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NOAA HYSPLIT model HYSPLIT-Hg

Modeling Methodology
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Dry and wet 
deposition of 
the pollutants 
in the puff are 
estimated at 
each time step.

The puff’s mass, size, 
and location are 
continuously tracked…

Phase partitioning and chemical 
transformations of pollutants within the 
puff are estimated at each time step

= mass of pollutant
(changes due to chemical transformations and 
deposition that occur at each time step)

Centerline of 
puff motion 
determined by 
wind direction 
and velocity

Initial puff location 
is at source, with 
mass depending 
on emissions rate

TIME (hours)
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deposition 1 deposition 2 deposition to receptor
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Modeling Methodology
NOAA HYSPLIT model HYSPLIT-Hg

Modeling domain: North America
(northern half of Mexico; continental U.S.; southern half of Canada)

1996 meterology (180 km horizontal resolution)
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NOAA HYSPLIT model HYSPLIT-Hg

Modeling domain: North America
(northern half of Mexico; continental U.S.; southern half of Canada)

1996 meterology (180 km horizontal resolution)

only U.S. and Canadian anthropogenic sources; 
(natural emissions, re-emissions, & global sources not included)

Model evaluation: 1996 emissions and 1996 monitoring data
(also evaluated in EMEP Hg model intercomparison project)

Modeling Methodology
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Figure 7. Model evaluation sites for wet deposition fluxes 
within 250 km of any Great Lake with available data for 

1996.
(Cohen et al., 2004, Environmental Research 95: 247-265)
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Figure 8. Comparison of annual model-estimated wet deposition fluxes with 
measured values at sites within 250 km of the Great Lakes during 1996. The range of 
modeled estimates shown for each site represents the difference in estimated 
deposition in using the NGM-forecast model precipitation and the actual precipitation 
at the site. (Cohen et al., 2004, Environmental Research 95: 247-265)
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NOAA HYSPLIT model HYSPLIT-Hg

Modeling domain: North America
(northern half of Mexico; continental U.S.; southern half of Canada)

1996 meterology (180 km horizontal resolution)

only U.S. and Canadian anthropogenic sources; 
(natural emissions, re-emissions, & global sources not included)

Model evaluation: 1996 emissions and 1996 monitoring data
(also evaluated in EMEP Hg model intercomparison project)

1st set of results – Cohen et al. 2004

Modeling Methodology
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Cohen, M., Artz, R., Draxler, R., Miller, P., Poissant, 
L., Niemi, D., Ratte, D., Deslauriers, M., Duval, R., 
Laurin, R., Slotnick, J., Nettesheim, T., McDonald, J.
“Modeling the Atmospheric Transport and Deposition 
of Mercury to the Great Lakes.” Environmental 
Research 95(3), 247-265, 2004.

Note: Volume 95(3) is a Special Issue: "An Ecosystem 
Approach to Health Effects of Mercury in the St. 
Lawrence Great Lakes", edited by David O. Carpenter.
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NOAA HYSPLIT model HYSPLIT-Hg

Modeling domain: North America
(northern half of Mexico; continental U.S.; southern half of Canada)

1996 meterology (180 km horizontal resolution)

only U.S. and Canadian anthropogenic sources; 
(natural emissions, re-emissions, & global sources not included)

Model evaluation: 1996 emissions and 1996 monitoring data
(also evaluated in EMEP Hg model intercomparison project)

1st set of results – Cohen et al. 2004

2nd set of results (examples shown today) –
1996 meteorology
1999 U.S. EPA National Emissions Inventory
2000 emissions data from Environment Canada

Modeling Methodology
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Geographic Distribution of Largest Anthropogenic Mercury 
Emissions Sources in the U.S. (1999) and Canada (2000)
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some earlier results
for Mobile Bay
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Total modeled mercury deposition at selected receptors arising from from 1999 
direct anthropogenic emissions sources in the United States and Canada 

(IPM coal fired plants are large coal-fired plants in the U.S. only) 
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Largest Modeled Individual Sources 
Contributing Mercury Deposition 
Directly to Mobile Bay (national view)

• 1996 meteorology (NGM)
• 1999 U.S. emissions (EPA NEI)
• 2000 Canadian emissions (Envr. Canada)
• no sources other than U.S. & Can. anthropogenic emissions 
• total modeled deposition to Mobile Bay ~ 3.5 g Hg/km2-year
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• 1996 meteorology (NGM)
• 1999 U.S. emissions (EPA NEI)
• 2000 Canadian emissions (Envr. Canada)
• no sources other than U.S. & Can. anthropogenic emissions 
• total modeled deposition to Mobile Bay ~ 3.5 g Hg/km2-year
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Largest Modeled Individual Sources 
Contributing Mercury Deposition 
Directly to Mobile Bay (large regional view)

