constraint that the sum
of the p; equals 1.

Boundaries interfere with novenent if one or nore of-the
stock proportions have been driven to near zero during the
search and the corresponding gradients remain positive.
Boundary stocks are di sengaged fromthe remaining interior
stocks at |east tenporarily in order to continue searching
efficiently. Permssible direction of greatest increase Is
"along a nodified, nean-corrected gradient vector with zeros
for boundary stocks; the nodified, mean-corrected gradients
for the interior stocks are conputed as the differences of
their gradients in Equation 8 and the arithnetic average of
these interior stock gradients. The guess of stock
proportions for the boundary stocks is tenporarily fixed at
the val ues reached when the boundaries were approached. The
search continues parallel to such boundaries until the
gradi ent of the support surface for one of the boundary stocks
I's greater than the average of the gradients of the interior
stocks. Thereafter, the search is allowed to nove away from
this stock boundary to the interior again.

The present guess of the CMLE and the direction of
novenent determine a line in the stock conposition space. The
optimal distance of novenment along the Iine fromthe present
guess in the direction chosen is then determ ned as that
corresponding to the maxi mum val ue of the Taylor's series
approximation to the support function described earlier. In
t he approxi mation Equation 6, the present guess, p, is taken
as p, and the nean-corrected gradient vector or its
modification at boundaries is taken as aAjp. The maxi mum val ue
of the approximation occurs when the first derivative of the
approximation with respect to x equals zero. This derivative
Is a polynomal equation in X of order N-I. The m nimum
positive, real nunber solution is chosen as the optinmal step
size, X, g The next guess is conputed as p = pg + Xap, Wth X
equal to the smaller of Noopt OF Apays the largest permssible
step size before encountering a boundary. The order of the
approximation, N, is set equal to the smallest of integers 2,
?, oa 4, for which an increase in the support function is

ound.

Iteratively Reweighted Least Squares
Two versions of the iteratively reweighted | east squares

al gorithmbasic and difference-are possible, depending upon
t he node of incorporating the constraint that the stock
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proportions sumto one. The basic version nmakes clear the
regression nature of conditional maxinum|ikelihood estimation
of stock-m xture conposition and is described here -for the
first tine.

The basic version is obtained by use of the nethod of
Lagrange from cal culus for solving extrenal problems wth
constraints., W begin by formng the Lagrange function from
the support function,

F(p) =10gL (p) +8 ( ilpi—l) . (12)
b

The scalar constant, 8, is the multiplier for the constraint.
The derivatives of the Lagrange function with respect to the
stock proportions, can be witten as

OF(p) _ : ,
3, 5;+6, j=1,2,., ¢, (13)

where s; is the gradient from Equation 8 evaluated at p

The conditions (Kuhn and Tucker 1951) that nust be
satisfied by the CMLE and guarantee that the solution, p,
satisfying themis the CM.E are as foll ows:

if p;>0, agép) =0 o1
Jlp
(14)
ve oA _ JoF (p)
if p.=0, <0.
J apj "

The value for the nultiplier at the CMLE i s obtai ned by

mul tiplying each derivative of the Lagrange function by the
corresponding p,and summ ng these products. The sum of these
products is m+ g and nust equal zero at the CMLE by the Kuhn-
Tucker conditions. Therefore, the value of the nultiplier at
the CMLE equals the negative of m, and the vector of
gradients of the Lagrange function at the CM.LE can be witten
as Sml, where 1 is a colum vector of ¢ "1"s. The gradient
vector, S, for arbitrary pcan be witten as

S=m?*G'R(y-Gp)+m1, (15)
. where

Yh = mh/m. '

G = (g,;), and

R is a diagonal matrix with Imf=l/(m_i£%gm).

h=1,2,., H+1; 1i=1,2,.,c. =t
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Therefore, we see from Equation 14 that the vector of
gradients of the Lagrange function at the CM.E nust satisfy

- m’GTR(y-Gp) < 0. ' (16)

The solution for the CMLE fromthe vector of gradients of
the Lagrange function is related to weighted | east squares and
Fi sher's method of scoring. |f equality held for each rowin
Equation 16 and rwere known, the vector of gradients of the
Lagrange function at the CMLE woul d take the formof the
system of nornal equations for the weighted | east squares
regression problem find the unconstrained value of pthat
m nimzes the weighted sum of squares,

SS(p) = (¥y-GpP)"R(¥-Gp) , (17)

or equivalently, which maxinmizes- Q(p) = y*RGp - %p’G'™RGp. The
sol ution woul d be
D = (G"RG) ' (GTRy) . (18)

Jennrich and Ral ston (1978) noted that nore generally the
gradients of the support function at maxi mum |ikeli hood
estimates for the regular exponentialfam |y of distributions,
which incl udes the multinomal distribution used here, take
the form of normal equations. The observed relative
frequencies of the nmultiple character types in the mxture
sanple, vy, are fit to their expected val ues,

ipighi ’
1=1

using as weights the inverses of the expected nunbers of the
multiple character types in the mxture sanple. The basic
version of the algorithm successively approxi mtes the CM.E by
constrained solution to the | east squares regression problem
descri bed, using for unknown elenents of the matrix, Rr at any
iteration, values conmputed fromthe inmmediately preceding
approxi mati on of the CME

Furthermore, if we sought to iteratively determne
unconstrai ned pthat maximzes the support function, Equation
2, by Fisher's method of scoring, the solution, Equation 18,
al so woul d be a new approxi mation of the CMLE when rRwas
conputed from the previous approximation. The matrix GRGIi S
Fisher's information matrix, and GRyis the score vector.
Therefore, we shall be finding successive constrained
approxi mations for the CM.E by the nmethod of scoring. As
such, the algorithmuses both the first and second order
derivatives of the support function



12

The vector of gradients of the Lagrange function
satisfies the set of constraints, Equation 16, rather than
corresponding equalities. These constraints are nore
difficult to solve than equalities from which pcould be
computed directly by Equation 18. Therefore, the constraints
are converted to another equation system by introducing
nonnegative variables called slack variables in |inear
programm ng because they take up the slack of the inequalities
to nodify themto equalities. The Kuhn-Tucker conditions for'
maxi m zing Qp)for feasible p are equivaient to the follow ng
equation system ‘

pi 2 O ’
t;20, and (19)

p;t;=0,

i=1,2,..,¢c,

wher e = GrG (a;5): ¢ x ¢,
B =GRy = (b): cx1,and
t,, t;, ., t.are slack variables.

The constraint that the stock proportions nmust sumto one was
incorporated earlier in the Lagrange function, Equation 12,
and is not repeated here.

The solution to this systemcan be determ ned by a
nodi fication of the sinplex algorithmof |inear progranm ng
(e.g., See Rao 1984), provided an initial feasible solutionis
avail able. No such solution will ordinarily be evident.
Therefore, we introduce artificial variables z;, z,, . . . z, Wwhich
provi de an obvious initial solution to an expanded equati on
system and which are later forced to zero for the ori%i nal
systemto be solved. The final problemto solve is the
fol | ow ng:

maxi m ze -}i‘lzi
i=
subject to
ngaijpj' ti+b;z;=b;,
p;20,
t;20, (20)
p;t;=0, and
z;20,

i=1,2,.w,C.
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This system has the obvious initial solution p, = p, =. . =
p =0, t=t=... =t=0, and z;, =z, =... =z, =1. Now the
solution to the original equation system Equation 16, can be
determ ned by application of the sinplex algorithmw th one
modi fi cati on: t; is not permtted to become a basic variable
whenever p; is already a basic variable, and vice-versa, for
=1, 2 ..., ¢ This nodification ensures the product Pt; = 0.
The optimal solution satisfies the Kuhn-Tucker conditions and
Is guaranteed to be the CMLE if the support function is
concave downward and rRis known. The procedure described
above is an application of Wlfe's (1959) algorithmfor
?%gggfiic progranm ng described in Hllier and Liebernman

The solution found would be the CMLE if rRwere known.
However, the diagonal elenents of rRdepend on the unknown
CME. Therefore, finding the CMLE requires an iterative
procedure. W begin with a guess of the CMLE, conpute Rfrom
the guess, and then find the CMLE conditioned on the guess.
The procedure is prone to overshooting, or ﬁassing beyond t he
CMLE, if the guess is far fromthe CMLE. Therefore, we use
the line search based on the Taylor's series approximtion to
the support function along the [ine joining the initial guess
with the CMLE conditioned on the guess to find the next guess.
The line search is conducted as described under the steepest
ascent algorithm However, now ap eguals p-po i f we call pg
the initial guess at an iteration and p, the CMLE conditi oned
on that guess. The value of the next guess is used to conpute
rRonce again, and the process is continued until convergence

The second version of the iteratively reweighted | east
squares algorithm the difference version, was first described
in detail by Pella (1986) and in broad outline by Pella and
Mlner (1987), and it is eaS|IK described now that the first
version is famliar. The stock proportion p, is elimnated to
remove the redundancy that the stock proportions sumto one,
thereby obviating the Lagrange function. Then the |ikelihood
function is witten as

logL (p) =?mh109 L?Elpighi’“ u‘tipj) e
=1 i=1 ) J=

=}Smh109 [c_z:lpidbi *Gnel
h=1 i=1
where d,; =9y~ Gpe (21)

dH+1, i~ bglghc_hglghi ' and

P.= 1'_iiflji-
i=1
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Now the gradient can be witten in the follow ng form
S =m’DTR(¥-Dp) ,

~ _ My
where Yn= 1= ~Gner h=1,2,..,.H, (22)

“and 57H+1=h§ghc—l.

The vectors pand S now have c-1 elenents, phas H+t1l rows and
c-1 colums, and rRis a square Htl matrix defined earlier

Again the gradient vector at the CMLE nust satisfy the
Kuhn- Tucker conditions:

m’DTR($-Dp) < 0. (23)

The CMLE is found by converting this system of
constraints to a linear progranm ng problem by addi ng sl ack
and artificial variables:

maximize -fzi
i=1
subject to
:éaijpj-ti+tc+bizi=bi, i=1, 2, ., C-1;

£p;=1,
1=1 ‘ (24)
p;20,
£;20,
piti=ol
i=1,2,.,c¢c; and

z,20, 2,20, ., and z_._,20.

The second formof the al gorithmcan again be shown to be
a constrained formof weighted regression, as well as a
constrained form of Fisher's nethod of scoring.

Expectation Maxim zation

The expectation maximzation algorithmis a general
met hod of solving for maxi mum |ikelihood estimates (Denpster
et al. 1977). The method was first applied to the
maxi m zation of the stock mxture |ikelihood function,
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Equation 1, by Mlner et al. (1981). The idea underlying the
algorithmin this application is that the CMLE of stock
proportions woul d be obvious and could be cal cul at ed
explicitly if the stock origins of the individuals in the

m xture sanple were known. In fact, if the nunbers of

i ndividuals from each stock in the mxture sanple were known,
the CMLE woul d sinply be the observed proportions of the

m xture sanple fromeach stock, or

" - , 25
pf:hzl ,  1=1,2,u.,C, (28)
wher e
m,' is the nunber of individuals of character conbination
horiginating from stock i, and
mis the total nunber of individuals in the mxture
sanmpl e

The information regarding the characters is no |onger useful
for estimating stock conposition-because the nunbers from each
stock in the mxture sanple are sufficient statistics, as can
be easily shown by the factorization theorem[e.g., see
Lehmann (1983) for a general discussion of the factorization

t heorenj.

