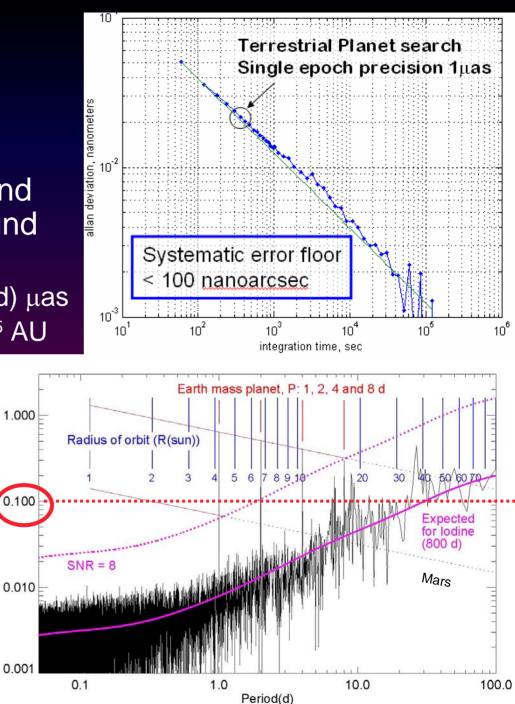
Looking for Planets With SIM

C. Beichman, MSC/Caltech/JPL With help from the SIM Science Team, incl. M. Shao, G. Marcy, S. Unwin, A. Tanner, J. Catanzerite

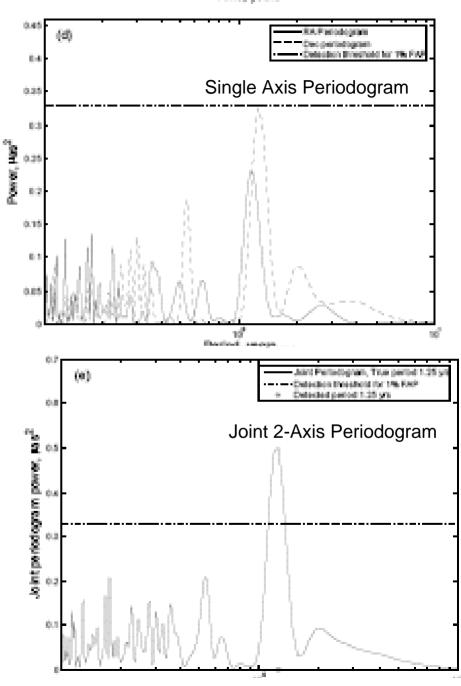
Key Science Goal for SIM: Deep and Broad Search for Planets

- Earth analogs in Habitable Zones of solar type stars
- Explore thousands of stars, complementing RV studies, to reveal diversity of planetary systems
 - Planets around early type stars (A, F), white dwarfs, etc.
 - Planets around young stars
- Complete characterization of RV and Transiting systems
- Determine planetary masses, inclinations, coplanarity for all systems

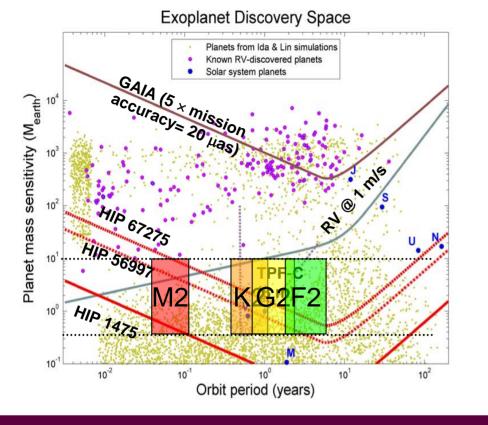

SIM represents the <u>initial</u> step toward finding and characterizing "habitable planets" around nearest stars

SIM Can Find Earth Analogs

- SIM's *differential* astrometry precision ($\leq 0.05 \mu as$) can find Earth Analogs (1-3 M_E) around 65-230 stars
 - 0.3 (Mp/M_{Earth}) (a/1AU) (10pc/d) μas


Amplitude (m/s)

- a(Habitable Zone) = 1 (L/Lo)^{0.5} AU
- Noise ~1 µas/√(#visits) → few 100 visits to reach SNR 5 for 1% false alarm probability
- White light starspot jitter <0.1 µas for 10 pc G star
- Line jitter of 0.2 m/s
 →very difficult for RV to find Earth analogs in HZ around solar type stars



SIM Planet Observing Technique

- Perform 200 individual observations (100x2D each at ~1 μ as) of a 1.5 M $_{\oplus}$ planet orbiting a 1 M_O star at 10 pc
- After 5 years, detection at <0.1 μas has false alarm probability of <1%
- Sufficient information to detect multiple planets

Unwin et al 2008 PASP in press

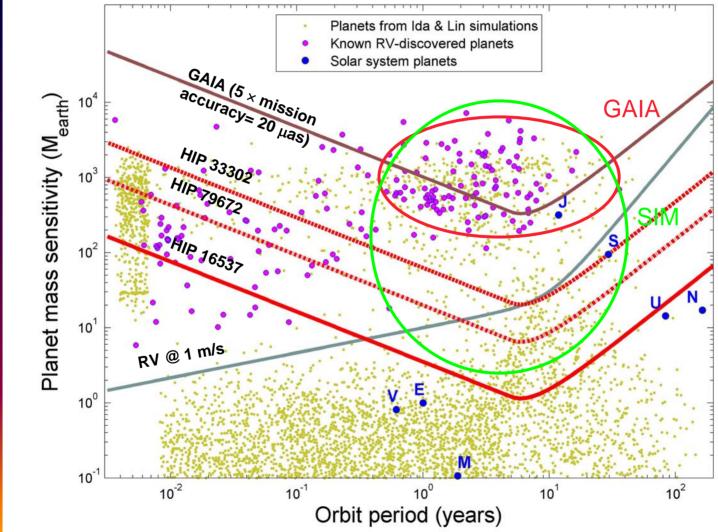
SIM Earth Analog Survey Will Search Closest Stars

