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This report does not attempt to report on 
all of the many aspects of mercury 
contamination in the Great Lakes. 

It is limited to the following two primary 
components:

Analysis of the atmospheric 
transport and deposition of U.S. 
and Canadian anthropogenic 
mercury emissions to the Great 
Lakes using the NOAA 
HYSPLIT-Hg model; 

Illustrative literature data 
regarding trends in Great Lakes 
mercury contamination. 

The Atmospheric Transport and Deposition of 
Mercury to the Great Lakes

A. Introduction
B. Atmospheric Emissions
C. Overview of Atmospheric Mercury Modeling
D. Illustrative Modeling Results for a Single Source
E. Overall Modeling Methodology
F. Model Uncertainties

1) Emissions
2) Atmospheric Phase Behavior
3) Atmospheric Chemistry
4) Wet and Dry Deposition
5) Meteorological Data

G. Model Evaluation
H. Atmospheric Modeling Results

1) Lake Michigan
2) Lake Superior
3) Lake Huron
4) Lake Erie
5) Lake Ontario
6) Combined Great Lakes

I. Potential Next Steps
J. Summary of Great Lakes Atmospheric Mercury Deposition

Trends in Great Lakes Mercury

A. Mercury Emissions
B. Mercury Deposition

1) Wet deposition measurements in the Great Lakes region
2) Other mercury wet deposition measurements
3) Modeled deposition to the Great Lakes from U.S. and 

Canadian sources
C. Mercury Concentrations in Sediments
D. Mercury Concentrations in Biota
E. Summary of Great Lakes Mercury Trend Data
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Key Findings
1. Source-attribution information is needed for policy development 
2. Atmospheric modeling is the only way to obtain comprehensive source-attribution information 
3. Monitoring alone provides values/trends at a few locations, but it cannot answer certain key questions

Why are the values what they are, e.g., source attribution? 
What are the values in other locations? Why are there (or are there not) spatial and/or temporal trends?
What might happen in the future under different environment/policy conditions?  

4. However, atmospheric monitoring data are essential to evaluate and improve models 
• Atmospheric mercury modeling and monitoring are far more useful together than they are apart
• Monitoring programs need to be designed with model evaluation and improvement in mind

5. The fate and transport of atmospheric mercury is complex
• Scarcity of modeling resources and monitoring* & process** data means that models haven’t been adequately evaluated

* monitoring data refers to atmospheric concentration measurements in air and precipitation
** process data refers to measurements of fundamental phenomena such as chemical reactions and atmospheric deposition processes

• Thus, while there are many uncertainties in current models, the magnitude of the uncertainties is poorly known
6. A number of steps could be taken to characterize uncertainties and reduce them if necessary

Collection of additional monitoring data and carrying out process research
Increased quality and frequency of emissions data and inventories
Comprehensive model evaluation/improvement, sensitivity analyses, and intercomparison experiments

7. Modeling has provided preliminary, useful information about mercury deposition to the Great Lakes 
Detailed, source-attribution results for U.S. and Canadian anthropogenic sources 
Of these sources, the biggest contribution is from U.S. coal-fired power plants in the Great Lakes region 
Waste incineration emissions and deposition decreased significantly during the 1990’s, but timing poorly known  

8. Further work could provide more complete information
Characterize/reduce uncertainties as described above
Extend model to include global anthropogenic and natural sources
Carry out simulations of past, present, and potential future atmospheric deposition and source-attribution

9. Trend data have been assembled for mercury in Great Lakes sediments, biota, emissions and deposition
Levels tended to rise from ~1900 through the 1960’s and 1970’s, with a peak during WWII.
Reductions in the ~1970’s, possibly due to the closure or changes at regional mercury-based chlor-alkali factories
Levels have remained relatively constant since the 1980’s 
Interpretation of trend data is complicated by a scarcity of data on historical emissions and loading rates 8
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Atmospheric
Models

Emissions Inventories
To evaluate and 
improve atmospheric 
models, emissions 
inventories must be:

• Accurate for each 
individual source 
(especially for large 
sources), including 
variations 

• For the same time 
periods as 
measurements used 
for evaluation

• For all forms of 
mercury 

Mercury Deposition Network (MDN)
(wet deposition only)

Largest sources of total mercury emissions to the air in the U.S. and Canada, 
based on the U.S. EPA 1999 National Emissions Inventory

and 1995-2000 data from Environment Canada

Canaan Valley 
Institute-NOAA

Beltsville
EPA-NOAA

Three NOAA sites committed 
to emerging inter-agency speciated 
mercury ambient concentration 
measurement network 

