

Presentation at Collaborative Meeting on Modeling Mercury in Freshwater Environments Niagara Falls, NY, January 19-20, 2006

- 1. EMEP Mercury Model Intercomparison
- 2. Local Deposition Comparison: HYSPLIT-Hg vs. ISC (Gaussian Plume)

3. Comparison of Utility Contributions to the Great Lakes: HYSPLIT-Hg vs. CMAQ-Hg

4. Summary

1. EMEP Mercury Model Intercomparison

2. Local Deposition Comparison: HYSPLIT-Hg vs. ISC (Gaussian Plume) 3. Comparison of Utility Contributions to the Great Lakes: HYSPLIT-Hg vs. CMAQ-Hg

4. Summary

EN	EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage I		Stage II			Stage III		Conclu-			
duction	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions			
			Par	ticipa	ants						
D.	Syrakov				Bul	garia	.NIMH				
A.	Dastoor,	D. Davi	gnon		Cai	nada	MSC-C	an			
J .	Christens	en			Der	ımark	.NERI				
G.	Petersen	, R. Ebir	ighaus		Gei	rmany	.GKSS				
J. 1	Pacyna			•••••	Noi	way	. NILU				
J.]	Munthe,]	I. Wängt	berg		Swo	eden	IVL				
R.	Bullock				US .	A	.EPA				
Μ	. Cohen, I	R. Artz,	R. Draxl	ler	US	A	.NOAA				
C.	Seigneur	, K. Loh	man		US	A	AER/E	PRI			
A.	Ryabosh	apko, I.	Ilyin, O.	Travnik	ov E M	EP	. MSC-E				

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury											
Intro-	Stage I		Stage II				Conclu-				
duction	Chemistry	Hg^0	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions			

Intercomparison Conducted in 3 Stages

- I. Comparison of chemical schemes for a cloud environment
- II. Air Concentrations in Short Term Episodes

III. Long-Term Deposition and Source-Receptor Budgets

EN	MEP Inter	comparison Study	of Numerical I	Models for Lo	ng-Range Atn	nospheric Trai	nsport of	Mer	cury	
Intro-	Stage	I	Stage II			Stage III			Co	onclu-
duction	Chemis	try Hg ⁰	Hg(p)	RGM	Wet Dep	Dry Dep	Budg	ets	S	sions
		Pa	rticin	ating	Mod	els				
Model 4	Acronym	<i>Model Name</i> and	l Institution	5				S	tage	
							Ι		Π	III
	CAM	Chemistry of Atm	os. Mercury m	odel, Environr	nental Institute	e, Sweden				
	MCM	Mercury Chemis	try Model, Atm	os. & Environ	mental Resear	ch, USA				
	CMAQ	Community Mult	i-Scale Air Qua	ulity model, US	S EPA					
	ADOM	Acid Deposition	and Oxidants M	<i>lodel</i> , GKSS F	Research Cente	er, Germany				
М	SCE-HM	MSC-E heavy me	tal regional mo	odel, EMEP M	SC-E					
	GRAHM	Global/Regional	Atmospheric H	eavy Metal mo	odel, Environn	nent Canada				
	EMAP	Eulerian Model f	ulerian Model for Air Pollution, Bulgarian Meteo-service							
	DEHM	Danish Eulerian	Danish Eulerian Hemispheric Model, National Environmental Institute							
H	IYSPLIT	Hybrid Single Pa	rticle Lagrang	ian Integrated	Trajectory mo	odel, US NOA	A			
MSCE-	HM-Hem	MSC-E heavy me	tal hemispheric							

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury											
Intro- duction	Stage I		Stage II				Conclu-				
	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions			

Intercomparison Conducted in 3 Stages

- I. <u>Comparison of chemical schemes</u> for a cloud environment
- II. Air Concentrations in Short Term Episodes
- III. Long-Term Deposition and Source-Receptor Budgets

