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NOAA HYSPLIT MODEL
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Why do we need atmospheric mercury models?

to get comprehensive source attribution information ---
we don’t just want to know how much is depositing at any 
given location, we also want to know where it came 
from…

to estimate deposition over large regions, 
…because deposition fields are highly spatially variable, 
and one can’t measure everywhere all the time…

to estimate dry deposition

to evaluate potential consequences of alternative future 
emissions scenarios 



But models
must have 
measurements Modeling 

needed to help 
interpret 
measurements 
and estimate 
source-receptor 
relationships

Monitoring 
required to 
develop models 
and to evaluate 
their accuracy
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Emissions
Inventories

Meteorological
Data

Scientific understanding of
phase partitioning, 
atmospheric chemistry, 
and deposition processes

Ambient data for comprehensive 
model evaluation and improvement

What do atmospheric 
mercury models need?
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• Mercury Deposition Network (MDN) is great, but:
• also need RGM, Hg(p), and Hg(0) concentrations
• also need data above the surface (e.g., from aircraft)
• also need source-impacted sites (not just background)

ambient data for 
model evaluation

• what is RGM? what is Hg(p)?
• accurate info for known reactions? 
• do we know all significant reactions?
• natural emissions, re-emissions?

scientific 
understanding

• precipitation not well characterizedmeteorological 
data

• need all sources
• accurately divided into different Hg forms
• U.S. 1996, 1999, 2003 / CAN 1995, 2000, 2005
• temporal variations (e.g. shut downs)

emissions 
inventories

some challenges facing mercury modeling
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Hypothesized rapid reduction of Hg(II) in plumes? 
If true, then dramatic impact on modeling results…
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GAS PHASE REACTIONS

AQUEOUS PHASE REACTIONS

ReferenceUnitsRateReaction

Xiao et al. (1994); 
Bullock and Brehme (2002)

(sec)-1 (maximum)6.0E-7Hg+2 + h<→ Hg0

eqlbrm: Seigneur et al. (1998)

rate: Bullock & Brehme (2002).

liters/gram;
t = 1/hour

9.0E+2Hg(II)   ↔ Hg(II) (soot)

Lin and Pehkonen(1998)(molar-sec)-12.0E+6Hg0 + OCl-1 → Hg+2

Lin and Pehkonen(1998)(molar-sec)-12.1E+6Hg0 + HOCl → Hg+2

Gardfeldt & Jonnson (2003)(molar-sec)-1~ 0Hg(II)  + HO2C→ Hg0

Van Loon et al. (2002)T*e((31.971*T)-12595.0)/T)    sec-1

[T = temperature (K)]
HgSO3 → Hg0

Lin and Pehkonen(1997)(molar-sec)-12.0E+9Hg0 + OHC→ Hg+2

Munthe (1992)(molar-sec)-14.7E+7Hg0 + O3 → Hg+2

Sommar et al. (2001)cm3/molec-sec8.7E-14Hg0 +OHC→ Hg(p)

Calhoun and Prestbo (2001)cm3/molec-sec4.0E-18Hg0 + Cl2 → HgCl2

Tokos et al. (1998) (upper limit based 
on experiments)

cm3/molec-sec8.5E-19Hg0 + H2O2 → Hg(p) 

Hall and Bloom (1993)cm3/molec-sec1.0E-19Hg0 + HCl → HgCl2

Hall (1995)cm3/molec-sec3.0E-20Hg0 + O3 → Hg(p)

Atmospheric Chemical Reaction Scheme for Mercury

1
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Data availability
A major impediment to evaluating and 
improving atmospheric Hg models has been 
the lack of speciated Hg air concentration data

There have been very few measurements to 
date, and these data are rarely made available 
in a practical way (timely, complete, etc.)

The data being collected at Piney 
Reservoir could be extremely helpful!