O course, the values of the m, Y . are unknown, but their
expected val ues conditioned on the present guess of stock

conposition, p¢ = ( » Pawyr =t Peioy) s can easily be
conput ed. Baygé's t_ggrenfB?OV|desﬁ?he probability that an
i ndividual of type his fromstock i, and this probability
multiplied by m, equals the expected nunber from stock i,
(17 _ Pi0)ni
Elmy™'] =m, (26)
B;(0)Gnj

| f the expected vakHe_at Equation 26 is substitQted for the
unknown value of m'  in Equation 25, the resulting equation
for the new guess of stock proportions, pu = (P P2y -

T .
pc(l)) ¢+ 18

-1 Pi)%n: _ 1 ,
pi(l)‘E‘ﬁmh;'F‘pi(o)si(p(o))' 1=12,msC0 (59

h=1 i
; 'l j(O)ghj
j=1

where s; was defined at Equation 8. Next, the numerical values
of the old guess (p, ) are replaced by those of the new guess
(pw) for use on the right-hand side of Equation 27 to conpute
yet another new guess. The process is guaranteed to converge
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to the CMLE provided the initial guess conprises only positive
(>O proportions and the concavity property holds for the
l'i kel ihood function (Redner and \al ker 1984).

Description of three algorithms that search directly in
the stock CQﬂEOSItIOﬂ space Is conplete, and next considered
is an algorithmthat searches in transformations of that
space.

Conj ugate G adi ent

The search path of the steepest ascent algorithmtends to
zigzag in the paraneter space rather than follow a direct
route to the maxim zing point. The reason for this zigzag
behavior is that the search proceeds stepw se from each point
of the path in the direction of the local gradient, reaching a
new poi nt corres?onding to a |l ocal maxi mum al ong t hat
direction;- The local gradient at this new point nust be
perpendi cular to the preceding direction of movenent,
ot herwi se, the new point could not have been a |ocal maximum
Therefore, the next direction chosen fromthis new point is at
right angles to the preceding direction. This search pattern
can be inefficient, and reducing zigzagging to a nore direct
path woul d presunmably speed the search

The conjugate gradi ent algorithmof Fletcher and Reeves
(1964) also uses only the gradient to conduct the search but
Is nore efficient than steepest ascent if the |ikelihood
surface is approxinmately quadratic. Instead of using only the
| ocal gradient at the present point to determ ne the new
direction, the conjugate gradient algorithm uses a |inear sum
of local gradients at all points so far included in the
sear ch. In effect, the direction chosen is noderated by
previous directions. Rounding errors, however, accunulate in
the linear sum of local gradients, so it is necessary to
restart the algorithm periodically; Fletcher and Reeves (1964)
recommend a restart every c+l iterations if c baseline stocks
occur.

Fournier et al. (1984) first used the conjugate gradient
algorithmto search for the CMLE and noted that the search is
theoretically unconstrained in the |ogarithmtransfornmed stock
conposition _ space:

u; = log(p;), i=1,2,.,cC. (28)

Al t hough the transformation has the theoretical advantage that
the search in the u-space is unconstrained, in practice,
uesses in the u-space nust be constrained because the
ogarithms of stoc Eroportions near zero becone negative and
arbitrarily |arge. ournier et al. (1984) also observed that
in retransformng to the stock conposition space,

pi=exp(u)/Sexplu,), i=1,2,..c, (29)
. J=1
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the u; can be scaled arbitrarily to produce the sane point, p
Therefore, the constraint was inposed that

This constraint was effected by adding to the support function
a penalty termthat increased with the discrepancy fromthe
equality. The search was conducted in the u-space; and at
term nation, the retransformation, Equation 29, was used to
determ ne the CMLE

I n our inplenentation of the conjugate gradient algorithm
with logarithmtransformation of the stock conposition space,
the search is begun with a feasible guess p,this guess is
transformed to u by Equation 28, a new value for u is found,
and the new u is transformed back to a feasible pby Equation
29 before the next iteration of the search. The process
obviates any constraints- in the u-space other than limting
magni t ude of |arge negative u-val ues corresponding to stock
proportions near zero.

Gadients at u in the transforned-space can be expressed
in terns of pin the untransformed space as foll ows:

H
dlogL T hi
azg = ~pym +3 m,—— =

iy 51

Si(u) =

The direction of novenment fromu equals a |inear sum of
current and preceding gradient vectors; however, if any
conponent of u is less than -20, the corresponding direction
of movenent, if negative, is set to zero to constrain

magni tude of |arge negative u-values (see AppendiXx).

The line in the transforned stock conposition space
passi ng through arbitrary point u, with direction Au is

u = uy+)Au. (31)

Along this line the nth order derivative of the suFFort
function with respect to X, evaluated at *» = 0, wi be
denoted as b,. he line search for the optinmmstep size from
Up in the direction, Au, is acconplished by an Nth (N £4) order
Taylor's series aqproxinatiqn for the support function at u,

al ong the line. he approximtion is

logL(u) =logL(u,) + ﬁbnln/n! . (32)
n=1
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The first four derivatives of the support function with
respect to A, evaluated at x = 0, are as foll ows:

(1)

_0dlogL Wh

b = m -mt (1) ,
' oy y=0 h=1 8 Vi '
(2) (1)2
2 W 1%
b2=ﬂ%1_' =§mh A__7h "m_[t<2)—t(1)2],
aY Y=0 h=1 Vh Vh
(3) (2) (1) (>
3 W, 3wy, w w
b3=% =§mb ::v -~ h 2h +2 C' —m_[t(3)-3t(2’t(1)+2t<1’]] ,
Y 'Y:O h= h Vh . h
(4) (3) (1) (2)  (1)2 (2) \? (1 \?
: W, 4w, ' w, 12wy w, W, w
andbgwf—@ =fmh 2 - bzh + h3h —3()’]—6[”)

—mtW -4t W12 @ W32 gt w4,
where

The maxi mum of this approxi mati on occurs when its first
derivative with respect to x equals zero. This derivative is

a polynom al equation in X of order N-I.  The mininum
positive, real solution is chosen as the optinal step size,,
Aoper and the next guess is conputed as Ug+hooe "Ou. The order of

the approximation, N, is set equal to the snallest of 2, 3, or
4, for which an increase in the support function is found.

W al so inplenmented the conjugate ﬁradient al gorithm
using a square root transformation of the stock conposition
space. A square root transformation avoids the necessity of
constraining the solution away fromthe boundaries in the
transformed space. The only constraint on the square root
paranmeters is that the sumof their squares equals 1, and this
constraint is automatically satisfied by the transformation
?nd retransformation at each iteration of the search. |If we
et

ui.—_ pi' i=l,2,...,C, ’ (34)

the transformation is defined for all feasible values of the
stock conposition space including zero. The retransformation
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again assures that only feasible points of the stock _
conposition space are Included. he gradi ents correspondi ng

to Equation 30 for the square root transfornation are as
fol | ows:

5, (u) =-2/B; m +2)B; 3 my—P— =-2/B;(m -5, (P)) . (3¢)
o 12 P39n3

The derivatives for the line search corresponding to Equation
33 are as follows:

' "
b1=2§n%—3-2m.t2
h=1 Vh

iAufghi 7
-2

+\2
W,
b2=2ffmb = —”J -2m_[iAuf—2t*2},
h=1

Vh Vh i=1
f:Auizghi )3
. W N
b3=41§mh 3wy 44 Zk +4m[3t'ﬁAuf—4t3, and
h=1 Vﬁ Vi ) i=1

2

.2 iAuizgm' éAufgm’ -\*
@=12§mh8m1b1 5 - == -8
h=1 Vh Vh .

2
-12m 8t‘2)5Auf—(f:Auf) —8t*4} ,
i=1 i=1
where w,:=§l\/§;Auighi, t*=§1\/p—iAui, and Vb=l§pigm- (37)

The line search in the square root-transforned space is
conducted-nearly the same as in the |ogarithmtransforned
space; however, “elenents of the directiion vector are not
constrai ned.

A final caveat in searching for the CME is required when
the type conposition of the mxture and baseline sanples
requi res certain of the baseline stocks be present in the
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m xture. No algorithmcan include points p in the search for
whi ch m xture proportions of such stocks equal zero. For
exanple, if a type in the mxture sanple is unique to one
basel ine stock, that stock's proportion in the m xture nust
never be allowed to equal exactly zero. Assuming the initial
guess of g is an interior point of the stock conposition
space, neither the steepest ascent, the expectation
maxi m zation, nor the conjugate gradient wth |ogarithm
transformof pwll allow elenents of pto equal exactly zero.
Unl ess constrained, the search by the other algorithns does
allow el ements of pto equal zero, and so verification that
all mxture types remain possible with each new guess of pis
required. [f a point in the search results in a zero
probability for one or nore types of the mxture sanple, the
search nust be drawn an arbitrarily short distance back from
the boundary toward the previous permssible guess. Details
are provided in the appendix for the applicable algorithns.

This concludes the description and notivation for the
various algorithms. Next, methods for conparing perfornances
of conmputer prograns based on the algorithns are descri bed.
The conputer prograns, sketched in the appendix, wll be
denoted by abbreviations for the algorithns: STEEP for
steepest ascent; EM for expectation maximzation; G RLS-B and
G RLS-D for the basic and difference versions of iteratively
rewei ghted | east squares, respectivelﬁ; and CONJA-L and CONJA-
S for conjugate gradient with |ogarithm or square root
transformation, respectively.

METHODS

Two experinments were conducted to eval uate the conputer
progranms. First, their performances were expl ored under
h¥pothetical situations allow ng conplete control over nunbers
of baseline stocks and their character distributions as well
as size and stock conposition of mxture sanples'. Second, a
subset of the Prograns fromthe first experinment was aﬁplied
to actual baseline and m xture sanples reported in fisheries
literature. The algorithns and neasures of their performances
were incorporated into previous stock-m xture analysis
sof tware (Masuda et al. 1991? SO0 as to determne average
performances on repeated application to any set of baseline
and m xture sanples perturbed by bootstrap resanpling (Efron
1982). = Conputations were perforned on a COVPAQ DESKPRO
486/ 50" under M5-DOS 6, using executable nodul es created by
Lahey's F77L-EM 32 Fortran | anguage and the Lahey/Ergo OS/ 386
Qperating System

'"Reference to trade nanes does not inply endorsement by the National
Marine Fisheries Service, NOAA
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Performance of any conputer program depends on search
conpl eteness specified, or the degree to which the |ikelihood
function is to be nmaxi m zed. In theory, search conpleteness
is easy to define by referring a found value of the |ikelihood
function to its 'maximum but 1n practice the maxi mum of the
[ikelihood function is ﬂenerally never known. | nst ead, the
GPA at Equation 10 is the only absol ute neasure of search
conpl eteness and generally a GPA of 100%is not achievable
because of rounding errors caused by limted nunerical
precision of the conputer.

