New Mechanism for Neutrino Mass Generation and Triply Charged Higgs Boson at the LHC

S. Nandi

Oklahoma State University and Oklahoma Center for High Energy Physics

(in collaboration with K. S. Babu and Z. Tavartkiladze) arXiv: 0905.2710[hep-ph]

Talk at Fermilab, July, 2009

イロト 不得 とうせい かほとう ほ

- To provide a new mechanism for light neutrino mass generation with new mass scale at the TeV.
- To connect the neutrino physics with the physics that can be explored at the LHC, even possibly at the Tevatron.
- Explore new signals for Higgs bosons

- Introduction
- Model and the Formalism
- Phenomenological Implications
- Conclusions and Outlook

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

• The existence of neutrino masses are now firmly established. $m_{\nu} \sim 10^{-2} \ {\rm eV} \Rightarrow 1 {\rm st}$ and only indication for physics beyond the SM

• m_{ν} is about a billion times smaller the quark and charged lepton masses

• What is the mechanism for such a tiny neutrino mass generation?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 の ()

• Neutrino oscillation data gives

$$\Delta m^2_{21} = 0.759 \pm 0.020 imes 10^{-4} eV^2, \ |\Delta m^2_{32}| = 0.243 \pm 0.013 imes 10^{-2} eV^2,$$

$$\sin^2 2 heta_{12} = 0.87 \pm 0.03$$

 $\sin^2 2 heta_{23} > 0.92$
 $\sin^2 2 heta_{13} < 0.19, CL = 90\%$

Most popular mechanism for light neutrino mass generatio:Type I see-saw

• Add a right handed neutrino, *N_R* to the SM Then we have

$$L = y_{\nu} I N_R \tilde{H} + M N_R^T C^{-1} N_R.$$

For the light ν mass matrix, we obtain

$$M_{\nu} = \begin{pmatrix} 0 & y_{\nu}v \\ y_{\nu}v & M \end{pmatrix}$$

$$\Rightarrow m_{
u} = y_{
u}^2 rac{v^2}{M}$$
, or $m_{
u} M = y_{
u}^2 v^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 の ()

Type I see-saw

• $m_{\nu} \sim \frac{m_D^2}{M}$ The corresponding effective interaction in SM \Rightarrow dimension 5 operator: $L_{eff} = \frac{f}{M} I I H H$

The observed neutrino mass, $m_{
u} \sim 10^{-2}$ eV.

- If $M = M_{PL}$, then m_{ν} is too small
- If $M = M_{GUT}$, then m_{ν} is still too small
- $M \sim 10^{14}$ GeV is needed \rightarrow A new symmetry breaking scale (N_R)
- This scale is too high → No connection can be made to the physics to be explored at the LHC or Tevatron
 ⇒ need M ~ TeV.

Type II see-saw

- Introduce a Higgs triplet, $\Delta = (\Delta^{++}, \Delta^{+}, \Delta^{0})$, Then we can write $L = y_{\nu} / / \Delta$ $\Rightarrow m_{\nu} = v_{\nu} < \Delta >$
- The potential $V(H, \Delta) = -\mu HH\Delta + M_{\Delta}^2 \Delta^{\dagger} \Delta \Rightarrow <\Delta > = \frac{\mu v^2}{M_{\Delta}^2}$
- Effective operator : $L = \frac{1}{M} I H H$, with $M = \frac{M_{\Delta}^2}{\mu}$.
- If $\mu \sim M_\Delta$, then, $M_\Delta \sim 10^{14}$ GeV.
- If $\mu \sim v$, then, $M_\Delta \sim 10^3$ GeV requires $y_\nu \sim 10^{-10}$ \Rightarrow highly unnatural

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Type III see-saw

- Introduce a triplet lepton, $\Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$, Σ has zero hypercharge.
- This gives an effective dimension 5 operator,

$$L = \frac{1}{M} IIHH,$$

$$\Rightarrow m_{\nu} = y_{\nu}^{2} \frac{v^{2}}{M_{\Sigma}}$$

• $\Sigma \sim 10^{14}$ GeV.