• 1996 meteorology (NGM)
• 1999 U.S. emissions (EPA NEI)
• 2000 Canadian emissions (Envr. Canada)
• no sources other than U.S. & Can. anthropogenic emissions 
• total modeled deposition to Mobile Bay ~ 3.5 g Hg/km2-year
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Largest Modeled Individual Sources 
Contributing Mercury Deposition 
Directly to Mobile Bay (regional view)

• 1996 meteorology (NGM)
• 1999 U.S. emissions (EPA NEI)
• 2000 Canadian emissions (Envr. Canada)
• no sources other than U.S. & Can. anthropogenic emissions 
• total modeled deposition to Mobile Bay ~ 3.5 g Hg/km2-year
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Largest Modeled Individual Sources 
Contributing Mercury Deposition 
Directly to Mobile Bay (local view)

• 1996 meteorology (NGM)
• 1999 U.S. emissions (EPA NEI)
• 2000 Canadian emissions (Envr. Canada)
• no sources other than U.S. & Can. anthropogenic emissions 
• total modeled deposition to Mobile Bay ~ 3.5 g Hg/km2-year
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Top 25 Modeled Contributors to 1999 Hg Deposition Directly to Mobile Bay, 
considering anthropogenic direct emission sources in the United States and Canada

 Barry
Pascagoula Incin.

Victor J. Daniel
 Crist

 Holnam
Jack Watson

St. Joseph's Hospital
Charles R. Lowman
 Gaston
 Gorgas

Medusa Cement Company
First Chemical Corporation
SCOTT PAPER CO.
Chemical Waste Management

 Miller
Big Cajun 2
INTERNATIONAL PAPER CO.
Lansing Smith
R. D. Morrow Sr.
Monticello
CIBA-Geigy Corporation
JERRITT CANYON
 LWD

Bay Resource Manage. Ctr.
 Scherer

AL  
MS  

MS  
FL  

AL  
MS  
FL  
AL  
AL  
AL  
AL  
MS  
AL  
TX  
AL  
LA  
AL  
FL  
MS  
TX  
LA  
NV  
KY  
FL  
GA  

0% 20% 40% 60% 80% 100%
Cumulative Fraction of Hg Deposition

0

5

10

15

20

25
R

an
k

coal-fired elec gen
other fuel combustion
waste incineration
metallurgical
manufacturing/other

Cumulative Fraction of Modeled Deposition
28



Outline of Presentation
modeling methodology

some preliminary results for Mobile Bay 
(based on this methodology)

model intercomparisons

summary of previous work; current goals; challenges

29



Model Intercomparisons

EMEP MSC-East (~7 models)

HYSPLIT-Hg vs. ISC

HYSPLIT-Hg vs. CMAQ-Hg
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Model Intercomparisons

EMEP MSC-East (~7 models)

HYSPLIT-Hg vs. ISC

HYSPLIT-Hg vs. CMAQ-Hg
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction
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Participants
D. Syrakov …………………………….. Bulgaria….NIMH
A. Dastoor, D. Davignon ……………… Canada...... MSC-Can
J. Christensen …………………………. Denmark…NERI
G. Petersen, R. Ebinghaus …………...... Germany…GKSS
J. Pacyna ………………………………. Norway…..NILU
J. Munthe, I. Wängberg ……………….. Sweden….. IVL
R. Bullock ………………………………USA………EPA
M. Cohen, R. Artz, R. Draxler ………… USA………NOAA
C. Seigneur, K. Lohman ………………..USA……... AER/EPRI
A. Ryaboshapko, I. Ilyin, O.Travnikov…EMEP……MSC-E



EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction
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Intercomparison Conducted in 3 Stages

I. Comparison of chemical schemes 
for a cloud environment

II. Air Concentrations in Short 
Term Episodes

III. Long-Term Deposition and 
Source-Receptor Budgets



EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction
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Stage

Hybrid Single Particle Lagrangian Integrated Trajectory model, US NOAAHYSPLIT

MSC-E heavy metal hemispheric model, EMEP MSC-EMSCE-HM-Hem

Acid Deposition and Oxidants Model, GKSS Research Center, Germany                                 ADOM

MSC-E heavy metal regional model, EMEP MSC-EMSCE-HM

Community Multi-Scale Air Quality model, US EPACMAQ

Eulerian Model for Air Pollution, Bulgarian Meteo-serviceEMAP

Chemistry of Atmos. Mercury model, Environmental Institute, SwedenCAM

Mercury Chemistry Model, Atmos. & Environmental Research, USA                                 MCM

Danish Eulerian Hemispheric Model, National Environmental Institute                              DEHM

Global/Regional Atmospheric Heavy Metal model, Environment CanadaGRAHM

IIIIII

Model Name and InstitutionModel Acronym

Participating Models



EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction
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Anthropogenic Mercury Emissions Inventory
and Monitoring Sites for Phase II