(comparable to Mercury Deposition 
Network (MDN) for wet deposition, 
but for air concentrations)

Grand Bay
NOAA
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Air Concentration Network

Atmospheric Monitoring
To evaluate and improve 
atmospheric models, 
atmospheric monitoring 
must be:

• For air 
concentrations (not 
just wet deposition)

• For all forms of 
mercury 

• For sites impacted by  
sources (not just 
background sites)

• At elevations in the 
atmosphere (not just 
at ground level)
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Why do we need atmospheric mercury models?

to get comprehensive source attribution information 
...we don’t just want to know how much is depositing at any given 
location, we also want to know where it came from: 

different source regions (local, regional, national, continental, global)
different jurisdictions (different states and provinces) 
anthropogenic vs. natural emissions
different anthropogenic source types (power plants, waste incin., etc) 

to estimate deposition over large regions
…because deposition fields are highly spatially variable, 
and one can’t measure everywhere all the time…

to estimate dry deposition
... presently, dry deposition can only be estimated via models

to evaluate potential consequences of alternative future 
emissions scenarios

10



Mercury transforms into 
methylmercury in soils

and water, then can
bioaccumulate in fish

Humans and 
wildlife affected 
primarily by
eating fish 
containing 
mercury

Best 
documented 
impacts are on 
the developing 
fetus:  impaired 
motor and 
cognitive skills

atmospheric 
deposition 
to the 
watershed atmospheric deposition

to the water surface

adapted from slides prepared by USEPA and NOAA

• How much from 
local/regional 
sources? 

• How much from 
global sources?

• Monitoring alone 
cannot give us 
the answer

• atmospheric 
models required, 
“ground-truthed”
by atmospheric 
monitoring

Where does 
the mercury 
come from 
that is 
depositing to 
any given 
waterbody or 
watershed?

Hg(0)

Hg(II) Hg(p)

Hg(0) from 
distant sources

atmospheric emissions 
of Hg(0), Hg(II), Hg(p)

atmospheric
chemistry 

interconverts
mercury forms

HYSPLIT-Hg Atmospheric Fate and Transport Model
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Challenges / critical data needs for model evaluation:

Need wet deposition – like data collected in the existing Mercury Deposition 
Network (MDN) -- but also need ambient air concentrations of  different forms 
of mercury, i.e., reactive gaseous mercury [RGM], particulate mercury [Hg(p)], 
and elemental mercury [Hg(0)]. Ambient air concentration data is extremely 
scarce.

Need sites that are impacted by large sources as well as background sites 
that are not impacted by large sources. Most current measurement sites are 
“background” sites.

Most current measurements are currently done at ground level. Also needed 
are measurements in the atmosphere above the surface (e.g., taken on 
aircraft, towers…)

Unlike the wet deposition data assembled in the Mercury Deposition Network, 
for ambient concentration data, there are significant data availability issues 
for what little such data that there is. 

NOAA is playing a central role with EPA in the emerging national mercury 
ambient concentration measurement network under the umbrella of the 
National Atmospheric Deposition Program (NADP). NOAA has “donated” the 
first three sites for this new network. Contingent upon the cooperation of 
scientists and other agencies, additional sites will be added and this network 
will be successfully implemented.  

12
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Hg from 
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& more distant
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more fundamental – easier to diagnose
need continuous – episodic source impacts
need different forms of mercury –

at least RGM, Hg(p), Hg(0)
need data at surface and above



Figure 12. Largest sources of total mercury emissions to the air in the U.S. and Canada.
As discussed in the text, the data generally represent emissions for 1999-2000. 14



Largest sources of total mercury emissions to the air in the U.S. and Canada, 
based on the U.S. EPA 1999 National Emissions Inventory

and 1995-2000 data from Environment Canada

Canaan Valley 
Institute-NOAA

Beltsville
EPA-NOAA

Three NOAA sites committed 
to emerging inter-agency speciated 
mercury ambient concentration 
measurement network 

(comparable to Mercury Deposition 
Network (MDN) for wet deposition, 
but for air concentrations)

Grand Bay
NOAA
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monitoring site at 
Beltsville Maryland, 
other atmospheric 
monitoring sites, and 
major Hg point 
sources in the region 
(according to the 
EPA 1999 NEI 
emissions inventory)



Data are needed on short-term variations on time scales of minutes to hours
There are short-term variations in emissions, on scales of minutes to hours. We need to know about these 
short term variations to correlate emissions with measurements.
Clean Air Mercury Rule requires ~weekly total-Hg measurements for coal-fired power plants. Continuous 
Emissions Monitors (CEM’s) needed – and not just on coal-fired power plants.
CEM’s must measure different forms of mercury or will not be useful  in developing source-receptor info.

