SIM Lite Astrometric Observatory Double Blind Search for Earths -1

NASA HQ asked the SIM Project to quantify SIM Lite's capabilities for detecting Earths in realistic planetary systems.

A "double-blind" experiment was designed to address the question. Team A prepared a set of test systems, Team B generated simulated data sets (including noise) for some of the test systems, Team C analyzed the data and searched for planets, and Team D synthesized and reported on the results.

What are the interesting questions?

-What is the threshold of Earth-analog detection?

TESTSYSTEMS

Planetary Systems

- Random systems from Data Pool, Solar System Analogs, One-Earth, and No-Planets.
- Randomized orientations and orbital phase.
- Generated synthetic SIM Lite astrometry and radial velocity data.

Target stars

- One solar mass, $10 \mathrm{pc}, 30$ degrees latitude.

All significant effects are included in synthetic data

- Motion of observer (parallax effect).
- Space motion of target star (3-D space motion).
- Realistic sampling cadence.
- Astrophysical noise.
- Instrument systematic noise.

Team A Groups: System modeling

Team A-1: Eric Ford, Univ. of Florida
Team A-2: Greg Laughlin, UC Santa Cruz
Team A-3: Hal Levison, Southwest Research Institute
Team A-4: Doug Lin, UC Santa Cruz
Team A-5: Sean Raymond, Univ. of Colorado

Team B: Generate simulated data sets, including noise

Andy Boden, NASA Exoplanet Science Institute
Valeri Makarov, NASA Exoplanet Science Institute

Team C Groups: Data analysis (different approaches)

Team C-1: Stefano Casertano, STScl
Team C-2: Debra Fischer, San Francisco State Univ.
Team C-3: Jeremy Kasdin, Princeton Univ.

- Do other planets in the system interfere with the detection of terrestrial planets in the habitable zone?
-What is the reliability of detection?
-What is the completeness?
(= What are the chances that a planet will be detected?)
These questions are applicable to all planets, terrestrial planets, habitable zone planets, and habitable terrestrial planets.

Blind Test Data

- 48 Stars and 581 Objects

Team C-4: Matt Muterspaugh, UC Berkeley Team C-5: Mike Shao, JPL

Team D: Data synthesis

Chair: Wes Traub, JPL
Vice-Chair: Alan Boss, Carnegie Institution Andy Gould, Ohio State University
Angelle Tanner, NASA Exoplanet Science Institute
Chas Beichman, NASA Exoplanet Science Institute
One member from each of the Team CS \& may include one member from Team A and one member from Team B.

External Independent Readiness Board (EIRB)

Chair: Vern Weyers, GSFC retired
Alan Boss, Carnegie Institution
Ed Groth, Princeton University
Joseph Wampler, consultant

