
Atmospheric Mercury Modeling at the NOAA Air Resources Laboratory using the HYSPLIT-Hg Model

Presentation at the Gulf Coast Mercury Research Collaboration Meeting Gulf Power Building, Pensacola FL, May 18-19, 2006

Outline of Presentation

D modeling methodology

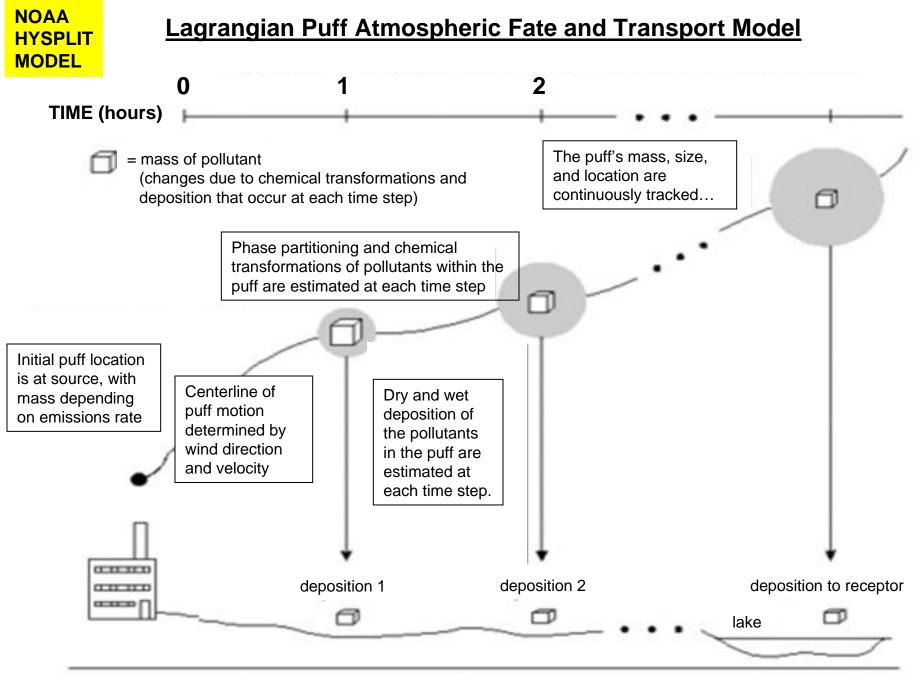
□ some preliminary results for Mobile Bay (based on this methodology)

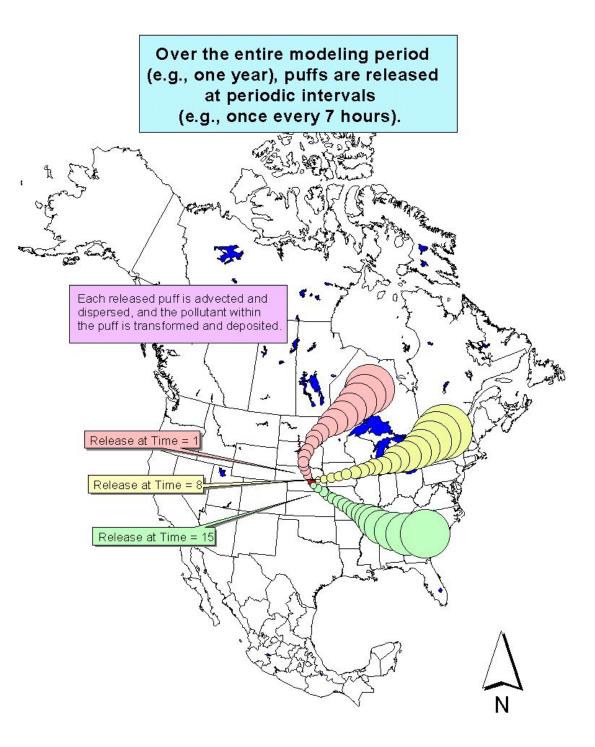
D model intercomparisons

□ summary of previous work; current goals; challenges

Outline of Presentation

modeling methodology

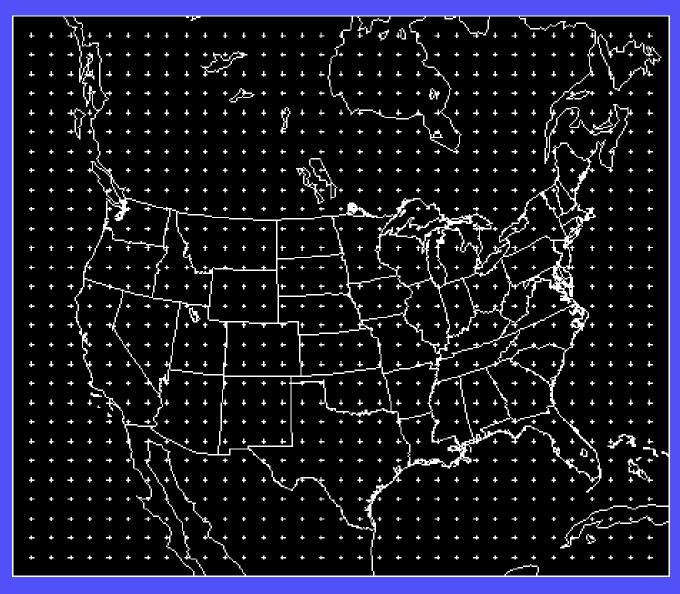

□ some preliminary results for Mobile Bay (based on this methodology)


D model intercomparisons

□ summary of previous work; current goals; challenges

Modeling Methodology

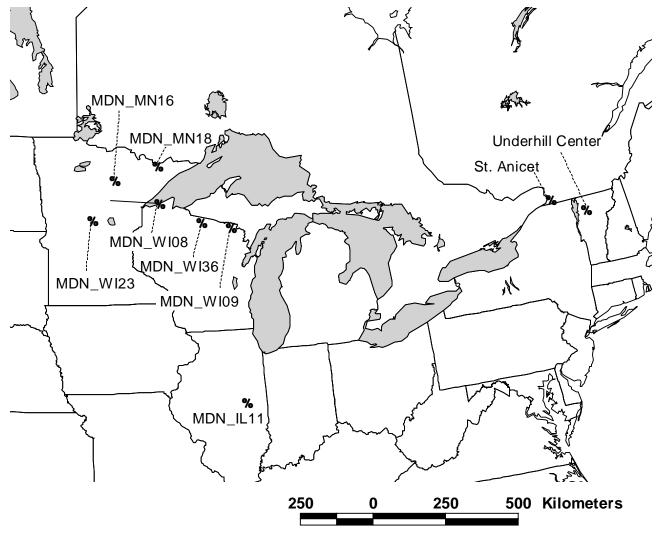
□ NOAA HYSPLIT model → HYSPLIT-Hg



Modeling Methodology

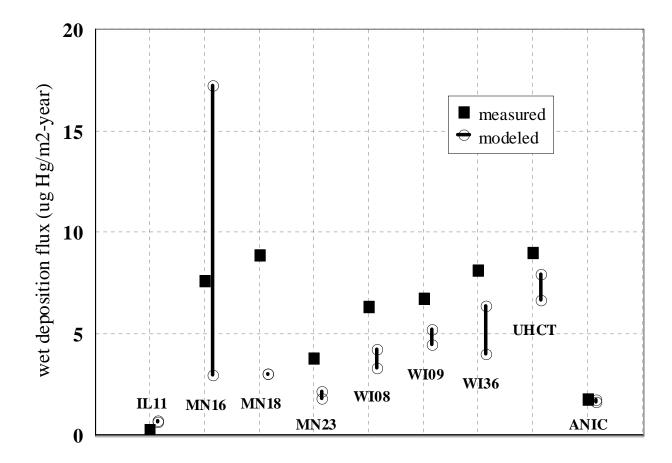
- □ NOAA HYSPLIT model → HYSPLIT-Hg
- Modeling domain: North America (northern half of Mexico; continental U.S.; southern half of Canada)
- **1996** meterology (180 km horizontal resolution)