Inventories need to include information about major “step-change” events
There can be abrupt “step-changes” in emissions due to shutdowns, maintenance, closures, 
installation of new pollution control devices, feedstock changes, and process changes, etc.
Currently, the only data available in emissions inventories is an annual average. Therefore, it is 
difficult to interpret variations/trends in ambient measurements.

Emissions inventories are fundamental inputs for atmospheric mercury models. 
Accurate inventories are required for model evaluation and improvement, as well as for 
accurate simulations once the models are “perfected”

Inventories must be prepared more frequently
Currently, the only available source-by-source inventories for the U.S. are for 1999 and for 2002.
Large emissions reduction between ~1990 and ~2000, but not known when reductions occurred 
at individual facilities. Thus, very difficult to interpret trends in monitoring data. 

18

Inventories need to be improved
Inventories need to be more complete; more accurate; more transparent; uncertainties estimated.
Emissions estimates needed for all forms of mercury [RGM, Hg(p), Hg(0)].

Long delay before inventories released
2002 U.S. inventory released in 2007; till now, latest available inventory was for 1999.
Can’t use new measurement data to evaluate models if the inventories aren’t available.
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Based on CEM data collected at coal-fired power plants, it appears that there can be 
significant variations in emissions of Hg(2), Hg(0) and Hg(p) over time scales of 
minutes to hours 

Meteorological conditions – and hence source-receptor relations – can vary 
significantly over time scales of minutes to hours. 

If we are collecting speciated ambient concentration data downwind of sources on 
time scales of minutes to hours, and the source emissions are varying on the same 
time scales, it is critical to have data regarding the emissions variations. Without it, 
severe limitations on what can be learned from the ambient concentration data.

Speciated Continuous Emissions Monitors (CEM’s) are commercially available. 

CAMR does not appear to require speciated emissions data, and does not appear to 
require time-resolved data on the order of minutes to hours (i.e., longer term data are 
all that is required, e.g., on the order of ~1 week). So, we have a problem.

For the purposes of model evaluation and improvement, and to the extent possible, it 
would be helpful if speciated, time-resolved CEM’s could be installed at large Hg 
sources significantly impacting critical model-evaluation monitoring sites.

Importance of time-resolved, speciated emissions measurements
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Figure 44. Largest modeled contributors to Lake Michigan (close-up).
(same legend as previous slide) 23



Atmospheric Deposition Flux to Lake Michigan from Anthropogenic 
Mercury Emissions Sources in the U.S. and Canada
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Next Steps: As resources permit, steps could be taken to refine/extend mercury modeling, e.g.:  

1. Extension of the model from North American domain to simulate impacts of global sources

2. Inclusion of the impact of natural emissions and re-emissions of anthropogenic mercury.

3. The use of more detailed meteorological data (e.g., described on finer spatial scales). 

4. Development of a system for incorporating observed precipitation data into the model.    

5. Further evaluation of the model against wet deposition data and ambient concentration data for elemental, 
ionic, and particulate mercury. 

6. Process-related measurements of atmospheric chemistry, phase-partitioning behavior, and atmospheric 
deposition to evaluate and refine model algorithms.

7. Sensitivity tests -- investigating the influence of uncertainties in model inputs and model algorithms -- to 
help determine which uncertainties are the most critical for model improvement.

8. Linkage of the atmospheric model to other models to form a multi-media mercury modeling system to track 
mercury from emissions to ecosystem loading to food chain bioaccumulation to human exposure.

9. Use of updated emissions inventories as inputs to the model. 

10. Estimation of the time-course of atmospheric loading to the Great Lakes by running the model over long 
periods using a continuous record of historical emissions. 

11. Estimation of the impacts of potential future emissions scenarios.

12. Participation in additional model comparison studies. 

27



Relative Importance of Anthropogenic vs. Natural Sources?
Many studies have shown increased amounts of bio-available mercury in ecosystems due to 
anthropogenic activities (~2x – 5x, sometimes more), but a large number of factors influence 
the relative increases, e.g., proximity to sources, relative proportions of different forms of 
mercury emitted from sources, particular biogeochemistry of the ecosystem, etc.

Relative Importance of Global vs. Domestic Sources?
NOAA HYSPLIT-Hg work to date has not yet attempted to explicitly answer this question.

• New work could be done to address this issue. 