Some Additional Measurement Issues 
(from a modeler’s perspective)

• Data availability
• Simple vs. Complex Measurements



wet dep
monitor

Simple vs. Complex Measurements: 
1. Wet deposition is a very complicated phenomena...

many ways to get the “wrong” answer –
incorrect emissions, incorrect transport, 
incorrect chemistry, incorrect 3-D precipitation, 
incorrect wet-deposition algorithms, etc..

ambient air 
monitor

models need ambient air concentrations 
first, and then if they can get those right, 
they can try to do wet deposition...

?
?

?



monitor 
at ground 

level

Simple vs. Complex Measurements: 
2. Potential complication with ground-level monitors... 

(“fumigation”, “filtration”, etc.)...

monitor above
the canopy

atmospheric phenomena are complex and not well understood;
models need “simple” measurements for diagnostic evaluations;
ground-level data for rapidly depositing substances (e.g., RGM) hard to interpret
elevated platforms might be more useful (at present level of understanding)

?



Simple vs. Complex measurements - 3. Urban areas:
a. Emissions inventory poorly known
b. Meteorology very complex (flow around buildings)
c. So, measurements in urban areas not particularly useful 

for current large-scale model evaluations



• Sampling near intense sources?
• Must get the fine-scale met “perfect”

Ok, if one wants 
to develop 
hypotheses 
regarding
whether or not 
this is actually a 
source of the 
pollutant (and 
you can’t do a 
stack test for 
some reason!).

Sampling site?

Simple vs. Complex Measurements –
4: extreme near-field measurements



Complex vs. Simple Measurements –
5: Need some source impacted measurements

• Major questions regarding plume chemistry 
and near-field impacts (are there “hot spots”?)

• Most monitoring sites are designed to be 
“regional background” sites (e.g., most 
Mercury Deposition Network sites).

• We need some source-impacted sites as well to 
help resolve near-field questions

• But not too close – maybe 20-30 km is ideal (?)
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction
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Participants
D. Syrakov …………………………….. Bulgaria….NIMH
A. Dastoor, D. Davignon ……………… Canada...... MSC-Can
J. Christensen …………………………. Denmark…NERI
G. Petersen, R. Ebinghaus …………...... Germany…GKSS
J. Pacyna ………………………………. Norway…..NILU
J. Munthe, I. Wängberg ……………….. Sweden….. IVL
R. Bullock ………………………………USA………EPA
M. Cohen, R. Artz, R. Draxler ………… USA………NOAA
C. Seigneur, K. Lohman ………………..USA……... AER/EPRI
A. Ryaboshapko, I. Ilyin, O.Travnikov…EMEP……MSC-E
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Intercomparison Conducted in 3 
Stages

I. Comparison of chemical schemes 
for a cloud environment

II. Air Concentrations in Short 
Term Episodes

III. Long-Term Deposition and 
Source-Receptor Budgets



EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry
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sions

Stage IIIStage IIStage IIntro-
duction
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Stage

Hybrid Single Particle Lagrangian Integrated Trajectory model, US NOAAHYSPLIT

MSC-E heavy metal hemispheric model, EMEP MSC-EMSCE-HM-Hem

Acid Deposition and Oxidants Model, GKSS Research Center, Germany                                 ADOM

MSC-E heavy metal regional model, EMEP MSC-EMSCE-HM

Community Multi-Scale Air Quality model, US EPACMAQ

Eulerian Model for Air Pollution, Bulgarian Meteo-serviceEMAP

Chemistry of Atmos. Mercury model, Environmental Institute, SwedenCAM

Mercury Chemistry Model, Atmos. & Environmental Research, USA                                 MCM

Danish Eulerian Hemispheric Model, National Environmental Institute                              DEHM

Global/Regional Atmospheric Heavy Metal model, Environment CanadaGRAHM

IIIIII

Model Name and InstitutionModel Acronym

Participating Models
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BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction

31

Anthropogenic Mercury Emissions Inventory
and Monitoring Sites for Phase II

(note: only showing largest emitting grid cells)