Three criteria are used to conpare performances of the
progranms during conputation of CMLEs for any set of related
baseline and mxture sanples within the experinents: speed,
failure rate, and stability (with respect to increase in
specified GPA) of CME distributions. Search speed is
nmeasured by processor tinme required to achieve the specified
GPA.  Search failure rate is neasured by the nunber and
percentage of design cells within an experinent or the nunber
and percentage of trials wthin cells for which a programis
unable to achieve the specified GPA. Stability of CM.E
di stributions is quantified fromdescriptive statistics of
CMLE di stributions (averages, standard deviations, and 2.5 and
97.5 percentiles) resulting froma range of specified GPAs;

t hese descriptive statistics are commonly used to eval uate
statistical bias and precision from bootstrapping in actual
assessnments of m xture conposition. | deally, specified GPA
woul d not affect CMLB distributions produced by a program but
practically, the distributions change as higher GPAs are

speci fi ed. Stability neasures based on. the statistics differ
bet ween the two experinments and are described with the
experinents bel ow

Total processor time used in searching conprised
effective search time and stopping-rule time, Progress of the
search toward the maxi nrum of the |ikelihood function, as
indicated by the GPA, nust be checked to determ ne whether the
sPecified GPA has been net and the search can be stopped.

Ef fective search tine includes only Processor tine required to
perform conputations of the search algorithm StopPing-ruIe
tine is the additional processor tine needed to eval uate the
GPA and test whether the specified GPA has been achieved. In
t he experinments next described, the stopping rule was
evaluated with each new point palong the search. The synbo
T, denotes the total processor time used in the search by a
programto achieve a GPA of oa% (GPAs specified were 10% 50%
and 90% and are terned standard val ues) of the nmaxi num of the
l'i kelihood function; the corresponding notation for effective
search time required is E,. Time was recorded in units of
centiseconds (cs).
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Experi ment |

The first experinent formed a design with five factors:
1) algorithnms; 2) nunber of stocks in the baseline-5, 15, or
50; 3) baseline stock differences, small or large; 4) mxture
sanpl e size-50, 150, 250, or 500 individuals; and 5)
speci fied standard GPAs-10% 50% and 90% Ranges for nunber
of stocks in the baseline and for mxture sanple size include
cases of practical interest for fisheries applications. A
single set of original random baseline and m xture sanpl es per
cell of this design was generated by methods described bel ow.
Then, this set of original sanples was bootstrapped, or
resanpled with replacenment, 25 tines to create sets of
bootstrap sanples with sizes equal to those of the original
set. The prograns were allowed to search for the CMLEs of
each of the 25 bootstrap sets until either the specified GPA
had been achieved or effective search tinme exceeded 5 m nutes
(5 mnutes was greater than fivefold the average effective
search tine required by successful algorithns for the nost
demandi ng experinental conditions). The average effective
(Ep,  Esp, Ew) @nd average total (Tio, Tsg, Too) search times
requi red by each programto find the 25 CM.Es for each
bootstrap sanple set were determ ned for corresponding
specified standard GPAs if the program achi eved specified GPA

Distributions of the 25 CMLEs for any cell of the design
that were obtained at standard GPAs were conpared with those at
GPA of 99% (if the search achieved GPA of 99% . Denote hy
ave,(B) and s (p) the vectors of stock averages and standard
devi ations of estimated proportions, respectively, fromthe 25
CMLEs when specified GPA equal ed % The measures of stability
used are the maxi ma anong stocks of the differences between the
vectors of averages and standard deviations at specified
standard GPAs and corresponding vectors at GPA of 99% that is,

maxi mum coor di nates of 1) aul; = ave 1, (B) ave 4 (B) and
2) As, = 8,(P)- 8,M(Bh o= 10, 50, and 90. The two greatest
di screpancies will be denoted as max (aave.and max (as,) ,

respectively.
The original set of random baseline stock and m xture

sanpl es was generated by conmputer. Five hypothetical
I ndependent genetic loci, each with two alleles |abeled (for
di scussion) A and a, Band b, ... and E and e, were the basis

of estimation. The relative frequencies of upper case alleles
A B C D and E (or the conplenentary relative frequencies
of lower case alleles a, b, ¢, d, and e) were identical for

all loci of a stock, but these relative allele frequencies
(RAFs) differed anong stocks. Neither the nunber of
characters nor their 1 ndependence is significant to the
conparison of program performances, but the nunber of baseline
stocks and degree of character differentiation anong them
affect program perfornmance.
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Original baseline sanples were generated for 5, 15, and
50 stocks at two |evels of character differences anong the
stocks, as were or| inal mxture sanples of subsets of the
basel i ne stocks. e baselines of stocks with greater
character differences wll be ternmed diverse baselines, and
those with |lesser character differences, simlar basel i nes.
RAFs used to generate original baseline and m xture sanpl es
for five stocks are specifically provided (Table 1). The RAFs
for 15 and 50 stocks can be succinctly reported by devel opi ng
a notation. The stock-specific and |oci-shared RAFs for five
stocks of the diverse and simlar baselines (Table 1& can be
condensed as follows: ranges = 0.8, 0.6; first stock RAFs =
0.2, 0.4; diverse baseline intervals = 0.2 (4); simlar
basellne intervals = 0.1 (2), 0.2 (2). In this notation,
"ranges = x, y" prOV|des t he range of stock RAFs used for
di verse (range = Xx) and simlar (range = y) baselines. The
notation, "first stock RAFs = x, y", refers to the first stock
RAFs for diverse (RAF = x) and simlar (RAF = y) baselines.
Al so diverse (or simlar) baseline intervals = x; (y,), X
é&% ., X, (yn)" provides the n distinct differences between
s (X;s) of successi ve adjacent stock pairs and the nunbers
of adjacent stock pairs with those differences (y;s), beginning
with the difference between the first and second stocks and
ending with that between the penultimate and |ast stocks. The
condensed description for 15 stocks was as follows: ranges =
0.933, 0. 7 first stock RAFs = 0.067, 0.3; diverse baseline
|ntervals = 0. 067 (9 0. 066 (5) similar baseline intervals =
0.033 (5), 0 034 82 0.067 (5), 0.066 (2). The condensed
descrlptlon for 50 stocks was as fol | ows: ranges = 0.98,
0.74; first stock RAFs = 0.02, 0.26; diverse baseline
intervals = 0.02 (49); simlar baseline intervals. = 0.01 (24),
0.02 (25).

An original baseline sanple of 100 fish was drawn for
each stock of each cell of the experimental design. T h e
genotype of each fish was generated by randomy and
I ndependent|ly drawi ng two all el es at each | ocus and repeating
such draws independently anmong the five loci. The
probabilities of drawing the various alleles (A a, B, b, ..., E
e) were the RAFs in the preceding para?raph Among the 100
fish, the random nunbers of the two alleles at each of the
five loci constituted the original baseline sanple.

M xtures were constructed wth sone baseline stocks
m ssi ng because commonly the CMLEs of real-world applications
I ndi cate baseline stocks are n1SS|ng from mxtures. Mxtures
conEosed of equal contributions by 3 of 5, 8 of 15, or 25 of
aseline stocks underlaid the original mxture sanples.
Alternating stocks fromthe baseline tables (e.g., Table 1 and
unreported anal ogues for 15 and 50 baseline stocks),
subsequent to the first stock, were absent.
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Original mxture sanples of several sizes ranging from 50
to 500 individuals were drawn, depending on the cell of the
experinmental design. An original mxture sanple was drawn in
two stages: 1) a multinomal sanple of nunbers from each
stock was drawn fromthe specified stock mxture, and 2) the
?enoty e of each mxture individual, given its stock origin

romthe previous step, was generated fromthe appropriate
basel i ne stock RAF as had been done to generate the original
basel i ne stock sanples.

The original set of random baseline stock and m xture
sanpl es of each cell were resanpled with replacenent 25 tines
to create derived sets of bootstrap sanples for conparing
program performances. Each bootstrap sanple set was used to
estimate stock conposition of the mxture by each program
The correct genetic nodel of independence of |oci and Hardy-
Wi nberg equilibriumwas used to conpute by stock the relative
frequenci es of genotypes observed in the mxture sanple [i.e.
the g, in Equation |], using the random RAFs observed in the
bootstrap baseline sanples.

Al prograns were provided the sane initial ?uess (with
all stocks present) for any maximzation trial. n theory,

tine required by any of the algorithnms to find the CME at
specified GPA may be affected by the startin?_guess, but
eventual success should be certain. The initial guess was
far-renoved fromthe stock conposition of the original mxture
sample (and fromthe CMLE anticipated) in order to test
capability of the prograns to locate the CMLE. Initia

guesses attributed nost of the contribution to the first

st ock. For five stocks, the guess was 0.6 for the first stock
and 0.1 for each of the other stocks. For 15 stocks, the

guess was 0.86 for the first stock and 0.01 for each of the

ot her 14 stocks. For 50 stocks, the guess was 0.51 for the
first stock and 0.01 for each of the other 49 stocks.

Experinent ||

In the second experinent, three of the six
prograns- CONJA-S, EM and G RLS-B-were selected for further
conpari son based on their diversit¥hof search net hods and

performance in Experinent 1. The ree prograns conputed
CMLEs for three real mxed-fishery data sets conprising
basel ine and mixture sanples (Table 2) : 1) Colunbia Rver

chi nook salnmon (0. tshawytscha); 2) Yukon River chum sal non
O keta); and 3) West Coast sockeye sal nmon (0. nerka).
aracters observed for individuals fromthe first tw data
sets conprised el ectrophoretic observations on allozynes, and
those of the third data set included allozymes, a brain
parasite, and freshwater age of individuals. Nunbers of
stocks in the baselines ranged from 14 to 73; nunbers of
characters ranged from4 to 19; and size of mxture sanples
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ranged from 197 to 1,597. Further details of the data sets
can be found in the original publications (Table 2).

One thousand bootstrap CMLEs were conputed from
resanpl i ngs of baseline and m xture sanples of each data set
for each of the standard GPAs specified. For each mixture
analysis, all three prograns were provided the sane initial
guess of equal proportions from the baseline stocks. Search
was termnated if either the specified GPA was achi eved or
effective search time exceeded 5 mnutes. Performances were
conpared with nany of the same criteria used in Experinment I:
failure rate of a programto achieve specified GPA, and
average effective and total search tinmes needed per bootstrap
resampling. Average GPA achieved per resanpling was al so
recorded.  Several characteristics of the bootstrap
di stributions of estimated individual stock or stock group
proportions were exam ned including means, standard
deviations, and the upper and |ower 95% confi dence bounds
éi.e, the 2.5 and 97.5 percentiles of the bootstrap

istribution) from the percentile nethod (Efron 1982).  Stock
group_proFort|on$ were estimated by summ ng estimates of

I ndi vi dual baseline stock percentages over stocks conpri sing
groups (the basis for grouping was simlarity of baseline
character distributions) defined in the source publications.

RESULTS AND DI SCUSSI ON

CGenerally, for each algorithm and set of baseline and
m xture sanples, the increase of the likelihood function
bet ween successive guesses decreased as the search continued,
as did the distance between successive guesses. The gradients
of the suEport function in feasible directions all tended to
zero as the maxi um was approached. (Gadients in nonfeasible
directions could remain | arge and even positive, inplying
greater likelihood function values could have been obt ai ned
with infeasible choices for p.) In theory, search progress of
i ncreasing |ikelihood function val ues woul d be uninterrupted
until the CMLE was found; in practice, rounding errors
intervened and the search sonetinmes regressed tenporarily to a
reduced value for the l|ikelihood function. The search |ed
only to a nei ghborhood of the CMLE beyond which nuneri cal
precision used in conputations limted further progress.

