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1. Depends on amount emitted

What are the local and regional deposition 
impacts of atmospheric mercury emissions?

2. Very close in, depends 
on stack height

3. Depends on form of 
mercury emitted

4. Depends on distance & 
direction from source

5. Very Episodic

6. Depends on chemistry 
in plume

7. Measurement-based 
evidence: 

- examples
- advantages 
- limitations

8. Modeling-based 
evidence: 

- examples
- advantages 
- limitations
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Geographic Distribution of Largest Anthropogenic Mercury 
Emissions Sources in the U.S. (1999) and Canada (2000)
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So where is RGM emitted?
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Reactive Gaseous Mercury Emissions (based on USEPA 1999 NEI)
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The fraction deposited and the deposition flux are both important, 
but they have very different meanings…
The fraction deposited nearby can be relatively “small”, 
But the area is also small, and the relative deposition flux can be very large…
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If significant reduction of RGM to Hg(0) is occuring
in power-plant plumes, then it would have a big 
impact on local/regional deposition

No known chemical reaction is capable of causing 
significant reduction of RGM in plumes –

e.g. measured rates of SO2 reduction can’t 
explain some of the claimed reduction rates

Very hard to measure
Aircraft
Static Plume Dilution Chambers (SPDC)
Ground-based measurements
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Most current state-of-the-science models – including the EPA 
CMAQ model used to generate analyses for the CAIR/CAMR 
rulemaking process – do not include processes that lead to 
significant reduction in plumes

Recent measurement results show less reduction

Significant uncertainties – e.g., mass balance errors comparable 
to measured effects…

Current status – inconclusive… but weight of evidence suggest 
that while some reduction may be occurring, it may be only a 
relatively small amount

How important is RGM reduction
in power-plant plumes?
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wet dep
monitor

Challenges of using wet deposition data to assess local and regional deposition impacts…

Wind has to blow from source to monitoring site

It has to be raining at the monitoring site when this happens

It can’t have rained so much along the way that
the mercury has all been deposited already

Weekly integrated samples (e.g, MDN) complicate 
interpretation -- as several different rain events (with 
different source-attributions) can contribute to one sample

MDN monitoring generally sited not to be impacted by 
local/regional sources

Can have high deposition because there is a lot of rain, 
or because there is a lot of mercury…
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monitor 
at ground 

level

Need speciated data (Hg0, Hg(p), RGM)
Relatively expensive and time-consuming
Still have problem of having the plume hit the site, but can measure 
continuously… and the plume hit and rain doesn’t have to occur at the same 
time (as with wet dep monitors) …
Results from ground-level monitors can be hard to interpret –

rapid dry deposition … large vertical gradients … measuring right where things 
are changing very rapidly … don’t want the whole analysis to depend on 
whether the sampler was at an elevation of 10 meters or 2 meters…
fumigation… filtration by plant canopies

?

Challenges of using air concentration data 
to assess local and regional deposition impacts…
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monitor 
at ground 

level

Observations of “depleted” RGM at ground-based stations 
downwind of power plants – sometimes thought to be evidence of 
RGM reduction to Hg0 -- might be strongly influenced by RGM 
dry deposition…

would be better to have a monitor far above the canopy…

monitor above
the canopy

?
37



Summer 2004 NOAA ARL Hg Measurement Sites

Cooperative Oxford Lab
(38.678EN, 76.173EW)

Wye Research and
Education Center

(38.9131EN, 76.1525EW)

Baltimore, MD

Washington, DC
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Concentrations Measured at Oxford, MD 
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Measurements tell you the “exact”
answer (ignoring measurement 

uncertainties for the moment) but it is 
usually very difficult to figure out 

what that answer is telling you, e.g., 
regarding source-attribution for 

measured quantities
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So how good are current models, 
and how do they compare

with one another?
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EMEP Intercomparison Study of Numerical Models for 
Long-Range Atmospheric Transport of Mercury

Summary presented
by Mark Cohen, 

NOAA Air Resources 
Laboratory, 

Silver Spring, 
MD, USA

EMEP/TFMM 
Workshop on the Review 
of the MSC-E Models
on HMs and POPs
Oct 13-14, 2005
Hotel Mir, Moscow Russia
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EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury

BudgetsDry DepWet DepRGMHg(p)Hg0Chemistry

Conclu-
sions

Stage IIIStage IIStage IIntro-
duction
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Participants
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Intercomparison Conducted in 3 
Stages

I. Comparison of chemical schemes 
for a cloud environment

II. Air Concentrations in Short 
Term Episodes

III. Long-Term Deposition and 
Source-Receptor Budgets
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Stage

Hybrid Single Particle Lagrangian Integrated Trajectory model, US NOAAHYSPLIT

MSC-E heavy metal hemispheric model, EMEP MSC-EMSCE-HM-Hem

Acid Deposition and Oxidants Model, GKSS Research Center, Germany                                 ADOM

MSC-E heavy metal regional model, EMEP MSC-EMSCE-HM

Community Multi-Scale Air Quality model, US EPACMAQ

Eulerian Model for Air Pollution, Bulgarian Meteo-serviceEMAP

Chemistry of Atmos. Mercury model, Environmental Institute, SwedenCAM

Mercury Chemistry Model, Atmos. & Environmental Research, USA                                 MCM

Danish Eulerian Hemispheric Model, National Environmental Institute                              DEHM

Global/Regional Atmospheric Heavy Metal model, Environment CanadaGRAHM

IIIIII

Model Name and InstitutionModel Acronym

Participating Models
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Anthropogenic Mercury Emissions Inventory
and Monitoring Sites for Phase II

(note: only showing largest emitting grid cells)

Mace Head, Ireland 
grassland shore Rorvik, Sweden 

forested shore

Aspvreten, Sweden 
forested shore

Zingst, Germany
sandy shore

Neuglobsow, Germany 
forested area
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Total Gaseous Mercury at Neuglobsow: June 26 – July 6, 1995
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Total Particulate Mercury (pg/m3) at Neuglobsow, Nov 1-14, 
1999
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Stage II Publications:
2003 Ryaboshapko, A., Artz, R., Bullock, R., Christensen, J., Cohen, M., 

Dastoor, A., Davignon, D., Draxler, R., Ebinghaus, R., Ilyin, I.,  
Munthe, J., Petersen, G., Syrakov, D. Intercomparison Study of 
Numerical Models for Long Range Atmospheric Transport of 
Mercury. Stage II. Comparisons of Modeling Results with 
Observations Obtained During Short Term Measuring Campaigns.
Meteorological Synthesizing Centre – East, Moscow, Russia.

2005 Ryaboshapko, A., Bullock, R., Christensen, J., Cohen, M., Dastoor, 
A., Ilyin, I., Petersen, G., Syrakov, D., Artz, R., Davignon, D., 
Draxler, R., and Munthe, J. Intercomparison Study of Atmospheric 
Mercury Models. Phase II. Comparison of Models with Short-Term 
Measurements. Submitted to Atmospheric Environment.
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Stage III Publication:

2005 Ryaboshapko, A., Artz, R., Bullock, R., Christensen, 
J., Cohen, M., Draxler, R., Ilyin, I.,  Munthe, J., 
Pacyna, J., Petersen, G., Syrakov, D., Travnikov, O. 
Intercomparison Study of Numerical Models for Long 
Range Atmospheric Transport of Mercury. Stage III. 
Comparison of Modelling Results with Long-Term 
Observations and Comparison of Calculated Items 
of Regional Balances. Meteorological Synthesizing 
Centre – East, Moscow, Russia.
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Conclusions: Uncertainties in Mercury Modeling

• Elemental Hg in air - factor of  1.2
• Particulate Hg in air - factor of  1.5
• Oxidized gaseous Hg in air - factor of  5
• Total Hg in precipitation - factor of  1.5
• Wet deposition - factor of  2.0
• Dry deposition - factor of  2.5
• Balances for countries - factor of  2



Models give you a lot of information 
about why a given concentration or 

deposition occurs, and gives you 
information over broad areas, but due 

to uncertainties – in emissions, 
meteorology, chemistry, and deposition 

processes – current models cannot 
generally give you the exact answer…
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Some CMAQ results, 
used in the development

of the CAMR rule, 
courtesy of 

Russ Bullock, EPA
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Possible underestimation of local and/or regional impacts in CMAQ-Hg 
modeling done in support of CAMR:

