
SEER*Abs 1.0 System Administration 6/12/2009 1

SEER*Abs

System Administration Reference

May 15, 2009

2 6/12/2009 SEER*Abs 1.0 System Administration

SEER*Abs .. 1

System Administration Reference .. 1

May 15, 2009 ... 1

Section 1: Installing SEER*Abs ... 5

Overview of SEER*Abs Files and Directories Structure............................... 6

Section 2: SEER*Abs Data Types ... 10

Subtypes ... 11

Defining New Properties .. 11

Section 3: Defining a Workflow .. 14

Section 4: Configuring SEER*Abs .. 17

Checklist for Reviewing the SEER*Abs Default Configuration 18

Section 5: Main Configuration ... 21

Section 6: Defining Layouts .. 27

Section 7: Defining User-input Layouts ... 34

Section 8: Configuring Searches & Filters ... 36

Section 9: Defining Scripts .. 41

Section 10: Defining Action Scripts ... 43

Section 11: Defining Lookups .. 45

Section 12: Defining Edits ... 47

Section 13: Defining Autocompletion Word Lists 48

Section 14: Managing User Accounts .. 50

Section 15: SEER*Abs and Sensitive Data .. 52

Appendix 1: Utility Functions for Scripts ... 53

SEER*Abs 1.0 System Administration 6/12/2009 3

deleteEntities ... 53

deleteEntities ... 53

deleteEntity ... 53

disableButton ... 53

displayEnv ... 54

formatDateValue .. 54

formatValue ... 54

getConfVariable.. 54

getCurrentDay ... 54

getCurrentFacility ... 54

getCurrentMonth .. 55

getCurrentUser .. 55

getCurrentValue ... 55

getCurrentValue ... 55

getCurrentYear .. 55

getEntityByDisplayId .. 55

getLookupById ... 55

getPropertiesFromLayout ... 56

getRawLookupValue .. 56

getSeerabsVersion .. 56

getValue ... 56

getValue ... 56

hideButton .. 56

jumpToField ... 57

4 6/12/2009 SEER*Abs 1.0 System Administration

leftPad .. 57

log.. 57

rightPad .. 57

saveEntities ... 57

saveEntity ... 58

searchEntities .. 58

setCurrentValue ... 58

setEditorToReadOnly ... 58

setValue .. 58

showConfirmationDialog .. 59

showInputDialog .. 59

updateEntities .. 59

updateEntity .. 59

updateLookup .. 60

SEER*Abs 1.0 System Administration 6/12/2009 5

Section 1: Installing SEER*Abs
The registry’s first installation of SEER*Abs should be on the workstation of the registry’s
SEER*Abs system administrator. The system administrator will configure SEER*Abs and create a
registry-specific installation file that will be distributed to other users at the registry.

To install and configure SEER*Abs:

1. The SEER*Abs software requires Java 1.6.0 or later. Follow these steps to determine the
version of Java installed on your computer:

a. Enter java -version at a DOS prompt.

b. If you do not have the required version, uninstall the existing version of Java and
install the latest version. More information related to the appropriate version of Java
is provided on the SEER*Abs Web site (seer.cancer.gov/seerdms/portal/seerabs).

2. Install SEER*Abs by extracting the distribution zip file into a new folder (for example,
c:\seerabs). Sub-folders within seerabs.zip must be retained. To achieve this you may
need to set an option in your decompression software (in WinZip, “use folder names” must
be checked). Once the distribution file is unzipped, the newly created folder should contain
the following files and directory:

3. Start the SEER*Abs program.

a. Either browse to the installation folder and double-click seerabs.exe

b. Or use the Windows Run command to execute SEER*Abs.

4. Define the password for the admin user account.

a. Enter a value in Password. Passwords must contain at least 1 lower-case letter, 1
upper-case letter, and either a digit or a special character. Verify the new password
by re-entering it into the Repeat Password field.

b. Click Login.

5. The system will auto-create a SEER*Abs database and implement default configuration
settings. At this point, the database will be empty except that it will contain a single user
account for the system administrator. SEER*Abs only supports one administrator account
and its username is always admin.

6 6/12/2009 SEER*Abs 1.0 System Administration

6. You are now logged in as the admin user. Define the record layouts and configure other
system components as described in other sections of this manual.

7. Zip the configured version of SEER*Abs and install it on registry users’ laptops or
workstations. A separate instance of the software must be deployed for each workstation.
Users cannot use the same executable or database installed on a networked drive.

8. Create a shortcut to SEER*Abs on the user’s desktop or in the system tray.

Overview of SEER*Abs Files and Directories Structure
After logging in for the first time, several default directories will appear. The resulting directory
structure should look like this:

The following table provides a description of each file and directory.

SEER*Abs 1.0 System Administration 6/12/2009 7

File/Directory Description

seerabs

Root directory, there is no restriction about where it needs to be
located on the file system when SEER*Abs is installed, except that it
must be in a writable directory (since SEER*Abs will automatically
create sub-directories the first time it is started).

lib
Library directory, it contains all the libraries (jar files) required by the
application. Updating the application will involve updating some of the
jar files, added some new ones and deleting some old ones.

lib/drivers

Sub-directory in the library directory. It contains the jar files
necessary for SEER*Abs to communicate with other databases
(drivers). Those drivers libraries just need to be dropped in this
directory; SEER*Abs (after being restarted) will parse the directory
and load any drivers present in it. Once loaded, the drivers will
enable the synchronization scripts to communicate with a remote
database.
Only one set of drivers is shipped with the SEE*Abs release:
ojdbc6.jar; that drivers file enables SEER*Abs to communicate with
Oracle databases.

conf

Configuration directory. It contains any files related to the
configuration of SEER*Abs. Copying “a configuration” from one
SEER*Abs installation to another one means copying this entire
directory and overriding the target configuration directory with it.
The files contained in this directory are expected by the application;
they should not be renamed.
While files from this directory can be modified through some external
programs, it is recommended to use the build-in file editor, which
contains validation features. If a file is corrupted by modifying it
outside of the application, SEER*Abs will fail the login process.

conf/actions

Sub-directory of the configuration directory that contains user-
defined scripts (called actions in SEER*Abs). Once defined, those
actions are available through the “Action” menu.
One special file in that directory is the “actions-info.data” file. It
contains information about each user-defined script and which label
should be used in the “Action” menu. The file should never be
modified as SEE*Abs uses it internally and a corrupted file might
prevent the application from starting.

conf/layouts
Sub-directory of the configuration directory that contains user-
defined input layouts. Once defined, those layouts can be used in
scripts to request user input.

8 6/12/2009 SEER*Abs 1.0 System Administration

File/Directory Description

conf/manuals

Sub-directory of the configuration directory that contains manuals.
One special file in that directory is the “manuals-info.data” file. It
contains information about each manual file and which label should
be used in the “Help” menu. The file should never be modified as
SEE*Abs uses it internally and a corrupted file might prevent the
application from starting.

db

Database directory. SEER*Abs uses the Derby Java database
(http://db.apache.org/derby/).
SEER*Abs uses two types of data: regular data and reference data.
The first set of data is extremely important since it corresponds to
work done by abstractors. The second set of data is far less important
since it is read-only data that can always be recovered by fetching it
again from the Central Registry.
For that reason, the SEER*Abs database has been split into two
databases: a main database and a reference database. Those
correspond to the sub-directories described hereafter.
Derby is a file-based database. It is therefore technically possible to
move an entire database (main or reference) from one SEER*Abs
installation to another one by copying the appropriate sub-directory.
When doing so, it is important to copy the corresponding indexes
sub-directory or the searches might not return correct results in the
target installation. If the indexes are not available, then at the very
least they should be deleted from the target installation in which case
SEER*Abs will automatically re-create them when starting up.

db/seerabs
Main database. Contains data that cannot be lost. SEER*Abs provides
a backup mechanism that should be used frequently. It also provides
a corresponding restore mechanism.

db/seerabs-
indexes

Main database indexes. This directory should never be apart from the
main database directory. The indexes are created by a search library
called Lucene (http://lucene.apache.org/java/docs/) and should
never be modified manually.

db/seerabs-ref

Reference database. Contains data that can be recovered by
synchronizing SEER*Abs with the main registry again. There is no
backup/restore mechanism for this database, but SEER*Abs provide
an option to copy the entire database (and its index directory) from a
chosen directory. This is useful if an IT person wants to download the
reference data once (since it can be a very slow process) and make
the reference database available to all the other SEER*Abs
installations on a shared network.

db/seerabs-ref-
indexes

Reference database indexes. This directory should never be apart
from the reference database directory. The indexes are created by a
search library called Lucene (http://lucene.apache.org/java/docs/)
and should never be modified manually.

db/seerabs-
db.log

Database log files. Any errors will be logged in the SEER*Abs log
files, but Derby also creates its own log.

http://db.apache.org/derby/�
http://lucene.apache.org/java/docs/�
http://lucene.apache.org/java/docs/�

SEER*Abs 1.0 System Administration 6/12/2009 9

File/Directory Description

input

Input directory. When importing files through the synchronization
module, SEER*Abs will open this directory by default when requesting
a location for the file(s) to import. This is only a default and can be
modified by the user.

output
Output directory. When extracting files through the synchronization
module, SEER*Abs will create the file in this directory by default. This
is only a default and can be modified by the user.

log

Log directory. When an error happens, it is logged in the file
“seerabs.log” contained in this directory. This should be the first place
to look when trying to resolve bad application behavior reported by
the abstractors. An exception in the log does not mean that
SEER*Abs contains an error. It can also mean that the configuration
has not been properly set up (most likely an error in a script).

seerabs.exe
Executable file used to start the application. On Windows, a shortcut
can be created from this file by right-clicking it and selecting the
option “create shortcut”.

seerabs.l4j.ini

Initialization file. SEER*Abs is a Java application and therefore uses a
Java Virtual Machine (JVM) to run. The parameters from this
initialization file are passed to the JVM. An important parameter is the
maximum memory that the JVM can use. By default it is set to
512MB. That parameter should be adjusted if SEER*Abs is used on a
computer that does not have that amount of memory available.
Setting that parameter to a bigger value should not affect the
application at all since it should not require that much memory under
any circumstances.

configuration-
manual.pdf

This manual.

user-manual.pdf The user manual.

readme.txt
Readme file with instructions to do a quick install and startup. All the
information in that file is contained in this manual.

10 6/12/2009 SEER*Abs 1.0 System Administration

Section 2: SEER*Abs Data Types
SEER*Abs handles data using the concept of “entity”. An entity is an instance of a particular type
of data, for example an abstract record, or an AFL. Every entity has a type associated with it; those
types cannot be customized and are described in the following table.

Entity Type
Type name

to use
in Scripts

Database Description

AFL AFL main

Abstract Facility Lead. Represents a case that needs to
be investigated in a facility and maybe abstracted into
a record. AFL cannot be created in SEER*Abs and
need to be imported.

Record RECORD main

Records created in SEER*Abs like abstracts or
casefindings. SEER*Abs can also be configured to
support other record types if needed. Records cannot
be imported.

User USER main

User logging in SEER*Abs and using it. By default, the
application supports a unique user which has
administrator privileges; its username is ‘admin’ and it
is the only administrator user that is created. Any
number of non-administrator users can be added by
the admin user. Users cannot be imported; they need
to be created within the application.

Facility FACILITY reference

Represents a facility (hospital, lab, etc…). Such a
facility can be provided during the login process to
apply a default filter to the worklist. Facilities cannot
be modified or created in SEER*Abs and need to be
imported.

Physician PHYSICIAN reference
Represents a physician. Only used when creating new
records. Physicians cannot be created in SEER*Abs
and need to be imported.

Reference
Record

REFERENCE-
RECORD

reference
Records used as reference data only. They cannot be
created or modified through SEER*Abs and need to be
imported.

Reference
Patient

REFERENCE-
PATIENT

reference
Patient Sets used as reference data only. They cannot
be created or modified through SEER*Abs and need to
be imported.

Lookup N/A * reference Lookup, used to format a code into a label.

SEER*Abs 1.0 System Administration 6/12/2009 11

* Lookups are handled a little bit differently than the other entity types since they don’t have customizable properties. For
that reason specific methods have been added for them in the script utility methods (see Annex 1).

The second column provides the string that needs to be used when referencing a particular type in
a script (many utility methods require a type as a parameter). The third column provides which
database is used when persisting the entities of that type; if using the main database then all those
entities will be saved when doing a backup of the application’s data; the entities using the
reference database won’t be saved.

Subtypes
While it is true that the types are not customizable, some of them have a subtype which is
customizable. It is true for the Record and Reference Record types. Which subtype they support is
defined in the main configuration file. For the records, the following property is used:

supported.record.subtypes=abstract,casefinding

And for the reference records, the following is used:

supported.ref.record.subtypes=naaccr,casefinding,hl7

Those lists of subtypes can be modified; there is no restriction on the values of the reference
record list, but “abstract” and “casefinding” are both required in the record list. Also note that if a
new record subtype is defined, a corresponding prefix also needs to be provided (see Main
Configuration section of this manual for more details).

Most of the utility methods dealing with entities require both a type and a subtype. For types that
do not have a subtype, null should be passed as a parameter. For example, the following call saves
a list of AFLs:

env.utils.saveEntities(“AFL”, null, aflsToSave)

While the following call saves a list of abstracts:

env.utils.saveEntities(“RECORD”, “abstract”, recordsToSave)

See the Utility Methods annex for more details about the available methods and how to use them.

Defining New Properties
Lookups are a special type of entity and are defined in their own configuration file (see Defining
Lookups section). All the other entity types are defined in a Layout. That layout contains the
properties that should be shown on the screen along with some other information (property type,
label, lookup, etc…). While it is true that the layout is mainly used to define where the fields
should be shown on the screen, it is also used to define which properties are supported for which
entity type. An entity can be seen as a map of keys and values. The keys are the field names
defined in the layout and the values are the text corresponding to those field names (it can be the
text typed by the abstractor in the editor, or the text downloaded through the synchronization
module). For efficiency, a key corresponding to an empty (null) value is not saved in the database;
that means the absence of a key in a map should be interpreted as the key having an empty value.
That also means different entities of the same type will end up with different keys, depending

12 6/12/2009 SEER*Abs 1.0 System Administration

which values are missing. For that reason, there are no database constraints linking the properties
to the entity types; saving an entity in the database means saving a generic mapping of keys and
values; the database is unaware of which properties the mapping should have depending on the
entity’s layout.

With this design, adding a new property to a given type is as simple as adding a field to the
corresponding layout. Once added, the abstractor will be able to provide a value to that field; that
value will be persisted in the database and made available to the synchronization scripts to be
exported. Any properties can be defined in a layout, but a few of them are used by the application
and therefore SEER*Abs needs to be aware of their name. Most of those internal properties can be
re-defined in the main configuration in case they conflict with other regular properties. The
following properties are currently used by SEER*Abs:

Property Name
Can be

re-defined
in Main Conf

Description

displayId yes

Entity display identifier; usually a few uppercased letters
followed by a dash followed by a numerical part (for example
FAC-123). That display ID is what is shown on the screen to
uniquely identify an entity. Applied to all the entity types.

type yes

Entity type; correspond to the string that needs to be used in
the scripts (see data types table at the beginning of this
section). Used by SEER*Abs to filter the worklist, the
searches, to call the correct utility methods, and for many
other things. Every entity has a type.

subtype yes
Entity subtype; correspond to the subtypes defined in the
main configuration. Applies only for RECORD and
REFERENCE-RECORD types.

status yes

Entity status; used to indicate in which status an entity
currently is; the statuses can be defined in the lookup
configuration file. It is mainly used by SEER*Abs to filter the
worklist; for that purpose the main configuration also
provides a way of defining which status is an “outstanding”
status. Those are filterable under the “<Outstanding>” option
in the status filter. Statuses apply only to AFL and RECORD
(any subtypes).

dateLastModified yes
The last time an entity was modified. It is automatically
updated by SEER*Abs every time an entity is persisted.
Applies to any entity type.

SEER*Abs 1.0 System Administration 6/12/2009 13

Property Name
Can be

re-defined
in Main Conf

Description

facility yes
Main facility for an entity. Used by SEER*Abs to filter by
facility. Applies to AFL, RECORD, REFERENCE-PATIENT and
REFERENCE-RECORD.

primarySite yes
Entity site. Used by SEER*Abs to dynamically build the
content of the collaborative stage lookup. Applies only to the
RECORD type.

histologyICDO3 yes
Entity histology. Used by SEER*Abs to dynamically build the
content of the collaborative stage lookup. Applies only to the
RECORD type.

username no
Uniquely identifies which user is currently logged in. Applies
only to USER type.

password no
Used during the login process and when an abstractor wants
to change his/her password. Applies only to USER type.

There are a few other properties used internally by SEER*Abs (like a database ID for example) but
those should never be referenced by any scripts and therefore are not described here (they usually
start with a double underscore).

Having to re-define an internal property in the main configuration should be extremely rare. For
example if a new reference record type is added and has to use the property “dateLastModified”,
the internal property with the same name could be re-defined as “dateLastModifiedSeerabs” to
avoid any conflict. But the script downloading that new reference record type could also save that
new “dateLastModified” property under a different name and therefore also avoid the conflict. Note
that if a property is re-defined, all the data needs to be fixed (for reference data, it means deleting
the old data and re-importing it; for the main data it means running an action script that would
load all the entities of that type and for each of them remove the old property and re-add the new
one).

Because empty values are not saved in the database, different entities of the same type could have
different properties saved in the database. For that reason, a script cannot make any assumptions
on which properties is supposed to be contained in an entity. This can be annoying when trying to
write scripts that reference hundreds of properties. To solve that problem, a utility method is
provided; for a given type and subtype, it returns a list of properties as they are defined in the
corresponding layout. See Annex 1 for more details about utility methods.

14 6/12/2009 SEER*Abs 1.0 System Administration

Section 3: Defining a Workflow
Before configuring SEER*Abs, it is important to decide how it is going to be used. The following
picture shows the different components playing a role in the workflow.

SEER*Abs is designed to be an Abstracting Tool that is used in the field to create Abstracts (or
other record types). It then communicates with the Central Registry (through the synchronization
module) to export the created records and maybe import the reference data. That default
workflow is shown in the following figure:

Install SEER*Abs

Remove old reference
data, import up-to-date

reference data

Export created
records and

updated AFLs if any

Go in the field;
create records

SEER*Abs 1.0 System Administration 6/12/2009 15

By configuring the synchronization module, a Registry can define how the records and AFLs are
exported and how the reference data is imported. By configuring the editor module, a Registry can
define how the records are created (what fields, what format, etc...).

Abstractors need to know whether a record has just been created, whether all the work is done for
it or whether it has already been exported. A status field is used for that purpose. Only the AFL
and the RECORD entity types have that field. The possible values are defined in the lookups
lkup_internal_alf_status and lkup_internal_rec_status. Those lookups cannot be deleted from the
configuration but their content can be modified and that is the main mechanism to customize the
SEER*Abs workflow.

The following AFL statuses are provided with the default configuration:

Status Code Status Label Description

1 NOT PROCESSED No work has been performed on this AFL.

2 IN PROGRESS Some work has been performed on this AFL

3 NOT ABSTRACTED
The work on this AFL is done; it has not been abstracted
and a reason has been provided.

4 ABSTRACTED
The work on this AFL is done; an abstract has been
created.

5 ARCHIVED This AFL has been exported.

The following record statuses are provided with the default configuration:

Status Code Status Label Description

1 IN PROGRESS Some work has been performed on this record.

2 COMPLETED No more work needs to be performed on this record.

3 ARCHIVED This record has been exported.

Note that changing the label of a status has no impact on the workflow and no script needs to be
modified in that case. On the other hand, many scripts use the status code to search entities and
load them (for example the extract script fetches all the records with a status of ‘COMPLETED’).
Adding, removing or changing the meaning of a status (how it is supposed to be used by the
scripts) require to review each script and make sure the way it uses the statuses (if it does use
them) is still correct.