Typical tine series of support, function values achieved
by the programs were initially rapidly increasing curves wth
a followi ng asynptote (i.e., the rate of increase in value of
the support function during the search decreased as the search
for the CMLE advanced) (Fig. 1). In the exanple illustrated,
EMinitially achieved greater values for the support function

Fig. 1, left) than did GRLS-B until about 50 centiseconds
cs% of total search tine. ShortI]y thereafter, G RLS-B
surpassed support function values found by EM (Fig. 1, right).
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The critical tinmes, T,o Tsq and Tg, at which 10% 50% and 90%
of the maxi num of the |ikelihood function were first known
fromthe GPA (Equation 10) to be achieved by EM are

illustrated as well (Fig. 1, right).

G RLS-B achieved a final support function val ue of
-2182.283917 after 138 cs; at this point, the GPA showed for
the first tine that the programwas within 99% of the maxi mum
of the likelihood function. Simlarly, EMcontinued to find
i ncreasing values of the support function until 451 cs, at
which time the support function value was slightly |ess than
that found by GRLS- B, -2182.284001. At this point in the
search, the GPA showed for the first time that EMwas within
99% of the maxi mum of the likelihood function. GRLSB
required 6 iterations whereas EMrequired 156 iterations
during the search. Stepw se increases in support function
val ue and GPA by EM during the search were smaller than for
G RLS-B, so EM coul d detect GPA achievenent of 99% at a
smal l er value of the support function than G RLS-B.

The maxi mum support value for this exanple was found, by
STEEP (performance not illustrated) after 403 cs and equal ed
-2182.283773; at this point GPA showed STEEP was only w thin
90% of the maximum of the likelihood function. Therefore,
al t hough a higher value of the |ikelihood function was found
by STEEP than by G RLS-B or EM know edge that this value was
nearer than 99% of the maxi num possi bl e val ue coul d not be
obtai ned wi thout conparison to results of the other prograns.
Subsequent rounding errors al so Erevent ed STEEP from achi eving
a self-determned GPA of 99%  The neasures of performance
illustrated by this exanple are next used in program
eval uation by Experiment | and Experiment II.

Experi ment |

Interacting effects of nunber of baseline stocks and
their character differences, GPA, and size of the mxture
sanpl e were evident either fromoccurrence of failures to
achi eve specified GPA or from processing tinmes required by the
-prograns.  Failure rates by prograns to achieve specified GPA
iffered substantially and ranged fromno failures by EM and
CONJA-S to nunerous failures by CONJA-L (Table 3). cl udi ng
CONJA-L, cell failures were rare at GPAs of 10% and 50% only
A RLS-D had such a cell failure (Table 3, upper half), and
that cell failure was due to a single failure anong the 25
resanplings for that cell (Table 3, bottom half). — Cell
failures increased at GPA of 90% for G RLS-D, GRLS-B, and
STEEP, but G RLS-B had at nost one resarrPI ing failure ger
failing cell. Among programs with cell failures, GRLS-D,
STEEP, and CONJA-L (but not G RLS-B) tended to fail nore often
with increase in nunber of baseline stocks, and only CONJA-L
(Table 3, 15 stocks) showed much evidence of nore frequent



27

failure for simlar baseline than diverse baseline. Failures
by the prograns anong the 1,800 resanplings for the entire
experiment were generally rare: CONJA-S, 0 (0%; EM 0 (0%;
GRLS-B 2 (0.1%; GRLS-D, 12 (0.7%; and STEEP, 78 (4.39%.
(CONJA-L conputations, unlike those of the other prograns,

were interrupted in nunerous cells due to arithmetic errors or
overflows; so its experiment resanpling failures were not
determ ned.)

An increase in mxture sanple size generally increased
effective search tinme needed by EM STEEP, CONJA-L, and CONJA-
S to achieve specified GPA for diverse and simlar baselines
(Figs. 2 and 3). Regardless of baseline kind, the GRLS
prograns al so required increasing effective search time with
increase in mxture sanple size to achieve GPA if 5 stocks
were present in the baseline, but time required remained
roughly constant or declined with increase of mxture sanple
size for 15 or 50 stocks (Figs. 2 and 3). First-place
finishes or ties (finish times were ties if they differed by
less than 1 centisecond) for mninmumeffective tinme required
to conplete the 25 bootstrap resanplings for each of the 72
experimental cells show that the CONJA-S and EM prograns
perfornmed best nost frequently (Table 4). Nunbers of first-
pl ace finishes by program were as follows: CONJA-S, 48; EM,
23; GRLS-B, 3; GRLS-D, 3; STEEP, 0; and CONJA-L, 0. EM was
general ly best at conbinations of |ower nunber of baseline
stocks, lower mxture sanple size, and lower GPA. CONJA-S
superseded EM as nunber of baseline stocks, mxture sanple
size, and GPA increased. The G RLS-B and G RLS-D prograns
showed in first-place only at the largest m xture sanple size
anr?bthen only at the higher GPAs and | ower baseline stock
nunbers.

The outcone for total search time iS in broad agreenent
with that for effective search tine but with CONJA-S becom n?
even nore domnant. Increase in mxture sanple size generally
increased total search tine required by EM STEEP, CONJA-L,
and CONJA-S to achi eve specified GPA for either baseline kind
(Figs. 4 and 5). For either baseline kind, the G RLS prograns
also required increasing total time With increase in mxture
sanple size to achieve GPA if 5 stocks were present in the
baseline, but time required renained roughly constant or
declined with increase of mxture sanple size for 15 or 50
stocks (Figs. 4 and 5). First-place finishes or ties for
mninmumtotal time required to conplete the 25 bootstrap
resanplings for each of the 72 experinental cells show that
the CONJA-S and EM proc};rams performed best most frequently
(Table 5). Nunbers of first-place finishes by programwere as
follows: CONJA-S, 62; EM 12; STEEP, 5; G RLS-D, 5, GRLS B,
5 and CONJA-L, 1. CONJA-S was generally best with a higher
nunber of baseline stocks, higher m xture sanple sizes, and
hi gher GPA.  EMwas di splaced by CONJA-S in total search tine
performance from experinmental conbinations internediate to the
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two algorithns' strengths in effective search tine

performance. The G RLS-B and G RLS-D prograns again showed in
first-place only at the largest mxture sanple size. STEEP
perforned well only at the smaller mxture sanple sizes.

Di screpanci es between the bootstrap distributions of
stock conposition estinmates (average and standard deviation)
at specified standard GPAs as conpared to 99% differed nore
anong prograns when m xture sanples were small (m = 50) than
when they were large (m = 500); necessarily, maximum
di screpanci es decreased wth increase in specified GPA
Rel ative performance of prograns was simlar for diverse
(Tables 6 and 7) and simlar baselines (Tables 8 and 9).
Consistently, smaller discrepancies by the G RLS prograns were
evi dent vvhen the GPA was specified at 10% especially, but also
at 50% the remai ning prograns, CONJA-S general |y had
the snall est i screpancies, and EM t he largest. Differences
anong programs in stabi I|ty can be explained largely by the
differences in their stepw se rates of convergence and
termnal GPAs: G RLS-B and G RLS-D, which satisfy the
specified GPAin relatively few steps with [arge GPA increases
between steps, usually exceed by greater anounts the specified
GPA at the end of search than do prograns that require higher
nunbers of steps having snaller GPA increases between steps.

D fferences in maxi mum di screpanci es anong all prograns at
specified GPA of 90% were small.

Experinment 11

Effective and total search tine required for the three
real -world data sets by CONJA-S, EM and G RLS-B differed
substantially (Table 10). CONJA-S was the fastest programin
effective and total search tinme at all specified GPAs for all
three data sets. Corrparln%Lspeeds of the other two prograns,
EM was nuch faster than G RLS-B for two of the data sets
(Yukon River chum salnon and West Coast sockeye sal non), but
slower for the other set (Colunbia River chinook sal rmn).

Rel ati ve speed of the prograns depended on specified GPA and
search time neasure, either effective or total; and speed
ranges given next reflect this dependence. For the Col unbia
Ri ver chinook salnmon data, CONJA-S was roughly two to seven
tines as fast as EM (CO\UA—S requi red between approxi mately
one-hal f and one-seventh the anmount of effective or total
search time used by EM dependi n% on specified GPA) and about
twice as fast as RLS-B For the Yukon River chum sal non
data, CONJA-S was al most two to four tines as fast as EM and
50 to 85 tines as fast as G RLS-B. For Wst Coast sockeye
sal non, CONJA-S was one to three tinmes as fast as EM and over
40 tines as fast as G RLS-B. The SPeed advant age of CONJA-S
generally increased with increase of specified GPA and was
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slightly greater for total search tinme than effective search
time.

Nei t her CONJA-S nor EMfailed on any data set at any
specified GPA up to the maxinum attenpted, 90% On the other
hand, G RLS-B failed at low rates (<3% of resanplings) for two
of the data sets (Colunbia River chinook sal non and West Coast
sockeye salnon) but did not fail on the third (Yukon River
chum sal non) (Table 10). Average GPA achi eved per resanpling
by each of the prograns al ways equal ed or exceeded t hat
specified, even when failures (G RLS-B) occurred (Table 10)

EM average GPA agreed closely wth specified GPA, while CONJA-
S and G RLS-B average GPAs exceeded that specified. These

di fferences between average GPA achieved and that specified
are due to the differences in the stepwi se rate of convergence
among the prograns. G RLS-B and CONJA-S satisfied the
specified GPAin relatively few steps wth |arge GPA increases
between steps and usual |y exceeded % greater anounts the
speci fied GPA at the end of search than did EM which required
nore steps having snaller GPA increases between steps.

Statistics of the bootstrap distributions for estinmated
stock percentages conprising the three sal non m xtures-
Col unbi a River chi nook sal mon, Yukon River chum sal non, and
West Coast sockeye sal non-showed that the finer the stock
m xture was separated into its conponents, the greater were
the changes in the distributions as specified GPA varied. At
coarsest resolution when the m xture conposition was assessed
for only a few major stock groups, neither the program used
nor GPA specified had neaningful effect on the bootstrap
di stributions. Details are presented next.

Contributions fromfour Colunbia R ver chinook sal non
stock groups were assessed (Table 11) fromestimated m xture
percentages of their conponent-stocks. Average estimates of
stock group percentages, their standard deviations, and their
upper and | ower 95% confidence bounds differed only slightly
(50.5% between all GPAs and programs. Maxi mum di screpancy in
average estimtes for stock grouBs anong GPAs and progranms was
only 0.1% for |ower confidence bounds was only 0.5% for
upper confidence bounds was only 0.4% and for standard
deviations was only 0.19% Estimates for the fourteen
conponent stocks conputed for the Col unmbia Ri ver chinook
sal mon m xture by CONJA-S for standard GPAs (Table_lZ? show
greater discrepancies than when stocks were consolidated.

Maxi mum di screpancy in average estinmates for stocks anmong GPAs
was 0.1% (stocks RR, CA and LW,; for |ower confidence bounds
0.7% (stock KO; for upper confidence intervals, 1.8% (stock
LS) ; and for standard deviations, 0.32% (stock CA).