(note: only showing largest emitting grid cells)

Mace Head, Ireland 
grassland shore Rorvik, Sweden 

forested shore

Aspvreten, Sweden 
forested shore

Zingst, Germany
sandy shore

Neuglobsow, Germany 
forested area



EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction
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Neuglobsow
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction
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Total Gaseous Mercury at Neuglobsow: June 26 – July 6, 
1995
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction
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Total Gaseous Mercury (ng/m3) at Neuglobsow: June 26 – July 6, 1995
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction
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Total Particulate Mercury (pg/m3) at Neuglobsow, Nov 1-14, 
1999
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Model Intercomparisons

EMEP MSC-East (~7 models)

HYSPLIT-Hg vs. ISC

HYSPLIT-Hg vs. CMAQ-Hg
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Different Time 
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Locations, but 
Similar Results
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Model Intercomparisons

EMEP MSC-East (~7 models)

HYSPLIT-Hg vs. ISC

HYSPLIT-Hg vs. CMAQ-Hg
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Modeled Mercury 
Deposition in the 
Great Lakes Region 
from all sources 
during 2001

Modeled Mercury 
Deposition in the 
Great Lakes Region 
attributable to U.S. 
coal-fired power 
plants during 2001

CMAQ-Hg results from EPA analysis performed for the Clean Air Mercury Rule
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Model-estimated U.S. utility atmospheric mercury 
deposition contribution to the Great Lakes: 
HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs. 
CMAQ-HG (2001 meteorology, 2001 emissions). 
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Model-estimated U.S. utility atmospheric mercury deposition 
contribution to the Great Lakes: HYSPLIT-Hg (1996 meteorology, 
1999 emissions) vs. CMAQ-Hg (2001 meteorology, 2001 emissions). 

This figure also shows an added component of the CMAQ-Hg 
estimates -- corresponding to 30% of the CMAQ-Hg results – in an 
attempt to adjust the CMAQ-Hg results to account for the deposition 
underprediction found in the CMAQ-Hg model evaluation. 
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• 1996, 1999 U.S. NEI
• 1995, 2000 Canada

Previous Work

Emissions Inventories
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• 1996, 1999 U.S. NEI
• 1995, 2000 Canada

Previous Work

Emissions Inventories

• 2002 U.S. NEI
• 2002 Canada
• Global – 2000 (Pacyna-NILU)
• Natural sources
• Re-emitted anthropogenic

Current Objectives
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• 1996, 1999 U.S. NEI
• 1995, 2000 Canada

Previous Work

Emissions Inventories

• 2002 U.S. NEI
• 2002 Canada
• Global – 2000 (Pacyna-NILU)
• Natural sources
• Re-emitted anthropogenic

Current Objectives

• Speciation?
• Short-term variations (e.g. hourly) [CEM’s?]
• Longer-term variations (e.g., maintenance)?
• Mobile sources
• Harmonization of source-categories 
• Emissions inventories currently only become available 

many years after the fact; how can we evaluate models 
using current monitoring data?

Challenges and Notes
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• For U.S./Canadian modeling, 1996 data from 
NOAA Nested Grid Model (NGM), 180 kmPrevious Work

Meteorological Data
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• For U.S./Canadian modeling, 1996 data from 
NOAA Nested Grid Model (NGM), 180 kmPrevious Work

Meteorological Data

• U.S.     – NOAA EDAS 40 km,  3 hr
• Global – NOAA GDAS 1o x 1o,  3 hrCurrent Objectives
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• Forecast vs. Analysis
• Data assimilation
• Precipitation??
• Difficult to archive NOAA analysis datasets
• Need finer-resolution datasets, especially for 

near-field analysis and model evaluation
• We have conversion filters (e.g., for MM5), but 

these data are not readily available
• What is the best way to archive and share data?

Challenges and Notes

• For U.S./Canadian modeling, 1996 data from 
NOAA Nested Grid Model (NGM), 180 kmPrevious Work

Meteorological Data

• U.S.     – NOAA EDAS 40 km,  3 hr
• Global – NOAA GDAS 1o x 1o,  3 hrCurrent Objectives
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• Typical chemical mechanism
• Prescribed fields for reactive trace gases (e.g., O3, 

OH, SO2) and other necessary constituents (e.g., 
soot) based on modeled, measured, and/or 
empirical relationships

Previous Work

Atmospheric Chemistry and Physics
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GAS PHASE REACTIONS

AQUEOUS PHASE REACTIONS

ReferenceUnitsRateReaction

Xiao et al. (1994); 
Bullock and Brehme (2002)

(sec)-1 (maximum)6.0E-7Hg+2 + h< → Hg0

eqlbrm: Seigneur et al. (1998)

rate: Bullock & Brehme (2002).

liters/gram;
t = 1/hour

9.0E+2Hg(II)   ↔ Hg(II) (soot)