• It is noted, however, that in many cases, much of the deposition in U.S. regions with significant 
sources appears like it can be accounted for by consideration of U.S sources alone.

A few estimates have been made using other models. Results to date suggest that:
• There is no “one” answer – the relative importance varies from location to location.

• In regions with significant sources, the relative importance of global sources appears to be diminished

• The answer also obviously varies depending on the time period 

• Like with analysis of national sources, the global modeling to date is limited by a number of 
uncertainties (emissions inventories, atmospheric chemistry, deposition processes) and the evaluation 
of the models is significantly limited by a lack of observations. Thus, the significance of the 
uncertainties is not well known.
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Figure 40. WI99, 72-hour back trajectories for high 
deposition event during the week of 4/18/00 to 4/25/00.

Butler, T., Likens, G., Cohen, M., Vermeylen, F. 
(2007). Mercury in the Environment and Patterns of 
Mercury Deposition from the NADP/MDN Mercury 
Deposition Network. Final Report to USEPA.

http://www.arl.noaa.gov/data/web/reports/cohen/51_camd_report.pdf 29



Trends in Great Lakes region atmospheric mercury emissions:
• Data are scarce and uncertain, but it appears that they rose significantly from ~1880 until ~1945,  were 

approximately level from 1945-1970, and decreased between 1970-1980. 

Trends in U.S. atmospheric mercury emissions from the early 1990’s to ~2001:
• Significant decrease in emissions from municipal and medical waste incinerators, but exact timing of 

changes at individual facilities poorly characterized. 
• Emissions from coal-fired electricity generation and other source categories were relatively constant.

Trends in Canadian atmospheric mercury emissions:
• From 1990-2000, Canadian emissions are reported to have decreased by ~75 percent, largely due to process 

changes at metal smelting facilities.

Trends in mercury wet deposition at monitoring sites in the Great Lakes region:
• Five long-term Mercury Deposition Network sites, with data beginning in 1996.
• For this report, data for 1996-2003 examined. 
• Possible decrease between 2000 and 2001, and this may have been related to decreases in regional mercury 

emissions from waste incinerators.
• There were only moderate changes in estimated ionic mercury emissions in the vicinity of these sites 

between 1995-1996 and 1999-2001, but the precise timing of these changes is not known. Thus, it is difficult 
to determine if the trends in precipitation mercury concentrations are related to these reductions. 

Trends in mercury deposition to the Great Lakes:
• Trends in model-estimated deposition to the Great Lakes decreased significantly between 1995-1996 and 

1999-2001, primarily due to decreases in emissions from U.S. municipal and medical waste incinerators. 
• In both periods, the model results suggest that U.S. sources contributed much more to Great Lakes 

atmospheric mercury deposition than Canadian sources.

Summary of Great Lakes Region Trend Information for Atmospheric Mercury Emissions and Deposition
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Figure 75. Mercury emissions in North 
America and the Great Lakes region 
(1800-1990). 

Atmospheric mercury emissions from 
(a) gold and silver mining in North 
America; (b) modern anthropogenic 
sources in North America; and (c) 
modern anthropogenic sources in the 
Great Lakes region (including the 8 
Great Lakes U.S. states and the 
province of Ontario). [a reproduction 
of Figure 2 from Pirrone et al. (1998).]

Pirrone, N., Allegrini, I., Keeler, G., Nriagu, 
J., Rossman, R., Robbins, J. (1998). 
Historical atmospheric mercury emissions 
and depositions in North America compared 
to mercury accumulations in sedimentary 
records. Atmos. Environ. 32(5): 929-940.

31



1990 1999
0

50

100

150

200

250

(to
ns

 p
er

 y
ea

r)
E

st
im

at
ed

 M
er

cu
ry

 E
m

is
si

on
s

Other categories*
Gold mining
Hazardous waste incineration
Electric Arc Furnaces **
Mercury Cell Chlor-Alkali Plants
Industrial, commercial, institutional
boilers and process heaters
Municipal waste combustors
Medical waste incinerators
Utility coal boilers

* Data for Lime Manufacturing are not available for 1990.
** Data for Electric Arc Furnaces are not available for 1999. The 2002 estimate (10.5 tons) is shown here.