SEER*Abs never deletes any record or AFL automatically. A special action is provided (Purge
Entities) to delete any entities with a status of ‘ARCHIVED’. That action can be run right before

16 6/12/2009 SEER*Abs 1.0 System Administration

exporting records so the ones exported from the previous synchronization session are deleted and
the new ones are marked as ‘ARCHIVED’ after being exported. But the user has to trigger the
action manually and exactly when that should happen must be a Registry policy.

To define a different workflow than the default one:

1. Log in as the administrator.

2. Open the Configuration module.

3. Double-click the unique row of the Lookups section to open the corresponding file in the
Configuration File Editor.

4. Modify the lkup_internal_afl_status and lkup_internal_rec_status lookups; add the statuses
that define the new workflow.

5. Once done, close the editor.

6. If prompted to save the changes, click Yes.

7. The lookups are automatically reloaded in the application.

8. Open each script and action script, search for the word ‘status’ and make sure the way the
script uses the status (if it does) comply with the new definition. Synchronization scripts
will certainly have to be updated since they heavily use the statuses.

9. Let the abstractors now what the new statuses are and what they mean.

SEER*Abs 1.0 System Administration 6/12/2009 17

Section 4: Configuring SEER*Abs
The SEER*Abs configuration manager can be used to customize all system features including data
entry screens for records, the Search page interface, and synchronization scripts. The manager
allows you to open files in the SEER*Abs configuration editor by selecting the corresponding row
and typing Enter or by clicking on the edit icon in the table’s action column. All configuration files
are text files; therefore it is technically possible to edit them in any text editor. However, it is
recommended that you use the SEER*Abs configuration editor to take advantage of the validation,
preview, and auto-refresh features.

The configuration files are organized into the topics listed below.

• Main Configuration – a single configuration file containing system parameters and
properties. These include system options, defaults, and global variables.

• Layouts – separate configuration files defining the screens displayed when you view or
modify a record, AFL, patient set, facility, physician, or user account. These include the
layouts used to display records created in SEER*Abs and reference patient sets and records.

• Input Layouts – special layouts that can be referenced in any script to request user-input.

• Searches & Filters – these files define the filters and tables used to display and find data
on the Search page, the Worklist, and the User account manager.

• Scripts – Groovy scripts run to create extract files, load reference data from external files
or directly from a database, and utility scripts used to create AFLs and implement edits.

• Action Scripts – special Groovy script that the abstractor can run through a menu item.

• Lookups – a single configuration file defining lookup tables for data fields. This file
contains full definitions for internal lookups and reference information for external lookups.

• Edits – source code for edits to test the validity of data fields. Two sets of edits are
integrated into SEER*Abs: edits developed by the NCI SEER Program that cover data fields
submitted to SEER; and edits developed within SEER*Abs. The SEER*Abs edits may include
edits shipped with the software as well as the edits created by your registry staff.

• Autocomplete Terms – the list of words and phrases matched against the user’s entry
when the autocomplete feature is used.

Each of those topics is explained in details in the following sections.

SEER*Abs will work out-of-the-box without configuring anything. But it is recommended to review
the entire configuration the first time the application is installed to make sure that the default
configuration fits with your Registry’s operations. The checklist provided in the next paragraph can
be used as a reference to verify the entire configuration.

18 6/12/2009 SEER*Abs 1.0 System Administration

Checklist for Reviewing the SEER*Abs Default
Configuration

1. Start with the main configuration file, the registry.id property should be set to the correct
SEER Registry ID; if the application needs to connect to SEER*DMS (or another external
database), the synch.db.connection.1.url property need to be modify to point to that
external database. The corresponding synch.db.connection.1.username property can
also be set to a default username so the abstractor does not have to always re-type it.
Review the list of record types that the application needs to create, this is the
supported.record.subtypes property. Review the reference record types that need to be
supported, this is the supported.ref.record.subtypes property. If adding, removing or
modifying any subtypes, the application will need to be restarted for the changes to take
effect. Once this is done, review the other properties from the main configuration; make
sure you understand what they do and whether their current value suits your need.

2. Switch to the layouts, there should be one layout for each entity type except for the
RECORD and REFERENCE-RECORD types which have one layout per subtype. Edit each
record layout and use the preview tab to see how they look. Make sure they support the
fields you need. The default configuration is shipped with two record types:

• abstract: layout-record-abstract.xml file; implemented according to the NAACCR
11.3 documentation. If adding, removing or renaming fields in that layout, the
corresponding script-extract-record-abstract.groovy script will need to be
modified to correctly export those fields. The script-action-record-create.groovy
script might also have to change to correctly copying fields from an existing record to
a new abstract (using the copy-into-abstract feature).

• casefinding: layout-record-casefinding.xml file; the default layout does not use any
particular standard; the corresponding extract uses a Comma Separated Values
(CSV) format. If adding, removing or renaming fields in that layout, the
corresponding script-extract-record-casefinding.groovy script will need to be
modified to correctly export those fields. The script-action-record-create.groovy
script might also have to change to correctly copying fields from an existing record to
a new abstract (using the copy-into-abstract feature).

3. Review the AFL layout (layout-afl.xml); edit it and use the preview tab to see how it looks
like. In the script section, review the corresponding import script (script-import-
afl.groovy); the default script deletes any UNPROCESSED AFLs and download any AFL from
SEER*DMS that is opened (status is 1). Review the export script (script-load-afl.groovy);
default script creates a mass change file for all the AFL that were not abstracted (mass
change file includes the reason the AFL was not abstracted and a comment). The AFLs that
were abstracted are not included because they will be closed in SEER*DMS by the incoming
abstract. Once the export is completed, all the processed AFLs are marked as ARCHIVED.

4. Review all the reference data layouts and their corresponding import/export scripts:

SEER*Abs 1.0 System Administration 6/12/2009 19

• Lookups: those do not have a layout but instead are defined in their own file
(lookups.xml). Review the file and make sure any lookup required in the
application is defined there. If a lookup is defined as external, its content needs to
be loaded from the import script (script-load-lookup.groovy), otherwise the
content needs to be defined in the lookup XML file it-self.

• Facilities (layout-facility-xml): default import script (script-load-facility.groovy)
loads all active facilities from SEER*DMS.

• Physicians (layout-physician.xml): default import script (script-load-
physician.groovy) loads all active persons that are marked as medical practitioner
from SEER*DMS.

• Patient Sets (layout-ref_patient.xml): default import script (script-load-
ref_patient.groovy) loads all the Patient Sets that are ALIVE with a year of last
contact after 2000. Patient Sets are multi-level entities (a single Patient Set
contains a list of CTCs; each CTC contains a list of Facility Admission, etc…).
Because of that, loading Patient Sets from SEER*DMS requires several database
call per entity. This will make the synchronization process extremely slow. To
speed up the process; the criteria that selects which Patient Sets to load can be
made more strict, or less information per Patient Set can be loaded (for example
loading only demographic information).

• Reference Records: the default configuration supports three types of reference
records:

o naaccr (layout-ref_record-naaccr.xml): default import script (script-load-
ref_record-naaccr.groovy) loads all unlinked NAACCR records from
SEER*DMS. Downloading NAACCR records can be a slow process since they
are composed of hundreds of properties. Downloading less of them will
make the synchronization process faster.

o casefinding (layout-ref_record-casefinding.xml): default import script
(script-load-ref_record-casefinding.groovy) loads all unlinked
Casefinding records from SEER*DMS.

o hl7 (layout-ref_record-hl7.xml): default import script (script-load-
ref_record-hl7.groovy) loads all unlinked HL7 records from SEER*DMS.
Downloading HL7 records can be a slow process because of the long text
they contain. Downloading less of them will make the synchronization
process faster.

5. Switch to the Edits section and review the SEER*Abs edits (seerabs-edits.xml). The SEER
edits are always shown in the configuration even if they are not loaded (see
edits.load.seer and edits.ignore properties in the main configuration); they are provided
as a reference but are read-only and can never be modified through the application. The few
SEER*Abs edits that are provided in the default configuration should only be used as a
reference to write more complicated ones. They are not intended to be used in production.

20 6/12/2009 SEER*Abs 1.0 System Administration

6. In the Users module, use the Add User button to add new users. The users can be
managed in two ways (see Managing Users Accounts section for more details):

• Do not add any users in the initial configuration; instead install SEER*Abs on each
laptop with no regular users (there will always be an admin user). Then add a
single (different) user on each laptop.

• Add all the users during the initial configuration. Copy all the users on each laptop
(remember that the users are saved in the main database; they are not part of the
configuration; therefore the main database along with its index directory will need
to be copied over to the laptops).

The user layout (layout-user.xml) can be used to add new properties to the USER entity.
For example the abstractor ID has been added to the default configuration since it is a
NAACCR field and is used to automatically fill-in the corresponding field when creating new
abstracts.

SEER*Abs 1.0 System Administration 6/12/2009 21

Section 5: Main Configuration
Global configuration parameters are set in the Main Configuration file (seerabs.properties). All of
these parameters must be included in the file unless they are designated as optional below.

Review and adjust these parameters before configuring the layouts and scripts. Changes to some
parameters are applied when you save and close the configuration editor. Other changes are not
applied until you close and restart SEER*Abs, as prompted. Any changes made via a text editor
will only be applied when you restart SEER*Abs.

Property Default Value Description

editor.enable.auto.forward true

Whether or not the auto-forwarding
mechanism should be enabled in the editor
(true or false). If true, the cursor in the
editor will automatically go to the next field
when the number of characters in the
current field equals the field’s length. If
false, the user will always need to press tab
to advance to the next field.

editor.enable.auto.validate true

Whether or not the auto-validating
mechanism should be enabled in the editor
(true or false). If enabled, validation (edits
evaluation) will happen every time the
abstractor tabs out of a field. If false it will
only happen when the record is
open/saved/closed. This parameter has no
effect on internal edits.

editor.enforce.lookup.validation true

Whether a non-blank value that is not in the
corresponding lookup should generate an
internal edit (true or false). This parameter
has no effect on fields that do not have a
lookup or on special collaborative stage
lookups.

22 6/12/2009 SEER*Abs 1.0 System Administration

Property Default Value Description

editor.internal.edits.strict.valida
tion

true

Whether the abstractor should be warned
when an internal edit is triggered (true of
false). An edit error will always be
displayed in red, but if this parameter is set
to true, if a wrong value is entered (an
alpha characters in a numeric field, a value
that is not in the corresponding lookup,
etc...), there will be a beep and the focus
will stay on the current text field with the
value highlighted (so it can be easily
replaced).

edits.ignore

Individual edits to ignore (comma-
separated list of edit ID's). Only edits that
are loaded can be ignored (so if the SEER
edits are not loaded, only SEER*Abs edits
can be in this list).

edits.load.seer false

Whether or not the SEER edits should be
loaded (true or false). If set to true, the
validation of an abstract record will include
the SEER edits. If set to true, the
edits.ignore property should be reviewed.

import.ref.db.default.path

When importing an entire reference
database, this default path will be used as a
default directory when the directory
selection dialog is displayed. If this
property is left blank, the OS default user
directory will be used.

property.date.last.modified dateLastModified Property to use as Date Last Modified.

property.display.id displayed Property to use as Display ID.

property.facility facility Property to use as Facility.

property.histology histologyICDO3 Property to use as Histology.

property.site primarySite Property to use as Site.

property.status status Property to use as Status.

property.subtype subtype Property to use as Subtype.

property.type type Property to use as Type.

SEER*Abs 1.0 System Administration 6/12/2009 23

Property Default Value Description

record.prefix.abstract ABS-
Display ID prefix to use when creating new
abstracts.

record.prefix.casefinding CF-
Display ID prefix to use when creating new
casefinding.

registry.id 0000000000 SEER registry ID.

supported.record.subtypes
abstract,
casefinding

Which record types can be created from
SEER*Abs. When defining a new record
type in this list, the application will
automatically create an empty layout and
some empty scripts that can be modified
through the configuration manager. The
entries defined in the list are used as file
names, only alpha-numeric characters
and/or underscore (_) can be used. The
two first entries ('abstract' and
'casefinding') are required by the
application and cannot be removed or
renamed. The provided entries should also
be defined in 'lkup_internal_rec_types' in
the lookup XML file so the application
displays a nice name instead of the ID
defined here. So for example, if one wants
to add support for short abstract, one would
set the list to
'abstract,casefinding,short_abstract', add
'short_abstract -> Short Abstract' to
lkup_internal_rec_types and modify any
relevant layout and/or scripts for that new
type.

supported.ref.record.subtypes
naaccr,
casefinding,
hl7

Supported record types in the reference
data. The entries defined in the list are
used as file names, only alpha-numeric
characters and/or underscore (_) can be
used. The provided entries should also be
defined in
'lkup_internal_reference_rec_types' in the
lookup XML file so the application displays
the nice name instead of the ID defined
here.

24 6/12/2009 SEER*Abs 1.0 System Administration

Property Default Value Description

synch.db.connection.1.name SEERDMS

A value must be set for this parameter if
synch.methods.enabled includes import-
database.

This property identifies a database
connection to the abstractors. This text is
shown in the drop-down box when the user
starts importing reference data using the
Load from Registry Database method.

You may specify up to nine connection
names by adding parameters to the main
configuration file
(synch.db.connection.1.name to
synch.db.connection.9.name). There must
be a URL defined for each connection name.
The connection names must be unique.

synch.db.connection.1.url
jdbc:oracle:thin:
@your.server.ad
dress:1521:sid

A value must be set for this parameter if
synch.methods.enabled includes import-
database.

This is the connection URL for the database
defined in synch.db.connection.1.name.
The URL format is specific to the database
vendor (Oracle, PostGresSQL, Apache
Derby, MySQL, or any other vendor).

The default settings shipped with SEER*Abs
are in the format required to connect to the
SEER*DMS Oracle database. For SEER*DMS
databases, this is the same connection
string that you use in Workbench or other
SQL tools:

o your.server.address: you would
typically use the data warehouse
hostname.

o sid = Server ID. Use seerdw if you
wish to connect to the SEER*DMS
data warehouse.

You may specify up to nine connections by
adding name and URL parameters to the
main configuration file.

SEER*Abs 1.0 System Administration 6/12/2009 25

Property Default Value Description

synch.db.connection.1.usernam
e

A default name for the corresponding
connection; can be left blank. If a
username is provided, it will be used to
auto-fill the username box in the dialog that
request the abstractor to provide the
connection username and password when
synchronizing.

synch.export.default export-file

The Method drop-down menu will use this
as the default in the export section of the
Synchronization module. This parameter is
can be left blank, in which case SEER*Abs
will pick a random default value.

synch.import.default Import-database

The Method drop-down menu will use this
as the default in the import section of the
Synchronization module. This parameter is
can be left blank, in which case SEER*Abs
will pick a random default value.

synch.methods.enabled
export-file,
import-file,
import-database

This comma-separate list determines the
methods that the abstractors will be able to
use to synchronize SEER*Abs with the
registry’s main database. The following are
available:

• export-file: export entities by
creating local files (extracts)

• export-database: export entities
by connecting to a remote database

• import-file: import entities from
local files

• import-database: import entities
from a remote database

title SEER*Abs
A short version of the application title. It is
shown in the title bar of child windows,
dialogs and popups.

title.main
SEER Abstracting
Tool

A longer version of the application title.
This is shown in the main SEER*Abs
window.

26 6/12/2009 SEER*Abs 1.0 System Administration

Property Default Value Description

worklist.oustanding.statuses.afl 1,2

What AFL status is considered as
"outstanding" (comma separated list of
codes defined in AFL status lookup); this is
used in the worklist filter to show the
outstanding work; if left blank then the
outstanding option won't be available.

worklist.outstanding.statuses.re
cord

1

What record status is considered as "
outstanding " (comma separated list of
codes defined in record status lookup); this
is used in the worklist filter to show the
outstanding work; if left blank then the
outstanding option won't be available

In addition to those properties, user-defined properties can be added to the main configuration and
accessed by the script through a utility method. For example, the following line could be added in
the main configuration:

laptop.number=15

Then in the script that runs when creating new abstracts, the following call could be made to get
the value of that property from the configuration and automatically assign it to a field:

env.utils.getConfVariable(“laptop.number”)

This is useful to define a variable that needs to be different for each laptop installation without
having to modify all the scripts.

SEER*Abs 1.0 System Administration 6/12/2009 27

Section 6: Defining Layouts
XML configuration files define the display screens for record, AFL, patient set, facility, physician,
and user account data. There is a separate XML file for each of the following:

• AFL page

• Data Entry screen for each record type defined in the main configuration

• Screens to view reference data:

o Facility

o Physician

o Any record type defined in the main configuration

• User Account page

The layout files should be edited via the SEER*Abs editor to take advantage of the validation,
preview, and auto-refresh features. However, the XML files are stored in the conf installation
folder and can be opened with any text editor. The files are named with the format “layout—type-
subtype.xml” for the RECORD and REFERENCE-RECORD types and “layout-type.xml” for the other
types.

To modify a layout:

10. Log in as the administrator.

11. Open the Configuration module.

12. Locate the layout that needs to be modified.

13. Double-click the row containing that layout to open it in the Configuration File Editor.

14. Modify the XML. For example, to add a field:

a. Locate the tab, section and row in which the field should be added

b. Add a field tag with all required attributes

c. Click the Validate button to verify the XML syntax

d. Click the Preview panel to review your changes

e. Click Close

f. When prompted whether the modifications should be saved, click Yes. The editor will
close and SEER*Abs will reload the layout (making it available to the application).

28 6/12/2009 SEER*Abs 1.0 System Administration

XML Structure for Layouts

The following shows the available XML tags and their hierarchy in layout configuration files. The
on-entity-opened, on-entity-saved, and on-entity-exited tags are optional. All other tags are
required. As shown in this sample, section is the only tag that can be nested. Nested sections
should be used for grouping fields that go together logically.

<editor-layout>

 <tab>

 <section>

 <row>

 <field>

 <on-entity-opened>

 Groovy script that executes when an entity is opened via this layout

 </on-entity-opened>

 <on-entity-saved>

 Groovy script that executes when an entity is saved via this layout

 </on-entity-saved>

 <on-field-exited>

 Groovy script that executes when the field loses focus

 </on-field-exited>

 <description/>

 </field>

 <section/>

 </row>

 </section>

 </tab>

</editor-layout>

editor-layout tag

This is the root XML tag for a SEER*Abs layout. This tag is required and can only be defined once
in a layout file. The editor-layout tag has the following attributes:

• desc (optional): short description for this layout, will be shown in the configuration module.

• default-case (optional): If this attribute’s value is upper or lower, the case of each field will
be converted unless a case attribute is specified in the field tag. Valid values are 'upper',
'lower' and 'as-is'. If you do not specify a value, the default case will be 'upper'.

SEER*Abs 1.0 System Administration 6/12/2009 29

• default-trim (optional): This rule will be used to remove leading and trailing white space
from each field unless the trim attribute is specified in the field tag. Trim may have the
following values: “right”, “left”, “both” and “none”. If a value is not specified, “right” is
used by default.

• default-gap-before-label (optional): The number of pixels of white space displayed to the
left of each field label. 10 pixels are used if this attribute is not specified. You may over-
ride this attribute by setting the gap-before-label attribute for individual fields.

• default-gap-after-label (optional): The number of pixels of white space displayed to the
right of each field label. 3 pixels are used if this attribute is not specified. You may over-
ride this attribute by setting the gap-after-label attribute for individual fields.

• default-gap-before-row, default-gap-after-row (optional): The number of pixels of white
space displayed above each row. If not specified, 5 pixels are used by default. You may
over-ride these attributes by setting the gap-before-row for individual rows.

• default-gap-after-row, default-gap-after-row (optional): The number of pixels of white
space displayed under each row. If not specified, 5 pixels are used by default. You may
over-ride these attributes by setting the gap-after-row for individual rows.

tab

SEER*Abs layouts support multiple tabs or pages to display content. You must define at least one
tab tag. The tab tag has the following attributes:

• label (required): This label is displayed on the page’s tab control when there are multiple
tabs. If there is only one tab in a layout, the tab control and label are not displayed.

