Table 2. Toxicity associated with mercury in tissues $(\mu g/g)$ wet weight. | Fish Species (freshwater) | Life Stage | Hg Form | Exposure | Effects end points | Tissue
Type | No effect (μg/g, ww) | Effect
(µg/g, ww) | Effects descriptions | Reference | |--|---|---|----------------------------------|-------------------------------------|--|----------------------|-------------------------------|---|-----------------------------| | Rainbow trout (Oncorhynchus mykis) | adult through spawning | mercuric chloride
(0.24µg/l in flow-
through water) | 400-528
days | mortality
teratogenic | egg
gonad | 0.04 | 0.26 | significant reduction in alevin survival (4-day post hatch); significant increase in teratogenic effects | Birge et al. 1979 | | | eyed eggs-larvae | mercuric chloride (0.18
-107µg/g in sediment
and 0.25-6.4 µg/l in
overlying water) | 20 days
(10 pre-
hatching) | mortality | whole body | 0.02 | 0.04
0.3
0.9 | 55% mortality at 10 days
77% mortality at 10 days
100% mortality at 10 days | Birge et al. 1979 | | | embryo-larvae | mercuric chloride (0.1-
0.14 in flow-through
water) | 8 days | mortality | eggs | 0.02-0.07 | 0.07
0.1 | 17-21% mortality at 4 days
100% mortality at 8 days | Birge et al. 1979 | | | fingerlings | methylmercuric
chloride in food | 84 days | growth,
behavior,
physiology | whole body | | 10-30
30-35 | decreased growth and appetite darkened skin and lethargy | Rodgers and Beamish
1982 | | | fry-juvenile | total mercury in food
(about 50µg/g) | 270 days | growth
behavior | brain
liver
muscle
whole body | 0.2 | 16-30
26-68
20-28
19 | darkened skin; loss in appetite, visual acuity, and growth; loss of equilibrium | Matida et al. 1971 | | | fingerlings | methylmercuric
chloride (4-24 ppm in
food) | 105 days | histology
biochemistry
growth | muscle | <0.2
12 | 12-24
19-24 | hyperplasia of gill epithelium
blood PCV, growth | Wobeser 1975 | | | subadult | methylmercuric
chloride (4 µg/l in flow-
through water) | 30-98
days | mortality
behavior | brain
liver
muscle | | 7-32
32-114
9-52 | decreased appetite and activity | Niimi and Kissoon 1994 | | | subadult | methylmercuric
chloride (9 µg/l in flow
through water) | 12-33
days | mortality
behavior | whole body | | 4-27 | decreased appetite and activity | Niimi and Kissoon 1994 | | Fathead minnow
(Pimephales
promelas) | larvae-adult and F1
larvae fed Artemia | mercuric chloride
(0.26-3.7µg/l in flow-
through water) | 60 days
30days
41 weeks | growth reproduction | F0 whole body | 0.62
0.32
0.32 | 1.2
1.4
1.4 | retarded F0 larval growth (only at 30 days)
retarded F1 larval growth
F0 reproductive inhibition and retarded growth | Snarski and Olson 1982 | | | larvae fed dry food | mercuric chloride
(0.31-4.51 in flow-
through water) | 60 days | growth
physiology
mortality | whole body | 0.8 | 1.3
4.2 | retarded larval growth
50% mortality, spinal curvature, retarded larval
growth | Snarski and Olson 1982 | | Brook trout
(Salvelinus fontinalis) | 3 generations
continuously exposed | methylmercuric
chloride (0.29 µg/l in
water column) | 273 days | mortality
growth
reproduction | brain
liver
gonad
whole body | 5
8
3
3 | | no apparent effects | McKim et al. 1976 | | | 3 generations continuously exposed | methylmercuric
chloride (0.93 µg/l in
water column) | 273 days | mortality
growth
behavior | brain
liver
gonad
whole body | | 17
24
12
5-7 | increased mortality, decreased growth, lethargy, and deformities in F1, no spawning | McKim et al. 1976 | | | 3 generations continuously exposed | methylmercuric
chloride (0.93 µg/l in
water column) | 273 days | mortality | embryo
(F2) | | 2.2 | deformed embryos; mortality at 3 weeks post hatching | McKim et al. 1976 | | | 3 generations continuously exposed | methylmercuric
chloride (2.9 µg/l in
water column) | 273 days | mortality | embryo
(F1) | | 12.5 | deformed embryos; no hatching | McKim et al. 1976 | | Channel catfish
(Ictalurus punctatus) | embryo-larvae | mercuric chloride
(0.3µg/L in flow-
through water) | 10 days | mortality | eggs | | 0.06* | median lethal concentration at 4 days post-hatching | Birge et al. 1979 | | Walleye
(Stizostedion vitreum
vitreum) | 1 year old | methylmercury (5-13 ppm in food) | 42-63
days | mortality
behavior
physiology | brain
liver
muscle | <1 | 3-6
6-14
5-8 | emaciation; loss of locomotion, coordination and appetite. | Scherer et al. 1975 | | | 1 year old | methylmercury (5-13 ppm in food) | 240-314
days | mortality
behavior
physiology | brain
liver
muscle | <2.5 | 15-40
18-50