Deep Survey for Terrestrial Planets in the Habitable Zone

Mass sensitivity at mid-habitable zone	1 M⊕	2 ${\sf M}_\oplus$	$3~{ m M}_\oplus$
# of target stars that can be surveyed ¹	65	150	230

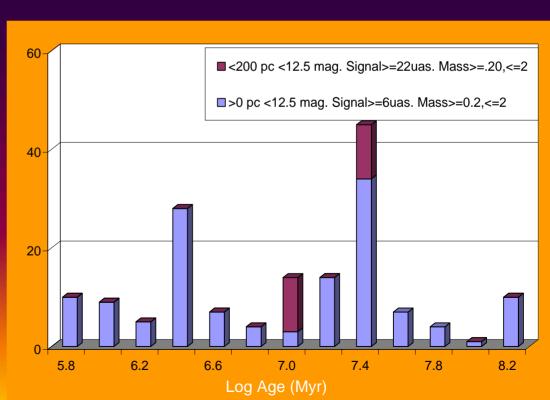
¹Using 40% of SIM-Lite mission time (five years).

Complete Understanding of Planetary System Architectures

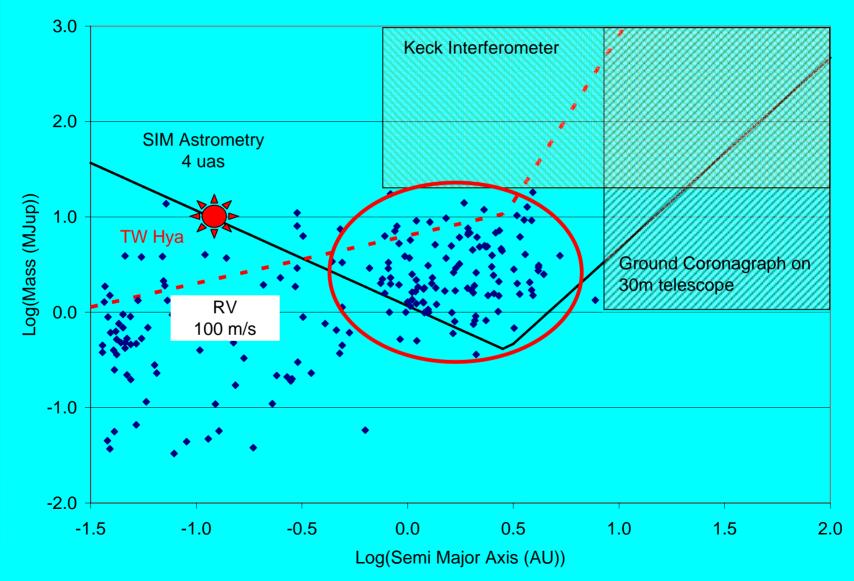

- Full orbital solutions including masses, inclination & coplanarity for all RV systems (+250) and stars with transits (ground, CoRoT, Kepler)
- Survey ~1000 stars to explore metallicity, spectral type, absence/presence of debris disks, and presence in binary systems.
 - Search to <10 M_E level (rocky/icy transition)
 - Search for planets around stars not probed by RV (star types O, B, A, early F, white dwarfs).

Mass Range	0.3 to 10 $\rm M_{\oplus}$	0.1 to 10 M _{Jup}
# planets detected in survey of 1000 stars	50 (7%)	150 (87%)

Based on Cumming 2007 with terrestrial planet incidence increased by x5


Scope of Broad Survey

Exoplanet Discovery Space



How Do Planetary Systems Form & Evolve?

- What fraction of young stars have gas-giant planets?
- Do gas-giant planets form at the "water-condensation" line?
- Does the incidence, distribution, and orbital parameters of planets change with age and protostellar disk mass?
- How does orbital migration affect where, when, and how terrestrial planets form ?
- Only astrometry can find planets down to Saturn-Jupiter mass within 1-10 AU of parent stars at 25-150 pc
 - Line jitter and rotation at 100 m/s precludes (most) planet detection via RV
 - White light jitter of few µas consistent with astrometric detection of gas giants

SIM Will Find Gas-Giants Orbiting Young Stars

SIM(-Lite) and GAIA Planet Search Comparison

	SIM Deep Survey	SIM Broad Survey	GAIA
Single/ Mission Measurement Accuracy	1 μas/ 0.1 μas in 100 2D obs.	4 μas/ 0.4 μas in 2D 100 obs.	70 μas/ 7 μas in 100 obs.
<i>Target Mag Range</i>	-1 to 7 mag	-1 to 15 mag	7 to 15 mag <7 mag at <i>reduced</i> sensitivity
Science Goals	Survey for HZ Earth Analogs around 65-230 closest, bright stars (1-3 M _E)	Survey of 1000 stars for icy/gas giants Uranus- Jupiter	All sky survey for gas giants, Saturn/Jupiter

SIM As Part of Planet Search Program: Proven, Timely, & Synergistic

- Demonstrated sub-microarcsecond precision
 - This laboratory demonstration lies at the heart of the mission
- The SIM Project has met all Technical Milestones
- SIM has been validated by two decadal reports, and two roadmap studies, & most recently an astrometric approach to planet finding has been endorsed by *ExoPlanet Task Force*
- SIM is ready to fly as early as 2013.
- SIM could make 2013-2023 the decade of extra-solar planets
 - SIM & COROT and Kepler
 - SIM & GAIA
 - SIM & JWST
 - SIM & TPF-C, TPF/Darwin