Infrared singularities of gauge theory amplitudes

Thomas Becher

Fermilab
Seminar at Eermilab
June 25, 2009
0901.0722, 0903.1126, 0904.1021 with Matthias Neubert

IR singularities

* On-shell parton scattering amplitudes in gauge theories contain IR divergences from soft and collinear loop momenta
* IR singularities cancel between real and virtual contributions Bloch, Nordsieck 1937
Kinoshita 1962; Lee, Nauenberg 1964
+ Nevertheless interesting:
* resummation of large Sudakov logarithms remaining after cancellation of divergences (relevant for LHC physics!)
* check on multi-loop calculations

IR singularities in QED

* Singularities arise from soft photon emission (for $m_{\mathrm{e}} \neq 0$); eikonal approximation:

$$
\begin{aligned}
& \ldots \frac{\not p-\not p+m}{(p-k)^{2}-m^{2}} \gamma_{\mu} u(p) \\
& \approx \ldots u(p) \frac{p_{\mu}}{p \cdot k}
\end{aligned}
$$

* IR divergent part is a multiplicative factor
* Higher-order terms obtained by exponentiating leading-order soft contribution. Yennie, Frautschi, Suura 1961 Weinberg 1965

IR singularities in QCD

"In [Yang-Mills theory] a soft photon emitted from an external line can itself emit a pair of soft charged massless particles, which themselves emit soft photons, and so on, building up a cascade of soft massless particles each of which contributes an infra-red divergence. The elimination of such complicated interlocking infra-red divergences would certainly be a Herculean task, and might not even be possible."

IR singularities in QCD

* Much more complicated
* soft and collinear singularities
* gluons carry color charge, hence soft emissions do not simply exponentiate
* but only a restricted set of higher-order contributions can appear (non-abelian exponentiation theorem) Gatheral 1983; Frenkel, Taylor 1984
* For long time, explicit form of IR poles was only understood at two-loop order

Overview of the talk

+ IR singularities of gauge theory on-shell amplitudes
+ can be absorbed into multiplicative \boldsymbol{Z}-factor, governed by an anomalous dimension $\boldsymbol{\Gamma}$
+ conjecture: for massless theories $\boldsymbol{\Gamma}$ involves only two-parton color-correlations
+ Constraints on $\boldsymbol{\Gamma}$ from non-abelian exponentiation, soft-collinear factorization, collinear limits
+ Order-by-order analysis to 3-loops, exclusion of higher Casimir contributions at 4 loops
* Phenomenological application: higher-log resummation for n -jet processes.

Color-space formalism

* Represent amplitudes as vectors in color space:

$$
\begin{aligned}
& \left|c_{1}, c_{2}, \ldots, c_{n}\right\rangle \\
& \uparrow \\
& \text { color index of first parton }
\end{aligned}
$$

Catani, Seymour 1996

* Color generator for $\mathrm{i}^{\text {th }}$ parton $\boldsymbol{T}_{i}^{a}\left|c_{1}, c_{2}, \ldots, c_{n}\right\rangle$ acts like a matrix:
+ t^{a} for quarks, fabc for gluons
* product $\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}=\sum_{a} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{a}$ (commutative)
* charge conservation $\sum_{i} T_{i}^{a}=0$ implies:

Catani's two-loop formula (1998)

("... beautiful, yet mysterious..")

* Specifies IR singularities of dimensionally regularized n-parton amplitudes at two loops:

$$
\begin{aligned}
& {\left[1-\frac{\alpha_{s}}{2 \pi} \boldsymbol{I}^{(1)}(\epsilon)-\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \boldsymbol{I}^{(2)}(\epsilon)+\ldots\right]\left|\mathcal{M}_{n}(\epsilon,\{\underline{p}\})\right\rangle=\text { finite }} \\
& \text { with }
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{I}^{(1)}(\epsilon)= & \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} \sum_{i}\left(\frac{1}{\epsilon^{2}}+\frac{g_{i}}{\boldsymbol{T}_{i}^{2}} \frac{1}{\epsilon}\right) \sum_{j \neq i} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2}\left(\frac{\mu^{2}}{-s_{i j}}\right)^{\epsilon} \\
\boldsymbol{I}^{(2)}(\epsilon)= & \frac{e^{-\epsilon \gamma_{E}} \Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)}\left(K+\frac{\beta_{0}}{2 \epsilon}\right) \boldsymbol{I}^{(1)}(2 \epsilon) \\
& -\frac{1}{2} \boldsymbol{I}^{(1)}(\epsilon)\left(p_{j}\right)^{2}
\end{aligned}
$$