15-45 | 88% mortality; emaciation; poor locomotion, coordination and appetite. | Scherer et al. 1975 | | | juveniles | methylmercury (0.14 & 1 ppm in food) | 180 days | development
physiology | whole body
(minus
viscera) | 0.06 | 0.25
2.37 | impaired immune function, testicular atrophy, impaired testicular development impaired growth in males, testicular atrophy, impaired testicular development | Friedmann et al. 1996 | ^{*}no control value, but dose-dependent response | Fish Species (saltwater) | Life Stage | Hg Form | Exposure | Effects end points | Tissue
Type | No Effect
(μg/g, ww) | Effect
(μg/g, ww) | Effects descriptions | Reference | |--------------------------------------|---|---|--------------------------------|---|---------------------------------|-------------------------|---|--|--------------------| | Striped mullet
(Mugil cephalus) | juvenile | methylmercuric
chloride (0.001 mg/l in
water column)
methylmercuric
chloride (0.01 mg/l in
water column) | 10,13 days
7,10, 13
days | physiology | whole body | <0.1 | 0.3
5.0 | inhibition of regeneration of amputated caudal fin | Weis and Weis 1978 | | Grayling
(Thymallus thymallus) | embryos exposed,
tested 3 years later | methylmercuric
chloride (0.16, 0.8,4.0,
20 µg/l in water) | 13 days
(until
hatching) | behavior,
reproduction
physiology | whole body
(fry) | 0.09 | 0.27
0.63
3.8 | reduced foraging efficiency and prey capture
reduced foraging efficiency and prey capture
reduced hatching, foraging efficiency and prey
capture, and scollosis, jaw deformities | Fjeld et al. 1998 | | Killifish
(Fundulus heteroclitus) | adults exposed, 2
generations followed | methylmercury (0.5,
1.9,5.6, 54ppm in food
of F0 generation) | 42 days
(F0 only) | mortality
reproduction
sex ratios | whole body
(F0)
eggs (F1) | 0.2 (F0)
BDL* | 0.47 (F0)
1.0-1.1 (F0)
11-12 (F0)
0.01
0.63 | reduced survival in F0 males reduced survival in F0 males, altered sex ratio in F1 reduced survival in F0 males, altered sex ratio in F1, reduced fertilization success in F1 altered sex ratio in F1 altered sex ratio in F1, reduced fertilization success in F1 | Matta et al. 2001 | ^{*}Below detection limit of 0.02 ## References Birge, W.J., J.A. Black, A.G. Westerman, and J.E. Hudson. 1979. The effects of mercury on reproduction of fish and amphibians. In: J. O. Nriagu (ed.). *The Biogeochemistry of Mercury in the Environment*. Elsevier/North-Holland Biomedical Press. pp. 629-655. Fjeld, E., T.O. Haugen., and L.A. Vollestad. 1998. Permanent impairment in the feeding behavior of grayling (*Thymallus thymallus*) exposed to methylmercury during embryogenesis. *Sci. Tot. Environ. 213*: 247-254. Friedmann, A.S., M.C. Watzin, T. Brinck-Johnsen, J.C. Leiter. 1996. Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile walleye (*Stizostedion vitreum*). Aquat. Toxicol. 35: 265-278. Matida, Y., H. Kumada, S. Kimura, Y. Saiga, T. Nose, M. Yokote, and H. Kawatsu. 1971. Toxicity of mercury compounds to aquatic organisms and accumulation of the compounds by the organisms. *Bull. Freshwater Fish. Res. Lab. (Tokyo) 21*: 197-227. Matta, M.B., J. Linse, C. Cairncross, L. Francendese, and R.M. Kocan. 2001. Reproductive and trans-generational effects of methylmercury or Aroclor 1268 on *Fundulus heteroclitus*. *Environ*. *Toxicol*. *and Chem* 20(2): 327-335. McKim, J.M., G.F. Olson, G.W. Holcombe and E.P. Hunt. 1976. Long-term effects of methylmercuric chloride on three generations of brook trout (*Salvelinus fontinalis*): toxicity, accumulation, distribution and elimination. *J. Fish. Res. Bd. Can. 33*: 2726-2739. Niimi, A. J. and G. P. Kissoon. 1994. Evaluation of the critical body burden concept based on inorganic and organic mercury toxicity to Rainbow Trout (*Oncorhynchus mykiss*). *Arch. Environ. Contam. Toxicol. 26*: 169 - 178. Rodgers, D.W. and F.W.H. Beamish. 1982. Dynamics of dietary methylmercury in rainbow trout, Salmo gairdneri. Aquat. Toxicol. 2: 271-290. Scherer, E., F.A. J. Armstrong, and S.H. Nowak. 1975. Effects of mercury-contaminated diet upon walleyes *Stizostedion vitreum vitreum* (Mitchell). Fish. Mar. Serv. Tech. Rep. No. 597, 21 pp. Snarski, V.M. and G.F. Olson. 1982. Chronic toxicity and bioaccumulation of mercuric chloride in the fathead minnow (*Pimephales promelas*). Aquat. Toxicol. 2: 143-156. Weis, P., and J.S. Weis. 1978. Methylmercury inhibition of fin regeneration in fishes and its interaction with salinity and cadmium. Estuarine Coastal Mar. Sci. 6: 327-334. Wobeser, G. 1975. Prolonged oral administration of methyl mercury chloride to rainbow trout (Salmo gairdner) fingerlings. J. Fish. Res. Bd. Can. 32: 2015-2023.