NGM Archive Grid

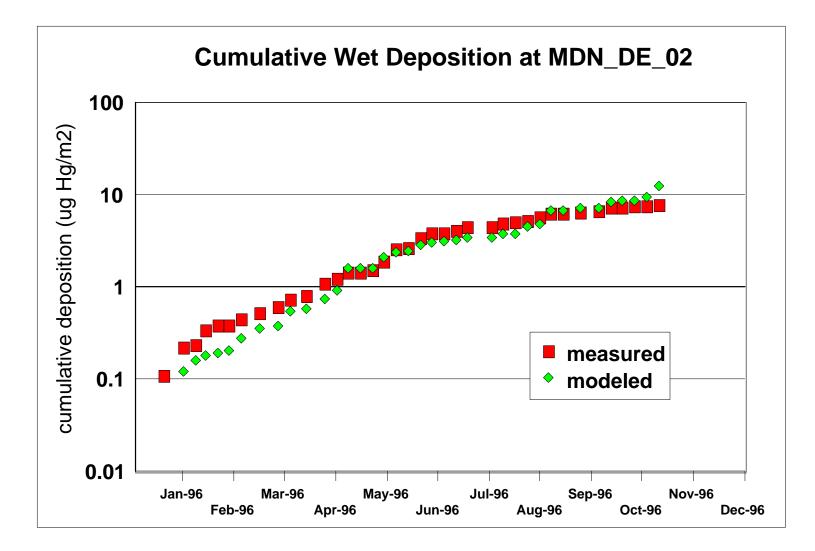

8

Modeling Methodology

- $\Box \text{ NOAA HYSPLIT model} \rightarrow \text{HYSPLIT-Hg}$
- Modeling domain: North America (northern half of Mexico; continental U.S.; southern half of Canada)
- **1996** meterology (180 km horizontal resolution)
- only U.S. and Canadian <u>anthropogenic</u> sources; (natural emissions, re-emissions, & global sources not included)
- □ Model evaluation: 1996 emissions and 1996 monitoring data (also evaluated in EMEP Hg model intercomparison project)


Figure 7. Model evaluation sites for wet deposition fluxes within 250 km of any Great Lake with available data for 1996.

(Cohen et al., 2004, Environmental Research 95: 247-265)



(Cohen et al., 2004, Environmental Research 95: 247-265)

Figure 8. Comparison of annual model-estimated wet deposition fluxes with measured values at sites within 250 km of the Great Lakes during 1996. The range of modeled estimates shown for each site represents the difference in estimated deposition in using the NGM-forecast *model* precipitation and the *actual* precipitation at the site. (Cohen et al., 2004, Environmental Research 95: 247-265)

Modeled vs. Measured Wet Deposition at Mercury Deposition Network Site DE_02 during 1996

Modeling Methodology

- $\Box \quad \text{NOAA HYSPLIT model} \rightarrow \text{HYSPLIT-Hg}$
- Modeling domain: North America (northern half of Mexico; continental U.S.; southern half of Canada)
- **1996** meterology (180 km horizontal resolution)
- only U.S. and Canadian <u>anthropogenic</u> sources; (natural emissions, re-emissions, & global sources not included)
- □ Model evaluation: 1996 emissions and 1996 monitoring data (also evaluated in EMEP Hg model intercomparison project)
- □ 1st set of results Cohen et al. 2004

	Available online at www.sciencedirect.com	Environmental Research
ELSEVIER	Environmental Research 95 (2004) 247-265	http://www.elsevier.com/locate/envres
Modeling	the atmospheric transport and depose to the Great Lakes $\stackrel{\text{res}}{\approx}$	sition of mercury
Mark Cohen David Niemi, ^d I	to the Great Lakes ☆ , ^{a,*} Richard Artz, ^a Roland Draxler, ^a Paul Mille Dominique Ratté, ^d Marc Deslauriers, ^d Roch Du	er, ^b Laurier Poissant, ^c Ival, ^e Rachelle Laurin, ^{e,1}
Mark Cohen David Niemi, ^d I Je	to the Great Lakes [☆]	er, ^b Laurier Poissant, ^c Ival, ^e Rachelle Laurin, ^{e,1} McDonald ^h

Abstract

A special version of the NOAA HYSPLIT.4n mercury in a North American modeling domain results and provide estimates of the contributi atmospheric mercury deposition to the Great I suitable for model evaluation are scarce, model i the Great Lakes region and with independent m from the Great Lakes contributed significant an significant contributions from incineration and contributor to atmospheric mercury deposition Published by Elsevier Inc.

Keywords: Mercury; Atmospheric deposition; Great

Mercury contamination in the Great Lak other ecosystems is increasingly being rec serious environmental concern. The domin human exposure to mercury is through fi tion, and significant portions of the genera are believed to be consuming toxicological levels of mercury (e.g., National Resea 2000). Historical discharges e.g., from production using the mercury-cell process to have caused large accumulations of

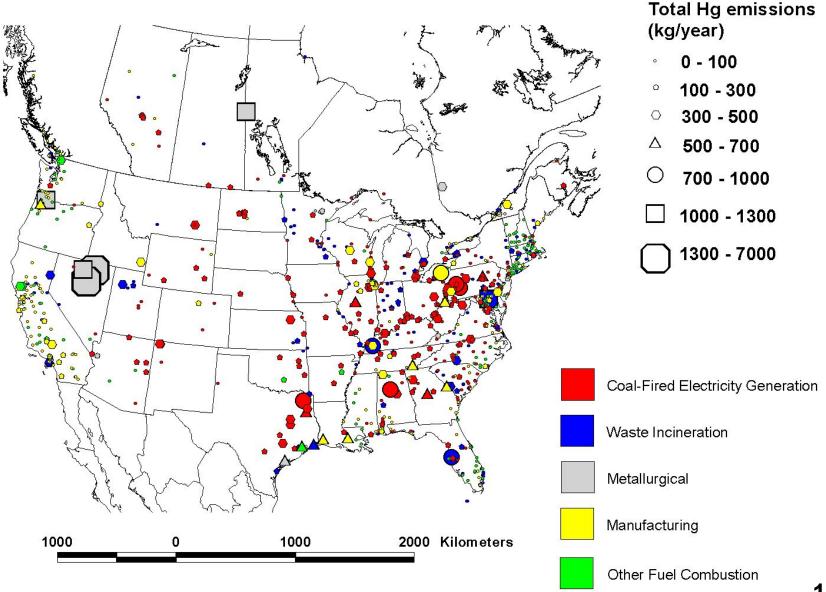
²⁵ Supplementary data associated with this article the online version, at doi = 10.1016/j.envres.2003.11.0 *Corresponding author. Fax: + 301-713-0119.

Research, Concord, Ontario, Canada.

Corresponding author, Fax: + 301-713-0119. E-mail address: mark.cohen@noaa.gov (M. Cohen).
¹Current address: DPRA Canada/The Institute of Environmental

0013-9351/\$ - see front matter Published by Elsevier Inc. doi:10.1016/j.envres.2003.11.007

Cohen, M., Artz, R., Draxler, R., Miller, P., Poissant, L., Niemi, D., Ratte, D., Deslauriers, M., Duval, R., Laurin, R., Slotnick, J., Nettesheim, T., McDonald, J. "Modeling the Atmospheric Transport and Deposition of Mercury to the Great Lakes." *Environmental Research* 95(3), 247-265, 2004.


Note: Volume 95(3) is a Special Issue: "An Ecosystem Approach to Health Effects of Mercury in the St. Lawrence Great Lakes", edited by David O. Carpenter.