* Later derivation using factorization properties and IR evolution equation for form factor Sterman, Tejeda-Yeomans 2003

All-order generalization

* IR divergences in $d=4-2 \varepsilon$ can be absorbed into a multiplicative factor \mathbf{Z} (a matrix in color space), which derives from an anomalous-dimension matrix: finite

TB, Neubert 2009

$$
\begin{aligned}
\left|\mathcal{M}_{n}(\{\underline{p}\}, \mu)\right\rangle & =\lim _{\epsilon \rightarrow 0} \boldsymbol{Z}^{-1}(\epsilon,\{\underline{p}\}, \mu)\left|\mathcal{M}_{n}(\epsilon,\{\underline{p}\})\right\rangle \\
\boldsymbol{Z}(\epsilon,\{\underline{p}\}, \mu) & =\mathbf{P} \exp \left[\int_{\mu}^{\infty} \frac{\mathrm{d} \mu^{\prime}}{\mu^{\prime}} \boldsymbol{\Gamma}\left(\{\underline{p}\}, \mu^{\prime}\right)\right]
\end{aligned}
$$

Corresponding RG evolution equation:

$$
\frac{d}{d \ln \mu}\left|\mathcal{M}_{n}(\{\underline{p}\}, \mu)\right\rangle=\boldsymbol{\Gamma}(\{\underline{p}\}, \mu)\left|\mathcal{M}_{n}(\{\underline{p}\}, \mu)\right\rangle
$$

\Rightarrow can be used to resum Sudakov logarithms

All-order generalization

* Anomalous dimension is conjectured to be extremely simple:

$$
\boldsymbol{\Gamma}(\{\underline{p}\}, \mu)=\sum_{\substack{(i, j) \\
\text { sum over pairs } \\
\mathrm{i} \neq \mathrm{j} \text { of partons }}} \frac{\begin{array}{c}
\text { color charges } \\
\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \\
\text { anom. dimensions, } \\
\text { known to three-loop order }
\end{array}}{\substack{\text { cusp }}}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right)
$$

* simple structure, reminiscent of QED
+ IR poles determined by color charges and momenta of external partons
+ color dipole correlations, like at one-loop order

Z factor to three loops

* Explicit result:
$\ln \boldsymbol{Z}(\epsilon,\{\underline{p}\}, \mu)=\int_{0}^{\alpha_{s}} \frac{d \alpha}{\alpha} \frac{1}{2 \epsilon-\beta(\alpha) / \alpha}\left[\boldsymbol{\Gamma}(\{\underline{p}\}, \mu, \alpha)+\int_{0}^{\alpha} \frac{d \alpha^{\prime}}{\alpha^{\prime}} \frac{\Gamma^{\prime}\left(\alpha^{\prime}\right)}{2 \epsilon-\beta\left(\alpha^{\prime}\right) / \alpha^{\prime}}\right]$
where

$$
\Gamma^{\prime}\left(\alpha_{s}\right) \equiv \frac{\partial}{\partial \ln \mu} \Gamma\left(\{\underline{p}\}, \mu, \alpha_{s}\right)=-\gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \sum_{i} C_{i}
$$

* Perturbative expansion:

$$
\begin{aligned}
\ln \boldsymbol{Z} & =\frac{\alpha_{s}}{4 \pi}\left(\frac{\Gamma_{0}^{\prime}}{4 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{0}}{2 \epsilon}\right)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[-\frac{3 \beta_{0} \Gamma_{0}^{\prime}}{16 \epsilon^{3}}+\frac{\Gamma_{1}^{\prime}-4 \beta_{0} \boldsymbol{\Gamma}_{0}}{16 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{1}}{4 \epsilon}\right] \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}\left[\frac{11 \beta_{0}^{2} \Gamma_{0}^{\prime}}{72 \epsilon^{4}}-\frac{5 \beta_{0} \Gamma_{1}^{\prime}+8 \beta_{1} \Gamma_{0}^{\prime}-12 \beta_{0}^{2} \boldsymbol{\Gamma}_{0}}{72 \epsilon^{3}}+\frac{\Gamma_{2}^{\prime}-6 \beta_{0} \boldsymbol{\Gamma}_{1}-6 \beta_{1} \boldsymbol{\Gamma}_{0}}{36 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{2}}{6 \epsilon}\right]+\ldots \\
& \Rightarrow \text { exponentiation yields } \mathbb{Z} \text { factor at three loops! }
\end{aligned}
$$