Mace Head, Ireland 
grassland shore Rorvik, Sweden 

forested shore

Aspvreten, Sweden 
forested shore

Zingst, Germany
sandy shore

Neuglobsow, Germany 
forested area
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Total Gaseous Mercury (ng/m3) at Neuglobsow: June 26 – July 6, 1995
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Total Particulate Mercury (pg/m3) at Neuglobsow, Nov 1-14, 
1999
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Example of
Detailed Results:
1999 Results for
Chesapeake Bay
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Geographical Distribution
of 1999 Direct Deposition 

Contributions to the Chesapeake 
Bay (entire domain)
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Geographical Distribution of 1999 Direct Deposition 
Contributions to the Chesapeake Bay (regional close-up)
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Geographical Distribution of 1999 
Direct Deposition Contributions to 

the Chesapeake Bay (local close-up)
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Largest Regional Individual Sources Contributing to
1999 Mercury Deposition Directly to the Chesapeake Bay
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Largest Local Individual Sources Contributing to
1999 Mercury Deposition Directly to the Chesapeake Bay
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Emissions and Direct Deposition Contributions from Different 
Distance Ranges Away From the Chesapeake Bay
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Top 25 Contributors to 1999 Hg Deposition Directly to the Chesapeake Bay
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Preliminary Results 
for other Maryland

Receptors
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Maryland Receptors Included in Recent Preliminary HYSPLIT-Hg 
modeling (but modeling was not optimized for these receptors!)
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Largest Modeled Atmospheric Deposition Contributors Directly to 
Deep Creek Lake based on 1999 USEPA Emissions Inventory 

(national view)
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Largest Modeled Atmospheric Deposition Contributors Directly to 
Deep Creek Lake based on 1999 USEPA Emissions Inventory 

(regional view)
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Largest Modeled Atmospheric Deposition Contributors Directly to 
Deep Creek Lake based on 1999 USEPA Emissions Inventory 

(close-up view)
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Some Next Steps

Expand model domain to include global sources

Additional model evaluation exercises ... more sites, more time periods, 
more variables

Sensitivity analyses and examination of atmospheric Hg chemistry
(e.g. marine boundary layer, upper atmosphere)

Simulate natural emissions and re-emissions of previously deposited Hg   

Use more highly resolved meteorological data grids

Dynamic linkage with ecosystem cycling models
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Conclusions

At present, many model uncertainties & data limitations

Models needed for source-receptor and other info

Monitoring data required to evaluate and improve models

For this, simple may be better than complex measurements

Some useful model results appear to be emerging

Future is much brighter because of this coordination!
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Thanks
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EXTRA 
SLIDES
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• Hg is present at extremely trace levels in the atmosphere

• Hg won’t affect meteorology  (can simulate meteorology 
independently, and  provide results to drive model)

• Most species that complex or react with Hg are generally 
present at much higher concentrations than Hg

• Other species (e.g. OH) generally react with many other compounds 
than Hg, so while present in trace quantities, their concentrations cannot 
be strongly influenced by Hg

•The current “consensus” chemical mechanism (equilibrium + 
reactions) does not contain any equations that are not 1st order in Hg

• Wet and dry deposition processes are generally 1st order 
with respect to Hg

Why might the atmospheric fate of mercury 
emissions be essentially linearly independent?
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Spatial interpolation

RECEPTOR

Impacts from
Sources 1-3
are Explicitly
Modeled

2

1

3

Impact of source 4 estimated from
weighted average of 
impacts of nearby
explicitly modeled sources

4
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• Perform separate simulations at each location for emissions 
of pure Hg(0), Hg(II) and Hg(p) 

[after emission, simulate transformations between Hg forms]

• Impact of emissions mixture taken as a linear combination 
of impacts of pure component runs on any given receptor 

56



“Chemical Interpolation”

Source

RECEPTOR

Impact of Source
Emitting
30% Hg(0)
50% Hg(II)
20% Hg(p)