Shannon and Voldner, 1995; Xu et al., 2000a-c), none has developed detailed source receptor relationships for the Great Lakes, as advocated in Annex 15 of the Great

Modeling Methodology

- $\Box \quad \text{NOAA HYSPLIT model} \rightarrow \text{HYSPLIT-Hg}$
- Modeling domain: North America (northern half of Mexico; continental U.S.; southern half of Canada)
- **1996** meterology (180 km horizontal resolution)
- only U.S. and Canadian <u>anthropogenic</u> sources; (natural emissions, re-emissions, & global sources not included)
- □ Model evaluation: 1996 emissions and 1996 monitoring data (also evaluated in EMEP Hg model intercomparison project)
- □ 1st set of results Cohen et al. 2004
- □ 2nd set of results (examples shown today)
 - > 1996 meteorology
 - > 1999 U.S. EPA National Emissions Inventory
 - 2000 emissions data from Environment Canada

Geographic Distribution of Largest Anthropogenic Mercury Emissions Sources in the U.S. (1999) and Canada (2000)

Outline of Presentation

modeling methodology

3 some preliminary results for Mobile Bay (based on this methodology)

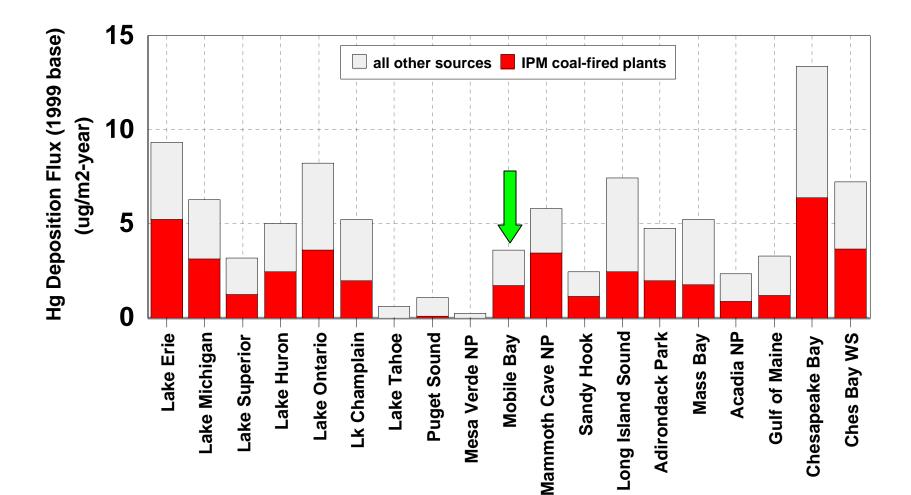
D model intercomparisons

□ summary of previous work; current goals; challenges

some earlier results for Mobile Bay

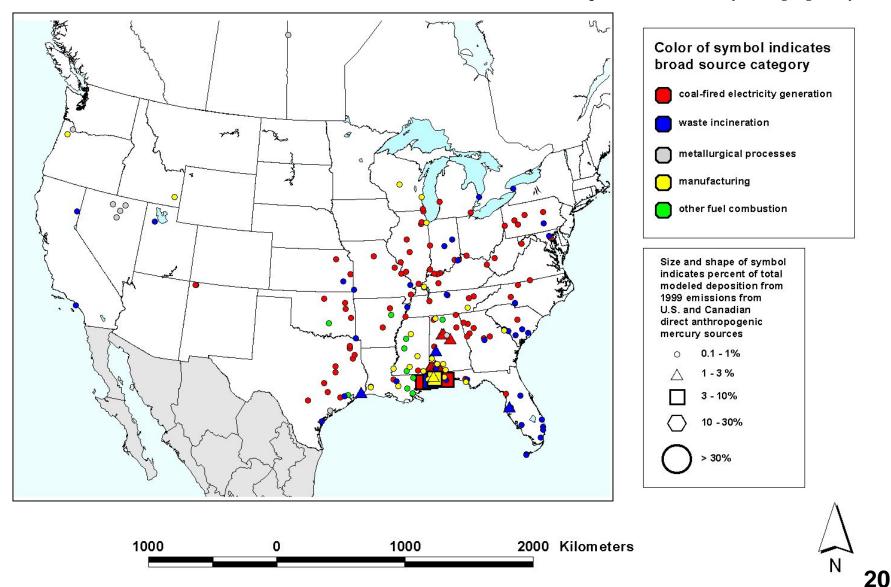
© 2006 Europa Technologies Image © 2006 TerraMetrics

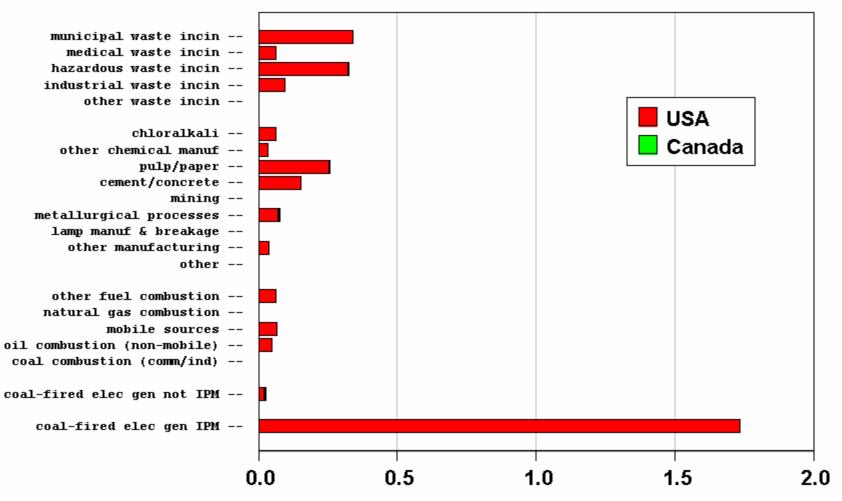
Alabama


Mississippi

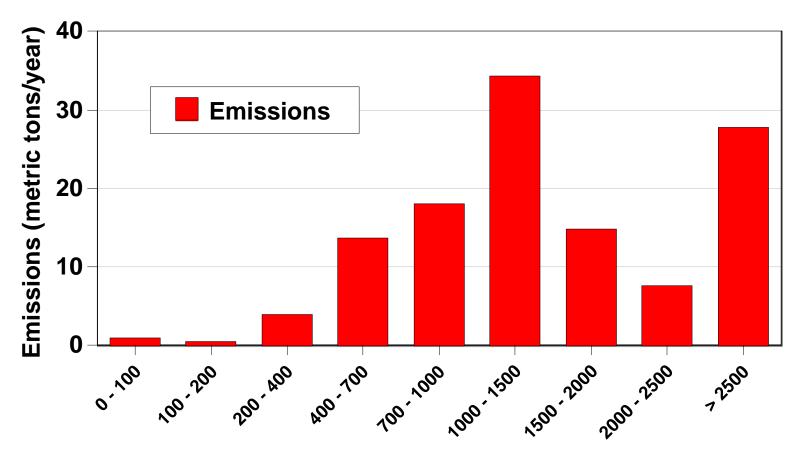
ouisiana

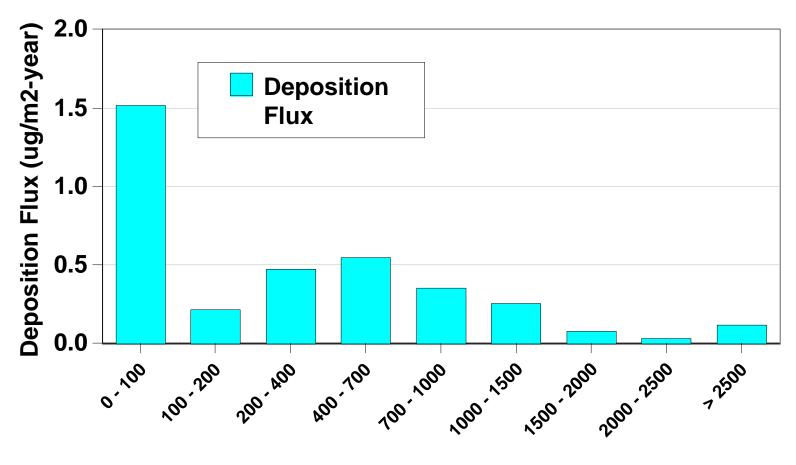
""Google


Georgia

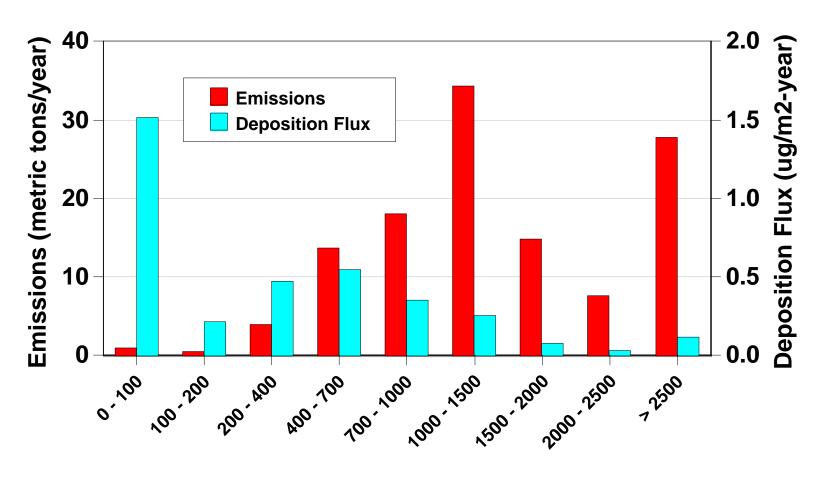

Total modeled mercury deposition at selected receptors arising from from 1999 direct anthropogenic emissions sources in the United States and Canada (IPM coal fired plants are large coal-fired plants in the U.S. only)