Bootstrap estimates for summer run and fall run groups of
t he Yukon R ver chum sal mon m xture were al so conputed (Table
13) from individual stock contribution estimtes. Average
estimtes of stock group percentages, standard devi ations, and
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upper and | ower 95% confidence bounds differed at nost by 2.3%
among all GPAs and programs (Table 13).  Maxi mum di screpancy
in average estimates for stock groups anong GPAs and prograns
was only 0.3% for |lower or upper confidence bounds was 2.3%
and for standard deviations was 1.10%

Statistics for bootstrap distributions of conposition
estimates for two major consolidations of stock groups (A-G
and HM (Table 14) as well as the thirteen individual groups
(A through M (Table 15) were conputed from individual stock
contribution estinmates for the West Coast sockeye sal non
m xt ure. Maxi mum di screpancy in average estimates for
consol i dations of stock groups anong GPAs and prograns was
only 0.3% for lower or upper confidence bounds was 0.4% and
for standard deviations was 0.04% (Table 14). Estimates for
the thirteen conponent stock groups (A through M conputed by
CONJA-S for standard GPAs (Table 15) show far greater
di screpanci es than occurred when conmponent groups were
consol idated. Maxi mum di screpancy in average estinmates for
stock groups among GPAs was 2.5% (group J); for |ower
confidence bounds, 6.4% (group L); for upper confidence
intervals, 8.5% (group J); and-for standard deviations, 3.96%

(group J).

CONCLUSI ON

Several general - purpose optim zation algorithns have been
SEeciaIized to conpute the CMLE of stock conposition from
characters of individuals in mxtures. This study reviews
these algorithns, describes others, and conpares performances
of inplementing computer prograns. The original application
to genetic information by staff of the fornmer Northwest and
Al aska Fisheries Science Center of the National Marine
Fi sheries Service used the expectation maxim zation al gorithm
(MlIner et al. 1981). Next, scientists of the Pacific
Bi ol ogi cal Station of Canada Departnent of Fisheries and
Cceans used the conjugate gradient algorithmw th | ogarithm
transformed stock proportions (Fournier et al. 1984). Most
recently, researchers of the Auke Bay Laboratory of the Al aska
Fi sheries Science Center have used the iteratively reweighted
| east-squares al gorithm suggested by Pella (1986) and Pella
and MIner (1987) as well as a variant described here. The
present study introduces two other specializations of general -
purpose algorithms: steepest ascent and conjugate gradient
Wi th square root transformation of stock proportions.

The nunerical precision (i.e., nunber of deciml places)
to which the stock proportions conposing -the CMLE can be
determ ned by any of the algorithnms is [imted by conputing
machi nery and progranm ng | anguages used; |ncreasing
precision costs rapidly i1ncreasing conputer time. A
conprom se between precision and nunber of CME eval uations
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required in a study is necessary to control total conputer

tine needed. In this study, search for a particular CM.E was
stopped when either a time [imt was reached or a criterion of
proximty to the maxi mum of the conditional |ikelihood

function was satisfied. The proximty criterion was the
guar ant eed percent achieved (GPA%, which is the m ni num
percentage that the current |ikelihood function value during
search represents of the maxi num possible |ikelihood function
val ue. Gbneralty, achieving a GPA of 100% was not possible
because of rounding errors 1n conputations. Qher criteria
for stopping search coul d have been 1) relative change in the
I'i kel i hood function between iterations or 2) sumof absolute
val ues of conponents of the gradient vector (in feasible
directions). None of the stopping criteria was ideal because
none delimted a region within the stock conposition space
wherein the CMLE occurred.

Program performances were studied under hypothetica
( Experi nent I? and real-world (Experiment 11) stock m xtures.
Three performance neasures were used: speed, failure rate,

and stability of CM.LE distributions as specified GPA was

I ncreased. These measures are inportant when conputing
nunerous CMLEs to describe distributions of stock. conposition
estimates by sinulation- and bootstrapping studies. The ideal
al gorithm woul d be fastest, have the |lowest failure rates, and
have nost stable CM.E distributions. Although no Program
excel l ed at every performance neasure, overall performance of
CONJA-S recommends its use in tinme-consum ng studies.

Fi ndi ngs from both experinents showed that CONJA-S was either
fastest by far or only slightly slower than the fastest
program for all situations exam ned. The good speed of CONJA-
S held for total search tine and effective search tine. Under
hYpotheticaI situations of Experiment |, the EMwas usually
slightly faster than CONJA-S for cases wth | ower nunbers of
basel i ne stocks, smaller mxture sanples, |ower specified GPA
and the diverse baseline. The good speed of EM was unexpect ed
considering previous nention of the slow convergence of the
expectation maximzation algorithmin mxture problens (e.g.,
Redner and Wl ker 1984 and Roeder et al. 1989). CONJA-S
supplanted EM for cases with |arger nunbers of baseline

stocks, larger m xture sanples, higher specified GPA and the
simlar baseline. The remaining prograns (G RLS-D, G RLS-B,
STEEP, and CONJA-L) were fastest in only a few cells of
Experiment 1. In all three real-world applications of
Experinment- 11, CONJA-S was fastest of the three prograns

exam ned (CONJA-S, EM and G RLS-B). The CONJA-S superiority
In speed was greater as the specified GPA increased.

Failures to achieve specified GPA differed substantially
among programs. CONJA-S and EM had no failures to achieve
specified GPA up to 90% anong the total 1,800 trials of
Experiment | and 3,000 trials of Experinent Il. G RLS- B had
next lowest failure rates with 2 of 1,800 (0.1% trials of



32

Experiment | and 40 of 3,000 (1.3% trials for Experinment II.
A RLS-D, STEEP and CONJA-L had increasing failures rates for
Experinent | and were not examned further in Experiment II.
Prelimnary experinentation (not reported) showed that all the
prograns failed for sone trials during both Experinent | and

Experiment |l if the value of the |ikelihood function was not
all owed to decrease (search to regress) between iterations of
the search. In theory, the algorithnms” advance wth

uni nterrupted increase to the maxi mum of the |ikelihood
function: but in practice, rounding errors I n conputations
cause tenporary decrease (real or apparent) in likelihood
val ues during search. Therefore, search was not stopped for
such decrease in likelihood val ue.

Stability of CM.E distributions was neasured by conparing
statistics of resanpling distributions obtained at a range of
specified GPAs. ldeally, the stock conposition distribufions
woul d be independent of the specified GPA so that a |O%EGPA
could be specified with concomtant |ow search tine. en the
requi red | evel of stock detail was to the individual stock as
in Experiment |, the superior performances of the GRLS
programs were evident; differences in neans and standard
deviations of CM.E distributions between specified GPA of 10%
50% and 90% as conpared with 99% were snallest anong al
prograns. CONJA-S was best anong the renaining Frograns, and
EM was the worst. The relative performances reflected
differences in nunbers of steps and correspondi ng GPA
increnents between steps. The G RLS prograns required few
steps to achieve specified GPA, Wwhich resulted in large GPA
increments between steps; the EM program required nmany steps,
which resulted in small GPA increments. The final GPA at
term nation when specified GPA was achi eved tended to be
greater for a program using fewer steps; and as a result,
stability for such a program was higher. Differences in
stability were caused by differences in GPA achi eved rat her
than GPA specified.

Stability of stock conposition distributions to the |evel
of individual “stocks may often be unnecessary. Such stock
conposition estimtes may have too |arge sanpling variation to
be of practical use. |f"so, stocks should be conbined into
groups with simlar characteristics, and the CMLE estimate for
I ndi vi dual stocks should be sunmed over stocks of any group to
provi de the COMLE for groups. In the real -world exanpl és for
whi ch stock detail demanded was only to the | evel of
simlarity groups, the differences in stability perfornmance
anong prograns was | ess evident and apparently of little
practical consequence. Even differences in group CM.E
di stributions anmong GPAs of 10% 50% and 90% appear ed
I nconsequenti al .

Certain caveats and considerations may be hel pful in
choosing anong the algorithms. Two warnings are first issued
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First, this study was limted to |line search (for algorithns
ot her than the expectati on maxi m zation) based on
apProxinating t he supFort function by a Taylor's series along
aline in the original stock conposition space or in a
transform of that space. The supposition for this choice was
that such an apPrOX|nation, if sufficiently accurate, would
provide a fast [ine search. However, other approaches to |ine
search are possible (e.g., Press et al. 1989), and these may
wel | be nore certain of success than the nethod chosen.

Second, the algorithnms are inplenented by our FORTRAN coding
which may contain errors. The G RLS prograns have been used
by nunmerous organizations for several years. Coding errors
have been reported, corrected by us, and revisions returned to
all known users. Al though reports of GRLS programerrors
have not occurred recently, detection of errors is difficult
and sone may remain. The other prograns are not so well
tested. Naturally, any errors remaining could affect

per f or mance.

Several final reflections to assist in selection of an
al gorithm conclude this discussion. First, conplexity of the
al gorithm wei ghs against its use unless a trustworthy coding

with required features is already available. If origina
coding nust be devel oped, expectation naximzation is
sinplest; iteratively reweighted |east squares, nost conplex;

and the conjugate gradient with square root transform
internediate. The superior speed of the conjugate gradient

W th square root transformtogether with its reliable
maxi m zing of the |ikelihood function justifies its greater
conplexity conpared to expectation maxim zation. | nput and
out put procedures and features for conducting sinulations and
boot strapping constitute a significant anmount of coding for
any of the prograns. Therefore, conplexity of the algorithm
beconmes relatively less inportant if a versatile program

i ncluding such procedures and features is required. Second,
the iteratively reweighted | east squares algorithmcan easily
be nmodified to include additional |inear constraints on the
stock proportions by adding to the constraint equation set.
Such nodi fication can be used to conpute |ikelihood profiles
for stock group contributions to a mxture', for exanple.
Third, the iteratively reweighted |east squares algorithm
becones nore efficient as mxture sanpl e size increases _
(contrary to the other algorithns). Conceivably, advances in
sanpling technology will permt large m xture sanples favoring
use of this algorithm Fourth, and last, another criterion

t hat coul d have been used for conparing algorithns is their
conputer menory requirenment. Determining the mninmal anount
of nmenory required by each al gorithmwould have been

’Richard Gates, CFMD, Genetics, 333 Raspberry Road, Anchorage, AK 99518-
1599, pers. comun., 15 Novenber 1994.
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technically difficult, although clearly the G RLS prograns
require nore than the other prograns. Mre inportantly, the
criteria chosen are nore constraining to analysis of stock
conposition than nenory capacity. Readily-available,

i nexpensi ve conputer menory chips for personal conputers (386
machi nes or higher) with [imted menory allow use of the
execut abl e nodul es deveIoFed for any of the algorithnms during
this study. However, perfornmances of the algorithns including
speed and convergence properties are not easily nodified, and
those properties can be limting in practical applications
even using fast mainfrane conputers.
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Table 1. -Stock-specific and loci-shared relative allele
frequencies (RAFs) of alleles A, B, C, D, and E at
their respective loci for the five-stock diverse and
simlar baselines of Experinent |.?

RAF of alleles A, B, C, D, and E

Stock
Baseline 1 2 ‘ 3 4 5
Diverse 0.2 0.4 0.6 0.8 1.0
Similar 0.4 0.5 0.6 0.8 1.0

®The range and intervals of the proportions for diverse and similar baselines
are as follows: diverse (range = 0.8; intervals = 0.2) and similar (range =
0.6; intervals 1 and 2 = 0.1 and intervals 3 and 4 = 0.2).

Table 2 .-Features of real-world data sets used in Experinent
[l nunber of baseline stocks, nunber of characters
observed, range of baseline sanple sizes, mxture
sanple size, and literature source of infornation

Basel i ne Basel i ne M xture Ref er -
Data set st ocks Char acters Si zes Si ze ence*
Columbia
chinook 14 9 151 - 400 1,597 a
Yukon
chum 26 19 24 - 297 197 b

West Coast
sockeye 73 4 10 - 3,010 299 c

*a = Pella and Mlner (1987); b = WInot et al. (1994); ¢ = Pella et al. (in
press).