• 36 km grid too coarse to capture local impacts – they are artificially 
diluted 

USEPA (2005). Clean Air Mercury Rule (CAMR) Technical Support 
Document: Methodology Used to Generate Deposition, Fish Tissue 
Methylmercury Concentrations, and Exposure for Determining Effectiveness 
of Utility Emissions Controls: Analysis of Mercury from Electricity Generating 
Units, page 4

• inclusion of hydroperoxyl radical (HO2•) chemical reaction 
reducing RGM back to elemental mercury – most models no longer 
include this reaction since strong evidence exists that it does not 
occur in the atmosphere

Gardfeldt, K. and M. Jonnson (2003). Is bimolecular reduction of Hg(II)-
complexes possible in aqueous systems of environmental importance? J. 
Phys. Chem. A, 107 (22): 4478-4482. 
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Possible overestimation of global impacts in CMAQ-Hg modeling done in 
support of CAMR:

• Strong influence of boundary conditions; appears that RGM may 
have been specified too high on the boundary; perhaps (?) due to an 
inconsistency in physics/chemistry between global model (GEOS-
Chem) providing boundary conditions and that of CMAQ-Hg?

• Two reactions included in CMAQ oxidizing elemental Hg to RGM may
have been significantly overestimated (O3 and OH)

Calvert, J., and S. Lindberg (2005). Mechanisms of mercury removal by O3 and 
OH in the atmosphere. Atmospheric Environment 39: 3355-3367.
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Some HYSPLIT-Hg results,  
for impacts of U.S. and

Canadian anthropogenic 
sources on selected receptors



NOAA HYSPLIT MODEL
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Cohen, M., Artz, R., Draxler, R., Miller, P., Poissant, 
L., Niemi, D., Ratte, D., Deslauriers, M., Duval, R., 
Laurin, R., Slotnick, J., Nettesheim, T., McDonald, J.
“Modeling the Atmospheric Transport and Deposition of 
Mercury to the Great Lakes.” Environmental Research
95(3), 247-265, 2004.

Note: Volume 95(3) is a Special Issue: "An Ecosystem Approach to
Health Effects of Mercury in the St. Lawrence Great Lakes", edited by 
David O. Carpenter.
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Top 25 Contributors to 1999 Hg Deposition Directly to Lake Ontario
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PA coal-fired 
power plants 
are important 
regional 
contributors



Top 25 Contributors to 1999 Hg Deposition to Acadia National Park
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PA coal-fired power 
plants are important 
regional contributors



The HYSPLIT modeling results presented here have 
only considered the impacts from anthropogenic 
sources in the United States and Canada

the model is currently being extended to a global 
domain… but results are not yet available

However, even if every source in the world was 
modeled, it is highly likely that these local and 
regional sources would still be the top contributing 
sources to local/regional receptors…

It is unlikely that a coal-fired power plant in China, 
for example, could contribute as much to one of 
these receptors as a comparable facility in the U.S.
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Concluding Observations

Local and regional impacts depend on a number of factors 
(e.g., relative proportions of the different forms emitted)

Coal-fired power plants emit large amounts of mercury 

Challenges in using monitoring approaches to assess impacts
• local/regional impacts are highly episodic and spatially variable
• measurements to date can’t unambiguously assess such impacts
• definitive field experiments have not yet been carried out

Challenges in using modeling analyses to assess impacts
• significant uncertainties in emissions, meteorology, and fate processes
• adequate data for model evaluation and improvement not yet available

However, limited model evaluations are encouraging and suggest that 
models are generating reasonable results

Modeling tends to show significant local/regional impacts

75
Emissions trading will result in winners and losers…
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Phase III Sampling Locations
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Lake Ontario closeup
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Top 25 Contributors to 1999 Hg Deposition Directly to Lake Erie
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Top 25 Contributors to 1999 Hg Deposition Directly to Lake Champlain
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Top 25 Contributors to 1999 Hg Deposition Directly to the Chesapeake 
Bay
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