Figure 76. Mercury emissions trend data from the U.S. EPA. 
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Model results for atmospheric 
deposition show that:

• U.S. contributes much 
more than Canada 

• Significant decrease
between 1996 and 1999 
(primarily due to decreased 
emissions from waste incineration)
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Figure 77. Great Lakes MDN sites with the longest measurement record.
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Figures 78-83. Mercury concentration in precipitation at long-term MDN sites in the Great Lakes region.
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Trends in mercury in Great Lakes sediments:
• Examples of sediment mercury trend data were found for each of the Great Lakes except for 

Lake Huron.
• The data typically show a 1940-1960 peak in sediment mercury, and in some cases there are 

also secondary peaks in the 1970’s. 
• Since the 1970’s sediment mercury concentrations appear to have generally been decreasing 

in the Great Lakes. 
. 
Trends in mercury levels in Great Lakes biota:

• Data on mercury levels in Great Lakes fish and Herring Gull eggs are generally available 
starting in the 1970’s, while data on levels in mussels are available beginning in 1992. 

• While there are variations among species and among lakes, the data generally seem to show 
a reduction from 1970 to the mid-1980’s, with little change since the mid-1980’s. 

• This is most likely due to the significant reduction that occurred in the 1970’s in effluent 
discharges to the Great Lakes (and their tributaries) from a number of sources (e.g., chlor-
alkali plants).

Summary of Great Lakes Region Trend Information for Sediments and Biota
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Figure 95. Trend in sediment 
mercury in Lake Michigan. 
Profile of total mercury (ug/g
dry weight) levels in a core 
sample from Lake Michigan. 

Source: Marvin, C.; Painter, S., 
and Rossmann, R. (2004). 
Spatial and temporal patterns in 
mercury contamination in 
sediments of the Laurentian 
Great Lakes. Env. Research
95(3):351-362.
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From 1971 – 1985, analysis 
was generally conducted on 
individual eggs (~10) from a 
given colony, and the 
standard deviation in 
concentrations is shown on 
the graphs. 

From 1986 to the present, 
analysis was generally 
conducted on a composite 
sample for a given colony. 

The trend lines shown are for 
illustration purposes only; 
they were created by fitting 
the data to a function of the 
form y = cxb.

Figure 106. 
Trends in 
Herring Gull 
Egg Hg 
concentrations.
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Figure 107. Mercury concentration 
in Great Lakes region mussels 
(1992-2004). Total mercury in 
mussels (ug/g, on a dry weight 
basis). 

In a few cases (e.g. for several sites 
in 2003), mercury concentrations 
were below the detection limit. In 
these cases the concentrations are 
shown with a white cross-hatched 
bar at a value of one-half the 
detection limit; in reality, the mercury 
concentration could have been 
anywhere between zero and the 
detection limit. 

Source of data: NOAA Center for 
Coastal Monitoring and Assessment 
(CCMA) (2006) and “Monitoring Data 
- Mussel Watch” website: 
http://www8.nos.noaa.gov/cit/nsandt/
download/mw_monitoring.aspx
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Figure 101. Mercury 
concentration trends 
Great Lakes Walleye.
Total mercury 
concentrations (ppm
or ug Hg/g).  

Sources of data:  
Ontario Ministry of the 
Environment (2006b), 
for 45-cm Walleye 
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Figure 102. Total 
mercury levels in 
Great Lakes 
Rainbow Smelt, 
1977-2004.

Source of data: 
Environment 
Canada (2006). 
Note that the 
scales for the lakes 
are different.

41



Erie Ontario Michigan Huron Superior
0

1

2

3

4

5

6

7

8

D
ep

os
iti

on
 (u

g/
m

2-
ye

ar
) HYSPLIT

CMAQ

Model-estimated U.S. utility atmospheric mercury 
deposition contribution to the Great Lakes: 
HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs. 
CMAQ-Hg (2001 meteorology, 2001 emissions). 

42
Note: Uncertainty estimates for these results could be developed in future work



Erie Ontario Michigan Huron Superior
0

1

2

3

4

5

6

7

8

D
ep

os
iti

on
 (u

g/
m

2-
ye

ar
) HYSPLIT

25% added to CMAQ
CMAQ

Model-estimated U.S. utility atmospheric mercury deposition contribution 
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Dry and wet 
deposition of 
the pollutants 
in the puff are 
estimated at 
each time step.

The puff’s mass, size, 
and location are 
continuously tracked…

Phase partitioning and chemical 
transformations of pollutants within the 
puff are estimated at each time step

= mass of pollutant
(changes due to chemical transformations and 
deposition that occur at each time step)

Centerline of 
puff motion 
determined by 
wind direction 
and velocity

Initial puff location 
is at source, with 
mass depending 
on emissions rate

TIME (hours)
0 1 2

deposition 1 deposition 2 deposition to receptor

lake

Lagrangian Puff Atmospheric Fate and Transport ModelNOAA 
HYSPLIT
MODEL
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