‘Preceding page blank




Tabl e 3. -Nunmber of the four
500) of Experinent |
B, STEEP,

42

m xture sanple size cells (50,

stock conpositi

failed to achieve specified standard val ues of the sto

150, 250, or

for which search by prograns (@ RLS-D, A RLS
EM OCOWA-L, and CONJA-S) for

on estimates
i ng

and 90% for one or nore oPpthe 25

criterion (GPA of 10% 50% _
bootstrap resanplings, by nunber of baseline stocks (5, 15, and 50)
and baseline (D verse or Simlar) (upper table); and the _
correspondi ng total nunber of failures per 100 total resanplings
(lower table).
Nurmber of cells with failures
5 stocks 15 stocks 50 stocks
Diverse Similar Diverse Similar Diverse Similar
GPA (%) GPA (%) GPA (%) GPA (%) GPA (%) GPA (%)
‘Program 10 50 90 10 50 90 10 50 90 10 50 90 10 50 90 10 50 90
GIRLS-D o 0 0 0 0 OO O 1 0 0 1|0 1 2 0 0 2
GIRLS-B o 01 0 0 O|O O 12 O O 0O 0O O O 0 O
STEEP 0o 01 0 0 1|0 0 1 O0 0 2|0 0 2 0 0 2
EM o 0 0 0°0 0O}jO0O OO O O OO OGO O 0 O
CONJA-L 0 0 0 0 0O 0}1 2 2 4 4 4|3 4 4 4 4 4
CONJA-S o 0 06 0 0 O0|OOU O ©OOO]|OO0OO O 0 O
Nunber of resanpling failures anong cells
5 stocks 15 stocks 50 stocks
Diverse Similar Diverse Similar Diverse Similar
GPA (%) GPA (%) GPA (%) GPA (%) GPA (%) GPA (%)
Program 10 50 90 10 50 90 10 50 90 10 50 90 10 50 90 10 50 90
GIRLS-D o0 0 0 0 O0OJ]O0O O 1 0 0 1|0 1 4 0 0 5
GIRLS-B o 01 o 0 0}0O O 1 O O O0O|O0O O O ©0 0 O
STEEP o o 7 0 0 3|0 0 9 0 014 | 0 0 23 0 0 22
EM o o 0o 0 0O O[O OO OO0 O0O|O0O O O0O O 0 O
CONJA-L 0 0 O 0 0 o0 i1 2 3 & @& a8 a & e S
CONJA-S o o 0o 0 0O 0O OO O O OO0 OO0 O 0 O

®In one or more resamplings, the search was stopped due to an invalid number, a
division by zero, or an arithmetic overflow. :

®In one or more resamplings, the search was stopped due to an invalid argument for the

log function.
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Tabl e 4 .- Fast est %rograns* in effective search time for finding
the 25 bootstrap stock conposition estimates W th
specified standard val ues of the stopping criterion
(GPA of 10% 50% and 90% given numper of baseline
stocks (5, 15, and 50), mxture sanple size (50, 150,
250, and 500) and baseline (Diverse or Simlar).

Fastest programin effective search time

GPA
10% : 50% 90%

Stocks Mixture Diverse Similar Diverse Similar Diverse Similar

5 50 EM . EM EM EM EM, S S
150 EM EM EM EM EM, S S

250 EM EM, S EM S EM S

500 "EM EM D B S,D D

15 50 EM EM EM S ] S
150 EM - S S S S S

250 S S S S S S

500 S S S S B B

50 50 EM EM, S EM S S S
' 150 S S S S S S
250 S S S S S S

500 S S S S S S

‘Nonstandard notation for programs is as follows: 8 = CONJA-S, D = GIRLS-D,
and B = GIRLS-B.
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Table 5.-Fastest prograns* in total search time for finding the
25 bootstrap stock conposition estimates wth
speci fied standard val ues of the stopping criterion
(GPA of 10% 50% and 90% given nunber of baseline
stocks (5, 15, and 50), mxture sanple size (50, 150,
250, and 500), and baseline (Diverse or Simlar).

Fastest programin total time

GPA
10% 50% 90%

Stocks Mixture Diverse Similar Diverse Similar Diverse Similar

5 50 EM,S,L, EM,S, EM EM, S, EM, S, S .
STEEP STEEP STEEP STEEP
150 EM EM, S STEEP S S S
250 EM S EM, S~ S S S
500 EM, S, B,D D,S D,B S D
B,D
15 50 EM EM, S S S S S
150 S S S S S S
250 S S S S S S
500 S S S S B B
50 50 S S S S S S
150 S S S S S S
250 S S S S S S
500 S S S S S S

‘Nonstandard notation for programs is as follows: § = CONJA-S, D = GIRLS-D, B =
GIRLS-B, and L = CONJA-L. : '
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Tabl e 6 .-Maxi mum di screpanci es" anong stocks of bootstrap nmean
estimated mxture percentages [nmax (Aave, ) | in relation
to nunber of stocks in the diverse baselines (5, 15,
or 50), specified standard val ues of the stopping
criterion (GPA of 10% 50% and 90%, and m xture
sanpl e size (50 and 500).

Maximum discrepancy [max(Aave,)]

Stocks in baseline
5 15 50

GPA to stop GPA to stop GPA to stop
10% 50% 90% 10% _50% 90% 10% 50% 90%

N

Mixture sample size = 50

GIRLS-D 0.7 0.2 0.0 0.6 0.2 0.0 0.8 0.2 0.1
GIRLS-B 0.8 0.2 0.0 0.6 0.2 0.0 0.8 0.4 0.0
STEEP 0.9 0.2 0.1 4.1 2.2 0.5 2.6 1.4 0.6
EM 2.9 1.2 0.3 6.1 3.4 0.7 3.3 1.4 0.4
CONJA-L 1.8° 1.1 o0.2p 3.9° c c 2.3° < c
CONJA-S 1.0 0.4 0.1 3.6 1.3 0.2 2.2° 1.2 0.4°
Mixture sample size = 500
GIRLS-D 0.1¢ 0.0¢ 0.0¢ 0.2 0.0¢ o0.0¢ o.id 0.09 o0.0¢
GIRLS-B 0.1¢ 0.0¢ 0.0¢ 0.1¢ 0.0 0.0¢ 0.129 0.1¢9 o0.0¢
STEEP 0.2¢ 0.1¢9 0.0¢ 0.9¢ 0.49 c 1.1% 0.44¢ c
EM 1.5¢ 0.79 0.2¢ 0.69 0.39 0.1¢ 1.5¢ o0.6¢ 0.2¢
CONJA-L 0.9¢ 0.5¢ 0.1¢ 0.9% 0.9% o0.0¢ c c c
CONJA-S 0.2¢ 0.1 0.0¢ 0.7% 0.2¢ 0.1% 0.5% 0.2¢ 0.1¢

%Di screpancies were conputed as absolute differences between bootstrap neans
resulting from specified standard GPAs and that when GPA of 99% was specified.
Bootstrap nmeans were based on 25 resanplings of original baseline stock and
m xture sanples of Experiment |.

Because sone of the programs did not attain the GPA of 99% the neans from
G RLS-B with GPA of 99% were used to conpute differences.

‘GPA was not achi eved.

‘Because sone of the programs did not attain the GPA of 99% the nmeans for
GRS B with GPAs of 94, 98, and 98% for 5, 15, and 50 stocks, respectively,
were used to conpute differences.
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Tabl e 7 .-Maxi mum di screpanci es" anong stocks of bootstrap
standard errors of estimated m xture percentages [ nmax
(AS,?] in relation to nunber of stocks in the diverse
baselnes (5, 15, or 50), specified standard val ues of
the stopping criterion (GPA of 10% 50% or 90%, and
m xture sanple size (50 and 500).

Maximum discrepancy [max(as,)]

Stocks in baseline
5 15 50

GPA to stop GPA to stop GPA to stop
10% 50% 90% 10% 50% 90% 10% 50% 90%

Mixture sample size = 50

GIRLS-D 0.5 0.2 0.0 0.6 0.2 0.0 1.0 0.5 0.1
GIRLS-B 0.3 0.2 0.0 0.5 0.2 0.0 1.3 0.5 0.1
STEEP 2.2 0.5 0.1 7.7 4.7 0.7 6.0 3.5 2.9
EM 3.6 1.6 0.3 9.0 5.0 1.5 5.9 4.1 1.5
CONJA-L 2.1°% 1.4°> o0.3P 3.4°P c c 4.7 c c
CONJA-S 1.7 0.5 0.1 4.5 2.4 0.5 4.5°> 4.3 2.0P

Mixture sample size = 500
GIRLS-D 0.1¢ 0.0* 0.0 0.1¢9 0.0¢ 0.0¢ 0.2¢9 0.1¢ 0.09
GIRLS-B 0.1¢ 0.09 0.0¢ 0.1¢ 0.0¢ 0.0¢ 0.2¢ 0.19 o0.0¢
STEEP 0.9¢ 0.3¢% 0.1¢ 1.4¢ 0.6¢ c 3.1¢4 1.3¢ c
EM 1.7¢ 0.7¢ 0.2¢ 2.3¢9 1.2¢9 0.49 2.49 1.1¢ o0.5¢
CONJA-L 0.6 0.39 0.1¢ 1.2¢ 1.0¢ 0.1¢ ¢ c ©
CONJA-S 0.4 0.2¢ 0.0¢ o0.89 0.3 0.1¢ 0.9¢ 0.6¢ 0.1¢

%Di screpancies were conputed as absolute differences between bootstrap standard
errors resulting from specified standard GPA and that when GPA of 99% was

speci fi ed. Bootstrap standard errors were based on 25 resanplings of original
baseline stock and mxture sanples of Experiment |.

Because sone of the prograns did not attain the GPA of 99% the standard errors
from GRLS-B with GPA of 99% were used to conpute differences.

‘GPA was not achi eved.

‘Because sone of the prograns did not attain the GPA of 99% the standard errors
from GRLS-B with GPAs of 94, 98, and 98% for 5, 15, and 50 stocks,
respectively, were used to conpute differences.
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Tabl e 8.--Maxi num di screpanci es" anong stocks of bootstrap nmean
estimated m xture Eercent ages [max (save,) | in relation
to number of stocks in the simlar baselines (5, 15,
or 50), specified standard values of the stopping
criterion (GPA of 10% 50% or 90%, and mxture
sanpl e size (50 and 500).

Maximum discrepancy [max(Aave,)]

Stocks in baseline
5 15 50

GPA to stop GPA to stop GPA to stop
_10% 50% 90% 10% 50% 90% 10% 50% 90%

Mixture sample size = 50

GIRLS-D 0.8 0.4 0.0 1.2 0.3 0.1 1.9 - 0.3 0.1
GIRLS-B 1.4 0.3 0.0 1.1 0.3 0.0 1.8 0.3 0.1
STEEP 0.8 0.3 0.3 '5.3 1.4 0.6 7.1° 2.0 0.5°
EM 2.2 1.6 0.4 5.7 2.2 0.7 5.1 1.9 0.3
CONJA-L 8.3° 6.3° 0.3° 2.5° 1.6 c 1.8° c c
CONJA-S 2.5 0.4 0.1 2.5° 1.0° 0.2P 3.1 1.2 o0.4°
Mixture sample size = 500
GIRLS-D  0.72¢ o0.0¢ 0.0° 0.1¢ 0.04 0.0¢ 0.1° 0.1 0.0°
GIRLS-B 0.1¢4 0.0¢ 0.0¢ 0.19 0.0¢ 0.0¢ 0.1 0.0 0.0
STEEP 0.7¢ 0.2¢9 0.0¢ 1.8¢ 0.5¢ c 1.9° 0.6° c
EM 0.5¢ 0.2¢ 0.19 2.39 0.8% (0.2¢9 1.7° 0.6® 0.2°
CONJA-L 0.69 0.3¢ 0.1° c c c 1.0° c €
CONJA-S 0.1¢ 0.1¢ 0.0 0.6% 0.2 0.0¢ 0.6° 0.3> 0.1P

%Di screpancies were conputed as absolute differences between bootstrap neans
resulting from specified standard GPA and that when GPA of 99% was specified.
Boot strap neans were based on 25 resanplings of original baseline stock and
m xture sanples of Experinent |.