Checks

* Expression for IR pole terms agrees with all known perturbative results:
* 3-loop quark and gluon form factors, which determine the functions $\gamma^{q, g}\left(\alpha_{s}\right)$

Moch, Vermaseren, Vogt 2005

* 2-loop 3-jet qqg amplitude Garland, Gehrmann et al. 2002
* 2-loop 4-jet amplitudes $\begin{aligned} & \text { Anastasiou, Glover et al. 2001 } \\ & \text { Bern, De Freitas, Dixon 2002, } 2003\end{aligned}$
+ 3-loop 4-jet amplitudes in $\mathrm{N}=4$ super YangMills theory in planar limit Bern et al. 2005, 2007

Catani's result

+ Comparison with Catani's formula at two loops yields explicit expression for $1 / \varepsilon$ pole term:

$$
\begin{aligned}
\boldsymbol{H}_{\mathrm{R} . \mathrm{S} .}^{(2)}(\epsilon)= & \frac{1}{16 \epsilon} \sum_{i}\left(\gamma_{1}^{i}-\frac{1}{4} \gamma_{1}^{\text {cusp }} \gamma_{0}^{i}+\frac{\pi^{2}}{16} \beta_{0} C_{i}\right) \\
& +\frac{i f^{a b c}}{24 \epsilon} \sum_{(i, j, k)} \boldsymbol{k}_{i}^{a} T_{j}^{b} \boldsymbol{T}_{k}^{c} \ln \frac{-s_{i j}}{-s_{j k}} \ln \frac{-s_{j k}}{-s_{k i}} \ln \frac{-s_{k i}}{-s_{i j}}
\end{aligned}
$$

+ Non-trivial color structure only arises since his operators are not defined in a minimal scheme
+ First derived by Mert Aybat, Dixon, Serman '06, confirming earlier conjecture Bern, Dixon, Ksoswer ${ }^{\circ} 04$

Effective theory analysis and factorization constraints

Misconception

* Conventional thinking is that UV and IR divergences are of totally different nature:
+ UV divergences absorbed into renormalization of parameters of theory; structure constrained by RG equations
+ IR divergences arise in unphysical calculations; cancel between virtual corrections and real emissions
* In fact, IR divergences can be mapped onto UV divergences of operators in effective field theory!

Re-interpretation of IR divergences

+ In our case, $\boldsymbol{\Gamma}$ is the anomalous-dimension matrix of n -jet operators in SCET, and \mathbf{Z} is the associated matrix of renormalization factors
+ Will discuss structure of SCET for n-jet processes and constraints on anomalous dimension $\boldsymbol{\Gamma}$ arising from
+ charge conservation $\sum_{i} \boldsymbol{T}_{i}=0$
+ soft-collinear factorization
+ non-abelian exponentiation
* consistency with collinear limits

Soft-Collinear Effective Theory

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002

* An effective theory for processes for processes with energetic particles.

Soft-Collinear Factorization

Soft-collinear factorization: n jet case

Jet functions $\mathrm{J}_{\mathrm{i}}=\mathrm{J}_{\mathrm{i}}\left(\mathrm{M}_{\mathrm{i}}{ }^{2}\right)$

SCET for n-jet processes

* n different types of collinear quark and gluon fields (\rightarrow jet functions J_{i}), interacting only via soft fields (soft function S)
* operator definitions for J_{i} and S
* Hard contributions $(\mathrm{Q} \sim \sqrt{ } \mathrm{s})$ are integrated out and absorbed into Wilson coefficients:

$$
\mathcal{H}_{n}=\sum_{i} \mathcal{C}_{n, i}(\mu) O_{n, i}^{\mathrm{ren}}(\mu)
$$

+ Scale dependence controlled by RGE:

$$
\frac{d}{d \ln \mu}\left|\mathcal{C}_{n}(\{\underline{p}\}, \mu)\right\rangle=\underset{\text { anomalous-dimension matrix }}{\boldsymbol{\Gamma}(\mu,\{\underline{p}\})\left|\mathcal{C}_{n}(\{\underline{p}\}, \mu)\right\rangle}
$$

On-shell parton scattering amplitudes

* Hard functions C_{n} can be obtained by setting the jet masses to zero: jet and soft functions become scaleless, loop corrections vanish.
+ One obtains:
renormalization factor
(minimal subtraction of IR poles)

$$
\left|\mathcal{C}_{n}(\{\underline{p}\}, \mu)\right\rangle=\lim _{\epsilon \rightarrow 0} Z^{-1}(\epsilon,\{\underline{p}\}, \mu)\left|\mathcal{M}_{n}(\epsilon,\{\underline{p}\})\right\rangle
$$