Largest Modeled Individual Sources Contributing Mercury Deposition Directly to Mobile Bay (national view)


- 1996 meteorology (NGM)
- 1999 U.S. emissions (EPA NEI)
- 2000 Canadian emissions (Envr. Canada)
- no sources other than U.S. & Can. anthropogenic emissions
- total modeled deposition to Mobile Bay ~ 3.5 g Hg/km²-year

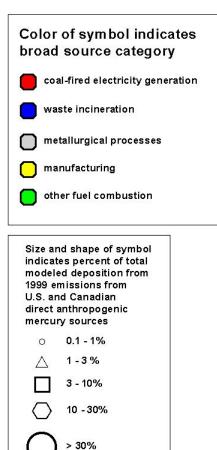


Atmospheric Deposition to Mobile Bay (g Hg/km2-year)


- 1996 meteorology (NGM)
- 1999 U.S. emissions (EPA NEI)
- 2000 Canadian emissions (Envr. Canada)
- no sources other than U.S. & Can. anthropogenic emissions
- total modeled deposition to Mobile Bay ~ 3.5 g Hg/km²-year

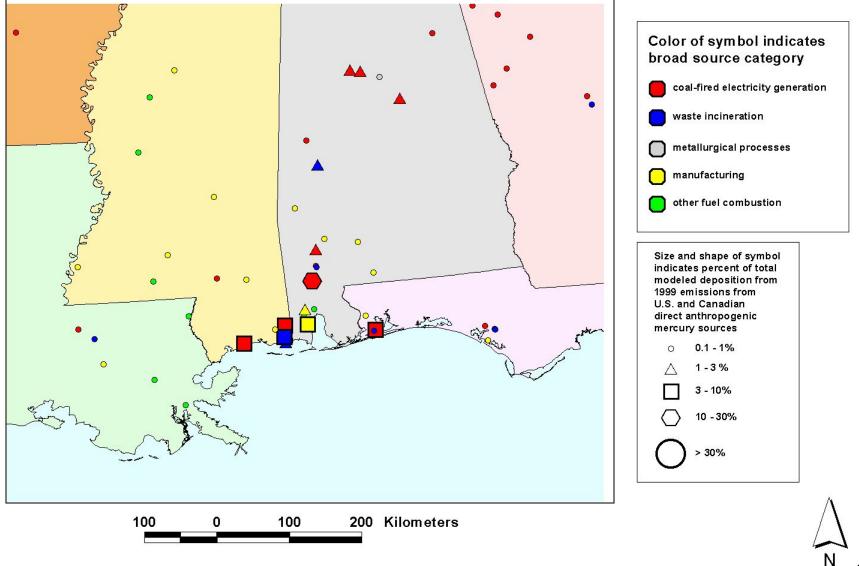
Distance Range from Mobile Bay (km)

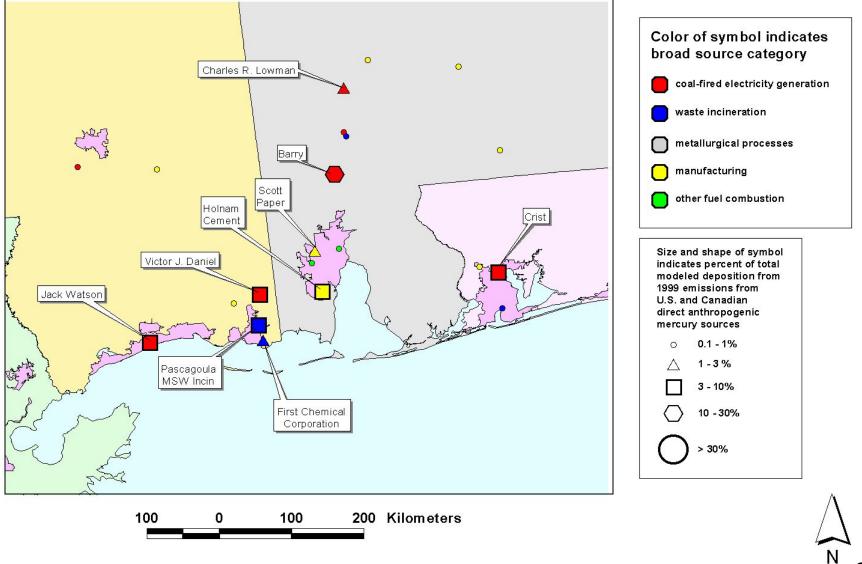
Distance Range from Mobile Bay (km)



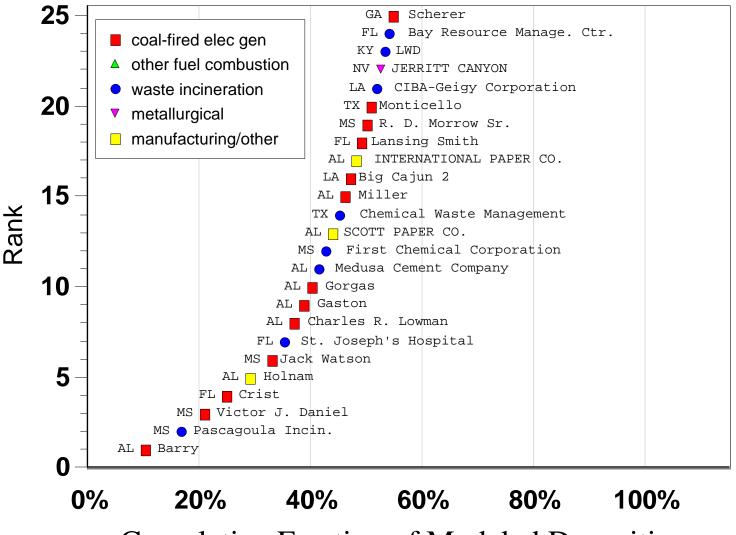
Distance Range from Mobile Bay (km)

Largest Modeled Individual Sources Contributing Mercury Deposition Directly to Mobile Bay (large regional view)


- 1996 meteorology (NGM)
- 1999 U.S. emissions (EPA NEI)
- 2000 Canadian emissions (Envr. Canada)
- no sources other than U.S. & Can. anthropogenic emissions
- total modeled deposition to Mobile Bay ~ 3.5 g Hg/km²-year


Largest Modeled Individual Sources Contributing Mercury Deposition Directly to Mobile Bay (regional view)

- 1996 meteorology (NGM)
- 1999 U.S. emissions (EPA NEI)
- 2000 Canadian emissions (Envr. Canada)
- no sources other than U.S. & Can. anthropogenic emissions
- total modeled deposition to Mobile Bay ~ 3.5 g Hg/km²-year


Largest Modeled Individual Sources Contributing Mercury Deposition Directly to Mobile Bay (local view)

- 1996 meteorology (NGM)
- 1999 U.S. emissions (EPA NEI)
- 2000 Canadian emissions (Envr. Canada)
- no sources other than U.S. & Can. anthropogenic emissions
- total modeled deposition to Mobile Bay ~ 3.5 g Hg/km²-year

27

Top 25 Modeled Contributors to 1999 Hg Deposition Directly to Mobile Bay, considering anthropogenic direct emission sources in the United States and Canada