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- duction	Stage I		Stage II				Conclu-			
	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Stage I Publications:

- 2001 Ryaboshapko, A., Ilyin, I., Bullock, R., Ebinghaus, R., Lohman, K., Munthe, J., Petersen, G., Seigneur, C., Wangberg, I. *Intercomparison Study of Numerical Models for Long Range Atmospheric Transport of Mercury. Stage I. Comparisons of Chemical Modules for Mercury Transformations in a Cloud/Fog Environment*. Meteorological Synthesizing Centre East, Moscow, Russia.
- 2002 Ryaboshapko, A., Bullock, R., Ebinghaus, R., Ilyin, I., Lohman, K., Munthe, J., Petersen, G., Seigneur, C., Wangberg, I. *Comparison of Mercury Chemistry Models*. <u>Atmospheric Environment</u> 36, 3881-3898.

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- duction	Stage I		Stage II				Conclu-			
	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Intercomparison Conducted in 3 Stages

- I. Comparison of chemical schemes for a cloud environment
- II. <u>Air Concentrations in Short</u> <u>Term Episodes</u>

III. Long-Term Deposition and Source-Receptor Budgets

EN	AEP Interc	comp	arison Study	of Numerica	al Models for L	ong-Range A	tmospheric T	Fransport of Me	ercury
Intro-	Stage l	[Stage II			Stage II	[Conclu-
duction	Chemist	ry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions
Model			CMAQ-Hg	ADOM	HYSPLIT	EMAP	GRAHM	DEHM	MSCE-Hg
Model typ	e		Eulerian	Eulerian	Lagrangian	Eulerian	Eulerian	Eulerian	Eulerian
Scale/ Domain	Scale/ Domain Source of		regional/ Central and orthern Europe	regional/ Central Europe	regional/ EMEP	regional/ EMEP	global	Hemispheric	regional/ EMEP
Source of meteorolog	Source of meteorological data		CMWF TOGA nalysis (MM5)	HIRLAM	NCEP/NCAR (MM-5)	SDA, NCEP/NCAR reanalysis	Canadian Meteorolo- gical Centre	NCEP / NCAR reanalysis	SDA, NCEP/NCAR reanalysis
Model top	Model top height (km)		15	10	15	5	30	15	3.9
Horizontal (km, unles differently	resolution s noted		36 x 36	55 x 55	36 x 36, 108 x 108	50 x 50	1º x 1º	50 x 50 150 x 150	50 x 50
Hg(0) bou condition	ndary (ng/m ³)		1.7	1.5	1.5	1.5	No	1.5	1.6 - 1.7
RGM bound	ndary (pg/m ³)		17	2	5	10	none	0	0
TPM boun	TPM boundary condition (pg/m ³)		17	20	10	10	none	0	20
Gas-phase agents	Gas-phase oxidation agents O ₃ , F		H ₂ O ₂ , Cl ₂ , OH [•]	O ₃	O ₃ , H ₂ O ₂ , Cl ₂ , HCl	O ₃ , OH●	O ₃	O ₃	O ₃ (f)
Liquid-pha agents	Liquid-phase oxidation agents O ₃ , OH•, He		DH●, HOCI, OCI-	O ₃	O ₃ , OH [•] , HOCl, OCl ⁻	O ₃	O ₃	O ₃	O ₃
Liquid-pha agents	ase reduction	S	$O_3^{=}$, hv, HO ₂	SO ₃ =	SO ₃ =, HO ₂	SO ₃ =	SO ₃ =	SO3=	SO ₃ ⁼ , HO ₂

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- duction	Stage I		Stage II				Conclu-			
	Chemistry	Hg^0	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Stage II Publications:

- 2003 Ryaboshapko, A., Artz, R., Bullock, R., Christensen, J., Cohen, M., Dastoor, A., Davignon, D., Draxler, R., Ebinghaus, R., Ilyin, I., Munthe, J., Petersen, G., Syrakov, D. Intercomparison Study of Numerical Models for Long Range Atmospheric Transport of Mercury. Stage II. Comparisons of Modeling Results with Observations Obtained During Short Term Measuring Campaigns. Meteorological Synthesizing Centre East, Moscow, Russia.
- 2005 Ryaboshapko, A., Bullock, R., Christensen, J., Cohen, M., Dastoor, A., Ilyin, I., Petersen, G., Syrakov, D., Artz, R., Davignon, D., Draxler, R., and Munthe, J. *Intercomparison Study of Atmospheric Mercury Models. Phase II. Comparison of Models with Short-Term Measurements*. Submitted to <u>Atmospheric Environment.</u>

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro- Stage I Stage II							Conclu-			
duction	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions		

Intercomparison Conducted in 3 Stages

- I. Comparison of chemical schemes for a cloud environment
- II. Air Concentrations in Short Term Episodes

III. Long-Term Deposition and Source-Receptor Budgets

EN	EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury													
Intro-	Stage I			Stag	ge II				St	age III			Conclu	1-
duction	Chemistry		Hg^0	Hg	(p)	RGM	1	Wet Dep	D	ry Dep	Bud	gets	sions	
Du sin	e to re nulated	sou l th	rce e en	cons tire	stra yea	ints, r 19	n 0 99.	t all : ••	MOC	lels	Oct	Nov	Dec	

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
CMAQ												
HYSPLIT												
ADOM												
MSCE-HM												
MSCE-HEM												
DEHM												
ЕМАР												

Wet Deposition Summary

EN	EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury										
Intro-	Stage I		Stage II				Conclu-				
duction	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions			

For *dry deposition*, there are no measurement results to compare the models against;

However, the models can be compared against *each other*...

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury								
Intro- duction	Stage I		Stage II		Stage III			Conclu-
	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions

Items of Hg atmospheric balances for the countries in 1999, t/yr [average modeled result (*with ranges in parentheses*)]

Item	The UK	Italy	Poland
Total deposition	3.5 (3.1-4.2)	4.7 (3.2-6.6)	11.8 (9.6-13.1)
Dep. from own emissions	1.3 (0.8-1.6)	1.3 (0.6-1.9)	7.4 (4.8-9.1)
Dep. from European emissions	0.3 (0.2-0.6)	0.8 (0.5-1.3)	2.1 (1.4-2.6)
Outflow	7.3 (7.0-7.8)	8.4 (7.9-9.2)	18.2 (16–21)

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury									
Intro- duction	Stage I	Stage II			Stage III			Conclu-	
	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions	

Stage III Publication:

2005 Ryaboshapko, A., Artz, R., Bullock, R., Christensen, J., Cohen, M., Draxler, R., Ilyin, I., Munthe, J., Pacyna, J., Petersen, G., Syrakov, D., Travnikov, O. *Intercomparison Study of Numerical Models for Long Range Atmospheric Transport of Mercury.* Stage III. Comparison of Modelling Results with Long-Term Observations and Comparison of Calculated Items of Regional Balances. Meteorological Synthesizing Centre – East, Moscow, Russia.

- 1. EMEP Mercury Model Intercomparison
- 2. Local Deposition Comparison: HYSPLIT-Hg vs. ISC (Gaussian Plume)

3. Comparison of Utility Contributions to the Great Lakes: HYSPLIT-Hg vs. CMAQ-Hg

4. Summary

Calculated from data used to produce Appendix A of USEPA (2005): Clean Air Mercury Rule (CAMR) Technical Support Document: Methodology Used to Generate Deposition, Fish Tissue Methylmercury Concentrations, and Exposure for Determining Effectiveness of Utility Emissions Controls: Analysis of Mercury from Electricity Generating Units **33**

- 1. EMEP Mercury Model Intercomparison
- 2. Local Deposition Comparison: HYSPLIT-Hg vs. ISC (Gaussian Plume)