- (同) (目) (日) (1

- It is possible the dim. 5 operator does not contribute to neutrino masses in a significant way. \Rightarrow next operator (dim. 7) : $L_{eff.} = \frac{f}{M^3} IIHH(H^{\dagger}H)$
- This by itself is not enough to make $M \sim$ TeV, need $f \sim 10^{-9}$.
- We propose a model in which $f \sim y_1 y_2 \lambda_4$ with each $\sim 10^{-3}$ (domain of natural values)
- This gives $M \sim \text{TeV}$ scale to obtain neutrino masses in the range $10^{-2} 10^{-1}$ eV.

 \Rightarrow connect to physics at the LHC and Tevatron.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

- Gauge Symmetry : $SM = SU(3)_c \times SU(2)_L \times U(1)_Y$
- Usual SM model fermions,
 + a pair of vector-like SU(2)_L triplet leptons transforming as (1,3,2) and (1,3,-2), Σ + Σ̄, Σ = (Σ⁺⁺, Σ⁺, Σ⁰),
 + a new isospin ³/₂ Higgs, Φ, Φ = (Φ⁺⁺⁺, Φ⁺⁺, Φ⁺, Φ⁰)
- Φ has positive mass square, but acquires a tiny VEV through Higgs potential via interaction with H.
- Σ has interactions with SM lepton doublets, H as well as Φ .

▲母 ◆ ● ◆ ● ◆ ● ◆ ○ ◆ ○ ◆ ○ ◆

• Higgs Potential

$$V = -\mu_{H}^{2} H^{\dagger}H + M_{\Phi}^{2} \Phi^{\dagger}\Phi + \lambda (H^{\dagger}H)^{2} + \lambda_{1} (\Phi^{\dagger}\Phi)^{2} + \lambda_{2} (H^{\dagger}H) (\Phi^{\dagger}\Phi) + \lambda_{3} (H^{\dagger}\frac{t_{a}}{2}H) (\Phi^{\dagger}\frac{T_{A}}{2}\Phi) + \lambda_{4} (HHH\Phi + \Phi^{\dagger}H^{\dagger}H^{\dagger}H^{\dagger})$$

• Minimization of $V \Rightarrow \langle \Phi_0 \rangle \equiv v_{\Phi} \sim -\lambda_4 \frac{v_H^3}{M_{\Phi}^2}$

Light neutrino mass generation:

•
$$L = y_i l_i H^* \Sigma + \bar{y}_i l_i \Phi \bar{\Sigma} + M_{\Sigma} \Sigma \bar{\Sigma}$$

 $y_i, \bar{y}_i \Rightarrow$ dimensionless Yukawa couplings.

•
$$\rightarrow L_{eff} = \frac{(y_i \bar{y}_j + y_j \bar{y}_i)}{M_{\Sigma}} I_i I_j H^* \Phi + h.c.$$

with
$$v_{\Phi} = -\lambda_4 \frac{v_H^3}{M_{\Phi}^2}$$

with
$$(y_1,y_2,\lambda_4)\sim 10^{-3}$$
,

⇒ This is the dimension 7 neutrino mass generation mechanism with Φ replaced by HHH/M_{Φ}^2 .

•
$$m_
u \sim 10^{-2} - 10^{-1}$$
 eV range with M_Σ and M_Φ at the TeV scale.