• repeating (optional, only applicable to multi-level entities; only the patient set is a multi-
level entity in the default configuration): This attribute identifies a sub-entity that can have
multiple instances within the layout’s main entity. This attribute defines data structure and
display. For example, you could define “repeating=ctcs” at the tab or section level in the
Patient Set layout (the samples shipped with SEER*Abs actually have this attribute at the
section level). Because “ctcs” is defined as repeating, data for multiple cancers can be
loaded for each patient set. The path in the import and load scripts is the value of this
attribute (“ctcs”). Defining the attribute at the tab level means that the repeating ctcs will
be shown on separate tabs of the interface. Repeating attributes can also be defined in the
section tag. Records created in SEER*Abs cannot have sub-entities; therefore, the
repeating attribute is not valid in data entry layouts.

section

The section tag encapsulates a set of rows. You must define at least one section on each tab.
Multiple sections may be defined at the same level; and sections may be nested within sections.
To nest a section you must define the inner section within a row (please refer to the XML Structure
for Layouts provided at the beginning of this chapter). You can use nesting to define sub-entities
as described in the description of the repeating attribute. You can also use nesting to display a set
of rows in a title bordered using different indentation. The section tag has the following attributes:

30 6/12/2009 SEER*Abs 1.0 System Administration

• label (optional): If a label is defined, the section is shown with a frame border and the
label is used as the section title. No border is displayed when a label is not defined.

• repeating (optional, only applicable in patient set layout): This identifies a sub-entity that
can have multiple instances within an entity defined at a higher level. The higher level may
be an outer section, this section’s tab, or the main layout. The repeating attribute defines
data structure and display. If this section is nested within another section that has a
repeating attribute then this sub-entity is also nested in terms of data structure. The path
in the import and load scripts must include the full path defined in the layout. Records in
SEER*Abs cannot have sub-entities; therefore, this attribute is not valid in record layouts.

• indentation (optional): The number of pixels of white space used to indent the section. If
not specified, a default value of “0” will be used.

row

The row tag encapsulates a set of fields and/or a section. Sections nested within sections must be
embedded within a row as described above.

The row tag has the following attributes:

• gap-before-row, gap-after-row (optional): the gap (in pixel) above and below this row. If
not specified, the default values set for this layout are used (see default-gap-before-row
and default-gap-after-row attributes of the editor-layout tag).

field

The field tag defines the properties within this layout’s entity. The attributes within the field tag
define the data item within the database and define its display properties. Tags embedded within
the field tag define logic associated with the data item (on-entity-opened, on-entity-saved, and on-
field-exited).

• name (required, cannot be blank): This is the database name for the field; this value must
be unique within the layout. This field name is used in all references to this data item. For
data entry layouts, the field name is used as a reference in extract scripts, on-entity scripts,
and on-field scripts. For reference data entities, this field name is used to reference the
data item in search layouts, filters, load scripts, and import scripts. An entity-to-field
mapping is used in scripts. The format of the mapping in Groovy scripts is
entity[‘fieldname’]. To view an example, review the layout and script shipped with
SEER*Abs for NAACCR reference records. The layout includes a field with name =
“nameLast”. The Groovy mapping syntax for this field in the load script is
“record[‘nameLast’]”.

• label (required, cannot be blank): The field label that is displayed on the screen. This
attribute cannot be blank because it is used by the edits to reference a field on the screen.
To display a field without a label, set the show-label attribute to false.

• case (optional): If set to “upper” or “lower”, text entered for the field will be auto-converted
to the specified case. If set to “as-is”, the case of the text will be as entered. If case is not
specified for a field, the default-case assigned in the editor-layout tag is used.

SEER*Abs 1.0 System Administration 6/12/2009 31

• editable (optional): If false, the field will be displayed in read-only mode. If not specified or
set to true, the user will be able to enter values for the field.

• gap-before-label (optional): The number of pixels of white space displayed before the field’s
label. If not specified, the default-gap-before-label assigned in the editor-layout tag is
used.

• gap-after-label (optional): The number of pixels of white space displayed after the field’s
label. If not specified, the default-gap-after-label assigned in the editor-layout tag is used.

• length (optional): This is the maximum number of characters that can be entered for the
field. Length is not used for unlimited-string fields. If length is not specified, a default
value of “10” is used for date fields, a default value of “1” is used for other types of fields.
The length does not determine the width of the text box displayed on the screen, the size of
the box is determined by the shown-col attribute.

• lookup (optional): If a lookup is available for the field, the lookup ID is specified in this
attribute (lookup IDs are listed in the Lookup Definitions configuration file). A light bulb is
displayed next to the field. Click the light bulb or use the CTRL-L shortcut to open the
lookup. This attribute is ignored if the data type is unlimited-string.

• searchable (optional): This attribute must be set to “true” in order to use this as a search
field on the Search page. When a field is searchable, the field is indexed in the database. If
a non-searchable field is made searchable, you must recreate the indexes in all databases
to use the new search field (File > Recreate Indexes). Default value is 'false' if none is
provided.

• searchable-as (optional): This is the name used to index this field. If this is not specified,
the field name is used. This attribute allows you to specify a different search name so that
you can use one search field to search multiple fields (for example this is set to “race” for
'race1', 'race2', etc.).

• shown-col (optional): The field’s text box will be wide enough to show this number of
characters. The number of characters that can actually be entered into the box equals the
length attribute. If the number entered is greater than shown-col, the arrow keys can be
used to scroll through the text. If shown-col is set to 0, no box will be shown on the page
(use 0 if you only need to display a label on the screen). If no value is provided for shown-
col, the field’s default width will be used: the width of an unlimited-string field is only
limited by the contents of its row; the width of all other data types equals the length
attribute.

• shown-row (optional): This is the number of rows used to display an unlimited-string field.
If no value is provided for shown-row in a data entry layout, a single row is displayed. If no
value is provided for shown-row and the layout is read-only, the box height will auto-adjust
to the number of rows required to display the current text.

• trim (optional): This is the rule used to remove leading and trailing white space from the
field. The available values are 'right', 'left', 'both' and 'none'. If not specified, the value of
default-trim in the editor-layout tag is used.

32 6/12/2009 SEER*Abs 1.0 System Administration

• autocomplete-list (optional): This identifies the list of terms that will be presented if the
abstractor uses autocomplete to enter data in this field. If not specified, the list named
“default” will be used.

• type (optional): This is the field’s data type. If not specified, string is used by default. The
following types may be used:

o string: the field can have any value and is displayed in a single-line text box

o number: the field can only contain digits

o boolean: the field con only contain “1” or “0”

o date: the field must have a value in the format of mm/dd/yyyy. The length attribute
does not need to be specified, it defaults to 10 for date fields.

o facility: must contain a valid facility display ID ('FAC-XXXX'); use the lookup
“lkup_internal_facility” to bind the field to the special facility lookup.

o physician: must contain a valid physician display ID ('PER-XXXX'); use the lookup
“lkup_internal_physician” to bind the field to the special physician lookup.

o unlimited-string: the field can have any value and it will be shown as a multi-row
text box with the label above the box. The width and number of rows are defined
by the shown-row and shown-row attributes, respectively. The field is defined as a
CLOB in the database, the length attribute is ignored.

o checkbox: the field will be displayed as a checkbox that the user can check or
uncheck; correspond to the Boolean values of “1” and “0”. Mainly used in the user-
input layouts.

o dropdown: the field will be displayed as a drop-down box where the user can select a
particular label but can still type any free text. Dropdown fields must be bind to a
lookup; only the labels of that lookup will be shown in the choices while the
corresponding code will be saved in the entity when the user selects a label (labels
must be unique for that purpose). Dropdown fields are mainly used in search criteria
in the search module.

on-entity-opened

This tag is optional and contains a Groovy script that is run when the entity is opened in the editor.
The script should not return any value (if it does, it will be ignored).

on-entity-saved

This tag is optional and contains a Groovy script that is run when the entity is saved in the editor.
The script should not return any value (if it does, it will be ignored).

SEER*Abs 1.0 System Administration 6/12/2009 33

on-field-exited

This tag is optional and contains a Groovy script that is run when a field loses focus. The script
should not return any value (if it does, it will be ignored).

desc

This tag is optional and provides documentation about the field. That documentation will be shown
to the user when he/she clicks the field’s label or type Ctrl+N. The description should be provided
as simple HTML text (no tables, images or CSS). It is recommended to use “<![CDATA[“ and “]]>”
to avoid conflicts with the XML tags. See the abstract layout for example of descriptions.

34 6/12/2009 SEER*Abs 1.0 System Administration

Section 7: Defining User-input Layouts
User-input layouts are very similar to regular layouts; the difference is that they can be added,
removed or modified without any consequences in the application; while only the content of a
regular layout can be modified (for example the layout for AFL is the layout-afl.xml file located in
the configuration directory; deleting that file outside of the application will result in a failure during
the startup process). Because the user-input layouts can be added and removed, they have their
own directory (conf/layouts/).

The XML syntax for the user-input layout is exactly the same as the regular layouts and is not
repeated in this section.

Once a user-input layout has been defined, it can be referenced by any non-embedded script using
its file name as a parameter to a utility method:

input = env.utils.showInputDialog('input-abstract-to-abstract.xml', false)

The second parameter to that utility method is a Boolean that should be set to true if the cancel
button should appear in the input dialog. When the script is executed and reaches that line, a
dialog will be presented to the user and the script execution will block. The user will have the
opportunity to fill-in some values on the dialog and click OK or Cancel (if the cancel button has
been enabled). Here is an example of a user-input dialog that is used when copying an abstract
into a new abstract; it requests the user which fields should be copied over (note that this
particular layout uses only check-boxes but regular free-text can also be used):

The result of the call is a map containing the user input (the keys are the field names defined in
the layout and the values is what the user typed (the absence of a key in the map should be
considered as a blank value). That map can then be used in the script to take decisions (in this
case which fields to copy over).

 To add a user-input layout:

1. Log in as the administrator.

2. Open the Configuration module.

3. Click the Add Layout button in the Input Dialog Layouts section.

SEER*Abs 1.0 System Administration 6/12/2009 35

4. Provide a file name for the new layout; do not include the file extension (.xml); by
default SEER*Abs will use the prefix input- for the file name but that is not a requirement
and can be changed. If a description is provided it will be shown in the Input Dialog
Layouts table.

5. Click the OK button, the new layout will appear in the Input Dialog Layouts table. When
creating a new user-input layout, SEER*Abs uses a default empty layout as a first template.
Double click the corresponding row to edit it.

6. Customize the layout. Use the preview tab to see the result of your customization.

7. Close the editor; if prompted to save your changes, click Yes. The new layout will
automatically be reloaded and made available to the rest of the application. It is now ready
to be referenced in any non-embedded script.

To delete a user-input layout:

1. Log in as the administrator.

2. Open the Configuration module.

3. Locate the row containing the layout in the Input Dialog Layouts table.

4. Click the delete icon of that row.

5. When prompted for confirmation, click the Yes button.

36 6/12/2009 SEER*Abs 1.0 System Administration

Section 8: Configuring Searches & Filters
XML configuration files are used to define screen layouts for the Worklist table, User account
manager, the three tabs of the Search page, the facility lookup, and the physician lookup. These
configuration files are defined as layouts with two sections: criteria-layout defines the filters and
the table-layout defines the table in which the results are displayed. Filters cannot always be
defined. The search and filter layout files are listed below.

• Facility (search-facility.xml) – the layout of the Facility tab of the Search page.

• Facility Lookup (search-facility-lkup.xml) – the layout of the internal lookup for facilities.
A single search box is shown in that lookup; for that reason the criteria defined in the
configuration file is not used to show different search fields, but instead it is used to know
which fields should be searched when the user types text in the unique search box.

• Patient Data (search-patient.xml) – the layout of the Patient Data tab of the Search page.

• Physician (search-physician.xml) – the layout of the Physician tab of the Search page.

• Physician Lookup (search-physician-lkup.xml) – the layout of the internal lookup for
physicians. A single search box is shown in that lookup; for that reason the criteria defined
in the configuration file is not used to show different search fields, but instead it is used to
know which fields should be searched when the user types text in the unique search box.

• Users (search-user.xml) – the layout of the Users Account manager. No criteria can be
defined for that configuration file.

• Worklist (search-worklist.xml) – the layout of the Worklist. The filter in the worklist cannot
be customized but it does use a free-text search box. The criteria defined in this
configuration file is used to know which fields should be searched when the user types text
in that free-text search box.

The searches in SEER*Abs are implemented using an external library called Lucene
(http://lucene.apache.org/java/docs).

To modify a search layout:

1. Log in as the administrator.

2. Open the Configuration module.

3. Locate the layout that needs to be modified in the Searches and Filters section.

4. Double-click the row containing that layout to open it in the Configuration File Editor.

5. Modify the XML; use the preview tab to see the changed criteria (some layouts do not use
the criteria on the screen and the preview is not relevant); the results table is also shown
with two empty rows.

6. Once done, close the editor.

http://lucene.apache.org/java/docs�

SEER*Abs 1.0 System Administration 6/12/2009 37

7. If prompted to save the changes, click Yes.

8. The search layout is automatically reloaded in the application.

XML Structure for Searches & Filters

<search-layout>

 <criteria-layout>

 <row>

 <field/>

 </row>

 </criteria-layout>

 <table-layout>

 <column>

 <on-field-populated/>

 </column>

 </table-layout>

</search-layout>

search-layout

This is the root XML tag. It is required and can only be defined once. It has the following
attributes:

• max-num-results: the maximum number of results that the search can return (use -1 for no
maximum).

• desc: a short description for the configuration file.

criteria-layout

Use the criteria-layout tag to define the filters shown at the top of the physician lookup, facility
lookup, and the search tabs. This tag is ignored in the layouts for the Worklist and User Account
manager. The criteria-layout tag has the following attributes:

• default-case (optional): If this attribute’s value is upper or lower, the text entered in each
search field will be converted unless a case attribute is specified in the field tag. The search
algorithms are not case sensitive. Valid values for this attribute are 'upper', 'lower' and 'as-
is'. If a value is not specified, “upper” will be used by default.

• default-trim (optional): Leading and/or trailing white space will be removed as specified by
this rule. The following values are valid: “right”, “left”, “both” and “none”. If a value is not
specified, “right” is used as the default-trim. You may over-ride this attribute by setting the
trim attribute for individual fields

38 6/12/2009 SEER*Abs 1.0 System Administration

• default-gap-before-label (optional): The number of pixels of white space displayed to the
left of each search field label. 10 pixels are used if this attribute is not specified. You may
over-ride this attribute by setting the gap-before-label attribute for individual fields.

• default-gap-after-label (optional): The number of pixels of white space displayed to the
right of each search field label. 3 pixels are used if this attribute is not specified. You may
over-ride this attribute by setting the gap-after-label attribute for individual fields.

• default-gap-before-row, default-gap-after-row (optional): The number of pixels of white
space displayed above and under each row of search fields. If not specified, 5 pixels are
used by default for each attribute. You may over-ride these attributes by setting the gap-
before-row and gap-after-row attributes for individual rows. The total space between row1
and row2 = (gap after row1 + gap before row2).

row

Multiple rows of search fields can be displayed. The row tag contains a set of fields and has the
following attributes:

• gap-before-row, gap-after-row (optional): the gap (in pixel) before and after this row. If
not specified, the default values set for this layout are used (see default-gap-before-row
and default-gap-after-row attributes of the criteria-layout tag).

field

The field tag defines the properties used to search. The field tag has the following attributes:

• name (required): This is the database name for the field. In order for a search to be
successful for this field, this value must correspond to the name or searchable-as attribute
of a searchable field. Searchable fields are defined in the layout or layouts associated with
the search (for example, reference record and patient data layouts are all associated with
the Patient Data search layout).

• label: The field label that is displayed on the screen. If not label is provided, the default
“Label” is used.

• show-label: if false then the label won’t be shown on the screen.

• length (optional): This is the maximum number of characters that can be entered for the
field. If length is not specified, a default value of “10” is used for date fields; a default
value of “1” is used for other types of fields. The length does not determine the width of
the text box displayed on the screen, the size of the box is determined by the shown-col
attribute.

• type (optional): the type of the field value. The available types are

o string: the field can have any value and is displayed in a single-line text box

o number: the field can only contain digits

o boolean: the field con only contain “1” or “0”

SEER*Abs 1.0 System Administration 6/12/2009 39

o date: the field must have a value in the format of mm/dd/yyyy. The length attribute
does not need to be specified, it defaults to 10 for date fields.

o facility: must contain a valid facility display ID ('FAC-XXXX'); use the lookup
“lkup_internal_facility” to bind the field to the special facility lookup.

o physician: must contain a valid physician display ID ('PER-XXXX'); use the lookup
“lkup_internal_physician” to bind the field to the special physician lookup.

o checkbox: the field will be displayed as a checkbox that the user can check or
uncheck; correspond to the Boolean values of “1” and “0”.

o dropdown: the field will be displayed as a drop-down box where the user can select a
particular label but can still type any free text. Dropdown fields must be bind to a
lookup; only the labels of that lookup will be shown in the choices while the
corresponding code will be saved in the entity when the user selects a label (labels
must be unique for that purpose).

• shown-col (optional): The field’s text box will be wide enough to show this number of
characters. The number of characters that can actually be entered into the box equals the
length attribute. If the number entered is greater than shown-col, the arrow keys can be
used to scroll through the text. If shown-col is set to 0, no box will be shown on the page
(use 0 if you only need to display a label on the screen). If no value is provided for shown-
col, the field’s default width will be used: the width of an unlimited-string field is only
limited by the contents of its row; the width of all other data types equals the length
attribute.

• editable (optional): If false, the field will be displayed in read-only mode. If not specified or
set to true, the user will be able to enter values for the field.

• case (optional): If set to “upper” or “lower”, text entered for the field will be auto-converted
to the specified case. If set to “as-is”, the case of the text will be as entered. If case is not
specified for a field, the default-case assigned in the criteria-layout tag is used.

• trim (optional): This is the rule used to remove leading and trailing white space from the
field. The available values are 'right', 'left', 'both' and 'none'. If not specified, the value of
default-trim in the criteria -layout tag is used.

• gap-before-label (optional): The number of pixels of white space displayed before the field’s
label. If not specified, the default-gap-before-label assigned in the criteria -layout tag is
used.

• gap-after-label (optional): The number of pixels of white space displayed after the field’s
label. If not specified, the default-gap-after-label assigned in the criteria -layout tag is
used.

• lookup (optional): If a lookup is available for the field, the lookup ID is specified in this
attribute (lookup IDs are listed in the Lookup Definitions configuration file). A light bulb is
displayed next to the field. Click the light bulb or use the CTRL-L shortcut to open the
lookup.

40 6/12/2009 SEER*Abs 1.0 System Administration

• search-type (required): the type of search that should be used for this field, available values
are “exact”, “contains” and “fuzzy”. Fuzzy match results include partial and pattern-based
matches. The fuzzy search algorithms are implemented via the Apache Lucene text search
library (see the documentation section of http://lucene.apache.org/java/docs for more
information). If fuzzy matching is used, the results are sorted to show matches with the
highest scores first.

table-layout

This tag is used to configure the table containing the results of a search. It contains a collection of
columns and has no attributes.

column

This tag represents a single column in the search results table. The values in the column can be
formatted via a script defined in an on-field-populated tag. The column tag has the following
attributes:

• title (required) - the column header.

• name (required) - the database name for the field displayed in the column. It must
correspond to the name attribute of a field in the corresponding layout (or layouts).

• center (optional) - If set to “true”, the values displayed in the column will be centered. If
“false”, the values will be left-justified. If not specified, “false” is used by default.

• width (optional) - the initial size of the column. Possible values are: “min” - use as little
space as possible, based on the data in the column; “max” - used as much space as
possible; and “fixed” - column should not be resizable and will always have the same width;
see 'length' attribute). Default is 'max' if none is provided.