3. Comparison of Utility Contributions to the Great Lakes: HYSPLIT-Hg vs. CMAQ-Hg

4. Summary

HYSPLIT-Hg results for Lake Erie (1999)

Total Atmos. Dep Flux to Lake Erie (g Hg/km2-year)

CMAQ-Hg results from EPA analysis performed for the Clean Air Mercury Rule

Modeled Mercury Deposition in the Great Lakes Region from all sources during 2001

Modeled Mercury Deposition in the Great Lakes Region attributable to U.S. coal-fired power plants during 2001

Model-estimated U.S. utility atmospheric mercury deposition contribution to the Great Lakes: HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs. CMAQ-HG (2001 meteorology, 2001 emissions).

- Model-estimated U.S. utility atmospheric mercury deposition contribution to the Great Lakes: HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs. CMAQ-Hg (2001 meteorology, 2001 emissions).
- This figure also shows an added component of the CMAQ-Hg estimates -- corresponding to 30% of the CMAQ-Hg results in an attempt to adjust the CMAQ-Hg results to account for the deposition underprediction found in the CMAQ-Hg model evaluation.

- 1. EMEP Mercury Model Intercomparison
- 2. Local Deposition Comparison: HYSPLIT-Hg vs. ISC (Gaussian Plume)

3. Comparison of Utility Contributions to the Great Lakes: HYSPLIT-Hg vs. CMAQ-Hg

4. Summary

Summary of Model Intercomparisons

- **Extremely useful for improving models**
- Opportunity to work together and pool resources (e.g., everyone doesn't have to create their own inventory or assemble monitoring data for evaluation)
- Funding is a problem... most studies do not fund the individual participants....
- □ 10% of the work is doing the initial modeling analysis;
- 90% of the work is trying to figure out why the models are different – but we rarely have the resources to do much of this

Thanks!

Extra Slides

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury									
Intro- duction	Stage I	Stage II			Stage III			Conclu-	
	Chemistry	Hg ⁰	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions	

Effect of Different Assumptions Regarding Hg(p) Solubility AER/EPRI 0%; MSCE-EMEP 50%; CMAQ-EPA 100%

2000 European anthropogenic Hg emissions

240 t/yr

European natural Hg emissions

180 t/yr

European anthropogenic Hg re-emissions

50 t/yr

uncertainties in measurements -even of precipitation amount...

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury									
Intro- duction	Stage I	Stage II			Stage III			Conclu-	
	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions	

In the following, the total modelpredicted deposition (= wet + dry) is compared

Note: ADOM was not run for August, so for this graph, ADOM results for July were used 55

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury											
Intro-	Stage I		Stage II			Conclu-					
duction	Chemistry	Hg^0	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions			
	EMEP model results in relation to the other models										
Ra	ange	Depos polluted 1999	ition over area in Feb , g/km ² Total deposition or countries in Feb 19			Deposition over polluted area in Feb 1999, g/km ²		ion over eb 1999	r the 9, kg		
		Wet	I	Dry	The Uk	K Ita	ly F	Poland			
Min	imum	0.24	0	0.10	76	14	3	300			
MSC	CE-HM	0.54		0.16	235	26	51	1070			
MSCE-HM- Hem		0.65	0	.19	170	16	54	730			
Max	kimum	1.03	(0.39	240	33	34	1190			

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury									
Intro- duction	Stage I		Stage II			Stage III			
	Chemistry	Hg^{0}	Hg(p)	RGM	Wet Dep	Dry Dep	Budgets	sions	

Conclusions: Uncertainties in Mercury Modeling

- Elemental Hg in air
- Particulate Hg in air
- Oxidized gaseous Hg in air
- Total Hg in precipitation
- Wet deposition
- Dry deposition
- Balances for countries

- factor of 1.2
- factor of 1.5
- factor of 5
- factor of 1.5
- factor of 2.0
- factor of 2.5
- factor of 2