New Mechanism for Neutrino Mass Generation and Triply Charg

Light neutrino mass generation: Comments

•
$$L_{eff} = \frac{y_i \bar{y}_j}{M_{\Sigma}} I_i I_j H^* \Phi;$$
 $m_{\nu} = \frac{\lambda_4}{2} (y_i \bar{y}_j + \bar{y}_i y_j) \frac{v_H^4}{M_{\Sigma} M_{\Phi}^2})$

- Neutrino mass relation is $m_
 u M^3 \sim v^4$.
 - This is distinct from the traditional see-saw relation $m_\nu M \sim v^2$.
- We can realize both the normal hiearchy and the inverted mass hierarchy.
- This is the highest isospin multiplet we can use with renormalizable interaction (dimension 4).
- With just one Σ, one of light neutrino is massless. This is consistent with current data. However, adding more than one Σ, all neutrinos can acquire masses.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

One lop correction in our model

• While d = 5 neutrino masses are not induced at tree level, they do arise at 1-loop in our model via diagrams which connect two of the *H* legs. We find $\Delta m_{\nu}/m_{\nu} \sim \frac{3}{64\pi^2} \frac{M^2}{v^2}$, which is << 1 for M < TeV.

• In the SUSY version of our model, the loop diagrams will be further suppressed.

伺 と く ヨ と く ヨ と

• Mass Spectrum of Φ

$$M_{\Phi_i}^2 = M_{\Phi}^2 + \lambda_2 v_H^2 - \frac{1}{2} \lambda_3 I_{3i} v^2,$$

where $I_{3i} = (3/2, 1/2, -1/2, -3/2)$ for $(\Phi^{+++}, \Phi^{++}, \Phi^{+}, \Phi^{0})$ respectively.

- Two possible hierarchies for the spectrum of Φ Positive $\lambda_3 : M_{\Phi^{+++}} < M_{\Phi^{++}} < M_{\Phi^+} < M_{\Phi^o}$ Negative $\lambda_3 : M_{\Phi^{+++}} > M_{\Phi^{++}} > M_{\Phi^+} > M_{\Phi^o}$.
- Note that the mass square difference, ΔM^2 among consecutive components are the same, and is equal to $(1/2)\lambda_3 v_H^2$.

Model& and the Formalism

Relevant parameters in our model and existing constraints:

- Parameters : v_{Φ} , ΔM , M_{Φ} , M_{Σ} (ΔM = mass splitting)
- v_{Φ} : Φ has isospin 3/2, contribute to ρ parameter at the the tree level. $\rho = 1 (6v_{\Phi}^2/v_H^2)$. Experiment: $\rho = 1.0000^{+0.0011}_{-0.0007}$, At 3σ level $v_{\Phi} < 2.5$ GeV.
- The mass splittings between the components of Φ induces an additional positive contribution to ρ at one loop level, $\Delta \rho \simeq (5\alpha_2)/(6\pi)(\Delta M/m_W)^2$. $\Rightarrow \Delta M < 38 \text{ GeV}$.
- There is also a theoretical lower limit on ΔM arising from the radiative correction at the one loop $\Rightarrow \Delta M \geq 1.4 GeV$ for $M_{\Phi} \sim 1 \text{ TeV}$

(This is actually a naturalness lower limit, since these corrections are not finite, with the infinity absorbed in the renormalization of $\lambda_{4.}$)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Experimental constraints

- Mass of Φ : LEP2: > 100 GeV for charged Φ ,
- CDF and D0 Collaborations have looked for stable CHAMPS (charged massive particle).
- Using CDF cross sections times branching ratio limits, we obltain

> 120~GeV for stable, charged Φ^{+++}

(4月) (日) (日) 日

- Decays of Φ's in the model
- Production
- Signals
- Other implications
- Two possible scenarios: Φ⁺⁺⁺ lightest or Φ⁺⁺⁺ heaviest. Consider the case in which Φ⁺⁺⁺ lightest
 ⇒ phenomenological implications most distinctive with displaced vertices.

A. Decays

• Two possible decay modes

$$\Phi^{+++} \to W^+ W^+ W^+$$

 $\Phi^{+++} \rightarrow W^+ I^+ I^+$

 These decays arise through the diagrams where Φ⁺⁺⁺ emits a real W⁺ and an off-shell Φ⁺⁺ which subsequently decays to either two real W⁺, or two same sign charged leptons.