• length (optional) - The actual size (width) of the column in pixels. This attribute is only
used if the width attribute is set to “fixed”.

• lookup (optional) - If a lookup is available for the field, the lookup ID is specified in this
attribute (lookup IDs are listed in the Lookup Definitions configuration file). The column
data are formatted based on this lookup.

• default (optional) – default to use when a value for this particular column is blank.

• default-sort (optional) – by default, use this column as a default sorting on the table;
available values are “ascending” and “descending”.

on-field-populated

This tag is optional and contains a Groovy script that is run for all values in the column. The script
must return a string value (or null). The value returned by the script is the formatted value
displayed in the column. Keep in mind that running a script on each value of a particular column
for a large table can be slow and resource demanding.

http://lucene.apache.org/java/docs�

SEER*Abs 1.0 System Administration 6/12/2009 41

Section 9: Defining Scripts
The Scripts section of the Configuration Manager contains Groovy scripts to create extract files,
load reference data from external files or directly from a database, and utility scripts used by the
system to support AFLs and edits. Groovy is a scripting language for the Java platform. The
Internet has several Groovy references including the Groovy home page at
http://groovy.codehaus.org. The official site contains a lot of information, including tutorials for
people new to Groovy.

SEER*Abs scripts are listed in the Configuration Manager; because so many scripts are used, they
have been grouped by family. The Family column in the Scripts table contains the following values:

• Action: scripts that are run as a result of a user action (creating a record, saving a record,
updating an AFL, etc…)

• Extract: scripts that create export files containing AFL updates or records created in
SEER*Abs. The extract files are used to update the registry’s data management system
with the new data.

• Import: scripts that load reference data from files.

• Load: scripts that load reference data via direct queries to the registry’s main database.

• Upload: scripts that transfer data directly from SEER*Abs to the registry’s main database.
The default configuration provided with SEER*Abs does not contain an implementation for
those scripts.

• Generic: scripts that are not part of any other families.

The data types are AFL, physician, facility, patient (indicating that it the script deals with patient
sets), and record. Records also list a subtype in parenthesis. The Generic family usually doesn’t
apply to a particular type.

To modify a script:

1. Log in as the administrator.

2. Open the Configuration module.

3. Locate the script that needs to be modified in the Scripts section.

4. Double-click the row containing that script to open it in the Configuration File Editor.

5. Modify the Groovy code; use the Validate button to make sure the code is valid. There is
currently no way to validate the logic of the code; the script has to be tested in the
application for that purpose.

6. Once done, close the editor.

7. If prompted to save the changes, click Yes.

http://groovy.codehaus.org/�

42 6/12/2009 SEER*Abs 1.0 System Administration

8. The script is automatically reloaded in the application.

SEER*Abs 1.0 System Administration 6/12/2009 43

Section 10: Defining Action Scripts
Action scripts are very similar to regular scripts; the difference is that they can be added, removed
or modified without any consequences in the application; while only the content of a regular script
can be modified (for example the extract script for abstract is called script-extract-record-
abstract.groovy; deleting that file outside of the application will result in a failure during the startup
process). Because the action scripts can be added and removed, they have their own directory
(conf/scripts/).

Writing action script is not different than writing regular scripts; the scripting language (Groovy,
see http://groovy.codehaus.org) is identical. One minor distinction is that the regular scripts
usually receive data in their context (for example, the script that runs when a record is saved
receives that record in its context so it can be modified by the script) while the action script do not
receive any data in their context (since there are triggered by the user selecting them from a menu
item).

Once an action script has been defined, it is available in the Action menu. The default
configuration provided with SEER*Abs contains a single action script called “Purge Entities”; it
deletes from the database any AFL or RECORD that have a status of ARCHIVED.

To add an action script:

1. Log in as the administrator.

2. Open the Configuration module.

3. Click the Add Script button in the Action Scripts section.

4. Provide a file name for the new layout; do not include the file extension (.groovy); by
default SEER*Abs will use the prefix action- for the file name but that is not a requirement
and can be changed. A menu label must be provided; this is the label as it will appear in
the menu item under the Action menu. If a description is provided it will be shown in the
Action Scripts table.

5. Click the OK button, the new script will appear in the Action Scripts table. When creating a
new action script, SEER*Abs uses a default empty script as a first template. Double click
the corresponding row to edit it.

6. Customize the script.

7. Close the editor; if prompted to save your changes, click Yes. The new script will
automatically be reloaded and made available to the rest of the application. It is now ready
to be called from the Action menu.

To delete an action script:

1. Log in as the administrator.

2. Open the Configuration module.

http://groovy.codehaus.org/�

44 6/12/2009 SEER*Abs 1.0 System Administration

3. Locate the row containing the script in the Action Scripts table.

4. Click the delete icon of that row.

5. When prompted for confirmation, click the Yes button.

SEER*Abs 1.0 System Administration 6/12/2009 45

Section 11: Defining Lookups
Lookup tables provide a list of valid values for a field. Typically, this is a list of codes and a user-
friendly description of the code. When a lookup is associated with a field in a layout, a light bulb is
displayed next to the field. The lookup table is displayed when the user clicks the light bulb, they
may then select a value from the list.

SEER*Abs lookup tables are defined in a single configuration file (lookups.xml). This file includes
definitions for lookups that you create and internal lookups required by the system (“lkup_internal”
prefix). All internal lookups are required. You may add or modify the entries in a few of the
internal lookups. Please refer to the comments in the Lookup configuration file for more
information related to the internal lookups.

To modify, add or delete a lookup:

1. Log in as the administrator.

2. Open the Configuration module.

3. Double-click the unique row of the Lookups section to open the corresponding file in the
Configuration File Editor.

4. Modify the file; make sure you take into account the comments on the top of the file as
some lookups cannot be modified while others can be modified but not removed.

5. Once done, close the editor.

6. If prompted to save the changes, click Yes.

7. The lookups are automatically reloaded in the application.

XML Structure for Lookups

<lookup-definitions>

 <lookup>

 <entry/>

 </lookup>

</lookup-definitions>

lookup-definitions

This is the root XML tag for Lookup Definitions. This tag is required and can only be defined once
in the file. There are no attributes for the lookup-definitions tag.

lookup

The lookup tag defines a single lookup in the application. It contains a collection of entries. The
lookup tag has the following attributes:

46 6/12/2009 SEER*Abs 1.0 System Administration

• id (required) – This is the lookup’s name, it must be a unique identifier. A lookup is
assigned to a field by specifying this ID in the field’s lookup attribute.

• external (optional): whether or not this lookup is defined in the XML file or is loaded through
one of the scripts from the synchronization module. The available values are 'true' and
'false'. Default value is 'false' if none is provided.

• disable-strict-validation (optional): whether or not strict validation should be disabled for
this lookup. If strict validation on lookups is on, a wrong value typed in a field that contains
a lookup will generate a critical error. Strict validation on lookups can be turn on and off in
the main configuration. If strict validation is off, this attribute won’t have any effect. If it is
on and this attribute is set to “true” for a particular lookup, then strict validation will be
disabled for that lookup. It is useful to disable the strict validation for some lookups that
have combined values. For example, an histology lookups could have codes that are a
combination of the histology and behavior (“8000/2”); when selecting a value, the “8000”
part should be assigned to the histology field while the “2” part should be assigned to the
behavior field. Such a lookup would be bind to the histology field, but strict validation
would always fail because the histology value by itself would never be found in the lookup.
The available values for this attribute are 'true' and 'false'. Default value is 'false' if none is
provided.

entry

The entry tag defines the mapping between the true value (the code) and the formatted text (the
label). As an example, consider a mapping in a race lookup: code=”01”, label=”race”. The entry
tag has the following attributes:

• code (required) – absolute value that will be entered in a field

• label (required) – formatted text that describes the code

SEER*Abs 1.0 System Administration 6/12/2009 47

Section 12: Defining Edits
Computerized edits are integrated into SEER*Abs to test the validity of data. In SEER*Abs, the
edits are executed on records created in SEER*Abs, they are not executed on reference data. The
following sets of edits are available in SEER*Abs:

• Internal system edits enforce data type constraints in layouts. The system edits cannot be
modified.

• SEER*Abs edits are defined and maintained by registry staff. Samples are provided in the
configuration file shipped with SEER*Abs. SEER*Abs edits apply to any record types
created in the application.

• SEER Edits cover fields submitted to SEER and represent the edits implemented in the
SEER*Edits software. The SEER edits are defined in XML files provided and maintained by
the SEER*Edits development team. The SEER edits configuration file cannot be modified.
By default SEER*Edits are not loaded in SEER*Abs but that behavior can be changed
through a configuration variable in the main configuration file. If loaded, the SEER*Edits
are applied only to abstract records.

SEER*Abs edits are implemented in Groovy, the scripting language for the Java platform that is
also used for SEER*Abs scripts. Edits uses a small subset of the Groovy syntax. A working
knowledge of regular expressions and Groovy logic statements are needed to maintain edits in
SEER*Abs. To define a new edit, it is recommended that you copy-and-paste the code from an
existing edit and use that code as a template.

Guidelines for writing the Groovy code for a registry edit:

• An edit error is triggered if the code returns FALSE for the record or patient set. The edit
passes if the code returns TRUE.

• Use the Groovy code of a similar edit as a template.
• Contexts are defined within the context tag of the XML. Many examples are provided in the

SEER edits XML file. Your Groovy code may include references to contexts that you define
and the contexts defined for the SEER edits.

• A context is a Java naming system. Contexts are used to define arrays, hash tables, and
functions used by the edits. For example, there are a large number of contexts defined for
the SEER*Edits. Primarily, these represent data tables required by the SEER Edits logic.
Contexts are defined within the XML context tag. Many examples are provided in the SEER
edits XML file. Your Groovy code may include references to contexts that you define and
the contexts defined for the SEER edits.

48 6/12/2009 SEER*Abs 1.0 System Administration

Section 13: Defining Autocompletion Word Lists
While entering text in a field, an abstractor may press Ctrl+Space to use the autocomplete feature.
Autcomplete is available for string and unlimited-string fields in record and AFL layouts.

SEER*Abs supports multiple sets of autocomplete terms. Separate lists may be designated for
different fields, for example, there may be one list for histology and another for primary site. Or
terms from all lists may be made available in a field, for example, all terms are typically made
available when editing large text fields. When a field does not define any autocomplete list in the
layout definition, it will automatically use the “default” list. For that reason, there must always be
a list with a name “default” define in the autocompletion word lists.

To modify, add or delete a autocompletion lists:

1. Log in as the administrator.

2. Open the Configuration module.

3. Double-click the unique row of the Autocomplete Terms section to open the corresponding
file in the Configuration File Editor.

4. Modify the file; use the Validate button to make sure the XML is correct.

5. Once done, close the editor.

6. If prompted to save the changes, click Yes.

7. The lists are automatically reloaded in the application.

XML Structure for Autocompletion Word Lists

The following the available XML tags and their hierarchy in the Autocomplete configuration file.

<auto-complete-terms>

 <list>

 <import-list/>

 <term/>

 </list>

</ auto-complete-terms >

auto-complete-terms

This is the root XML tag. It is required, can only be defined once, and has no attributes.

list

Multiple lists may be defined. Each list may contain import-list tags and/or term tags; or you may
define an empty list. The list tag has one attribute:

SEER*Abs 1.0 System Administration 6/12/2009 49

• name (required): The list identifier. Layout scripts may associate a specific list with a field
using the autocomplete-list attribute of the field tag. You must define a list named “default”
which will be used for fields that do not have an autocomplete-list attribute (the default list
may be empty, but it must exist).

import-list

Use this tag to create one list based on other lists. In the example below, the default list does not
have its own set of terms but it inherits the terms from the histology and site lists.

 <list name=”default”>

 <import-list>histology</import-list>

 <import-list>site</import-list>

 </list>

term

Use this tag to define a term. Single words or phrases may be used.

50 6/12/2009 SEER*Abs 1.0 System Administration

Section 14: Managing User Accounts
SEER*Abs supports a single administrative user account (username = admin) and multiple
abstractor accounts. The admin user account is created during the initial installation on the
administrator’s computer. The system administrator configures SEER*Abs and creates a registry-
specific installation file. Registry managers and the SEER*Abs system administrator must define a
protocol for maintaining abstractor accounts.

• A single abstractor account may be created as SEER*Abs is installed on each workstation.
The abstractor using that computer would then complete the installation by defining a
password known only to them.

• Alternatively, the system administrator may create accounts for all abstractors during the
initial configuration. A protected list of unique passwords would be created. Accounts for
all abstractors would then be installed on all workstations.

There is no method for synchronizing the user accounts on multiple installations of SEER*Abs.
Once the system is deployed, you will need to add and remove users from each installation; or
modify a central version and re-install the software.

To add, modify, or delete user accounts:

1. Login as the administrator.

2. Open the Users Manager.

3. To add a new account, click Add User.

a. Provide a username and the initial password for the new user. The password must
contain at least 1 lower-case letter, 1 upper-case letter, and either a digit or a
special character. This is the password that the user will enter the first time they
login. They will then be prompted to specify a password known only to them.

b. You may enter values for the user-defined fields (optional). These fields are defined
in the User layout configuration files.

c. Click Save.

4. To delete a user account, click the X icon associated with the user account. The admin
account cannot be deleted.

5. To define a new password for an account:

a. Double-click the username or click the edit icon.

b. Click Change Pswd

c. Enter the new Password.

d. Verify the new password by re-entering it into the Repeat Password field.

SEER*Abs 1.0 System Administration 6/12/2009 51

6. To set or change the values of registry fields:

a. Double-click the username or click the edit icon.

b. Enter new values for the registry defined fields.

52 6/12/2009 SEER*Abs 1.0 System Administration

Section 15: SEER*Abs and Sensitive Data
SEER*Abs is a tool designed to handle sensitive data. The confidentiality of that data is critical. A
lot of resources can be found online about good practices when it comes to handle sensitive data;
one of those resources is the NIH website (http://www.nih.gov/).

SEER*Abs provides the following mechanism to keep the data secured:

• Strong passwords: any passwords defined for the admin user or regular users must be at
least 8 characters long and must contain 1 lower-case letter, 1 upper-case letter and either
a digit or a special character.

• Database encryptions: Derby is a file-based Java database; the content of the tables is
saved as binary data and cannot be read through any text editor. Those binary files are
also encrypted by Derby using the Data Encryption Standard (DES) 56 bits algorithm. That
algorithm is tied to a key that is required to make any interaction with the databases.
Without the key, any external programs (implemented in Java or other languages) will be
unable to create a connection to the database.

When evaluating the data confidentiality aspects in SEER*Abs, keep the following in mind:

• SEER*Abs does not enforce changing the password after a certain period of time; it should
be a Registry policy to do so.

• Once an extract has been generated by SEER*Abs, it will be located in the output directory
(or another directory if the user changed that default one). It won’t be encrypted and
readable by any text editor. It is the user’s responsibility to move the file right away to a
secured location in the Central Registry. Note that the extraction is done by script, which
means that even if the default scripts provided with SEER*Abs do not encrypt the content of
the files, they can be modified by the Registry to do so.

• When synchronizing by directly accessing another database, SEER*Abs creates a connection
to that database. Any data going through that connection is NOT encrypted. That means
the synchronization needs to be done at the Central Registry (behind a firewall), or through
a secured VPN.

• The database encryption is not unbreakable (and to some extend is not very strong). It is
recommended to encrypt the entire hard-drive of the laptop (or any other device used to
run the application).

http://www.nih.gov/�

SEER*Abs 1.0 System Administration 6/12/2009 53

Appendix 1: Utility Functions for Scripts
convertDate

This method can be used in any script. Converts the incoming date into a string representation of
the corresponding java time.

param1: date to convert, format must be 'yyyymmddhhmmss'

deleteEntities

This method can be used in any script. Deletes all the entities for the passed type and subtype
(admin user cannot be deleted through this method)

• param1: Entity type (required)

• param2: Entity subtype (use null if not applying)

deleteEntities

This method can be used in any script. Deletes the passed entity (admin user cannot be deleted
through this method)

• param1: Entity type (required)

• param2: Entity subtype (use null if not applying)

• param3: Entity to delete

deleteEntity

This method can be used in any script. Deletes the passed entity (admin user cannot be deleted
through this method)

• param1: Entity type (required)

• param2: Entity subtype (use null if not applying)

• param3: Entity to delete

disableButton

This method can be used only in scripts from the 'Action' family (on-record-created, etc...).
Disables the passed button in the current editor (button will be re-enabled once the editor is
closed)

54 6/12/2009 SEER*Abs 1.0 System Administration

• param1: requested button

displayEnv

This method can be used in any script. Displays the available environment variables in the current
progress window or in the log if no window is available.

formatDateValue

This method can be used in any script. Formats the passed date value (a string representation of
the Java time, see 'System.currentTimeMillis()'); result is mm/dd/yyyy.

• param1: value to format

• param2: if true, the hours and minutes will be included

formatValue

This method can be used in any script. Formats the passed value using a lookup; if the lookup
does not contain the value it is returned as-is.

• param1: value to format

• param2: existing lookup ID

getConfVariable

This method can be used in any script. Returns the value of the requested configuration key.

• param1: key from the main configuration file (seerabs.properties)

getCurrentDay

This method can be used in any script. Returns the current day as a string; value is left-zero
padded to be 2 characters long.

getCurrentFacility

This method can be used in any script. Returns the current facility as a map of property/values or
null if no facility was used during the login process.

SEER*Abs 1.0 System Administration 6/12/2009 55

getCurrentMonth

This method can be used in any script. Returns the current month as a string; value is left-zero
padded to be 2 characters long.

getCurrentUser

This method can be used in any script. Returns the currently logged user as a map of
property/values.

getCurrentValue

This method can be used only in scripts embedded in XML layouts. Returns the value (possibly
null) of the field to which this Groovy snippet is attached

getCurrentValue

This method can be used only in scripts embedded in table definition files. Returns the value
(possibly null) of the column to which this Groovy snippet is attached for the entity displayed in the
current row.

getCurrentYear

This method can be used in any script. Returns the current year as a string.

getEntityByDisplayId

This method can be used in any script. Returns the entity corresponding to the passed display ID
or null if it is not found.

• param1: Entity type (required)

• param2: Entity subtype (use null if not applying)

• param3: display ID

getLookupById

This method can be used in any script. Returns the lookup (map of code/value) corresponding to
the requested ID, throws exception is lookup is not found or empty.

56 6/12/2009 SEER*Abs 1.0 System Administration

• param1: Lookup ID

getPropertiesFromLayout

This method can be used in any script. Returns the properties defined in the layout for the pased
type and subtype

• param1: Entity type (required)

• param2: Entity subtype (use null if not applying)

• param3: if true the read-only properties will be included, they won't otherwise

getRawLookupValue

This method can be used only in scripts embedded in XML layouts. Returns the raw value that was
selected by the user; useful in cases where the codes define in the lookup are a combination of
several values (for example histology/behavior represented as 8000/2)

getSeerabsVersion

This method can be used in any script. Returns the application current version number.

getValue

This method can be used only in scripts embedded in XML layouts. Returns the value (possibly
null) of the requested field

• param1: requested field name

getValue

This method can be used only in scripts embedded in table definition files. Returns the value
(possibly null) of the requested field for the entity displayed in the current row.

• param1: requested field name

hideButton

This method can be used only in scripts from the 'Action' family (on-record-created, etc...). Hides
the passed button in the current editor (button will be visible again once the editor is closed)

SEER*Abs 1.0 System Administration 6/12/2009 57

• param1: requested button

jumpToField

This method can be used only in scripts embedded in XML layouts. Changes the focus to be on the
requested field

• param1: requested field name

leftPad

This method can be used in any script. Left-pads the passed value.

• param1: the value to pad

• param2: the number of characters the result needs to be

• param3: the string to use as a padding character

log

This method can be used in any script. Display the passed message in the current progress
window (if there is one) and in the log.