Because sone of the prograns did not attain the GPA of 99% the neans from
G RLS-B with GPA of 99% were used to conpute differences.
‘GPA was not achi eved

‘Because sone of the programs did not attain the GPA of 99% the neans from
G RLS-B with GPAs of 96 and 98% for 5 and 15 stocks, respectively, were used to
comput e  di fferences.
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Tabl e 9.--Maxi mum di screpanci es" anong stocks of bootstrap
standard errors of estinmated m xture percentages [ max
(As,)] in relation to number of stocks in the simlar
baselines (5, 15, or 50), specified standard val ues of
the stopping criterion (GPA of 10% 50% and 90%, and
m xture sanple size (50 and 500).

Maximum discrepancy [max(As,)]

Stocks in baseline
5 15 50

GPA to stop GPA to stop GPA to stop

10% 50% 90% 10% 50% 90% 10% 50% 90%

Mixture sample size = 50

GIRLS-D 0.2 0.4 0.0 1.1 0.5 0.2 1.8 1.2 0.1
GIRLS-B 0.7 0.4 0.0 1.6 0.2 0.1 1.9 1.1 0.1
STEEP 5.0 1.5 0.6 3.9 2.4 0.5 6.9 3.5 1.4°
EM 7.8 3.8 0.9 5.4 3.0 0.8 7.2 3.7 0.9
CONJA-L 6.8° 6.9 0.4 3.9° 2 4P c 4.0° < <
CONJA-S 4.6 1.6 0.2 3.6° 1.3 0.4 4.5° 2.2P 1.2°

Mixture sample ’size = 500
GIRLS-D 0.0¢ 0.0¢ 0.0¢ 0.19 0.0¢ 0.0¢ 0.2° 0.1P 0.0QF
GIRLS-B 0.0° 0.0 0.0 0.1 0.0¢ 0.0¢ 0.2 0.1 0.0
STEEP 1.1¢ 0.3¢ 0.1¢ 2.39 0.6¢ c 3.2 2.1° c
EM 2.3¢ 1.0¢ 0.29 3.8% 1.9 0.4 3.5° 1.7° 0.6"
CONJA-L 0.7¢ 0.39 0.0¢ c c c 2.1° € c
CONJA-S 0.6 0.3¢ 0.0% 0.79 0.49 0.12¢9 1.4 o0.8°> 0.2

%Di screpancies were conputed as absolute differences between bootstrap standard
errors resulting from specified standard GPA and that when GPA of 99% was

speci fi ed. Bootstrap standard errors were based on 25 resanplings of original
baseline stock and mxture sanples of Experinent |I.

Because sone of the prograns did not attain the GPA of 99% the standard errors
from GRLS-B with GPA of 99% were used to conpute differences.

‘GPA was not achi eved.

‘Because sone of the prograns did not attain the GPA of 99% the standard errors
from GRLS-B with GPAs of 96 and 98% for 5 and 15 stocks, respectively, were
used to conpute differences.



Tabl e 10. - Perf or mances of

used in Experinent

10% 50%

prograns (CONJA-S,
I

speci fied standard val ues of
and 909 .

EM and G RLS-B) on real-wrld data sets

average effective search tinme, average total search
tine, average guaranteed percent achieved, and failure rate for 1000
resanpl i ngs at

tines are in centiseconds.

the stopping criterion (GPA of

Effective tine Total tine % achi eved Failure rate (%
GPA to stop
GPA GPA ‘ _ GPA GPA
Data set 10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90%
Columbjia chinook
CONJA-S 48 64 100 49 65 102 22 62 93 0.0 0.0 0.0
EM 114 222 508 171 328 748 10 50 90 0.0 0.0 0.0
GIRLS-B 97 120 * 102 126 * 36 71 95 0.0 0.0 2.2
Yukon chum
CONJA-S 26 43 88 27 43 89 21 59 92 0.0 0.0 0.0
EM 46 101 273 66 143 380 11 50 90 0.0 0.0 0.0
GIRLS-B 1308 2683 7391 1340 2747 7572 13 54 91 0.0 0.0 0.0
West Coast sockeve
CONJA-S 95 226 527 97 230 535 14 53 91 0.0 0.0 0.0
EM 115 335 1248 157 462 1744 10 50 90 0.0 0.0 0.0
GIRLS-B 4155 * * 4159 * * 41 70 94 0.0 0.4 1.8

"Search for the CMLE was stopped on one or

nore resanplings because the effective search

time exceeded 5 min



Table 11.--Averages (ave),

per cent ages for

EM and A RLS-B for

the Colunbia River

specified standard val ues of

standard deviations (s), and upper
confidence bounds from the bootstrap distributions (10
estimated stock group (groups*

the stopping criterion (GPA

085

yand | ower
resarrpl i ngs) of
are denoted as B, A+B, A+B+C, and D)
chi nook salmon m xture by progranms CONJA-S,

(Bo o25)

95%

of 10% 50% and 90%.
GPA to stop
10% 50% - 90
~Program Bo.ozs  Bo.ors ave 8 Bo.ozs DBo.srs —ave S Po.ozs  Bo.ors ave s
CONJA-S
B 42 .2 60.9 51.9 4.75 42 .3 60.9 51.9 4.76 42.3 60.9 51.9 4 .77
A+B 44.8 61.9 53.5 4.26 44 .7 61.9 53.5 4.28 44 .7 61.9 53.5 4.29
A+B+C 76 .2 88.1 82.1 3.03 76.2 88.1 82.1 3.05 76.2 88.1 82.1 3.07
D - 11.9 23.8 17.9 3.03 11.9 23.8 17.9 3.05 11.9 23.9 17.9. 3.07
EM
B 42.6 60.6 51.9 4.59 42.3 60.9 51.9 4.71 42 .3 60.9 51.9 4.76
A+B 45.0 61.9 53.5 4.15 44 .8 61.8 53.5 4.24 44 .7 61.9 53.5 4.28
A+B+C 76.5 87.8 82.0 2.88 76.3 88.1 82.1 3.00 76.2 88.1 82.1 3.06
D 12.2 23.5 18.0 ' 2.88 11.9 23.7 17.9 3.00 11.9 23.8 17.9 3.06
GIRLS-B :
‘B 42 .2 61.0 51.9 4.77 42 .2 60.9 51.9 4.78 42 .2 60.9 51.9 4.78
A+B 44.7 61.8 53.5 4.30 14 .8 61.9 53.5 4.30 44 7 61.9 53.5 4.30
A+B+C 76.0 88.2 82.1 | 3.07 76.2 88.1 82.1 3.07 76.1 88.1 82.1 3.07
D 11.8 23.9 17.9 3.07 11.9 23.9 17.9 3.07 11.9 23.9 17.9 3.07
"Groups are defined in Table 10.1 of Pella and M I ner (1987).



Table | 2.--Averages (ave), standard deviations (s), and upper By ¢,5) and | over (Bo_025)
confidence bounds from the bootstrap distributions (1000 resanplings) of
estimated individual stock* percentages for the Colunbia R ver chinook sal non
m xture by the program CONJA-S for specified standard values of the stopping

criterion (GPA of 10% 50% and 90%.

GPA to stop

10% 50% 90%
Stock Po.ozs  Do.ois ave S Do o2s Do ors ave S Bo.oas  Bo.sis ave s
WS 0.0 5.3 1.6 1.62 0.0 5.4 1.6 1.63 0.0 5.4 1.6 1.64
RR 22.6 34.8 28.5 3.14 22.6 34.8 28.6 3.15 2.6 34.8 28.6 3.16
KO 0.8 40.8 21.9 10.30 0.3 41.0 21.9 0.49 0.1 41.1 21.9 0.61
RB . 0.0 5.3 0.9 1.60 0.0 5.4 0.9 1.66 0.0 5.5 0.9 1.68
CA 0.6 37.2 16.8 9.13 0.3 37.3 16.9 9.33 0.0 37.5 16.9 9.45
EC 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.02
LS 0.0 - 3.0 0.2 1.11 0.0 1.8 0.2 1.08 0.0 1.2 0.2 1.07
SS 0.0 10.2 4.4 2.70 0.0 10.2 4.4 2.71 0.0 10.2 4.4 2.72
OR 2.5 12.5 7.6 2.52 2.6 12.4 7.6 2.52 2.6 12.4 7.6 2.52
KA 0.0 4.6 0.9 1.38 0.0 4.6 0.9 1.38 0.0 4.6 0.9 1.39
co 0.0 11.0 5.0 2.82 0.0 11.1 5.0 2.84 0.0 11.1 5.0 2.86
MK 0.0 0.2 0.0 0.16 0.0 0.1 0.0 0.18 0.0 0.0 0.0 0.18
LW 0.0 9.9 2.0 2.82 0.0 10.0 2.0 2.89 0.0 10.0 1.9 2.92
KT 0.1 21.9 10.1 5.65 0.0 21.9 10.1 5.74 0.0 22.0 10.1 5.79

"Stocks are those in Table 10.1 of Pella and MIner (1987).

TS



Tabl e 13

. - Aver ages

(ave),

standard deviations (s), and upper
confidence bounds from the bootstrap distributions (1000
estimated stock group (groups are sunmer
Yukon River

and fall
chum sal non mxture by prograns CONJA-S, EM and G RLS-B for

(B, 9,6A0d | ower

(50.025)

resampl i ngs)” of

runs) percentages for the

95%

specified standard values of the stopping criterion (GPA of 10% 50% and
909 .
GPA to stop
10% 50% 90%

Program B, g5 Do.srs ave 5 Bo.ozs  Bo.ars ave S Po.ozs  Po.ois ave =
CONJA-S

Summer

run 54.3 89.0 73.0 9.08 54.1 89.5 73. .34 53.8 89.7 73.2 9.48

Fall

run 11.0 45.7 27.0 9.08 10.5 45.9 26. .34 10.3 46 .2 26.8 9.48
EM :

Summer

run 55.2 87.4 72.9 8.41 54.5 88. 73. .10 53.8 89.5 73.2 9.45

Fall 7

run 12.6  44. 27.1 8.41 11.1 45. 26. .10 10.6 46 .2 26.8 9.45
GIRLS-B

Summer

run 54.4 88.4 72.9 9.01 53.9 89. 73. .36 53.7 89.6 73.2 9.51

Fall o

run 11.6 45.5 27.1 9.01 10.7 46.1 26. .37 10.4 46 .4 26.8 9.51

(4=



Tabl e 14.--Averages (ave), standard deviations (s), and upper (Bo.and | ower (Bo.o2s) 95%
confidence bounds from the bootstrap distributions (1000 resanplings) of
estimated stock group (groups* are denoted as A-G and H M percentages for the
West Coast sockeye salnon m xture by prograns CONJA-S, EM and G RLS-B for
specified standard values of the stopping criterion (GPA of 10% 50% and
909 .