Cumulative Fraction of Modeled Deposition

Outline of Presentation

modeling	methodology
-----------------	-------------

some preliminary results for Mobile Bay (based on this methodology)

model intercomparisons

□ summary of previous work; current goals; challenges

Model Intercomparisons

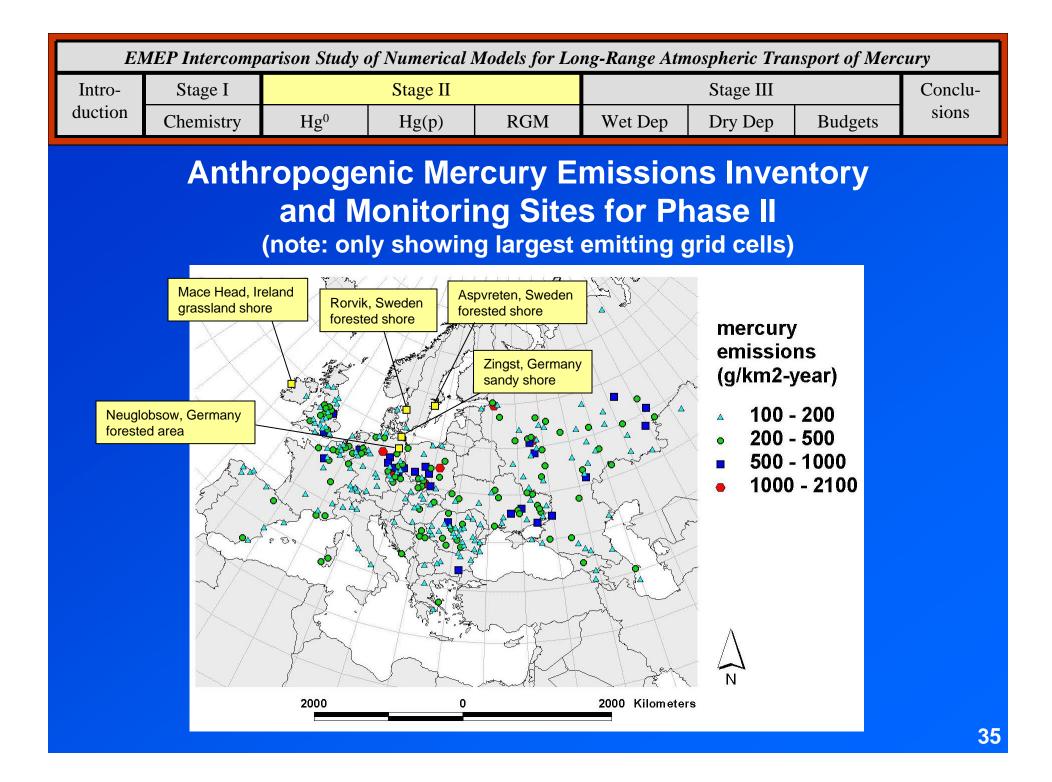
EMEP MSC-East (~7 models) HYSPLIT-Hg vs. ISC HYSPLIT-Hg vs. CMAQ-Hg

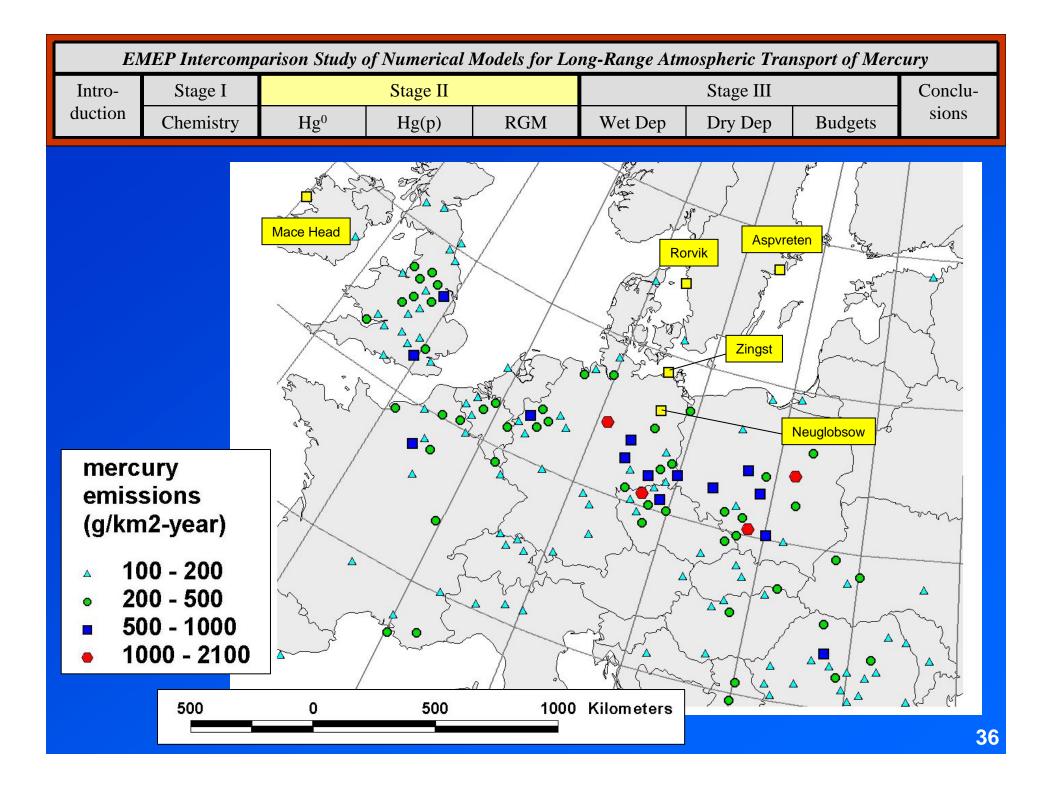
Model Intercomparisons

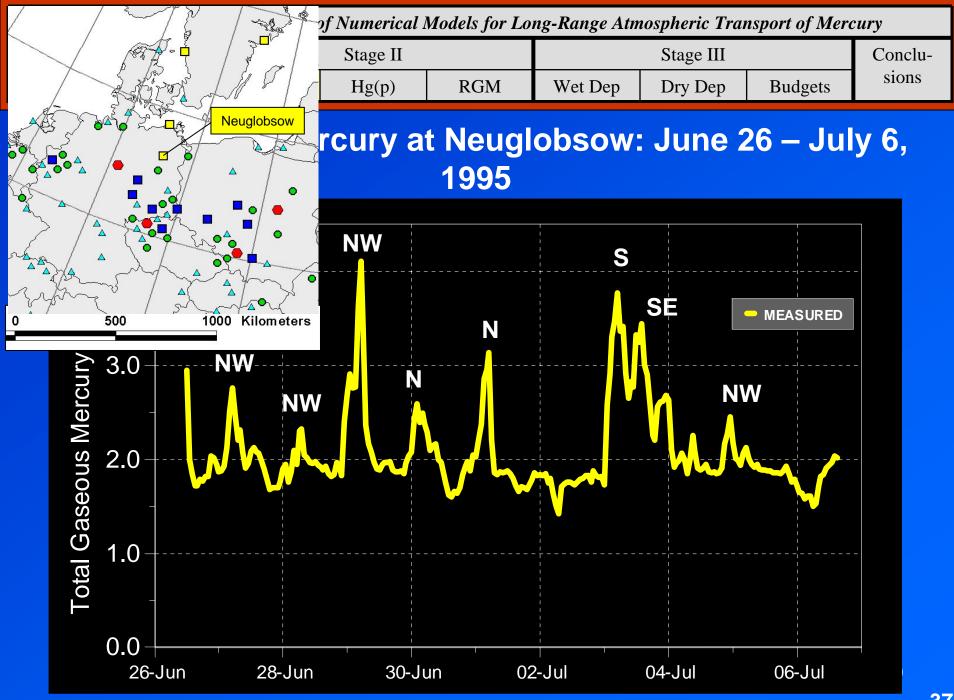
EMEP MSC-East (~7 models)