TB, Neubert 2009
where

$$
\boldsymbol{\Gamma}=-\frac{d \ln \boldsymbol{Z}}{d \ln \mu}
$$

* IR poles of scattering amplitudes mapped onto UV poles of n-jet SCET operators
* Multiplicative subtraction, controlled by RG

Factorization constraint on $\boldsymbol{\Gamma}$

* Operator matrix elements must evolve in the same way as hard matching coefficients, such that physical observables are scale independent
* Factorization of matrix element then implies (with $\Lambda_{i j}^{2}=\frac{M_{i}^{2} M_{j}^{2}}{s_{i j}}$):
trivial color structure

+ suggests logarithmic dependence on s_{ij} and $M_{\mathrm{i}}{ }^{2}$
+ $\boldsymbol{\Gamma}$ and $\boldsymbol{\Gamma}_{\mathrm{S}}$ must have same color structure

Soft function

* SCET decoupling transformation removes soft interactions among collinear fields and absorbs them into soft Wilson lines

$$
\boldsymbol{S}_{i}=\mathbf{P} \exp \left[i g \int_{-\infty}^{0} d t n_{i} \cdot A_{a}\left(t n_{i}\right) T_{i}^{a}\right]
$$

$$
\mathcal{S}(\{\underline{n}\}, \mu)=\langle 0| \boldsymbol{S}_{1}(0) \ldots \boldsymbol{S}_{n}(0)|0\rangle=\exp (\tilde{\mathcal{S}}(\{\underline{n}\}, \mu))
$$

Non-abelian exponentiation

Gatheral 1983; Frenkel and Taylor 1984

+ The exponent $\tilde{\mathcal{S}}$ receives contributions only from Feynman diagrams whose color weights are "color-connected" (or "maximally nonabelian")
+ Color-weight graphs associated with each Feynman diagram can be simplified using the Lie commutator relation:

Non-abelian exponentiation

* Use this to decompose any color-weight graph into a sum over products of connected webs, defined as a connected set of gluon lines (not counting crossed lines as being connected)

single connected web
"maximally nonabelian"
+ Only color structures consisting of a single connected web contribute to the exponent $\tilde{\mathcal{S}}$

Renormalization of Wilson loops

* Wilson loops containing singular points (cusps or cross points) require UV subtractions

Polyakov 1980; Brandt, Neri, Sato 1981

* For single cusp formed by tangent vectors n_{1} and n_{2}, renormalization factor depends on cusp angle β_{12} defined as $\cosh \beta_{12}=\frac{n_{1} \cdot n_{2}}{\sqrt{n_{1}^{2} n_{2}^{2}}}$
* More generally, sets of related Wilson loops mix under renormalization, with \mathbf{Z}_{s} matrix depending on all relevant cusp angles

Light-like Wilson lines

* For large values of cusp angle β_{12}, anomalous dimension associated with a cusp or cross point grows linearly with β_{12}, which is then approximately equal to $\ln \left(2 n_{1} \cdot n_{2} / \sqrt{n_{1}^{2} n_{2}^{2}}\right)$

Korchemsky, Radyushkin 1987

* Cusp angle diverges when one or both segments approach the light-cone:

$$
\Gamma\left(\beta_{12}\right) \xrightarrow{n_{1,2}^{2} \rightarrow 0} \Gamma_{\text {cusp }}^{i}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{\Lambda_{s}^{2}}+\ldots
$$

Korchemskaya, Korchemsky 1992

* Presence of single logarithm characteristic for Sudakov problems (double logs)

Light-like Wilson lines

* Introducing IR regulators $\mathrm{pi}^{2} \neq 0$ to define the soft and collinear scales, we obtain:

$$
\begin{gathered}
\beta_{i j}=\ln \frac{-s_{i j} \mu^{2}}{\left(-p_{i}^{2}\right)\left(-p_{j}^{2}\right)} \\
\operatorname{soft} \log \\
L_{i}=\ln \frac{\mu^{2}}{-p_{i}^{2}} \\
\text { collinear } \log
\end{gathered}
$$