Lin and Pehkonen(1998)(molar-sec)-12.0E+6Hg0 + OCl-1 → Hg+2

Lin and Pehkonen(1998)(molar-sec)-12.1E+6Hg0 + HOCl → Hg+2

Gardfeldt & Jonnson (2003)(molar-sec)-1~ 0Hg(II)  + HO2• → Hg0

Van Loon et al. (2002)T*e((31.971*T)-12595.0)/T)    sec-1

[T = temperature (K)]
HgSO3 → Hg0

Lin and Pehkonen(1997)(molar-sec)-12.0E+9Hg0 + OH• → Hg+2

Munthe (1992)(molar-sec)-14.7E+7Hg0 + O3 → Hg+2

Sommar et al. (2001)cm3/molec-sec8.7E-14Hg0 +OH• → Hg(p)

Calhoun and Prestbo (2001)cm3/molec-sec4.0E-18Hg0 + Cl2 → HgCl2

Tokos et al. (1998) (upper limit based 
on experiments)

cm3/molec-sec8.5E-19Hg0 + H2O2 → Hg(p) 

Hall and Bloom (1993)cm3/molec-sec1.0E-19Hg0 + HCl → HgCl2

Hall (1995)cm3/molec-sec3.0E-20Hg0 + O3 → Hg(p)

Atmospheric Chemical Reaction Scheme for Mercury

55



CLOUD DROPLET

cloud

Primary
Anthropogenic

Emissions

Hg(II), ionic mercury, RGM
Elemental Mercury [Hg(0)]

Particulate Mercury [Hg(p)]

Re-emission of  previously 
deposited anthropogenic 

and natural mercury

Hg(II) reduced to Hg(0) 
by SO2 and sunlight

Hg(0) oxidized to dissolved 
Hg(II) species by O3, OH,

HOCl, OCl-

Adsorption/
desorption
of Hg(II) to
/from soot

Natural
emissions

Upper atmospheric
halogen-mediated
heterogeneous oxidation?

Polar sunrise
“mercury depletion events”

Br

Dry deposition

Wet deposition

Hg(p)

Vapor phase:

Hg(0) oxidized to RGM 
and Hg(p) by O3, H202, 
Cl2, OH, HCl

Atmospheric Mercury Fate Processes
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• Typical chemical mechanism
• Prescribed fields for reactive trace gases (e.g., O3, 

OH, SO2) and other necessary constituents (e.g., 
soot) based on modeled, measured, and/or 
empirical relationships

Previous Work

Atmospheric Chemistry and Physics

• Include new information on chemistry, e.g., 
bromine reactions, etc.

• Sensitivity analyses
• Use gridded chemical output from full-chemistry 

atmospheric model (e.g., CMAQ) 
• Option - run HYSPLIT in Eulerian mode for 

chemistry; conduct one-atmosphere simulation

Current Objectives
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• Typical chemical mechanism
• Prescribed fields for reactive trace gases (e.g., O3, 

OH, SO2) and other necessary constituents (e.g., 
soot) based on modeled, measured, and/or 
empirical relationships

Previous Work

Atmospheric Chemistry and Physics

• Include new information on chemistry, e.g., 
bromine reactions, etc.

• Sensitivity analyses
• Use gridded chemical output from full-chemistry 

atmospheric model (e.g., CMAQ) 
• Option - run HYSPLIT in Eulerian mode for 

chemistry; conduct one-atmosphere simulation

Current Objectives

• What is RGM?
• What is Hg(p)?
• What is solubility of Hg(p)?
• Fate of dissolved Hg(II) when droplet dries out?
• What reactions don’t we know about yet?
• What are rates of reactions?

Challenges and Notes
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• US: 1996 MDN measurements
• Europe: 1999 speciated ambient concentrations in short-term 

episodes, monthly wet deposition

Previous 
Work

Model Evaluation
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• US: 1996 MDN measurements
• Europe: 1999 speciated ambient concentrations in short-term 

episodes, monthly wet deposition

Previous 
Work

Model Evaluation

• Attempt to utilize all available 2002-2005 speciated ambient 
concentrations and wet deposition data from U.S. and other 
regions

Current 
Objectives

• Comprehensive evaluation has not been possible due to large gaps
in availability of monitoring and process-related data

• Need data for upper atmosphere as well as surface
• Need data for both source-impacted and background sites
• Use of recent monitoring data with EPA 2002 inventory?
• Time-resolved monitoring data vs. non-time-resolved emissions?
• Hard to diagnose differences between models & measurements
• Can we find better ways to share data for model evaluation (and 

other purposes)? To this end,  discussion is beginning on national, 
cooperative, ambient Hg monitoring network

Challenges 
and Notes
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Thanks!
For more information on this modeling research:

http://www.arl.noaa.gov/ss/transport/cohen.html
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