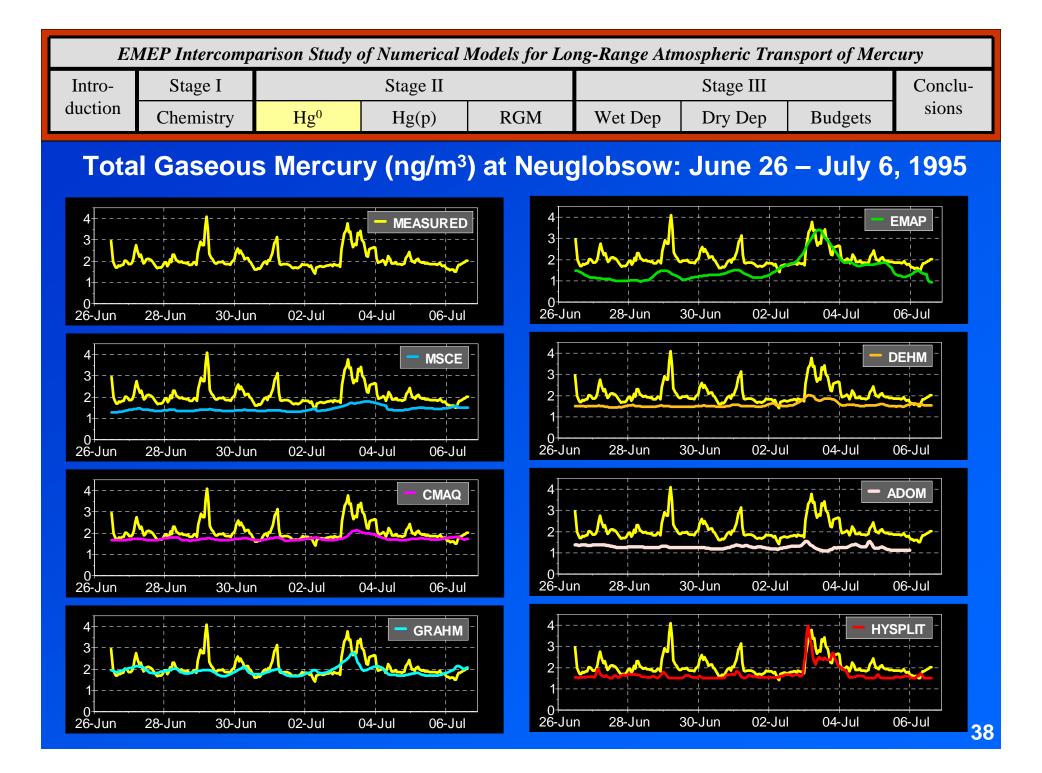
HYSPLIT-Hg vs. ISC HYSPLIT-Hg vs. CMAQ-Hg

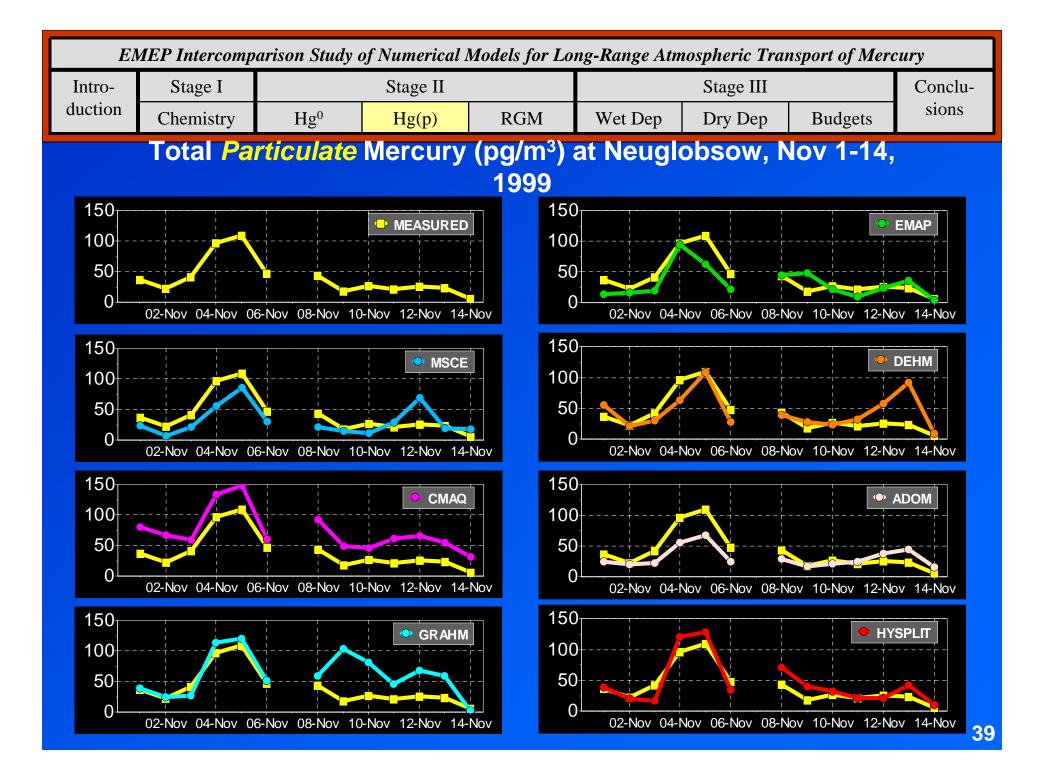
EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury									
Intro-	Stage I	Stage II			Stage III			Conclu-	
duction	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions	
D	Participants								
D.	D. SyrakovNIMH								
A.	A. Dastoor, D. Davignon Canada MSC-Can								
J. Christensen DenmarkNER							.NERI		
G. Petersen, R. Ebinghaus GermanyGKSS									
J. PacynaNILU									
J. Munthe, I. Wängberg Sweden IVL									
R. Bullock							.EPA		
M. Cohen, R. Artz, R. Draxler USA NOAA									
C. Seigneur, K. Lohman						USA AER/I		PRI	
A. Ryaboshapko, I. Ilyin, O.Travnikov EMEP MSC-E									


EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury								
Intro- duction	Stage I	Stage II			Stage III			Conclu-
	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions

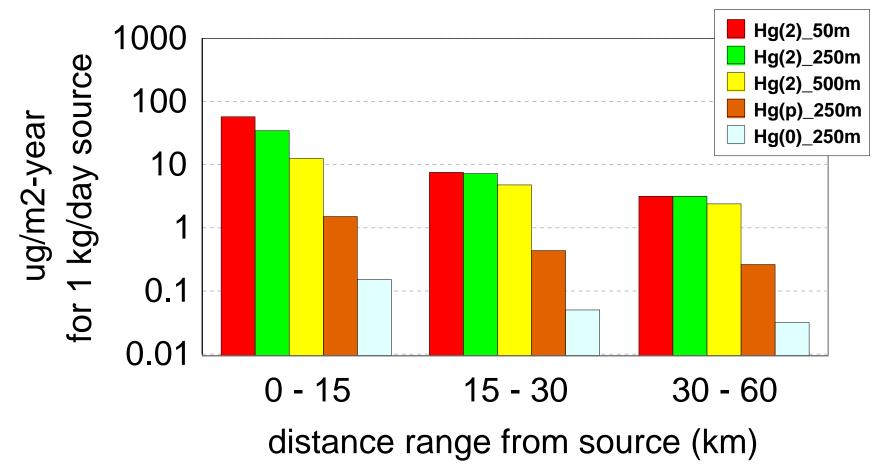

Intercomparison Conducted in 3 Stages

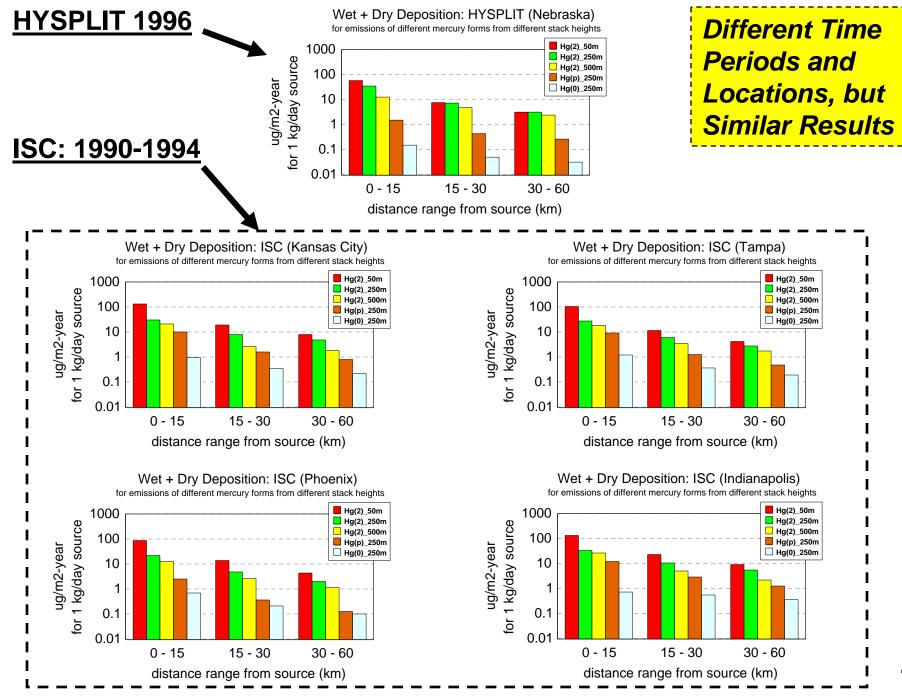

- I. Comparison of chemical schemes for a cloud environment
- II. Air Concentrations in Short Term Episodes