Soft anomalous-dimension matrix

* Decompositions:

$$
\begin{aligned}
\Gamma(\{\underline{p}\}, \mu) & =\Gamma_{s}(\{\underline{\beta}\}, \mu)+\sum_{i} \Gamma_{c}^{i}\left(L_{i}, \mu\right) \\
\Gamma_{c}^{i}\left(L_{i}\right) & =-\Gamma_{\text {cusp }}^{i}\left(\alpha_{s}\right) L_{i}+\gamma_{c}^{i}\left(\alpha_{s}\right)
\end{aligned}
$$

* Key equation: see also: Gardi, Magnea, arXiv:0901.1091

$$
\frac{\partial \boldsymbol{\Gamma}_{s}(\{\underline{s}\},\{\underline{L}\}, \mu)}{\partial L_{i}}=\Gamma_{\mathrm{cusp}}^{i}\left(\alpha_{s}\right)
$$

* Suggests linearity in cusp angles β_{ij} and significantly restricts color structures

Soft anomalous-dimension matrix

+ Only exception would be a more complicated dependence on conformal cross ratios, which are independent of collinear scales:

$$
\beta_{i j k l}=\beta_{i j}+\beta_{k l}-\beta_{i k}-\beta_{j l}=\ln \frac{\left(-s_{i j}\right)\left(-s_{k l}\right)}{\left(-s_{i k}\right)\left(-s_{j l}\right)}
$$

Gardi, Magnea 2009

+ Any polynomial dependence on such ratios can be excluded using other arguments, such as consistency with collinear limits

Consistency with collinear limits

* When two partons become collinear, an n-point amplitude M_{n} reduces to an ($n-1$)-parton amplitude times a splitting function: Berends, Giele 1989; Mangano, Parke 1991

Kosower 1999; Catani, de Florian, Rodrigo 2003
$\left|\mathcal{M}_{n}\left(\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right\}\right)\right\rangle=\mathbf{S p}\left(\left\{p_{1}, p_{2}\right\}\right)\left|\mathcal{M}_{n-1}\left(\left\{P, p_{3}, \ldots, p_{n}\right\}\right)\right\rangle+\ldots$

$$
\boldsymbol{\Gamma}_{\mathrm{Sp}}\left(\left\{p_{1}, p_{2}\right\}, \mu\right)=\boldsymbol{\Gamma}\left(\left\{p_{1}, \ldots, p_{n}\right\}, \mu\right)-\left.\boldsymbol{\Gamma}\left(\left\{P, p_{3} \ldots, p_{n}\right\}, \mu\right)\right|_{T_{P} \rightarrow \boldsymbol{T}_{1}+T_{2}}
$$

$\boldsymbol{\Gamma}_{\mathrm{Sp}}$ must be independent of momenta and colors of partons 3, ..., n

Consistency check

* The form we propose is consistent with factorization in the collinear limit:

$$
\begin{gathered}
\left.\boldsymbol{\Gamma}_{\mathrm{Sp}_{\mathrm{p}}}\left\{p_{1}, p_{2}\right\}, \mu\right)=\boldsymbol{\Gamma}\left(\left\{p_{1}, \ldots, p_{n}\right\}, \mu\right)-\left.\boldsymbol{\Gamma}\left(\left\{P, p_{3} \ldots, p_{n}\right\}, \mu\right)\right|_{\boldsymbol{T}_{P} \rightarrow \boldsymbol{T}_{1}+\boldsymbol{T}_{2}} \\
\boldsymbol{\Gamma}_{\mathrm{Sp}}\left(\left\{p_{1}, p_{2}\right\}, \mu\right)=\gamma_{\text {cusp }}\left[\boldsymbol{T}_{1} \cdot \boldsymbol{T}_{2} \ln \frac{\mu^{2}}{-s_{12}}+\boldsymbol{T}_{1} \cdot\left(\boldsymbol{T}_{1}+\boldsymbol{T}_{2}\right) \ln z+\boldsymbol{T}_{2} \cdot\left(\boldsymbol{T}_{1}+\boldsymbol{T}_{2}\right) \ln (1-z)\right] \\
+\gamma^{1}+\gamma^{2}-\gamma^{P}, \\
\text { momentum fraction of parton 1 }
\end{gathered}
$$

* But this would not work if $\boldsymbol{\Gamma}$ would involve terms of higher powers in color generators \boldsymbol{T}_{i} or momentum variables
* A very strong constraint (new)!

$$
\Gamma_{s}(\{\underline{\beta}\}, \mu) \stackrel{?}{=}-\sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\text {cusp }}\left(\alpha_{s}\right) \beta_{i j}+\sum_{i} \gamma_{s}^{i}\left(\alpha_{s}\right)
$$