=

Impact of Source Emitting Pure Hg(0)0.3 x

Impact of Source Emitting Pure Hg(II)0.5 x

Impact of Source Emitting Pure Hg(p)0.2 x

+
+
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Standard Source Locations in Maryland region during recent simulation
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Eulerian grid 
models give

grid-averaged 
estimates –

…difficult to 
compare against 

measurement at a 
single location



Geographic Distribution of Largest Anthropogenic Mercury 
Emissions Sources in the U.S. (1999) and Canada (2000)
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• In principle, we need do this for each source 
in the inventory

• But, since there are more than 100,000 
sources in the U.S. and Canadian inventory, 
we need shortcuts…

• Shortcuts described in Cohen et al 
Environmental Research 95(3), 247-265, 2004
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Cohen, M., Artz, R., Draxler, R., Miller, P., Poissant, 
L., Niemi, D., Ratte, D., Deslauriers, M., Duval, R., 
Laurin, R., Slotnick, J., Nettesheim, T., McDonald, J.
“Modeling the Atmospheric Transport and Deposition of 
Mercury to the Great Lakes.” Environmental Research
95(3), 247-265, 2004.

Note: Volume 95(3) is a Special Issue: "An Ecosystem Approach to
Health Effects of Mercury in the St. Lawrence Great Lakes", edited by 
David O. Carpenter.
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• For each run, simulate fate and transport everywhere,
but only keep track of impacts on each selected receptor
(e.g., Great Lakes, Chesapeake Bay, etc.)

• Only run model for a limited number (~100) of hypothetical, 
individual unit-emissions sources throughout the domain

• Use spatial interpolation to estimate impacts from sources at 
locations not explicitly modeled
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location
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Why is emissions speciation information critical?
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The form of mercury emissions (elemental, ionic, 
particulate) is often very poorly known, 
but is a dominant factor in estimating deposition
(and associated source-receptor relationships) 

Questions regarding atmospheric chemistry of 
mercury may also be very significant

The above may contribute more to the overall 
uncertainties in atmospheric mercury models than 
uncertainties in dry and wet deposition algorithms 

Emissions and Chemistry
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury
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Some Additional Measurement Issues 
(from a modeler’s perspective)

• Data availability
• Simple vs. Complex Measurements
• Process Information



Process Information: 
1. Dry Deposition - Resistance Formulation

1
Vd = --------------------------------- + Vg

Ra + Rb + Rc + RaRbVg

in which

• Ra = aerodynamic resistance to mass transfer;

• Rb = resistance of the quasi-laminar sublayer;

• Rc = overall resistance of the canopy/surface (zero for particles)

• Vg = the gravitational settling velocity (zero for gases).



Dry Deposition
depends intimately on vapor/particle partitioning and particle 
size distribution information

resistance formulation [Ra, Rb, Rc...]

for gases, key uncertainty often Rc (e.g., “reactivity factor” f0)

for particles, key uncertainty often Rb

How to evaluate algorithms when phenomena hard to measure?



Atmosphere above the quasi-laminar sublayer

Quasi-
laminar 

Sublayer
(~ 1 mm 

thick)

Surface

Rb

Rc

Ra

Very small 
particles can 

diffuse through the 
layer like a gas

Very large particles 
can just fall

through the layerIn-between 
particles can’t 
diffuse or fall 
easily so they 
have a harder 
time getting 

across the layerWind speed = 0 (?)

Particle dry deposition phenomena
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Process information needed:

1. For particle dry deposition, must 
have particle size distributions!



LAKE

ATMOSPHERE

Pollutant on
Suspended
Sediment

Pollutant
Truly
Dissolved
in Water

PROCESS 
INFORMATION:

2. The gas-exchange
flux at a water 
surface depends on 
the concentration of 
pollutant in the gas-
phase and the truly-
dissolved phase
(but these are rarely 
measured…)

Gas-Phase
Pollutant

Particle-Phase
Pollutant