III. Long-Term Deposition and Source-Receptor Budgets


EN	EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- Stage		I	Stage III				Conclu-				
duction	Chemis	emistry Hg ⁰ Hg(p) RGM Wet Dep Dry Dep						Budgets		sions	
	Participating Models										
Model A	Model Acronym <i>Model Name</i> and Institution							Stage	tage		
								Ι	II	III	
	CAM	Chemistry of Atmos. Mercury model, Environmental Institute, Sweden									
	MCM	Mercury Chemistry Model, Atmos. & Environmental Research, USA									
	CMAQ	Community Multi	Community Multi-Scale Air Quality model, US EPA								
	ADOM	M Acid Deposition and Oxidants Model, GKSS Research Center, Germany									
М	SCE-HM	MSC-E heavy metal regional model, EMEP MSC-E									
	GRAHM	Global/Regional Atmospheric Heavy Metal model, Environment Canada									
	EMAP	Eulerian Model for Air Pollution, Bulgarian Meteo-service									
	DEHM	Danish Eulerian Hemispheric Model, National Environmental Institute									
H	HYSPLIT	Hybrid Single Particle Lagrangian Integrated Trajectory model, US NOAA					A				
MSCE-	HM-Hem	MSC-E heavy metal hemispheric model, EMEP MSC-E									

Model Intercomparisons

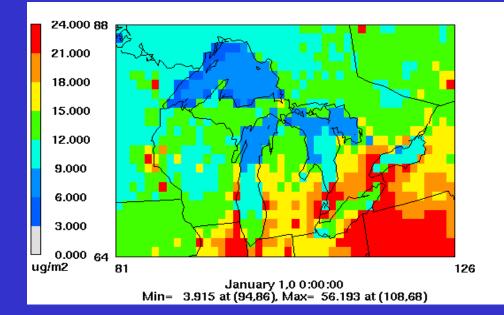

D EMEP MSC-East (~7 models)


HYSPLIT-Hg vs. ISC

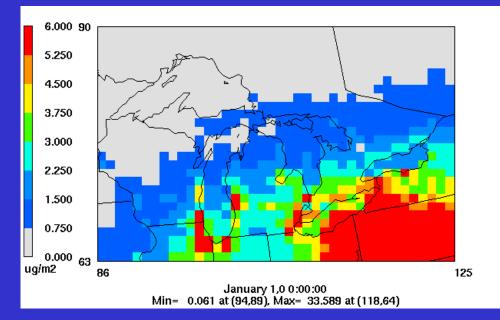
□ HYSPLIT-Hg vs. CMAQ-Hg

Wet + Dry Deposition: HYSPLIT (Nebraska)

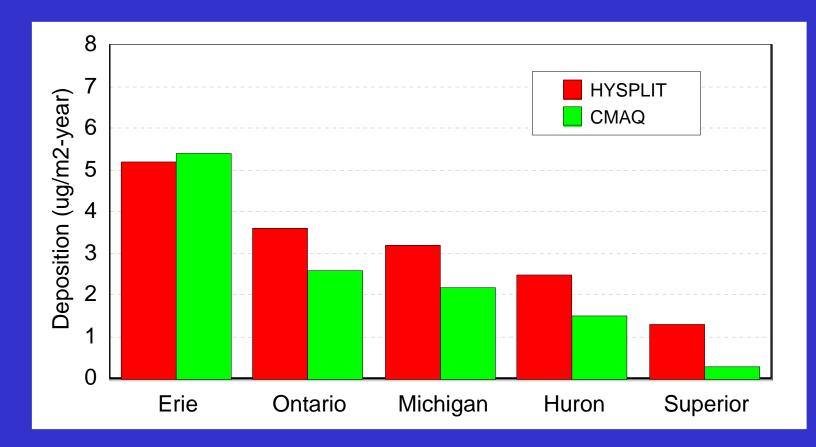
for emissions of different mercury forms from different stack heights

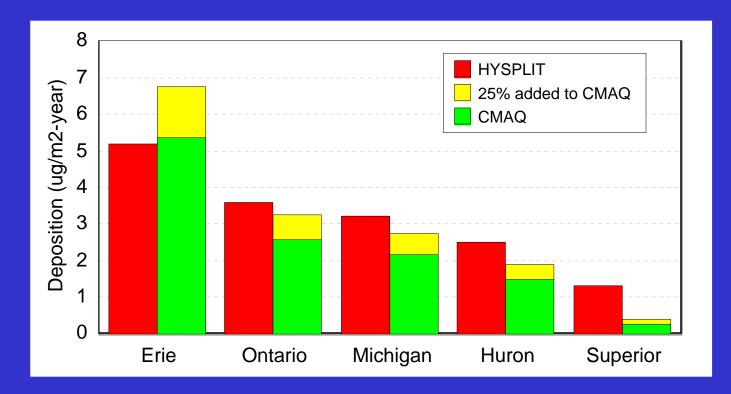

Model Intercomparisons

D EMEP MSC-East (~7 models)


HYSPLIT-Hg vs. ISC

HYSPLIT-Hg vs. CMAQ-Hg


CMAQ-Hg results from EPA analysis performed for the Clean Air Mercury Rule


Modeled Mercury Deposition in the Great Lakes Region from all sources during 2001

Modeled Mercury Deposition in the Great Lakes Region attributable to U.S. coal-fired power plants during 2001

Model-estimated U.S. utility atmospheric mercury deposition contribution to the Great Lakes: HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs. CMAQ-HG (2001 meteorology, 2001 emissions).

- Model-estimated U.S. utility atmospheric mercury deposition contribution to the Great Lakes: HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs. CMAQ-Hg (2001 meteorology, 2001 emissions).
- This figure also shows an added component of the CMAQ-Hg estimates -- corresponding to 30% of the CMAQ-Hg results in an attempt to adjust the CMAQ-Hg results to account for the deposition underprediction found in the CMAQ-Hg model evaluation.

Outline of Presentation

modeling	methodology
-----------------	-------------

some preliminary results for Mobile Bay (based on this methodology)

model intercomparisons

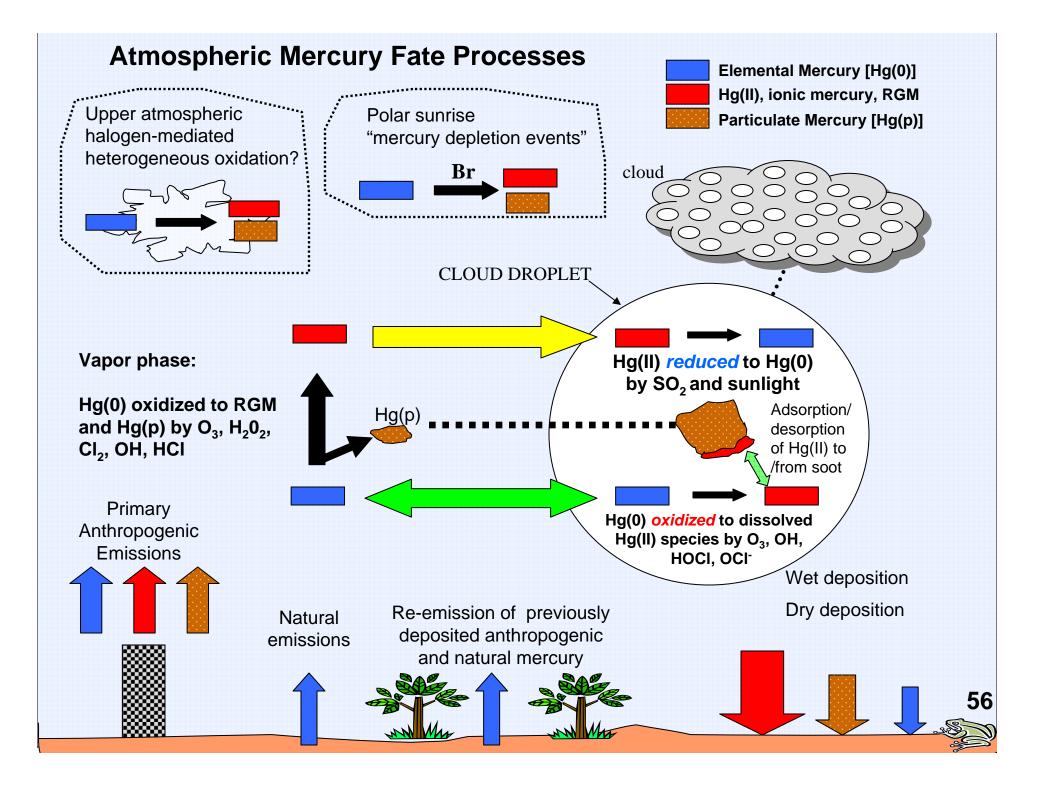
u summary of previous work; current goals; challenges