Diagrammatic analysis of the soft anomalous-dimension matrix

Existing results

* Our conjecture implies for the soft anomalousdimension matrix:

$$
\Gamma_{s}(\{\underline{\beta}\}, \mu)=-\sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\text {cusp }}\left(\alpha_{s}\right) \beta_{i j}+\sum_{i} \gamma_{s}^{i}\left(\alpha_{s}\right)
$$

* This form was confirmed at two loops by showing that diagrams connecting three parton legs vanish
Mert Aybat, Dixon, Sterman 2006
* Also holds for three-loop fermionic contributions
Dixon 2009

Order-by-order analysis

+ One loop (recall $\sum_{(i, j)} T_{i} \cdot T_{j}=-\sum_{i} T_{i}^{2}=-\sum_{i} C_{i}$)
+ one leg:

$$
\boldsymbol{T}_{i}^{2}=C_{i}
$$

+ two legs:

$$
\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}
$$

Two loops

+ one leg:
+ two legs:
+ three legs:

$$
-i f^{a b c} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{i}^{b} \boldsymbol{T}_{i}^{c}=\frac{C_{A} C_{i}}{2}
$$

onomo

$$
-i f^{a b c} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{i}^{b} \boldsymbol{T}_{j}^{c}=\frac{C_{A}^{e}}{2} \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \quad \text { (only new structure) }
$$

$$
-i i^{a b c} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{b} \boldsymbol{T}_{k}^{c}
$$

\Rightarrow vanishes, since no antisymmetric momentum structure in $\mathrm{i}, \mathrm{j}, \mathrm{k}$ consistent with soft-collinear factorization exists! explains cancellations observed in:

Three-loop order

+ Single webs:

* Six new structures consistent with non-abelian exponentiation exist, two of which are compatible with soft-collinear factorization:
$\Delta \boldsymbol{\Gamma}_{3}(\{\underline{p}\}, \mu)=-\frac{\overline{\bar{f}}_{1}\left(\alpha_{s}\right)}{4} \sum_{(i, j, k, l)} f^{a d e} f^{b c e} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{b} \boldsymbol{T}_{k}^{c} \boldsymbol{T}_{l}^{d} \ln \frac{\left(-s_{i j}\right)\left(-s_{k l}\right)}{\left(-s_{i k}\right)\left(-s_{j l}\right)}$
$-\bar{f}_{2}\left(\alpha_{s}\right) \sum_{(i, j, k)} f^{a d e} f^{b b e}\left(\boldsymbol{T}_{i}^{a} \boldsymbol{T}_{i}^{b}\right)_{+} \boldsymbol{T}_{j}^{c} \boldsymbol{T}_{k}^{d}$,
 function of conformal cross ratio

Three-loop order

* Neither of these is compatible with collinear limits: the splitting function would depend on colors and momenta of the additional partons
+ Consider, e.g., the second term:

$$
\begin{aligned}
& \left.\Delta \mathrm{T}_{\mathrm{sp}}\left(\left\{p_{1}, p_{2}\right\}, \mu\right)\right|_{\bar{I}_{1}\left(a_{s}\right)}=f^{\text {ade }} f^{b c e} \sum_{(i, j) \neq 1,2}\left(T_{1}^{a} T_{2}^{b}+T_{2}^{a} T_{1}^{b}\right) \boldsymbol{T}_{i}^{c} T_{j}^{d} \ln \frac{\mu^{2}}{-s_{i j}}+\ldots
\end{aligned}
$$

dependence on color invariants and momenta of additional partons ($\mathrm{i} \neq 1,2$)

Arbitrary dependence on conformal cross ratios

+ Most general form $\left[\beta_{i j k l}=\ln \frac{\left(-s_{i j}\right)\left(-s_{k k}\right)}{\left(-s_{i k}\right)\left(-s_{j l}\right)}\right]$
$\Delta \boldsymbol{\Gamma}_{3}(\{\underline{p}\}, \mu)=\sum_{(i, j, k, l)} f^{a d e} f^{b c e} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{b} \boldsymbol{T}_{k}^{c} \boldsymbol{T}_{l}^{d} F\left(\beta_{i j k l}, \beta_{i k l j}-\beta_{l i j k}\right)$
+ compatible with soft-collinear factorization
+ inconsistent with collinear limit unless the term vanishes in all collinear limits. (Conformal ratios vanish or diverge in the collinear limit.)
* Unclear whether it appears, but contribution is not excluded by our arguments.