• param1: line to display

rightPad

This method can be used in any script. Right-pads the passed value.

• param1: the value to pad

• param2: the number of characters the result needs to be

• param3: the string to use as a padding character

saveEntities

This method can be used in any script. Saves the passed entities (admin user cannot be saved
through this method)

• param1: Entity type (required)

• param2: Entity subtype (use null if not applying)

58 6/12/2009 SEER*Abs 1.0 System Administration

• param3: List of entities to save

saveEntity

This method can be used in any script. Saves the passed entity (admin user cannot be saved
through this method)

• param1: Entity type (required)

• param2: Entity subtype (use null if not applying)

• param3: Entity to save

searchEntities

This method can be used in any script. Returns the entities corresponding to the passed search
criteria.

• param1: Entity type (required)

• param2: Entity subtype (use null if not applying)

• param3: search criteria, see uses Lucene syntax (http://lucene.apache.org/java/docs).

• param4: max result (-1 for all results)

setCurrentValue

This method can be used only in scripts embedded in XML layouts. Sets the value of the field to
which this Groovy snippet is attached

• param1: value to set

setEditorToReadOnly

This method can be used only in scripts from the 'Action' family (on-record-created, etc...). Sets
the current editor in read-only mode (that mode will be reset once the editor is closed)

setValue

This method can be used only in scripts embedded in XML layouts. Sets the value of the requested
field

SEER*Abs 1.0 System Administration 6/12/2009 59

• param1: requested field name

• param2: value to set

showConfirmationDialog

This method can be used in any script. Shows a confirmation dialog with a customized message
and a yes/no option; returns true if the user accepted, false otherwise.

• param1: message to display

showInputDialog

This method can be used in any script. Shows an input dialog based on a customized input layout
filename; returns the input values as a map of field name/field value; one of those value is
'closingStatus' which is set to 'ok' or 'cancel' depending which button the user clicked. If a field is
not returned, null should be assumed for its value.

• param1: input layout filename

• param2: true if the cancel button should be shown, false otherwise

updateEntities

This method can be used in any script. Updates the passed entities (admin user cannot be updated
through this method)

• param1: Entity type (required)

• param2: Entity subtype (use null if not applying)

• param3: Entity to update

updateEntity

This method can be used in any script. Updates the passed entity (admin user cannot be updated
through this method)

• param1: Entity type (required)

• param2: Entity subtype (use null if not applying)

• param3: Entity to update

60 6/12/2009 SEER*Abs 1.0 System Administration

updateLookup

This method can be used in any script. Saves or updates the passed lookup

• param1: lookup ID

• param2: lookup content (map of code/label)

	SEER*Abs: System Administration Reference
	Section 1: Installing SEER*Abs
	Overview of SEER*Abs Files and Directories Structure

	Section 2: SEER*Abs Data Types
	Subtypes
	Defining New Properties

	Section 3: Defining a Workflow
	Section 4: Configuring SEER*Abs
	Checklist for Reviewing the SEER*Abs Default Configuration

	Section 5: Main Configuration
	Section 6: Defining Layouts
	Section 7: Defining User-input Layouts
	Section 8: Configuring Searches & Filters
	Section 9: Defining Scripts
	Section 10: Defining Action Scripts
	Section 11: Defining Lookups
	Section 12: Defining Edits
	Section 13: Defining Autocompletion Word Lists
	Section 14: Managing User Accounts
	Section 15: SEER*Abs and Sensitive Data
	Appendix 1: Utility Functions for Scripts

SEER*Abs

System Administration Reference

May 15, 2009

1SEER*Abs

1System Administration Reference

1May 15, 2009

5Section 1: Installing SEER*Abs

6Overview of SEER*Abs Files and Directories Structure

10Section 2: SEER*Abs Data Types

11Subtypes

11Defining New Properties

14Section 3: Defining a Workflow

17Section 4: Configuring SEER*Abs

18Checklist for Reviewing the SEER*Abs Default Configuration

21Section 5: Main Configuration

27Section 6: Defining Layouts

34Section 7: Defining User-input Layouts

36Section 8: Configuring Searches & Filters

41Section 9: Defining Scripts

43Section 10: Defining Action Scripts

45Section 11: Defining Lookups

47Section 12: Defining Edits

48Section 13: Defining Autocompletion Word Lists

50Section 14: Managing User Accounts

52Section 15: SEER*Abs and Sensitive Data

53Appendix 1: Utility Functions for Scripts

53deleteEntities

53deleteEntities

53deleteEntity

53disableButton

54displayEnv

54formatDateValue

54formatValue

54getConfVariable

54getCurrentDay

54getCurrentFacility

55getCurrentMonth

55getCurrentUser

55getCurrentValue

55getCurrentValue

55getCurrentYear

55getEntityByDisplayId

56getLookupById

56getPropertiesFromLayout

56getRawLookupValue

56getSeerabsVersion

56getValue

56getValue

57hideButton

57jumpToField

57leftPad

57log

57rightPad

58saveEntities

58saveEntity

58searchEntities

58setCurrentValue

59setEditorToReadOnly

59setValue

59showConfirmationDialog

59showInputDialog

59updateEntities

60updateEntity

60updateLookup

Section 1: Installing SEER*Abs

The registry’s first installation of SEER*Abs should be on the workstation of the registry’s SEER*Abs system administrator. The system administrator will configure SEER*Abs and create a registry-specific installation file that will be distributed to other users at the registry.

To install and configure SEER*Abs:

1. The SEER*Abs software requires Java 1.6.0 or later. Follow these steps to determine the version of Java installed on your computer:

a. Enter java -version at a DOS prompt.

b. If you do not have the required version, uninstall the existing version of Java and install the latest version. More information related to the appropriate version of Java is provided on the SEER*Abs Web site (seer.cancer.gov/seerdms/portal/seerabs).

2. Install SEER*Abs by extracting the distribution zip file into a new folder (for example, c:\seerabs). Sub-folders within seerabs.zip must be retained. To achieve this you may need to set an option in your decompression software (in WinZip, “use folder names” must be checked). Once the distribution file is unzipped, the newly created folder should contain the following files and directory:

[image: image1.png]

3. Start the SEER*Abs program.

a. Either browse to the installation folder and double-click seerabs.exe

b. Or use the Windows Run command to execute SEER*Abs.

4. Define the password for the admin user account.

a. Enter a value in Password. Passwords must contain at least 1 lower-case letter, 1 upper-case letter, and either a digit or a special character. Verify the new password by re-entering it into the Repeat Password field.

b. Click Login.

5. The system will auto-create a SEER*Abs database and implement default configuration settings. At this point, the database will be empty except that it will contain a single user account for the system administrator. SEER*Abs only supports one administrator account and its username is always admin.

6. You are now logged in as the admin user. Define the record layouts and configure other system components as described in other sections of this manual.

7. Zip the configured version of SEER*Abs and install it on registry users’ laptops or workstations. A separate instance of the software must be deployed for each workstation. Users cannot use the same executable or database installed on a networked drive.

8. Create a shortcut to SEER*Abs on the user’s desktop or in the system tray.

Overview of SEER*Abs Files and Directories Structure

After logging in for the first time, several default directories will appear. The resulting directory structure should look like this:

[image: image2.png]

The following table provides a description of each file and directory.

		File/Directory

		Description

		seerabs

		Root directory, there is no restriction about where it needs to be located on the file system when SEER*Abs is installed, except that it must be in a writable directory (since SEER*Abs will automatically create sub-directories the first time it is started).

		lib

		Library directory, it contains all the libraries (jar files) required by the application. Updating the application will involve updating some of the jar files, added some new ones and deleting some old ones.

		lib/drivers

		Sub-directory in the library directory. It contains the jar files necessary for SEER*Abs to communicate with other databases (drivers). Those drivers libraries just need to be dropped in this directory; SEER*Abs (after being restarted) will parse the directory and load any drivers present in it. Once loaded, the drivers will enable the synchronization scripts to communicate with a remote database.

Only one set of drivers is shipped with the SEE*Abs release: ojdbc6.jar; that drivers file enables SEER*Abs to communicate with Oracle databases.

		conf

		Configuration directory. It contains any files related to the configuration of SEER*Abs. Copying “a configuration” from one SEER*Abs installation to another one means copying this entire directory and overriding the target configuration directory with it.

The files contained in this directory are expected by the application; they should not be renamed.

While files from this directory can be modified through some external programs, it is recommended to use the build-in file editor, which contains validation features. If a file is corrupted by modifying it outside of the application, SEER*Abs will fail the login process.

		conf/actions

		Sub-directory of the configuration directory that contains user-defined scripts (called actions in SEER*Abs). Once defined, those actions are available through the “Action” menu.

One special file in that directory is the “actions-info.data” file. It contains information about each user-defined script and which label should be used in the “Action” menu. The file should never be modified as SEE*Abs uses it internally and a corrupted file might prevent the application from starting.

		conf/layouts

		Sub-directory of the configuration directory that contains user-defined input layouts. Once defined, those layouts can be used in scripts to request user input.

		conf/manuals

		Sub-directory of the configuration directory that contains manuals.

One special file in that directory is the “manuals-info.data” file. It contains information about each manual file and which label should be used in the “Help” menu. The file should never be modified as SEE*Abs uses it internally and a corrupted file might prevent the application from starting.

		db

		Database directory. SEER*Abs uses the Derby Java database (http://db.apache.org/derby/).

SEER*Abs uses two types of data: regular data and reference data. The first set of data is extremely important since it corresponds to work done by abstractors. The second set of data is far less important since it is read-only data that can always be recovered by fetching it again from the Central Registry.

For that reason, the SEER*Abs database has been split into two databases: a main database and a reference database. Those correspond to the sub-directories described hereafter.

Derby is a file-based database. It is therefore technically possible to move an entire database (main or reference) from one SEER*Abs installation to another one by copying the appropriate sub-directory. When doing so, it is important to copy the corresponding indexes sub-directory or the searches might not return correct results in the target installation. If the indexes are not available, then at the very least they should be deleted from the target installation in which case SEER*Abs will automatically re-create them when starting up.

		db/seerabs

		Main database. Contains data that cannot be lost. SEER*Abs provides a backup mechanism that should be used frequently. It also provides a corresponding restore mechanism.

		db/seerabs-indexes

		Main database indexes. This directory should never be apart from the main database directory. The indexes are created by a search library called Lucene (http://lucene.apache.org/java/docs/) and should never be modified manually.

		db/seerabs-ref

		Reference database. Contains data that can be recovered by synchronizing SEER*Abs with the main registry again. There is no backup/restore mechanism for this database, but SEER*Abs provide an option to copy the entire database (and its index directory) from a chosen directory. This is useful if an IT person wants to download the reference data once (since it can be a very slow process) and make the reference database available to all the other SEER*Abs installations on a shared network.

		db/seerabs-ref-indexes

		Reference database indexes. This directory should never be apart from the reference database directory. The indexes are created by a search library called Lucene (http://lucene.apache.org/java/docs/) and should never be modified manually.

		db/seerabs-db.log

		Database log files. Any errors will be logged in the SEER*Abs log files, but Derby also creates its own log.

		input

		Input directory. When importing files through the synchronization module, SEER*Abs will open this directory by default when requesting a location for the file(s) to import. This is only a default and can be modified by the user.

		output

		Output directory. When extracting files through the synchronization module, SEER*Abs will create the file in this directory by default. This is only a default and can be modified by the user.

		log

		Log directory. When an error happens, it is logged in the file “seerabs.log” contained in this directory. This should be the first place to look when trying to resolve bad application behavior reported by the abstractors. An exception in the log does not mean that SEER*Abs contains an error. It can also mean that the configuration has not been properly set up (most likely an error in a script).

		seerabs.exe

		Executable file used to start the application. On Windows, a shortcut can be created from this file by right-clicking it and selecting the option “create shortcut”.

		seerabs.l4j.ini

		Initialization file. SEER*Abs is a Java application and therefore uses a Java Virtual Machine (JVM) to run. The parameters from this initialization file are passed to the JVM. An important parameter is the maximum memory that the JVM can use. By default it is set to 512MB. That parameter should be adjusted if SEER*Abs is used on a computer that does not have that amount of memory available. Setting that parameter to a bigger value should not affect the application at all since it should not require that much memory under any circumstances.

		configuration-manual.pdf

		This manual.

		user-manual.pdf

		The user manual.

		readme.txt

		Readme file with instructions to do a quick install and startup. All the information in that file is contained in this manual.

Section 2: SEER*Abs Data Types

SEER*Abs handles data using the concept of “entity”. An entity is an instance of a particular type of data, for example an abstract record, or an AFL. Every entity has a type associated with it; those types cannot be customized and are described in the following table.

		Entity Type

		Type name to use
in Scripts

		Database

		Description

		AFL

		AFL

		main

		Abstract Facility Lead. Represents a case that needs to be investigated in a facility and maybe abstracted into a record. AFL cannot be created in SEER*Abs and need to be imported.

		Record

		RECORD

		main

		Records created in SEER*Abs like abstracts or casefindings. SEER*Abs can also be configured to support other record types if needed. Records cannot be imported.

		User

		USER

		main

		User logging in SEER*Abs and using it. By default, the application supports a unique user which has administrator privileges; its username is ‘admin’ and it is the only administrator user that is created. Any number of non-administrator users can be added by the admin user. Users cannot be imported; they need to be created within the application.

		Facility

		FACILITY

		reference

		Represents a facility (hospital, lab, etc…). Such a facility can be provided during the login process to apply a default filter to the worklist. Facilities cannot be modified or created in SEER*Abs and need to be imported.

		Physician

		PHYSICIAN

		reference

		Represents a physician. Only used when creating new records. Physicians cannot be created in SEER*Abs and need to be imported.

		Reference Record

		REFERENCE-RECORD

		reference

		Records used as reference data only. They cannot be created or modified through SEER*Abs and need to be imported.

		Reference Patient

		REFERENCE-PATIENT

		reference

		Patient Sets used as reference data only. They cannot be created or modified through SEER*Abs and need to be imported.

		Lookup

		N/A *

		reference

		Lookup, used to format a code into a label.

* Lookups are handled a little bit differently than the other entity types since they don’t have customizable properties. For that reason specific methods have been added for them in the script utility methods (see Annex 1).

The second column provides the string that needs to be used when referencing a particular type in a script (many utility methods require a type as a parameter). The third column provides which database is used when persisting the entities of that type; if using the main database then all those entities will be saved when doing a backup of the application’s data; the entities using the reference database won’t be saved.

Subtypes

While it is true that the types are not customizable, some of them have a subtype which is customizable. It is true for the Record and Reference Record types. Which subtype they support is defined in the main configuration file. For the records, the following property is used:

supported.record.subtypes=abstract,casefinding

And for the reference records, the following is used:

supported.ref.record.subtypes=naaccr,casefinding,hl7

Those lists of subtypes can be modified; there is no restriction on the values of the reference record list, but “abstract” and “casefinding” are both required in the record list. Also note that if a new record subtype is defined, a corresponding prefix also needs to be provided (see Main Configuration section of this manual for more details).

Most of the utility methods dealing with entities require both a type and a subtype. For types that do not have a subtype, null should be passed as a parameter. For example, the following call saves a list of AFLs:

env.utils.saveEntities(“AFL”, null, aflsToSave)

While the following call saves a list of abstracts:

env.utils.saveEntities(“RECORD”, “abstract”, recordsToSave)

See the Utility Methods annex for more details about the available methods and how to use them.

Defining New Properties

Lookups are a special type of entity and are defined in their own configuration file (see Defining Lookups section). All the other entity types are defined in a Layout. That layout contains the properties that should be shown on the screen along with some other information (property type, label, lookup, etc…). While it is true that the layout is mainly used to define where the fields should be shown on the screen, it is also used to define which properties are supported for which entity type. An entity can be seen as a map of keys and values. The keys are the field names defined in the layout and the values are the text corresponding to those field names (it can be the text typed by the abstractor in the editor, or the text downloaded through the synchronization module). For efficiency, a key corresponding to an empty (null) value is not saved in the database; that means the absence of a key in a map should be interpreted as the key having an empty value. That also means different entities of the same type will end up with different keys, depending which values are missing. For that reason, there are no database constraints linking the properties to the entity types; saving an entity in the database means saving a generic mapping of keys and values; the database is unaware of which properties the mapping should have depending on the entity’s layout.

With this design, adding a new property to a given type is as simple as adding a field to the corresponding layout. Once added, the abstractor will be able to provide a value to that field; that value will be persisted in the database and made available to the synchronization scripts to be exported. Any properties can be defined in a layout, but a few of them are used by the application and therefore SEER*Abs needs to be aware of their name. Most of those internal properties can be re-defined in the main configuration in case they conflict with other regular properties. The following properties are currently used by SEER*Abs:

		Property Name

		Can be
re-defined
in Main Conf

		Description

		displayId

		yes

		Entity display identifier; usually a few uppercased letters followed by a dash followed by a numerical part (for example FAC-123). That display ID is what is shown on the screen to uniquely identify an entity. Applied to all the entity types.

		type

		yes

		Entity type; correspond to the string that needs to be used in the scripts (see data types table at the beginning of this section). Used by SEER*Abs to filter the worklist, the searches, to call the correct utility methods, and for many other things. Every entity has a type.

		subtype

		yes

		Entity subtype; correspond to the subtypes defined in the main configuration. Applies only for RECORD and REFERENCE-RECORD types.

		status

		yes

		Entity status; used to indicate in which status an entity currently is; the statuses can be defined in the lookup configuration file. It is mainly used by SEER*Abs to filter the worklist; for that purpose the main configuration also provides a way of defining which status is an “outstanding” status. Those are filterable under the “<Outstanding>” option in the status filter. Statuses apply only to AFL and RECORD (any subtypes).

		dateLastModified

		yes

		The last time an entity was modified. It is automatically updated by SEER*Abs every time an entity is persisted. Applies to any entity type.

		facility

		yes

		Main facility for an entity. Used by SEER*Abs to filter by facility. Applies to AFL, RECORD, REFERENCE-PATIENT and REFERENCE-RECORD.

		primarySite

		yes

		Entity site. Used by SEER*Abs to dynamically build the content of the collaborative stage lookup. Applies only to the RECORD type.

		histologyICDO3

		yes

		Entity histology. Used by SEER*Abs to dynamically build the content of the collaborative stage lookup. Applies only to the RECORD type.

		username

		 no

		Uniquely identifies which user is currently logged in. Applies only to USER type.

		password

		no

		Used during the login process and when an abstractor wants to change his/her password. Applies only to USER type.

There are a few other properties used internally by SEER*Abs (like a database ID for example) but those should never be referenced by any scripts and therefore are not described here (they usually start with a double underscore).

Having to re-define an internal property in the main configuration should be extremely rare. For example if a new reference record type is added and has to use the property “dateLastModified”, the internal property with the same name could be re-defined as “dateLastModifiedSeerabs” to avoid any conflict. But the script downloading that new reference record type could also save that new “dateLastModified” property under a different name and therefore also avoid the conflict. Note that if a property is re-defined, all the data needs to be fixed (for reference data, it means deleting the old data and re-importing it; for the main data it means running an action script that would load all the entities of that type and for each of them remove the old property and re-add the new one).

Because empty values are not saved in the database, different entities of the same type could have different properties saved in the database. For that reason, a script cannot make any assumptions on which properties is supposed to be contained in an entity. This can be annoying when trying to write scripts that reference hundreds of properties. To solve that problem, a utility method is provided; for a given type and subtype, it returns a list of properties as they are defined in the corresponding layout. See Annex 1 for more details about utility methods.

Section 3: Defining a Workflow

Before configuring SEER*Abs, it is important to decide how it is going to be used. The following picture shows the different components playing a role in the workflow.

[image: image3.png]

SEER*Abs is designed to be an Abstracting Tool that is used in the field to create Abstracts (or other record types). It then communicates with the Central Registry (through the synchronization module) to export the created records and maybe import the reference data. That default workflow is shown in the following figure:

By configuring the synchronization module, a Registry can define how the records and AFLs are exported and how the reference data is imported. By configuring the editor module, a Registry can define how the records are created (what fields, what format, etc...).