GPA to stop
10 50% 90

Program By g25 Bo.o7s ave S Po.ozs  Po.ors ave S Bo.ozs  Po.ors ave s

CONJA-S ,

A-G 10.4 23.7 16.7 3.50 10.5 23.7 16.8 3.52 10.5 23.8 16.8 .53

H-M 76.3 89.6 83.3 3.50 " 76.3 89.6 83.2 3.52 76.2 89.5 83.2 .53
EM

A-G 10.2 23.6 16.6 3.49 10.4 23.8 16.7 3.51 10.4 23.8 16.8 .52

H-M 76.4 89.8 83.4 3.49 76.2 89.6 83.3 3.51 76.2 89.6 83.2 .52
GIRLS-B

A-G 10.6 24.0 16.9  3.53 10.5 23.8 16.8 3.53 10.5 23.8 16.8 .52

H-M 76.0 89.4 83.1  3.53 76.2 89.5 83.2 3.53 76.2 89.5 83.2 .52

"A-G = groups A through G

groups H through M (Pella et al.

in press).

€S



Tabl e 15.--Averages (ave),

standard devi ations (s),

and upper

~

(Bo.

o7saNnd | owner

(130.025)

confidence bounds from the bootstrap distributions (1000 resanplings) of
are denoted by letters A through M percentages

estimated stock group (groups*

95%

for the West Coast sockeye salnon m xture by the program CONJA-S for specified
standard values of the stopping criterion (GPA of 10% 50% and 90%.
GPA to stop
10% 50% 90

Group Po.oas  Do.ors ave s DPo.o25  Po.9rs ave s Do 025 50.9757 ave s
A 0.0 8.1 3.7 2.05 0.0 8.2 3.7 2.05 0.0 8.1 3.7 2.04
B 0.0 1.0 0.1 0.57 0.0 1.2 0.1 0.65 0.0 0.8 0.1 0.68
C 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.00
D 0.0 0.5 0.0 0.30 0.0 0.1 0.0 0.34 0.0 0.0 0.0 0.33
E 0.0 14.0 6.5 3.42 0.0 14.0 6.5 3.47 0.0 14.1 6.5 3.51
F 0.0 12.1 5.5 3.34 0.0 12.5 5.5 3.45 0.0 12.6 5.5 3.49
G- 0.0 6.4 0.9 1.70 0.0 6.8 0.9 1.83 0.0 6.8 0.9 1.86
H 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.00
I 0.1 19.4 8.8 5.12 0.0 21.5 9.6 6.09 0.0 23.0 10.4 6.60
J 5.0 37.3 19.8 8.34 1.1 41.4 18.9 10.94 0.0 45.8 17.3 12.30
K 0.0 2.4 - 0.3 0.80 0.0 0.3 0.0 0.41 0.0 0.0 0.0 0.36
L 32.9 62.1 48.0 7.45 29.4 62.5 47.5 8.51 26.5 64.3 47.7 9.37
M 0.0 16.9 6.4 4.66 0.0 18.1 7.3  5.09 0.0 18.5 7.9 5.32
A-G 10.4 23.7 16.7 3.50 10.5 23.7 16.8 3.52 10.5 23.8 16.8 3.53
H-M 76.3 89.6 83.3 3.50 76.3 89.6 83.2 3.52 76.2 89.5 83.2  3.53

* see Pella et al.

(in press).
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Figure 1. -Support function values achieved by two of the programs (@ RLS-B and EM and
total search time required of the processor. Data are froma cell of
Experiment 1. Early (left) and conplete search (right) are illustrated using
different scales for the support function. Level s of the support function

guaranteed to equal at l|least 10% 50% and 90% of the maxi mum value (Mx) for
the Iikelihood function correspond to critical search tines, Ty, Ts and Tg,

illustrated here for EM (right).
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average effective search time. (1/100 seconds)
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Figure 2.-For diverse baseline mxtures, average effective search tines required by the
six prograns-CONJA-S, EM GRLS-B, G RLS-D, STEEP, and CONJA-L-to achieve
standard stopping criterion (GPA) values for varying nunbers of baseline

stocks and mxture sanple sizes. Cells are plotted if average GPA equal ed or
exceeded that specified.
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Figure 3.--For simlar baseline mxtures,
si x prograns- CONJA- S,
standard stopping criterion (GPA) values for
stocks and m xture sanple sizes.
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average total search time (1/100 seconds)
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Figure 4.--For
programnms- CONJA- S,
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di verse baseline m xtures, average total search times required by the six

GPA = 90%

GPA = 50%

size of mixture

and CONJA-L-to achieve

standard stopping criterion (GPA) values for varying nunmbers of baseline
stocks and mxture sanple sizes. Cells are plotted
exceeded that specified.
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Essential steps included in the progranms STEEP, G RLS-B,
GRLS-D, EM CONJA-L, and CONJA-S are outlined next.
initial point in the search is denoted as p, W th typical
el ement | denoted as Py

STEEP (Steepest Ascent)

We define two sets of stock indices, boundary indices,
and interior indices at any point ,of the search to allow
efficient continuation of searching after boundaries are
encount ered or closely approached. The boundary set B = {i,

..., 1pr is conmposed of stock indices for which 0 £p; d 'f
* pel ongs to B. The nunber of indices contained in B |s n( B)
= b 30. The val ue of dis arb|trary but nmeant to be smal |,
and we use 107 The interior set B* = {ipg, Ipa - e} is
conposed of the remaini ng stock indices for whi ch d£pI £1 if
i bel ongs to B*. The nunber of indices contained in B* is
n(B) = (c-b) 31

The program perforns the follow ng steps:

1) Conputes the gradient vector S = (s, s, s.) V\/nere t he
gradients are given by Equation 8 evaf uated at P = Po

2) Finds the avera e gradl ent ( &) for interior stocks and,
i f applicable ( , the Iargest gradient (s*) anong

boundary stocks toget her with the correspondi ng stock
index, i*, or

5 =

1
n(B*) E S

. 0 n(B) =0
S MAX{s; ,8; ,~,8;} = 8;- n(B) >0

J. ’ P

3) If s £35, goes to step 4, if s* > 5 adds the index i* to
B* and deletes the index i* fromB. Then reconputes, 5 and
continues to the next step.

4) OOHPUt\?Eeme corrected gradient vector, S = (s°;, S°, ...,

¢/

s’ = Sl‘E iEBt
: 0 1€B

5) Finds the maxinum pernissible step size, . A, together
with the limting interior stock index, i", as foll ows:

A; = —(pj=0) /s; 1i€B*, s7<0

Arax = MIN{A;|i€B*, s <0} =24

Preceding page blank |
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Conputes the optimumstep size , i, fromthe line search
?ased on the Taylor's series approximtion to the support
uncti on.

Chooses a step size | = Mopt. € Amax- _QLherwise,
chooses | = . Mnax,_ [ EMDVES tsﬁe index i~ from B*, and adds
the index i~ to B.

Conputes the new point in the search path pgy = peg +  AS®.

Set s If specified GPA is achieved at p(,
stops ?he s%érch otherw se, returns to step 1.

G RLS-B or GRLS-D (lteratively Reweighted Least Squares Basic

1)

and Difference Versions)

Conputes S from Equation 8 and rR(see Equation 15) using
and either GrRcand GRy-(see Equation 15 of

Basm version) or DRDand DRy (see Equation 22 of

di fference version).

Sol ves equation system Equation 20 or 24, for p-=py

Uses the |ine search based on the Taylor's series to find
the optinum step size . along the line passing
through pe, and py. Sets a counter K = 0.

Conmput es pg), = pe + (0.99 1 *A.8P, where & p =

Verifies py is feasible and That the probabillfies 6F
all observed types in the mxture saine remain positive,
i.e., Epjzg,7 0 for each nh=1 ... H If both

condi tions are satisfied, goes to step 5. QO herw se,
sets K= K+ 1 and returns to the beginning of this step.

Sets - ~If specified GPA is achieved at p
ops {He sedfth: otherwise, returns to step 1. ©
EM (Expectation Maxim zati on)

Computes S = (S, S, ..., S.)' where s; is given by Equation
8 evaluated at p = pg

Conput es pg, Using Equation 27.

Sets pq | f specified GPA is achieved at pg,
stops Phe S&Arch; otherwise, returns to step 1.
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CONJA-L or CONJA-S (Conjugate Gadient with Logarithm or

Square Root Transform

Comut s S - (5©,89,.,5)7 equal to the gradient §
usi ng Equation 30 (OO\UA L) or Equation 36 (CONJA-S)
evaluated at p=p, Sets the first search dlrectlon in
the transformed stock composition space, DO = (d,(¥, d,(0,

vy d)= equal to S (CONIA-S); or (CONJA-L) sets —  d{® =

5, oyl eés both log Py < -20 and 5, <0 (in which case,

setsd 0) :12,..,c.

Conputes the optimum step size, Ao, fromthe line search

in the transformed stock conp03|t|on space based on the
Taylor's series appr 8XI mation to the support function at
U With direction (see Equation 32) o 1S conputed
from pg usi ng Equat| on 28 (CONJA-L) or Equatlon 34

( CONJA- é). Sets a counter J = 0.

Comput es t he new poi nt |n the search path in the transforned

stock conposition space ugy = Ug + (0.99) N DO,
Sets a counter k = 1. Corrput es py Ccorrespondi ng to
by Equation 29, and goes to step 5 (CONJA-L) ; CONf

S) conputes p, corresponding to ug, by Equat|on 35 and
verifies that probabilities of all observed types in the
m xture sanple remain positive, i.e., Lp;9ny > 0 for
each h=1 ..., H If the cond|t|on is satisfied, goes to
step 5. OQherwise, sets J =J + 1 and returns to step 3.

Comput es the gradient ?/ Equation 30 (CONJA-L) or
Equation 36 kgCO\L]A-S) evaluated at p= py Which i

denoted as &%, and sets the kth search direction, D, to
D = §o, il § (-1
gt
where |§‘k)|2=)5§i(k)-2 .
i=1
Sets the counter J = 0. (Coes to the next step (CONJA-S)
or L()( m)dIerS t he di rectl on vect el Df above by
settlngd =0if tog (P < -20 and di™ <0, i =1, 2

.., C.

F| nds the next point in the transformed space, Uguyy = Ugg
+(0.9 yoxkp® by line search in the transformeci stoci<
conp05|t|on space based on the Taylor's series

appr oxi rratlD&n to the support function at u, V\A'[h

dlrectlon (see Equation 32). Commputes D(k+1 r M U ks

by Equation 29 and goes to step 7 CrCrJD\U CONJA- §)
conput es Py from Uy, by Equat|on 35 an ver|f es that
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probabilities of all observed types in the m xture sanple
remain positive, i.e., . Epjyq,9s; > 0for eachn=1, . . . H
If the condition is satisfied, goes to step 7.

Qherwise, sets J =J + 1 and returns to the beginning of

this step.

|f specified GPA is achieved, stops; otherw se, continues
on to the next step 8.

|f k<c sets k= k + 1 and repeats steps 5, 6, and 7.
G herwise, restarts the search at step 1 using the |ast
point p.;, found in the search as p.
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