Four-loops and beyond

* Interesting new webs involving higher Casimir invariants first arise at four loops

$$
\begin{aligned}
d_{F}^{a b c d} \boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{b} \boldsymbol{T}_{k}^{c} \boldsymbol{T}_{l}^{d} & =d_{F}^{a b c d}\left(\boldsymbol{T}_{i}^{a} \boldsymbol{T}_{j}^{b} \boldsymbol{T}_{k}^{c} \boldsymbol{T}_{l}^{d}\right)_{+} \\
d_{R}^{a_{1} a_{2} \ldots a_{n}} & =\operatorname{tr}\left[\left(\boldsymbol{T}_{R}^{a_{1}} \boldsymbol{T}_{R}^{a_{2}} \ldots \boldsymbol{T}_{R}^{a_{n}}\right)_{+}\right]
\end{aligned}
$$

+ One linear combination of such terms would be compatible with soft-collinear factorization, but does not have the correct collinear limit

Casimir scaling

* Applied to the two-jet case (form factors), our formula thus implies Casimir scaling of the cusp anomalous dimension:

$$
\frac{\Gamma_{\mathrm{cusp}}^{q}\left(\alpha_{s}\right)}{C_{F}}=\frac{\Gamma_{\mathrm{cusp}}^{g}\left(\alpha_{s}\right)}{C_{A}}=\gamma_{\mathrm{cusp}}\left(\alpha_{s}\right)
$$

* Checked explicitly at three loops Moch, Vermaseren, Vogt 2004
* But contradicts expectations from AdS/CFT correspondence (high-spin operators in strong-coupling limit)

Armoni 2006
Alday, Maldacena 2007

+ A real conflict?

Wanted: 3- and 4-loop checks

* Full three-loop 4-jet amplitudes in $\mathrm{N}=4$ super Yang-Mills theory were expressed in terms of small number of scalar integrals Bern et al. 2008
* Once these can be calculated, this will provide stringent test of our arguments (note recent calculation of three-loop form-factor integrals) Baikov et al. 2009;
Heinrich, Huber, Kosower, Smirnov 2009
+ Calculation of four-loop cusp anomalous dimension would provide non-trivial test of Casimir scaling, which is then no longer guaranteed by non-abelian exponentiation

Heavy particles

* Have extended our analysis to amplitudes which include massive partons
* Effective theory is combination of HQET (for heavy partons) and SCET (massless partons)
+ Soft function contains both massless and timelike Wilson lines

$$
\mathcal{S}(\{\underline{n}\},\{\underline{v}\}, \mu)=\langle 0| \boldsymbol{S}_{n_{1}} \ldots \boldsymbol{S}_{n_{k}} \boldsymbol{S}_{v_{k+1}} \ldots \boldsymbol{S}_{v_{n}}|0\rangle
$$

* v_{i} are four-velocities of the massive partons
* n_{i} are light-cone reference vectors

Anomalous dimension

* Both the full and the effective theory know about the 4 -velocities of the massive partons
* Therefore much weaker constraints hold for the massive case:
+ no soft-collinear factorization
* no constraint from (quasi-) collinear limits
+ For the purely massive case, all structures allowed by non-abelian exponentiation at a given order will be present!

Anomalous dimension to two loops

+ One- and two-parton terms: known to two loops

$$
\begin{aligned}
& \begin{array}{l}
\left.\boldsymbol{\Gamma}(\{\underline{p}\},\{\underline{m}\}, \mu)\right|_{2-\mathrm{parton}} \\
\text { massless partons }
\end{array}=\sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right) \\
& \hline-\sum_{(I, J)} \frac{\boldsymbol{T}_{I} \cdot \boldsymbol{T}_{J}}{2} \gamma_{\mathrm{cusp}}\left(\beta_{I J}, \alpha_{s}\right)+\sum_{I} \gamma^{I}\left(\alpha_{s}\right) \\
& \text { massive partons } \rightarrow \sum_{I, j} \boldsymbol{T}_{I} \cdot \boldsymbol{T}_{j} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{m_{I} \mu}{-s_{I j}},
\end{aligned}
$$

new!

* Generalizes structure found for massless case
* Reproduces IR poles of QCD amplitudes after appropriate matching of coupling constants

Anomalous dimension to two loops

+ Also 3-parton correlations appear in massive case!