Abstractors need to know whether a record has just been created, whether all the work is done for it or whether it has already been exported. A status field is used for that purpose. Only the AFL and the RECORD entity types have that field. The possible values are defined in the lookups lkup_internal_alf_status and lkup_internal_rec_status. Those lookups cannot be deleted from the configuration but their content can be modified and that is the main mechanism to customize the SEER*Abs workflow.

The following AFL statuses are provided with the default configuration:

		Status Code

		Status Label

		Description

		1

		NOT PROCESSED

		No work has been performed on this AFL.

		2

		IN PROGRESS

		Some work has been performed on this AFL

		3

		NOT ABSTRACTED

		The work on this AFL is done; it has not been abstracted and a reason has been provided.

		4

		ABSTRACTED

		The work on this AFL is done; an abstract has been created.

		5

		ARCHIVED

		This AFL has been exported.

The following record statuses are provided with the default configuration:

		Status Code

		Status Label

		Description

		1

		IN PROGRESS

		Some work has been performed on this record.

		2

		COMPLETED

		No more work needs to be performed on this record.

		3

		ARCHIVED

		This record has been exported.

Note that changing the label of a status has no impact on the workflow and no script needs to be modified in that case. On the other hand, many scripts use the status code to search entities and load them (for example the extract script fetches all the records with a status of ‘COMPLETED’). Adding, removing or changing the meaning of a status (how it is supposed to be used by the scripts) require to review each script and make sure the way it uses the statuses (if it does use them) is still correct.

SEER*Abs never deletes any record or AFL automatically. A special action is provided (Purge Entities) to delete any entities with a status of ‘ARCHIVED’. That action can be run right before exporting records so the ones exported from the previous synchronization session are deleted and the new ones are marked as ‘ARCHIVED’ after being exported. But the user has to trigger the action manually and exactly when that should happen must be a Registry policy.

To define a different workflow than the default one:

1. Log in as the administrator.

2. Open the Configuration module.

3. Double-click the unique row of the Lookups section to open the corresponding file in the Configuration File Editor.

4. Modify the lkup_internal_afl_status and lkup_internal_rec_status lookups; add the statuses that define the new workflow.

5. Once done, close the editor.

6. If prompted to save the changes, click Yes.

7. The lookups are automatically reloaded in the application.

8. Open each script and action script, search for the word ‘status’ and make sure the way the script uses the status (if it does) comply with the new definition. Synchronization scripts will certainly have to be updated since they heavily use the statuses.

9. Let the abstractors now what the new statuses are and what they mean.

Section 4: Configuring SEER*Abs

The SEER*Abs configuration manager can be used to customize all system features including data entry screens for records, the Search page interface, and synchronization scripts. The manager allows you to open files in the SEER*Abs configuration editor by selecting the corresponding row and typing Enter or by clicking on the edit icon in the table’s action column. All configuration files are text files; therefore it is technically possible to edit them in any text editor. However, it is recommended that you use the SEER*Abs configuration editor to take advantage of the validation, preview, and auto-refresh features.

The configuration files are organized into the topics listed below.

· Main Configuration – a single configuration file containing system parameters and properties. These include system options, defaults, and global variables.

· Layouts – separate configuration files defining the screens displayed when you view or modify a record, AFL, patient set, facility, physician, or user account. These include the layouts used to display records created in SEER*Abs and reference patient sets and records.

· Input Layouts – special layouts that can be referenced in any script to request user-input.

· Searches & Filters – these files define the filters and tables used to display and find data on the Search page, the Worklist, and the User account manager.

· Scripts – Groovy scripts run to create extract files, load reference data from external files or directly from a database, and utility scripts used to create AFLs and implement edits.

· Action Scripts – special Groovy script that the abstractor can run through a menu item.

· Lookups – a single configuration file defining lookup tables for data fields. This file contains full definitions for internal lookups and reference information for external lookups.

· Edits – source code for edits to test the validity of data fields. Two sets of edits are integrated into SEER*Abs: edits developed by the NCI SEER Program that cover data fields submitted to SEER; and edits developed within SEER*Abs. The SEER*Abs edits may include edits shipped with the software as well as the edits created by your registry staff.

· Autocomplete Terms – the list of words and phrases matched against the user’s entry when the autocomplete feature is used.

Each of those topics is explained in details in the following sections.

SEER*Abs will work out-of-the-box without configuring anything. But it is recommended to review the entire configuration the first time the application is installed to make sure that the default configuration fits with your Registry’s operations. The checklist provided in the next paragraph can be used as a reference to verify the entire configuration.

Checklist for Reviewing the SEER*Abs Default Configuration

1. Start with the main configuration file, the registry.id property should be set to the correct SEER Registry ID; if the application needs to connect to SEER*DMS (or another external database), the synch.db.connection.1.url property need to be modify to point to that external database. The corresponding synch.db.connection.1.username property can also be set to a default username so the abstractor does not have to always re-type it. Review the list of record types that the application needs to create, this is the supported.record.subtypes property. Review the reference record types that need to be supported, this is the supported.ref.record.subtypes property. If adding, removing or modifying any subtypes, the application will need to be restarted for the changes to take effect. Once this is done, review the other properties from the main configuration; make sure you understand what they do and whether their current value suits your need.

2. Switch to the layouts, there should be one layout for each entity type except for the RECORD and REFERENCE-RECORD types which have one layout per subtype. Edit each record layout and use the preview tab to see how they look. Make sure they support the fields you need. The default configuration is shipped with two record types:

· abstract: layout-record-abstract.xml file; implemented according to the NAACCR 11.3 documentation. If adding, removing or renaming fields in that layout, the corresponding script-extract-record-abstract.groovy script will need to be modified to correctly export those fields. The script-action-record-create.groovy script might also have to change to correctly copying fields from an existing record to a new abstract (using the copy-into-abstract feature).

· casefinding: layout-record-casefinding.xml file; the default layout does not use any particular standard; the corresponding extract uses a Comma Separated Values (CSV) format. If adding, removing or renaming fields in that layout, the corresponding script-extract-record-casefinding.groovy script will need to be modified to correctly export those fields. The script-action-record-create.groovy script might also have to change to correctly copying fields from an existing record to a new abstract (using the copy-into-abstract feature).

3. Review the AFL layout (layout-afl.xml); edit it and use the preview tab to see how it looks like. In the script section, review the corresponding import script (script-import-afl.groovy); the default script deletes any UNPROCESSED AFLs and download any AFL from SEER*DMS that is opened (status is 1). Review the export script (script-load-afl.groovy); default script creates a mass change file for all the AFL that were not abstracted (mass change file includes the reason the AFL was not abstracted and a comment). The AFLs that were abstracted are not included because they will be closed in SEER*DMS by the incoming abstract. Once the export is completed, all the processed AFLs are marked as ARCHIVED.

4. Review all the reference data layouts and their corresponding import/export scripts:

· Lookups: those do not have a layout but instead are defined in their own file (lookups.xml). Review the file and make sure any lookup required in the application is defined there. If a lookup is defined as external, its content needs to be loaded from the import script (script-load-lookup.groovy), otherwise the content needs to be defined in the lookup XML file it-self.

· Facilities (layout-facility-xml): default import script (script-load-facility.groovy) loads all active facilities from SEER*DMS.

· Physicians (layout-physician.xml): default import script (script-load-physician.groovy) loads all active persons that are marked as medical practitioner from SEER*DMS.

· Patient Sets (layout-ref_patient.xml): default import script (script-load-ref_patient.groovy) loads all the Patient Sets that are ALIVE with a year of last contact after 2000. Patient Sets are multi-level entities (a single Patient Set contains a list of CTCs; each CTC contains a list of Facility Admission, etc…). Because of that, loading Patient Sets from SEER*DMS requires several database call per entity. This will make the synchronization process extremely slow. To speed up the process; the criteria that selects which Patient Sets to load can be made more strict, or less information per Patient Set can be loaded (for example loading only demographic information).

· Reference Records: the default configuration supports three types of reference records:

· naaccr (layout-ref_record-naaccr.xml): default import script (script-load-ref_record-naaccr.groovy) loads all unlinked NAACCR records from SEER*DMS. Downloading NAACCR records can be a slow process since they are composed of hundreds of properties. Downloading less of them will make the synchronization process faster.

· casefinding (layout-ref_record-casefinding.xml): default import script (script-load-ref_record-casefinding.groovy) loads all unlinked Casefinding records from SEER*DMS.

· hl7 (layout-ref_record-hl7.xml): default import script (script-load-ref_record-hl7.groovy) loads all unlinked HL7 records from SEER*DMS. Downloading HL7 records can be a slow process because of the long text they contain. Downloading less of them will make the synchronization process faster.

5. Switch to the Edits section and review the SEER*Abs edits (seerabs-edits.xml). The SEER edits are always shown in the configuration even if they are not loaded (see edits.load.seer and edits.ignore properties in the main configuration); they are provided as a reference but are read-only and can never be modified through the application. The few SEER*Abs edits that are provided in the default configuration should only be used as a reference to write more complicated ones. They are not intended to be used in production.

6. In the Users module, use the Add User button to add new users. The users can be managed in two ways (see Managing Users Accounts section for more details):

· Do not add any users in the initial configuration; instead install SEER*Abs on each laptop with no regular users (there will always be an admin user). Then add a single (different) user on each laptop.

· Add all the users during the initial configuration. Copy all the users on each laptop (remember that the users are saved in the main database; they are not part of the configuration; therefore the main database along with its index directory will need to be copied over to the laptops).

The user layout (layout-user.xml) can be used to add new properties to the USER entity. For example the abstractor ID has been added to the default configuration since it is a NAACCR field and is used to automatically fill-in the corresponding field when creating new abstracts.

Section 5: Main Configuration

Global configuration parameters are set in the Main Configuration file (seerabs.properties). All of these parameters must be included in the file unless they are designated as optional below.

Review and adjust these parameters before configuring the layouts and scripts. Changes to some parameters are applied when you save and close the configuration editor. Other changes are not applied until you close and restart SEER*Abs, as prompted. Any changes made via a text editor will only be applied when you restart SEER*Abs.

		Property

		Default Value

		Description

		editor.enable.auto.forward

		true

		Whether or not the auto-forwarding mechanism should be enabled in the editor (true or false). If true, the cursor in the editor will automatically go to the next field when the number of characters in the current field equals the field’s length. If false, the user will always need to press tab to advance to the next field.

		editor.enable.auto.validate

		true

		Whether or not the auto-validating mechanism should be enabled in the editor (true or false). If enabled, validation (edits evaluation) will happen every time the abstractor tabs out of a field. If false it will only happen when the record is open/saved/closed. This parameter has no effect on internal edits.

		editor.enforce.lookup.validation

		true

		Whether a non-blank value that is not in the corresponding lookup should generate an internal edit (true or false). This parameter has no effect on fields that do not have a lookup or on special collaborative stage lookups.

		editor.internal.edits.strict.validation

		true

		Whether the abstractor should be warned when an internal edit is triggered (true of false). An edit error will always be displayed in red, but if this parameter is set to true, if a wrong value is entered (an alpha characters in a numeric field, a value that is not in the corresponding lookup, etc...), there will be a beep and the focus will stay on the current text field with the value highlighted (so it can be easily replaced).

		edits.ignore

		

		Individual edits to ignore (comma-separated list of edit ID's). Only edits that are loaded can be ignored (so if the SEER edits are not loaded, only SEER*Abs edits can be in this list).

		edits.load.seer

		false

		Whether or not the SEER edits should be loaded (true or false). If set to true, the validation of an abstract record will include the SEER edits. If set to true, the edits.ignore property should be reviewed.

		import.ref.db.default.path

		

		When importing an entire reference database, this default path will be used as a default directory when the directory selection dialog is displayed. If this property is left blank, the OS default user directory will be used.

		property.date.last.modified

		dateLastModified

		Property to use as Date Last Modified.

		property.display.id

		displayed

		Property to use as Display ID.

		property.facility

		facility

		Property to use as Facility.

		property.histology

		histologyICDO3

		Property to use as Histology.

		property.site

		primarySite

		Property to use as Site.

		property.status

		status

		Property to use as Status.

		property.subtype

		subtype

		Property to use as Subtype.

		property.type

		type

		Property to use as Type.

		record.prefix.abstract

		ABS-

		Display ID prefix to use when creating new abstracts.

		record.prefix.casefinding

		CF-

		Display ID prefix to use when creating new casefinding.

		registry.id

		0000000000

		SEER registry ID.

		supported.record.subtypes

		abstract,
casefinding

		Which record types can be created from SEER*Abs. When defining a new record type in this list, the application will automatically create an empty layout and some empty scripts that can be modified through the configuration manager. The entries defined in the list are used as file names, only alpha-numeric characters and/or underscore (_) can be used. The two first entries ('abstract' and 'casefinding') are required by the application and cannot be removed or renamed. The provided entries should also be defined in 'lkup_internal_rec_types' in the lookup XML file so the application displays a nice name instead of the ID defined here. So for example, if one wants to add support for short abstract, one would set the list to 'abstract,casefinding,short_abstract', add 'short_abstract -> Short Abstract' to lkup_internal_rec_types and modify any relevant layout and/or scripts for that new type.

		supported.ref.record.subtypes

		naaccr,
casefinding,
hl7

		Supported record types in the reference data. The entries defined in the list are used as file names, only alpha-numeric characters and/or underscore (_) can be used. The provided entries should also be defined in 'lkup_internal_reference_rec_types' in the lookup XML file so the application displays the nice name instead of the ID defined here.

		synch.db.connection.1.name

		SEERDMS

		A value must be set for this parameter if synch.methods.enabled includes import-database.

This property identifies a database connection to the abstractors. This text is shown in the drop-down box when the user starts importing reference data using the Load from Registry Database method.

You may specify up to nine connection names by adding parameters to the main configuration file (synch.db.connection.1.name to synch.db.connection.9.name). There must be a URL defined for each connection name. The connection names must be unique.

		synch.db.connection.1.url

		jdbc:oracle:thin:@your.server.address:1521:sid

		A value must be set for this parameter if synch.methods.enabled includes import-database.

This is the connection URL for the database defined in synch.db.connection.1.name. The URL format is specific to the database vendor (Oracle, PostGresSQL, Apache Derby, MySQL, or any other vendor).

The default settings shipped with SEER*Abs are in the format required to connect to the SEER*DMS Oracle database. For SEER*DMS databases, this is the same connection string that you use in Workbench or other SQL tools:

· your.server.address: you would typically use the data warehouse hostname.

· sid = Server ID. Use seerdw if you wish to connect to the SEER*DMS data warehouse.

You may specify up to nine connections by adding name and URL parameters to the main configuration file.

		synch.db.connection.1.username

		

		A default name for the corresponding connection; can be left blank. If a username is provided, it will be used to auto-fill the username box in the dialog that request the abstractor to provide the connection username and password when synchronizing.

		synch.export.default

		export-file

		The Method drop-down menu will use this as the default in the export section of the Synchronization module. This parameter is can be left blank, in which case SEER*Abs will pick a random default value.

		synch.import.default

		Import-database

		The Method drop-down menu will use this as the default in the import section of the Synchronization module. This parameter is can be left blank, in which case SEER*Abs will pick a random default value.

		synch.methods.enabled

		export-file,
import-file,
import-database

		This comma-separate list determines the methods that the abstractors will be able to use to synchronize SEER*Abs with the registry’s main database. The following are available:

· export-file: export entities by creating local files (extracts)

· export-database: export entities by connecting to a remote database

· import-file: import entities from local files

· import-database: import entities from a remote database

		title

		SEER*Abs

		A short version of the application title. It is shown in the title bar of child windows, dialogs and popups.

		title.main

		SEER Abstracting Tool

		A longer version of the application title. This is shown in the main SEER*Abs window.

		worklist.oustanding.statuses.afl

		1,2

		What AFL status is considered as "outstanding" (comma separated list of codes defined in AFL status lookup); this is used in the worklist filter to show the outstanding work; if left blank then the outstanding option won't be available.

		worklist.outstanding.statuses.record

		1

		What record status is considered as " outstanding " (comma separated list of codes defined in record status lookup); this is used in the worklist filter to show the outstanding work; if left blank then the outstanding option won't be available

In addition to those properties, user-defined properties can be added to the main configuration and accessed by the script through a utility method. For example, the following line could be added in the main configuration:

laptop.number=15

Then in the script that runs when creating new abstracts, the following call could be made to get the value of that property from the configuration and automatically assign it to a field:

env.utils.getConfVariable(“laptop.number”)

This is useful to define a variable that needs to be different for each laptop installation without having to modify all the scripts.

Section 6: Defining Layouts

XML configuration files define the display screens for record, AFL, patient set, facility, physician, and user account data. There is a separate XML file for each of the following:

· AFL page

· Data Entry screen for each record type defined in the main configuration

· Screens to view reference data:

· Facility

· Physician

· Any record type defined in the main configuration

· User Account page

The layout files should be edited via the SEER*Abs editor to take advantage of the validation, preview, and auto-refresh features. However, the XML files are stored in the conf installation folder and can be opened with any text editor. The files are named with the format “layout—type-subtype.xml” for the RECORD and REFERENCE-RECORD types and “layout-type.xml” for the other types.

To modify a layout:

10. Log in as the administrator.

11. Open the Configuration module.

12. Locate the layout that needs to be modified.

13. Double-click the row containing that layout to open it in the Configuration File Editor.

14. Modify the XML. For example, to add a field:

a. Locate the tab, section and row in which the field should be added

b. Add a field tag with all required attributes

c. Click the Validate button to verify the XML syntax

d. Click the Preview panel to review your changes

e. Click Close

f. When prompted whether the modifications should be saved, click Yes. The editor will close and SEER*Abs will reload the layout (making it available to the application).

XML Structure for Layouts

The following shows the available XML tags and their hierarchy in layout configuration files. The on-entity-opened, on-entity-saved, and on-entity-exited tags are optional. All other tags are required. As shown in this sample, section is the only tag that can be nested. Nested sections should be used for grouping fields that go together logically.

<editor-layout>

 <tab>

 <section>

 <row>

 <field>

 <on-entity-opened>

 Groovy script that executes when an entity is opened via this layout

 </on-entity-opened>

 <on-entity-saved>

 Groovy script that executes when an entity is saved via this layout

 </on-entity-saved>

 <on-field-exited>

 Groovy script that executes when the field loses focus

 </on-field-exited>

 <description/>

 </field>

 <section/>

 </row>

 </section>

 </tab>

</editor-layout>

editor-layout tag

This is the root XML tag for a SEER*Abs layout. This tag is required and can only be defined once in a layout file. The editor-layout tag has the following attributes:

· desc (optional): short description for this layout, will be shown in the configuration module.

· default-case (optional): If this attribute’s value is upper or lower, the case of each field will be converted unless a case attribute is specified in the field tag. Valid values are 'upper', 'lower' and 'as-is'. If you do not specify a value, the default case will be 'upper'.

· default-trim (optional): This rule will be used to remove leading and trailing white space from each field unless the trim attribute is specified in the field tag. Trim may have the following values: “right”, “left”, “both” and “none”. If a value is not specified, “right” is used by default.

· default-gap-before-label (optional): The number of pixels of white space displayed to the left of each field label. 10 pixels are used if this attribute is not specified. You may over-ride this attribute by setting the gap-before-label attribute for individual fields.

· default-gap-after-label (optional): The number of pixels of white space displayed to the right of each field label. 3 pixels are used if this attribute is not specified. You may over-ride this attribute by setting the gap-after-label attribute for individual fields.

· default-gap-before-row, default-gap-after-row (optional): The number of pixels of white space displayed above each row. If not specified, 5 pixels are used by default. You may over-ride these attributes by setting the gap-before-row for individual rows.