Emissions Inventories		
Previous Work	• 1996, 1999 U.S. NEI • 1995, 2000 Canada	

Emissions Inventories	
Previous Work	• 1996, 1999 U.S. NEI • 1995, 2000 Canada
Current Objectives	 2002 U.S. NEI 2002 Canada Global – 2000 (Pacyna-NILU) Natural sources Re-emitted anthropogenic

Emissions Inventories	
Previous Work	• 1996, 1999 U.S. NEI • 1995, 2000 Canada
Current Objectives	 2002 U.S. NEI 2002 Canada Global – 2000 (Pacyna-NILU) Natural sources Re-emitted anthropogenic
Challenges and Notes	 Speciation? Short-term variations (e.g. hourly) [CEM's?] Longer-term variations (e.g., maintenance)? Mobile sources Harmonization of source-categories Emissions inventories currently only become available many years after the fact; how can we evaluate models using current monitoring data?

Meteorological Data		
Previous Work	• For U.S./Canadian modeling, 1996 data from NOAA Nested Grid Model (NGM), 180 km	


Meteorological Data	
Previous Work	• For U.S./Canadian modeling, 1996 data from NOAA Nested Grid Model (NGM), 180 km
Current Objectives	 U.S. – NOAA EDAS 40 km, 3 hr Global – NOAA GDAS 1º x 1º, 3 hr

Meteorological Data		
Previous Work	• For U.S./Canadian modeling, 1996 data from NOAA Nested Grid Model (NGM), 180 km	
Current Objectives	 U.S. – NOAA EDAS 40 km, 3 hr Global – NOAA GDAS 1º x 1º, 3 hr 	
Challenges and Notes	 Forecast vs. Analysis Data assimilation Precipitation?? Difficult to archive NOAA analysis datasets Need finer-resolution datasets, especially for near-field analysis and model evaluation We have conversion filters (e.g., for MM5), but these data are not readily available What is the best way to archive and share data? 	

Atmospheric Chemistry and Physics	
Previous Work	 Typical chemical mechanism Prescribed fields for reactive trace gases (e.g., O₃, OH, SO₂) and other necessary constituents (e.g., soot) based on modeled, measured, and/or empirical relationships

Atmospheric Chemical Reaction Scheme for Mercury

Reaction	Rate	Units	Reference
GAS PHASE REACTION	5		
$Hg^0 + O_3 \rightarrow Hg(p)$	3.0E-20	cm ³ /molec-sec	Hall (1995)
$Hg^0 + HCl \rightarrow HgCl_2$	1.0E-19	cm ³ /molec-sec	Hall and Bloom (1993)
$Hg^0 + H_2O_2 \rightarrow Hg(p)$	8.5E-19	cm ³ /molec-sec	Tokos et al. (1998) (upper limit based on experiments)
$Hg^0 + Cl_2 \rightarrow HgCl_2$	4.0E-18	cm ³ /molec-sec	Calhoun and Prestbo (2001)
$Hg^0 + OH \bullet \rightarrow Hg(p)$	8.7E-14	cm ³ /molec-sec	Sommar et al. (2001)
AQUEOUS PHASE REAC	CTIONS		
$Hg^0 + O_3 \rightarrow Hg^{+2}$	4.7E+7	(molar-sec) ⁻¹	Munthe (1992)
$Hg^0 + OH \bullet \rightarrow Hg^{+2}$	2.0E+9	(molar-sec) ⁻¹	Lin and Pehkonen(1997)
$HgSO_3 \rightarrow Hg^0$	T*e ^{((31.971*T)-1}	2595.0)/T) sec ⁻¹	Van Loon et al. (2002)
	[T = temperature (K)]		
$Hg(II) + HO_2^{\bullet} \rightarrow Hg^0$	~ 0	(molar-sec) ⁻¹	Gardfeldt & Jonnson (2003)
$Hg^0 + HOCl \rightarrow Hg^{+2}$	2.1E+6	(molar-sec) ⁻¹	Lin and Pehkonen(1998)
$Hg^0 + OCl^{-1} \rightarrow Hg^{+2}$	2.0E+6	(molar-sec) ⁻¹	Lin and Pehkonen(1998)
$Hg(II) \leftrightarrow Hg(II)_{(soot)}$	9.0E+2	liters/gram;	eqlbrm: Seigneur et al. (1998)
		t = 1/hour	rate: Bullock & Brehme (2002).
$Hg^{+2} + h < \rightarrow Hg^0$	6.0E-7	(sec) ⁻¹ (maximum)	Xiao et al. (1994);
			Bullock and Brehme (2002)

Atmospheric Chemistry and Physics		
Previous Work	 Typical chemical mechanism Prescribed fields for reactive trace gases (e.g., O₃, OH, SO₂) and other necessary constituents (e.g., soot) based on modeled, measured, and/or empirical relationships 	
Current Objectives	 Include new information on chemistry, e.g., bromine reactions, etc. Sensitivity analyses Use gridded chemical output from full-chemistry atmospheric model (e.g., CMAQ) Option - run HYSPLIT in Eulerian mode for chemistry; conduct one-atmosphere simulation 	

Atmospheric Chemistry and Physics	
Previous Work	 Typical chemical mechanism Prescribed fields for reactive trace gases (e.g., O₃, OH, SO₂) and other necessary constituents (e.g., soot) based on modeled, measured, and/or empirical relationships
Current Objectives	 Include new information on chemistry, e.g., bromine reactions, etc. Sensitivity analyses Use gridded chemical output from full-chemistry atmospheric model (e.g., CMAQ) Option - run HYSPLIT in Eulerian mode for chemistry; conduct one-atmosphere simulation
Challenges and Notes	 What is RGM? What is Hg(p)? What is solubility of Hg(p)? Fate of dissolved Hg(II) when droplet dries out? What reactions don't we know about yet? What are rates of reactions?

Model Evaluation		
Previous Work	 US: 1996 MDN measurements Europe: 1999 speciated ambient concentrations in short-term episodes, monthly wet deposition 	

Model Evaluation	
Previous Work	 US: 1996 MDN measurements Europe: 1999 speciated ambient concentrations in short-term episodes, monthly wet deposition
Current Objectives	• Attempt to utilize all available 2002-2005 speciated ambient concentrations and wet deposition data from U.S. and other regions

Model Evaluation	
Previous Work	 US: 1996 MDN measurements Europe: 1999 speciated ambient concentrations in short-term episodes, monthly wet deposition
Current Objectives	• Attempt to utilize all available 2002-2005 speciated ambient concentrations and wet deposition data from U.S. and other regions
Challenges and Notes	 Comprehensive evaluation has not been possible due to large gaps in availability of monitoring and process-related data Need data for upper atmosphere as well as surface Need data for both source-impacted and background sites Use of recent monitoring data with EPA 2002 inventory? Time-resolved monitoring data vs. non-time-resolved emissions? Hard to diagnose differences between models & measurements Can we find better ways to share data for model evaluation (and other purposes)? To this end, discussion is beginning on national, cooperative, ambient Hg monitoring network

Thanks!

For more information on this modeling research:

http://www.arl.noaa.gov/ss/transport/cohen.html