Mitov, Sterman, Sung 2009

* General structure [with $\beta_{I J}=\operatorname{arccosh}\left(v_{I} \cdot v_{J}\right)$]:

$$
\begin{aligned}
& \left.\boldsymbol{\Gamma}(\{\underline{p}\},\{\underline{m}\}, \mu)\right|_{3-\text { parton }} \\
& =i f^{a b c} \sum_{(I, J, K)} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{K}^{c} F_{1}\left(\beta_{I J}, \beta_{J K}, \beta_{K I}\right) \\
& \quad+i f^{a b c} \sum_{(I, J)} \sum_{k} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{k}^{c} f_{2}\left(\beta_{I J}, \ln \frac{-\sigma_{J k} v_{J} \cdot p_{k}}{-\sigma_{I k} v_{I} \cdot p_{k}}\right)
\end{aligned}
$$

Towards higher-log resummations for n-jet processes

Sudakov resummation with SCET

+ Many collider physics applications of SCET in the past few years. Resummations up to $N^{3} \mathrm{LL}$, however only for two jet observables, e.g.
+ thrust distribution in $e^{+} e^{-}$
TB, Schwartz '08
+ Drell-Yan rapidity dist. TB, Neubert, Xu ${ }^{\circ}{ }^{07}$
+ inclusive Higes production ${ }^{\text {Idibibi Ji, Ma and Yuan }{ }^{\circ} \text { o6; }}$
* inclusive Higgs production Alrens, TB, Nebbert, Yang ' 08
+ Our result for anomalous dimension allows us to perform higher-log resummations also for more n-jet processes

2-jet example: thrust T

$$
T=\max _{\mathbf{n}} \frac{\sum_{i}\left|\mathbf{p}_{i} \cdot \mathbf{n}\right|}{\sum_{i}\left|\mathbf{p}_{i}\right|}
$$

$$
1-T \approx \frac{M_{1}^{2}+M_{2}^{2}}{Q^{2}}
$$

* Prediction for event-shape variable thrust dominated by perturbative uncertainty. NLO Ellis et al. '81, NNLO corrections Gehrmann et al. '07.
* Traditional methods allowed resummation to NLL Catani et al. '93 but not beyond.
* Using factorization theorem in SCET we were able to derive NNNLL resummed distribution TB and Schwartz, 08.
* Need only existing perturbative input. Analytic result, no unphysical Landau-pole singularities. Match to NNLO.

α_{s} extraction from thrust

* Fit to ALEPH and OPAL data gives

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right) & =0.1172 \pm 0.0010(\text { stat }) \pm 0.0008(\mathrm{sys}) \pm 0.0012(\mathrm{had}) \pm 0.0012(\mathrm{pert}) \\
& =0.1172 \pm 0.0022 . \quad \text { from comparing Ariadne Herwig and Pythia }
\end{aligned}
$$

TB and Schwartz, '08

* Most precise α s at high energy, pert unc. no longer dominant. Hadronisation uncertainty becomes limiting factor.
* Abbate, Fickinger, Hoang, Mateu, and Stewart have performed a global fit to all available thrust data using. Extract both α s and hadronisation corrections. Find large hadronisation corrections, preliminary value of $\alpha_{s} \quad \alpha_{s}\left(M_{z}\right)=0.1142 \pm 0.0008 \pm 0.0011$ (pert) (stat+syst+had)

Beyond LL for n-jet processes

+ The necessary ingredients are
+ hard functions: from fixed-order results for onshell amplitudes. New unitarity methods allow calculation of one-loop amplitudes with many legs (\rightarrow NNLL resummation)
+ jet function: imaginary part of two-point function, inclusive jet function is known to two loops.
+ soft function: matrix element of Wilson lines, one-loop calculation is comparatively simple.
* Then resum log's of different scales using RG evolution.

Ultimate goal: automatization

* in the longer term, this will hopefully lead to automated higher-log resummations for jet rates
goes beyond parton showers, which are only accurate at LL, even after matching
* predicts jets, not individual partons

Conclusions

+ IR divergences of arbitrary gauge-theory amplitudes can be derived from SCET anomalous-dimension matrix $\boldsymbol{\Gamma}$
+ Stringent constraints on $\boldsymbol{\Gamma}$ arise from non-abelian exponentiation (general case), and soft-collinear factorization \& collinear limits (massless case only)
+ Conjectured form of pure color-dipole correlations demonstrated to hold at 3 - and (partial) 4-loop order, assuming polynomial dependence on β_{ijkl}
+ In massive case, previously observed properties of 2-loop three-parton correlations understood from symmetry properties in effective theory
* On track to perform higher-log resummations for generic n-jet processes at LHC using RG evolution