· default-gap-after-row, default-gap-after-row (optional): The number of pixels of white space displayed under each row. If not specified, 5 pixels are used by default. You may over-ride these attributes by setting the gap-after-row for individual rows.

tab

SEER*Abs layouts support multiple tabs or pages to display content. You must define at least one tab tag. The tab tag has the following attributes:

· label (required): This label is displayed on the page’s tab control when there are multiple tabs. If there is only one tab in a layout, the tab control and label are not displayed.

· repeating (optional, only applicable to multi-level entities; only the patient set is a multi-level entity in the default configuration): This attribute identifies a sub-entity that can have multiple instances within the layout’s main entity. This attribute defines data structure and display. For example, you could define “repeating=ctcs” at the tab or section level in the Patient Set layout (the samples shipped with SEER*Abs actually have this attribute at the section level). Because “ctcs” is defined as repeating, data for multiple cancers can be loaded for each patient set. The path in the import and load scripts is the value of this attribute (“ctcs”). Defining the attribute at the tab level means that the repeating ctcs will be shown on separate tabs of the interface. Repeating attributes can also be defined in the section tag. Records created in SEER*Abs cannot have sub-entities; therefore, the repeating attribute is not valid in data entry layouts.

section

The section tag encapsulates a set of rows. You must define at least one section on each tab. Multiple sections may be defined at the same level; and sections may be nested within sections. To nest a section you must define the inner section within a row (please refer to the XML Structure for Layouts provided at the beginning of this chapter). You can use nesting to define sub-entities as described in the description of the repeating attribute. You can also use nesting to display a set of rows in a title bordered using different indentation. The section tag has the following attributes:

· label (optional): If a label is defined, the section is shown with a frame border and the label is used as the section title. No border is displayed when a label is not defined.

· repeating (optional, only applicable in patient set layout): This identifies a sub-entity that can have multiple instances within an entity defined at a higher level. The higher level may be an outer section, this section’s tab, or the main layout. The repeating attribute defines data structure and display. If this section is nested within another section that has a repeating attribute then this sub-entity is also nested in terms of data structure. The path in the import and load scripts must include the full path defined in the layout. Records in SEER*Abs cannot have sub-entities; therefore, this attribute is not valid in record layouts.

· indentation (optional): The number of pixels of white space used to indent the section. If not specified, a default value of “0” will be used.

row

The row tag encapsulates a set of fields and/or a section. Sections nested within sections must be embedded within a row as described above.

The row tag has the following attributes:

· gap-before-row, gap-after-row (optional): the gap (in pixel) above and below this row. If not specified, the default values set for this layout are used (see default-gap-before-row and default-gap-after-row attributes of the editor-layout tag).

field

The field tag defines the properties within this layout’s entity. The attributes within the field tag define the data item within the database and define its display properties. Tags embedded within the field tag define logic associated with the data item (on-entity-opened, on-entity-saved, and on-field-exited).

· name (required, cannot be blank): This is the database name for the field; this value must be unique within the layout. This field name is used in all references to this data item. For data entry layouts, the field name is used as a reference in extract scripts, on-entity scripts, and on-field scripts. For reference data entities, this field name is used to reference the data item in search layouts, filters, load scripts, and import scripts. An entity-to-field mapping is used in scripts. The format of the mapping in Groovy scripts is entity[‘fieldname’]. To view an example, review the layout and script shipped with SEER*Abs for NAACCR reference records. The layout includes a field with name = “nameLast”. The Groovy mapping syntax for this field in the load script is “record[‘nameLast’]”.

· label (required, cannot be blank): The field label that is displayed on the screen. This attribute cannot be blank because it is used by the edits to reference a field on the screen. To display a field without a label, set the show-label attribute to false.

· case (optional): If set to “upper” or “lower”, text entered for the field will be auto-converted to the specified case. If set to “as-is”, the case of the text will be as entered. If case is not specified for a field, the default-case assigned in the editor-layout tag is used.

· editable (optional): If false, the field will be displayed in read-only mode. If not specified or set to true, the user will be able to enter values for the field.

· gap-before-label (optional): The number of pixels of white space displayed before the field’s label. If not specified, the default-gap-before-label assigned in the editor-layout tag is used.

· gap-after-label (optional): The number of pixels of white space displayed after the field’s label. If not specified, the default-gap-after-label assigned in the editor-layout tag is used.

· length (optional): This is the maximum number of characters that can be entered for the field. Length is not used for unlimited-string fields. If length is not specified, a default value of “10” is used for date fields, a default value of “1” is used for other types of fields. The length does not determine the width of the text box displayed on the screen, the size of the box is determined by the shown-col attribute.

· lookup (optional): If a lookup is available for the field, the lookup ID is specified in this attribute (lookup IDs are listed in the Lookup Definitions configuration file). A light bulb is displayed next to the field. Click the light bulb or use the CTRL-L shortcut to open the lookup. This attribute is ignored if the data type is unlimited-string.

· searchable (optional): This attribute must be set to “true” in order to use this as a search field on the Search page. When a field is searchable, the field is indexed in the database. If a non-searchable field is made searchable, you must recreate the indexes in all databases to use the new search field (File > Recreate Indexes). Default value is 'false' if none is provided.

· searchable-as (optional): This is the name used to index this field. If this is not specified, the field name is used. This attribute allows you to specify a different search name so that you can use one search field to search multiple fields (for example this is set to “race” for 'race1', 'race2', etc.).

· shown-col (optional): The field’s text box will be wide enough to show this number of characters. The number of characters that can actually be entered into the box equals the length attribute. If the number entered is greater than shown-col, the arrow keys can be used to scroll through the text. If shown-col is set to 0, no box will be shown on the page (use 0 if you only need to display a label on the screen). If no value is provided for shown-col, the field’s default width will be used: the width of an unlimited-string field is only limited by the contents of its row; the width of all other data types equals the length attribute.

· shown-row (optional): This is the number of rows used to display an unlimited-string field. If no value is provided for shown-row in a data entry layout, a single row is displayed. If no value is provided for shown-row and the layout is read-only, the box height will auto-adjust to the number of rows required to display the current text.

· trim (optional): This is the rule used to remove leading and trailing white space from the field. The available values are 'right', 'left', 'both' and 'none'. If not specified, the value of default-trim in the editor-layout tag is used.

· autocomplete-list (optional): This identifies the list of terms that will be presented if the abstractor uses autocomplete to enter data in this field. If not specified, the list named “default” will be used.

· type (optional): This is the field’s data type. If not specified, string is used by default. The following types may be used:

· string: the field can have any value and is displayed in a single-line text box

· number: the field can only contain digits

· boolean: the field con only contain “1” or “0”

· date: the field must have a value in the format of mm/dd/yyyy. The length attribute does not need to be specified, it defaults to 10 for date fields.

· facility: must contain a valid facility display ID ('FAC-XXXX'); use the lookup “lkup_internal_facility” to bind the field to the special facility lookup.

· physician: must contain a valid physician display ID ('PER-XXXX'); use the lookup “lkup_internal_physician” to bind the field to the special physician lookup.

· unlimited-string: the field can have any value and it will be shown as a multi-row text box with the label above the box. The width and number of rows are defined by the shown-row and shown-row attributes, respectively. The field is defined as a CLOB in the database, the length attribute is ignored.

· checkbox: the field will be displayed as a checkbox that the user can check or uncheck; correspond to the Boolean values of “1” and “0”. Mainly used in the user-input layouts.

· dropdown: the field will be displayed as a drop-down box where the user can select a particular label but can still type any free text. Dropdown fields must be bind to a lookup; only the labels of that lookup will be shown in the choices while the corresponding code will be saved in the entity when the user selects a label (labels must be unique for that purpose). Dropdown fields are mainly used in search criteria in the search module.

on-entity-opened

This tag is optional and contains a Groovy script that is run when the entity is opened in the editor. The script should not return any value (if it does, it will be ignored).

on-entity-saved

This tag is optional and contains a Groovy script that is run when the entity is saved in the editor. The script should not return any value (if it does, it will be ignored).

on-field-exited

This tag is optional and contains a Groovy script that is run when a field loses focus. The script should not return any value (if it does, it will be ignored).

desc

This tag is optional and provides documentation about the field. That documentation will be shown to the user when he/she clicks the field’s label or type Ctrl+N. The description should be provided as simple HTML text (no tables, images or CSS). It is recommended to use “<![CDATA[“ and “]]>” to avoid conflicts with the XML tags. See the abstract layout for example of descriptions.

Section 7: Defining User-input Layouts

User-input layouts are very similar to regular layouts; the difference is that they can be added, removed or modified without any consequences in the application; while only the content of a regular layout can be modified (for example the layout for AFL is the layout-afl.xml file located in the configuration directory; deleting that file outside of the application will result in a failure during the startup process). Because the user-input layouts can be added and removed, they have their own directory (conf/layouts/).

The XML syntax for the user-input layout is exactly the same as the regular layouts and is not repeated in this section.

Once a user-input layout has been defined, it can be referenced by any non-embedded script using its file name as a parameter to a utility method:

input = env.utils.showInputDialog('input-abstract-to-abstract.xml', false)

The second parameter to that utility method is a Boolean that should be set to true if the cancel button should appear in the input dialog. When the script is executed and reaches that line, a dialog will be presented to the user and the script execution will block. The user will have the opportunity to fill-in some values on the dialog and click OK or Cancel (if the cancel button has been enabled). Here is an example of a user-input dialog that is used when copying an abstract into a new abstract; it requests the user which fields should be copied over (note that this particular layout uses only check-boxes but regular free-text can also be used):

[image: image4.png]

The result of the call is a map containing the user input (the keys are the field names defined in the layout and the values is what the user typed (the absence of a key in the map should be considered as a blank value). That map can then be used in the script to take decisions (in this case which fields to copy over).

 To add a user-input layout:

1. Log in as the administrator.

2. Open the Configuration module.

3. Click the Add Layout button in the Input Dialog Layouts section.

4. Provide a file name for the new layout; do not include the file extension (.xml); by default SEER*Abs will use the prefix input- for the file name but that is not a requirement and can be changed. If a description is provided it will be shown in the Input Dialog Layouts table.

5. Click the OK button, the new layout will appear in the Input Dialog Layouts table. When creating a new user-input layout, SEER*Abs uses a default empty layout as a first template. Double click the corresponding row to edit it.

6. Customize the layout. Use the preview tab to see the result of your customization.

7. Close the editor; if prompted to save your changes, click Yes. The new layout will automatically be reloaded and made available to the rest of the application. It is now ready to be referenced in any non-embedded script.

To delete a user-input layout:

1. Log in as the administrator.

2. Open the Configuration module.

3. Locate the row containing the layout in the Input Dialog Layouts table.

4. Click the delete icon of that row.

5. When prompted for confirmation, click the Yes button.

Section 8: Configuring Searches & Filters

XML configuration files are used to define screen layouts for the Worklist table, User account manager, the three tabs of the Search page, the facility lookup, and the physician lookup. These configuration files are defined as layouts with two sections: criteria-layout defines the filters and the table-layout defines the table in which the results are displayed. Filters cannot always be defined. The search and filter layout files are listed below.

· Facility (search-facility.xml) – the layout of the Facility tab of the Search page.

· Facility Lookup (search-facility-lkup.xml) – the layout of the internal lookup for facilities. A single search box is shown in that lookup; for that reason the criteria defined in the configuration file is not used to show different search fields, but instead it is used to know which fields should be searched when the user types text in the unique search box.

· Patient Data (search-patient.xml) – the layout of the Patient Data tab of the Search page.

· Physician (search-physician.xml) – the layout of the Physician tab of the Search page.

· Physician Lookup (search-physician-lkup.xml) – the layout of the internal lookup for physicians. A single search box is shown in that lookup; for that reason the criteria defined in the configuration file is not used to show different search fields, but instead it is used to know which fields should be searched when the user types text in the unique search box.

· Users (search-user.xml) – the layout of the Users Account manager. No criteria can be defined for that configuration file.

· Worklist (search-worklist.xml) – the layout of the Worklist. The filter in the worklist cannot be customized but it does use a free-text search box. The criteria defined in this configuration file is used to know which fields should be searched when the user types text in that free-text search box.

The searches in SEER*Abs are implemented using an external library called Lucene (http://lucene.apache.org/java/docs).

To modify a search layout:

1. Log in as the administrator.

2. Open the Configuration module.

3. Locate the layout that needs to be modified in the Searches and Filters section.

4. Double-click the row containing that layout to open it in the Configuration File Editor.

5. Modify the XML; use the preview tab to see the changed criteria (some layouts do not use the criteria on the screen and the preview is not relevant); the results table is also shown with two empty rows.

6. Once done, close the editor.

7. If prompted to save the changes, click Yes.

8. The search layout is automatically reloaded in the application.

XML Structure for Searches & Filters

<search-layout>

 <criteria-layout>

 <row>

 <field/>

 </row>

 </criteria-layout>

 <table-layout>

 <column>

 <on-field-populated/>

 </column>

 </table-layout>

</search-layout>

search-layout

This is the root XML tag. It is required and can only be defined once. It has the following attributes:

· max-num-results: the maximum number of results that the search can return (use -1 for no maximum).

· desc: a short description for the configuration file.

criteria-layout

Use the criteria-layout tag to define the filters shown at the top of the physician lookup, facility lookup, and the search tabs. This tag is ignored in the layouts for the Worklist and User Account manager. The criteria-layout tag has the following attributes:

· default-case (optional): If this attribute’s value is upper or lower, the text entered in each search field will be converted unless a case attribute is specified in the field tag. The search algorithms are not case sensitive. Valid values for this attribute are 'upper', 'lower' and 'as-is'. If a value is not specified, “upper” will be used by default.

· default-trim (optional): Leading and/or trailing white space will be removed as specified by this rule. The following values are valid: “right”, “left”, “both” and “none”. If a value is not specified, “right” is used as the default-trim. You may over-ride this attribute by setting the trim attribute for individual fields

· default-gap-before-label (optional): The number of pixels of white space displayed to the left of each search field label. 10 pixels are used if this attribute is not specified. You may over-ride this attribute by setting the gap-before-label attribute for individual fields.

· default-gap-after-label (optional): The number of pixels of white space displayed to the right of each search field label. 3 pixels are used if this attribute is not specified. You may over-ride this attribute by setting the gap-after-label attribute for individual fields.

· default-gap-before-row, default-gap-after-row (optional): The number of pixels of white space displayed above and under each row of search fields. If not specified, 5 pixels are used by default for each attribute. You may over-ride these attributes by setting the gap-before-row and gap-after-row attributes for individual rows. The total space between row1 and row2 = (gap after row1 + gap before row2).

row

Multiple rows of search fields can be displayed. The row tag contains a set of fields and has the following attributes:

· gap-before-row, gap-after-row (optional): the gap (in pixel) before and after this row. If not specified, the default values set for this layout are used (see default-gap-before-row and default-gap-after-row attributes of the criteria-layout tag).

field

The field tag defines the properties used to search. The field tag has the following attributes:

· name (required): This is the database name for the field. In order for a search to be successful for this field, this value must correspond to the name or searchable-as attribute of a searchable field. Searchable fields are defined in the layout or layouts associated with the search (for example, reference record and patient data layouts are all associated with the Patient Data search layout).

· label: The field label that is displayed on the screen. If not label is provided, the default “Label” is used.

· show-label: if false then the label won’t be shown on the screen.

· length (optional): This is the maximum number of characters that can be entered for the field. If length is not specified, a default value of “10” is used for date fields; a default value of “1” is used for other types of fields. The length does not determine the width of the text box displayed on the screen, the size of the box is determined by the shown-col attribute.

· type (optional): the type of the field value. The available types are

· string: the field can have any value and is displayed in a single-line text box

· number: the field can only contain digits

· boolean: the field con only contain “1” or “0”

· date: the field must have a value in the format of mm/dd/yyyy. The length attribute does not need to be specified, it defaults to 10 for date fields.

· facility: must contain a valid facility display ID ('FAC-XXXX'); use the lookup “lkup_internal_facility” to bind the field to the special facility lookup.

· physician: must contain a valid physician display ID ('PER-XXXX'); use the lookup “lkup_internal_physician” to bind the field to the special physician lookup.

· checkbox: the field will be displayed as a checkbox that the user can check or uncheck; correspond to the Boolean values of “1” and “0”.

· dropdown: the field will be displayed as a drop-down box where the user can select a particular label but can still type any free text. Dropdown fields must be bind to a lookup; only the labels of that lookup will be shown in the choices while the corresponding code will be saved in the entity when the user selects a label (labels must be unique for that purpose).

· shown-col (optional): The field’s text box will be wide enough to show this number of characters. The number of characters that can actually be entered into the box equals the length attribute. If the number entered is greater than shown-col, the arrow keys can be used to scroll through the text. If shown-col is set to 0, no box will be shown on the page (use 0 if you only need to display a label on the screen). If no value is provided for shown-col, the field’s default width will be used: the width of an unlimited-string field is only limited by the contents of its row; the width of all other data types equals the length attribute.

· editable (optional): If false, the field will be displayed in read-only mode. If not specified or set to true, the user will be able to enter values for the field.

· case (optional): If set to “upper” or “lower”, text entered for the field will be auto-converted to the specified case. If set to “as-is”, the case of the text will be as entered. If case is not specified for a field, the default-case assigned in the criteria-layout tag is used.

· trim (optional): This is the rule used to remove leading and trailing white space from the field. The available values are 'right', 'left', 'both' and 'none'. If not specified, the value of default-trim in the criteria -layout tag is used.

· gap-before-label (optional): The number of pixels of white space displayed before the field’s label. If not specified, the default-gap-before-label assigned in the criteria -layout tag is used.

· gap-after-label (optional): The number of pixels of white space displayed after the field’s label. If not specified, the default-gap-after-label assigned in the criteria -layout tag is used.

· lookup (optional): If a lookup is available for the field, the lookup ID is specified in this attribute (lookup IDs are listed in the Lookup Definitions configuration file). A light bulb is displayed next to the field. Click the light bulb or use the CTRL-L shortcut to open the lookup.

· search-type (required): the type of search that should be used for this field, available values are “exact”, “contains” and “fuzzy”. Fuzzy match results include partial and pattern-based matches. The fuzzy search algorithms are implemented via the Apache Lucene text search library (see the documentation section of http://lucene.apache.org/java/docs for more information). If fuzzy matching is used, the results are sorted to show matches with the highest scores first.

table-layout

This tag is used to configure the table containing the results of a search. It contains a collection of columns and has no attributes.

column

This tag represents a single column in the search results table. The values in the column can be formatted via a script defined in an on-field-populated tag. The column tag has the following attributes:

· title (required) - the column header.

· name (required) - the database name for the field displayed in the column. It must correspond to the name attribute of a field in the corresponding layout (or layouts).

· center (optional) - If set to “true”, the values displayed in the column will be centered. If “false”, the values will be left-justified. If not specified, “false” is used by default.

· width (optional) - the initial size of the column. Possible values are: “min” - use as little space as possible, based on the data in the column; “max” - used as much space as possible; and “fixed” - column should not be resizable and will always have the same width; see 'length' attribute). Default is 'max' if none is provided.

· length (optional) - The actual size (width) of the column in pixels. This attribute is only used if the width attribute is set to “fixed”.

· lookup (optional) - If a lookup is available for the field, the lookup ID is specified in this attribute (lookup IDs are listed in the Lookup Definitions configuration file). The column data are formatted based on this lookup.

· default (optional) – default to use when a value for this particular column is blank.

· default-sort (optional) – by default, use this column as a default sorting on the table; available values are “ascending” and “descending”.

on-field-populated

This tag is optional and contains a Groovy script that is run for all values in the column. The script must return a string value (or null). The value returned by the script is the formatted value displayed in the column. Keep in mind that running a script on each value of a particular column for a large table can be slow and resource demanding.

Section 9: Defining Scripts

The Scripts section of the Configuration Manager contains Groovy scripts to create extract files, load reference data from external files or directly from a database, and utility scripts used by the system to support AFLs and edits. Groovy is a scripting language for the Java platform. The Internet has several Groovy references including the Groovy home page at http://groovy.codehaus.org. The official site contains a lot of information, including tutorials for people new to Groovy.

SEER*Abs scripts are listed in the Configuration Manager; because so many scripts are used, they have been grouped by family. The Family column in the Scripts table contains the following values:

· Action: scripts that are run as a result of a user action (creating a record, saving a record, updating an AFL, etc…)

· Extract: scripts that create export files containing AFL updates or records created in SEER*Abs. The extract files are used to update the registry’s data management system with the new data.

· Import: scripts that load reference data from files.

· Load: scripts that load reference data via direct queries to the registry’s main database.

· Upload: scripts that transfer data directly from SEER*Abs to the registry’s main database. The default configuration provided with SEER*Abs does not contain an implementation for those scripts.

· Generic: scripts that are not part of any other families.

The data types are AFL, physician, facility, patient (indicating that it the script deals with patient sets), and record. Records also list a subtype in parenthesis. The Generic family usually doesn’t apply to a particular type.

To modify a script:

1. Log in as the administrator.

2. Open the Configuration module.

3. Locate the script that needs to be modified in the Scripts section.

4. Double-click the row containing that script to open it in the Configuration File Editor.

5. Modify the Groovy code; use the Validate button to make sure the code is valid. There is currently no way to validate the logic of the code; the script has to be tested in the application for that purpose.

6. Once done, close the editor.

7. If prompted to save the changes, click Yes.

8. The script is automatically reloaded in the application.

Section 10: Defining Action Scripts

Action scripts are very similar to regular scripts; the difference is that they can be added, removed or modified without any consequences in the application; while only the content of a regular script can be modified (for example the extract script for abstract is called script-extract-record-abstract.groovy; deleting that file outside of the application will result in a failure during the startup process). Because the action scripts can be added and removed, they have their own directory (conf/scripts/).

Writing action script is not different than writing regular scripts; the scripting language (Groovy, see http://groovy.codehaus.org) is identical. One minor distinction is that the regular scripts usually receive data in their context (for example, the script that runs when a record is saved receives that record in its context so it can be modified by the script) while the action script do not receive any data in their context (since there are triggered by the user selecting them from a menu item).

Once an action script has been defined, it is available in the Action menu. The default configuration provided with SEER*Abs contains a single action script called “Purge Entities”; it deletes from the database any AFL or RECORD that have a status of ARCHIVED.

To add an action script:

1. Log in as the administrator.

2. Open the Configuration module.

3. Click the Add Script button in the Action Scripts section.

4. Provide a file name for the new layout; do not include the file extension (.groovy); by default SEER*Abs will use the prefix action- for the file name but that is not a requirement and can be changed. A menu label must be provided; this is the label as it will appear in the menu item under the Action menu. If a description is provided it will be shown in the Action Scripts table.

5. Click the OK button, the new script will appear in the Action Scripts table. When creating a new action script, SEER*Abs uses a default empty script as a first template. Double click the corresponding row to edit it.

6. Customize the script.

7. Close the editor; if prompted to save your changes, click Yes. The new script will automatically be reloaded and made available to the rest of the application. It is now ready to be called from the Action menu.

To delete an action script:

1. Log in as the administrator.

2. Open the Configuration module.

3. Locate the row containing the script in the Action Scripts table.

4. Click the delete icon of that row.

5. When prompted for confirmation, click the Yes button.

Section 11: Defining Lookups

Lookup tables provide a list of valid values for a field. Typically, this is a list of codes and a user-friendly description of the code. When a lookup is associated with a field in a layout, a light bulb is displayed next to the field. The lookup table is displayed when the user clicks the light bulb, they may then select a value from the list.

SEER*Abs lookup tables are defined in a single configuration file (lookups.xml). This file includes definitions for lookups that you create and internal lookups required by the system (“lkup_internal” prefix). All internal lookups are required. You may add or modify the entries in a few of the internal lookups. Please refer to the comments in the Lookup configuration file for more information related to the internal lookups.

To modify, add or delete a lookup:

1. Log in as the administrator.

2. Open the Configuration module.

3. Double-click the unique row of the Lookups section to open the corresponding file in the Configuration File Editor.

4. Modify the file; make sure you take into account the comments on the top of the file as some lookups cannot be modified while others can be modified but not removed.

5. Once done, close the editor.

6. If prompted to save the changes, click Yes.

7. The lookups are automatically reloaded in the application.

XML Structure for Lookups

<lookup-definitions>

 <lookup>

 <entry/>

 </lookup>

</lookup-definitions>

lookup-definitions

This is the root XML tag for Lookup Definitions. This tag is required and can only be defined once in the file. There are no attributes for the lookup-definitions tag.

lookup

The lookup tag defines a single lookup in the application. It contains a collection of entries. The lookup tag has the following attributes:

· id (required) – This is the lookup’s name, it must be a unique identifier. A lookup is assigned to a field by specifying this ID in the field’s lookup attribute.

· external (optional): whether or not this lookup is defined in the XML file or is loaded through one of the scripts from the synchronization module. The available values are 'true' and 'false'. Default value is 'false' if none is provided.

· disable-strict-validation (optional): whether or not strict validation should be disabled for this lookup. If strict validation on lookups is on, a wrong value typed in a field that contains a lookup will generate a critical error. Strict validation on lookups can be turn on and off in the main configuration. If strict validation is off, this attribute won’t have any effect. If it is on and this attribute is set to “true” for a particular lookup, then strict validation will be disabled for that lookup. It is useful to disable the strict validation for some lookups that have combined values. For example, an histology lookups could have codes that are a combination of the histology and behavior (“8000/2”); when selecting a value, the “8000” part should be assigned to the histology field while the “2” part should be assigned to the behavior field. Such a lookup would be bind to the histology field, but strict validation would always fail because the histology value by itself would never be found in the lookup. The available values for this attribute are 'true' and 'false'. Default value is 'false' if none is provided.

entry

The entry tag defines the mapping between the true value (the code) and the formatted text (the label). As an example, consider a mapping in a race lookup: code=”01”, label=”race”. The entry tag has the following attributes:

· code (required) – absolute value that will be entered in a field

· label (required) – formatted text that describes the code

Section 12: Defining Edits

Computerized edits are integrated into SEER*Abs to test the validity of data. In SEER*Abs, the edits are executed on records created in SEER*Abs, they are not executed on reference data. The following sets of edits are available in SEER*Abs:

· Internal system edits enforce data type constraints in layouts. The system edits cannot be modified.

· SEER*Abs edits are defined and maintained by registry staff. Samples are provided in the configuration file shipped with SEER*Abs. SEER*Abs edits apply to any record types created in the application.

· SEER Edits cover fields submitted to SEER and represent the edits implemented in the SEER*Edits software. The SEER edits are defined in XML files provided and maintained by the SEER*Edits development team. The SEER edits configuration file cannot be modified. By default SEER*Edits are not loaded in SEER*Abs but that behavior can be changed through a configuration variable in the main configuration file. If loaded, the SEER*Edits are applied only to abstract records.

SEER*Abs edits are implemented in Groovy, the scripting language for the Java platform that is also used for SEER*Abs scripts. Edits uses a small subset of the Groovy syntax. A working knowledge of regular expressions and Groovy logic statements are needed to maintain edits in SEER*Abs. To define a new edit, it is recommended that you copy-and-paste the code from an existing edit and use that code as a template.

Guidelines for writing the Groovy code for a registry edit:

· An edit error is triggered if the code returns FALSE for the record or patient set. The edit passes if the code returns TRUE.

· Use the Groovy code of a similar edit as a template.

· Contexts are defined within the context tag of the XML. Many examples are provided in the SEER edits XML file. Your Groovy code may include references to contexts that you define and the contexts defined for the SEER edits.

· A context is a Java naming system. Contexts are used to define arrays, hash tables, and functions used by the edits. For example, there are a large number of contexts defined for the SEER*Edits. Primarily, these represent data tables required by the SEER Edits logic. Contexts are defined within the XML context tag. Many examples are provided in the SEER edits XML file. Your Groovy code may include references to contexts that you define and the contexts defined for the SEER edits.

Section 13: Defining Autocompletion Word Lists

While entering text in a field, an abstractor may press Ctrl+Space to use the autocomplete feature. Autcomplete is available for string and unlimited-string fields in record and AFL layouts.

SEER*Abs supports multiple sets of autocomplete terms. Separate lists may be designated for different fields, for example, there may be one list for histology and another for primary site. Or terms from all lists may be made available in a field, for example, all terms are typically made available when editing large text fields. When a field does not define any autocomplete list in the layout definition, it will automatically use the “default” list. For that reason, there must always be a list with a name “default” define in the autocompletion word lists.

To modify, add or delete a autocompletion lists:

1. Log in as the administrator.

2. Open the Configuration module.

3. Double-click the unique row of the Autocomplete Terms section to open the corresponding file in the Configuration File Editor.

4. Modify the file; use the Validate button to make sure the XML is correct.

5. Once done, close the editor.

6. If prompted to save the changes, click Yes.

7. The lists are automatically reloaded in the application.

XML Structure for Autocompletion Word Lists

The following the available XML tags and their hierarchy in the Autocomplete configuration file.

<auto-complete-terms>

 <list>

 <import-list/>

 <term/>

 </list>

</ auto-complete-terms >

auto-complete-terms

This is the root XML tag. It is required, can only be defined once, and has no attributes.

list

Multiple lists may be defined. Each list may contain import-list tags and/or term tags; or you may define an empty list. The list tag has one attribute:

· name (required): The list identifier. Layout scripts may associate a specific list with a field using the autocomplete-list attribute of the field tag. You must define a list named “default” which will be used for fields that do not have an autocomplete-list attribute (the default list may be empty, but it must exist).

import-list

Use this tag to create one list based on other lists. In the example below, the default list does not have its own set of terms but it inherits the terms from the histology and site lists.

 <list name=”default”>

 <import-list>histology</import-list>

 <import-list>site</import-list>

 </list>

term

Use this tag to define a term. Single words or phrases may be used.

Section 14: Managing User Accounts

SEER*Abs supports a single administrative user account (username = admin) and multiple abstractor accounts. The admin user account is created during the initial installation on the administrator’s computer. The system administrator configures SEER*Abs and creates a registry-specific installation file. Registry managers and the SEER*Abs system administrator must define a protocol for maintaining abstractor accounts.

· A single abstractor account may be created as SEER*Abs is installed on each workstation. The abstractor using that computer would then complete the installation by defining a password known only to them.

· Alternatively, the system administrator may create accounts for all abstractors during the initial configuration. A protected list of unique passwords would be created. Accounts for all abstractors would then be installed on all workstations.

There is no method for synchronizing the user accounts on multiple installations of SEER*Abs. Once the system is deployed, you will need to add and remove users from each installation; or modify a central version and re-install the software.

To add, modify, or delete user accounts:

1. Login as the administrator.

2. Open the Users Manager.

3. To add a new account, click Add User.

a. Provide a username and the initial password for the new user. The password must contain at least 1 lower-case letter, 1 upper-case letter, and either a digit or a special character. This is the password that the user will enter the first time they login. They will then be prompted to specify a password known only to them.

b. You may enter values for the user-defined fields (optional). These fields are defined in the User layout configuration files.

c. Click Save.

4. To delete a user account, click the X icon associated with the user account. The admin account cannot be deleted.

5. To define a new password for an account:

a. Double-click the username or click the edit icon.

b. Click Change Pswd

c. Enter the new Password.

d. Verify the new password by re-entering it into the Repeat Password field.

6. To set or change the values of registry fields:

a. Double-click the username or click the edit icon.

b. Enter new values for the registry defined fields.

Section 15: SEER*Abs and Sensitive Data

SEER*Abs is a tool designed to handle sensitive data. The confidentiality of that data is critical. A lot of resources can be found online about good practices when it comes to handle sensitive data; one of those resources is the NIH website (http://www.nih.gov/).

SEER*Abs provides the following mechanism to keep the data secured:

· Strong passwords: any passwords defined for the admin user or regular users must be at least 8 characters long and must contain 1 lower-case letter, 1 upper-case letter and either a digit or a special character.

· Database encryptions: Derby is a file-based Java database; the content of the tables is saved as binary data and cannot be read through any text editor. Those binary files are also encrypted by Derby using the Data Encryption Standard (DES) 56 bits algorithm. That algorithm is tied to a key that is required to make any interaction with the databases. Without the key, any external programs (implemented in Java or other languages) will be unable to create a connection to the database.

When evaluating the data confidentiality aspects in SEER*Abs, keep the following in mind:

· SEER*Abs does not enforce changing the password after a certain period of time; it should be a Registry policy to do so.

· Once an extract has been generated by SEER*Abs, it will be located in the output directory (or another directory if the user changed that default one). It won’t be encrypted and readable by any text editor. It is the user’s responsibility to move the file right away to a secured location in the Central Registry. Note that the extraction is done by script, which means that even if the default scripts provided with SEER*Abs do not encrypt the content of the files, they can be modified by the Registry to do so.

· When synchronizing by directly accessing another database, SEER*Abs creates a connection to that database. Any data going through that connection is NOT encrypted. That means the synchronization needs to be done at the Central Registry (behind a firewall), or through a secured VPN.

· The database encryption is not unbreakable (and to some extend is not very strong). It is recommended to encrypt the entire hard-drive of the laptop (or any other device used to run the application).

Appendix 1: Utility Functions for Scripts

convertDate

This method can be used in any script. Converts the incoming date into a string representation of the corresponding java time.

param1: date to convert, format must be 'yyyymmddhhmmss'

deleteEntities

This method can be used in any script. Deletes all the entities for the passed type and subtype (admin user cannot be deleted through this method)

· param1: Entity type (required)

· param2: Entity subtype (use null if not applying)

deleteEntities

This method can be used in any script. Deletes the passed entity (admin user cannot be deleted through this method)

· param1: Entity type (required)

· param2: Entity subtype (use null if not applying)

· param3: Entity to delete

deleteEntity

This method can be used in any script. Deletes the passed entity (admin user cannot be deleted through this method)

· param1: Entity type (required)

· param2: Entity subtype (use null if not applying)

· param3: Entity to delete

disableButton

This method can be used only in scripts from the 'Action' family (on-record-created, etc...). Disables the passed button in the current editor (button will be re-enabled once the editor is closed)

· param1: requested button

displayEnv

This method can be used in any script. Displays the available environment variables in the current progress window or in the log if no window is available.

formatDateValue

This method can be used in any script. Formats the passed date value (a string representation of the Java time, see 'System.currentTimeMillis()'); result is mm/dd/yyyy.

· param1: value to format

· param2: if true, the hours and minutes will be included

formatValue

This method can be used in any script. Formats the passed value using a lookup; if the lookup does not contain the value it is returned as-is.

· param1: value to format

· param2: existing lookup ID

getConfVariable

This method can be used in any script. Returns the value of the requested configuration key.

· param1: key from the main configuration file (seerabs.properties)

getCurrentDay

This method can be used in any script. Returns the current day as a string; value is left-zero padded to be 2 characters long.

getCurrentFacility

This method can be used in any script. Returns the current facility as a map of property/values or null if no facility was used during the login process.

getCurrentMonth

This method can be used in any script. Returns the current month as a string; value is left-zero padded to be 2 characters long.

getCurrentUser

This method can be used in any script. Returns the currently logged user as a map of property/values.

getCurrentValue

This method can be used only in scripts embedded in XML layouts. Returns the value (possibly null) of the field to which this Groovy snippet is attached

getCurrentValue

This method can be used only in scripts embedded in table definition files. Returns the value (possibly null) of the column to which this Groovy snippet is attached for the entity displayed in the current row.

getCurrentYear

This method can be used in any script. Returns the current year as a string.

getEntityByDisplayId

This method can be used in any script. Returns the entity corresponding to the passed display ID or null if it is not found.

· param1: Entity type (required)

· param2: Entity subtype (use null if not applying)

· param3: display ID

getLookupById

This method can be used in any script. Returns the lookup (map of code/value) corresponding to the requested ID, throws exception is lookup is not found or empty.

· param1: Lookup ID

getPropertiesFromLayout

This method can be used in any script. Returns the properties defined in the layout for the pased type and subtype

· param1: Entity type (required)

· param2: Entity subtype (use null if not applying)

· param3: if true the read-only properties will be included, they won't otherwise

getRawLookupValue

This method can be used only in scripts embedded in XML layouts. Returns the raw value that was selected by the user; useful in cases where the codes define in the lookup are a combination of several values (for example histology/behavior represented as 8000/2)

getSeerabsVersion

This method can be used in any script. Returns the application current version number.

getValue

This method can be used only in scripts embedded in XML layouts. Returns the value (possibly null) of the requested field

· param1: requested field name

getValue

This method can be used only in scripts embedded in table definition files. Returns the value (possibly null) of the requested field for the entity displayed in the current row.

· param1: requested field name

hideButton

This method can be used only in scripts from the 'Action' family (on-record-created, etc...). Hides the passed button in the current editor (button will be visible again once the editor is closed)

· param1: requested button

jumpToField

This method can be used only in scripts embedded in XML layouts. Changes the focus to be on the requested field

· param1: requested field name

leftPad

This method can be used in any script. Left-pads the passed value.

· param1: the value to pad

· param2: the number of characters the result needs to be

· param3: the string to use as a padding character

log

This method can be used in any script. Display the passed message in the current progress window (if there is one) and in the log.

· param1: line to display

rightPad

This method can be used in any script. Right-pads the passed value.

· param1: the value to pad

· param2: the number of characters the result needs to be

· param3: the string to use as a padding character

saveEntities

This method can be used in any script. Saves the passed entities (admin user cannot be saved through this method)

· param1: Entity type (required)

· param2: Entity subtype (use null if not applying)

· param3: List of entities to save

saveEntity

This method can be used in any script. Saves the passed entity (admin user cannot be saved through this method)

· param1: Entity type (required)

· param2: Entity subtype (use null if not applying)

· param3: Entity to save

searchEntities

This method can be used in any script. Returns the entities corresponding to the passed search criteria.

· param1: Entity type (required)

· param2: Entity subtype (use null if not applying)

· param3: search criteria, see uses Lucene syntax (http://lucene.apache.org/java/docs).

· param4: max result (-1 for all results)

setCurrentValue

This method can be used only in scripts embedded in XML layouts. Sets the value of the field to which this Groovy snippet is attached

· param1: value to set

setEditorToReadOnly

This method can be used only in scripts from the 'Action' family (on-record-created, etc...). Sets the current editor in read-only mode (that mode will be reset once the editor is closed)

setValue

This method can be used only in scripts embedded in XML layouts. Sets the value of the requested field

· param1: requested field name

· param2: value to set

showConfirmationDialog

This method can be used in any script. Shows a confirmation dialog with a customized message and a yes/no option; returns true if the user accepted, false otherwise.

· param1: message to display

showInputDialog

This method can be used in any script. Shows an input dialog based on a customized input layout filename; returns the input values as a map of field name/field value; one of those value is 'closingStatus' which is set to 'ok' or 'cancel' depending which button the user clicked. If a field is not returned, null should be assumed for its value.

· param1: input layout filename

· param2: true if the cancel button should be shown, false otherwise

updateEntities

This method can be used in any script. Updates the passed entities (admin user cannot be updated through this method)

· param1: Entity type (required)

· param2: Entity subtype (use null if not applying)

· param3: Entity to update

updateEntity

This method can be used in any script. Updates the passed entity (admin user cannot be updated through this method)

· param1: Entity type (required)

· param2: Entity subtype (use null if not applying)

· param3: Entity to update

updateLookup

This method can be used in any script. Saves or updates the passed lookup

· param1: lookup ID

· param2: lookup content (map of code/label)

Install SEER*Abs

Remove old reference data, import up-to-date �reference data

Export created records and updated AFLs if any

Go in the field; create records

52
6/12/2009

SEER*Abs 1.0 System Administration

SEER*Abs 1.0 System Administration

6/12/2009
53