• Couplings
$$(\Phi^{+++}\Phi^{--}W^{-}): \sqrt{\frac{3}{2}}g(p_1-p_2)_{\mu}$$

$$(\Phi^{++}W^-W^-):\sqrt{3}g^2v_{\Phi}$$

$$(\Phi^{++}I_i^{-}I_j^{-}): m_{ij}^{\nu}/(2\sqrt{3}v_{\Phi})$$

(日本)

A. Decays

Decay widths

decay rates are found to be

$$\begin{split} &\Gamma(\Phi^{+++} \to 3W) = \frac{3g^6}{2048\pi^3} \frac{v_{\Phi}^2 M_{\Phi}^5}{m_W^6} I, \\ &\Gamma(\Phi^{+++} \to W^+ \ell^+ \ell^+) = \frac{g^2}{6144\pi^3} \frac{M_{\Phi} \sum_i m_i^2}{v_{\Phi}^2} J, \end{split}$$

where I, J are dimensionless integrals ($\simeq 1$ for $M_{\Phi} \gg m_W$).

A. Decays

• Two possible decay modes

 $\Phi^{+++} \rightarrow W^+ W^+ W^+$

 $\Phi^{+++} \rightarrow W^+ I^+ I^+$

- $W^+W^+W^+$ mode dominate for higher values of v_{Φ}
- W⁺I⁺I⁺ dominate for smaller values of v_Φ

- A. Decays
- Crossing point: $v_{\Phi} \sim 0.02 - 0.03$ MeV.
- For $v_{\Phi} \sim 0.02 0.03$ MeV, for $M_{\Phi} = 500$ GeV, $\Gamma < 10^{-12} - 6 \times 10^{-14}$ GeV \Rightarrow Displaced Vertices.
- For lower masses, widths are even smaller $\rightarrow \Phi^{+++}$ can escape the detector !!
- For $v_{\Phi} > 0.2$ MeV, Φ^{+++} will immediately decay to $W^+W^+W^+$.

Test of the model

- for $v_{\Phi} > 0.05$ MeV, $\Phi^{+++} \rightarrow W^+W^+W^+$
- For $v_{\Phi} \sim 0.01 0.06$ MeV, $\Phi^{+++} \rightarrow W^+ W^+ W^+$, or $\Phi^{+++} \rightarrow W^+ I^+ I^+$ with displaced vertices
- For $v_{\Phi} < 0.01$ MeV, $\Phi^{+++} \rightarrow W^+ I^+ I^+$ with no displaced vertices

S. Nandi

B. Productions

• pp or $p\bar{p} \rightarrow \Phi^{+++}\Phi^{---} \rightarrow 6W$ or $4Wl^+l^+$, $4Wl^-l^-$ or $2Wl^+l^+l^-l^-$ with or wthout displaced vertices depending on v_{Φ} .

- With displaced vertices, only few events are needed.
- LHC Reach (with displaced vertices) with 1 inverse fb, \sim 400 GeV with 10 inverse fb, \sim 650 GeV with 100 inverse fb, \sim 1 TeV
- LHC Reach (without displaced vertices) with 1 inverse fb, ~ 250 GeV with 10 inverse fb, ~ 400 GeV with 100 inverse fb, ~ 800 GeV

伺下 イヨト イヨト

B. Productions of heavier states

- $\Phi^{+++}\Phi^{---} \rightarrow 6W \rightarrow 12$ jets with high p_T
- $\Phi^{++}\Phi^{--} \rightarrow 8W \rightarrow 16$ jets with high p_T
- $\Phi^+\Phi^- \rightarrow 10W \rightarrow 20$ jets with high p_T
- $\Phi^0 \Phi^0 \rightarrow 12W \rightarrow 24$ jets with high p_T
- Each case also gives lesser number of jets plus charged leptons at high $p_{\mathcal{T}}$

C. Other Implications

 Φ multiplet with tiny VEV essentially behaves like an innert Higgs

⇒ SM Higgs mass can be raised to $\sim 400 - 500$ GeV if v_{Φ} is large \sim few - 38 GeV. In that case, $H \rightarrow \Phi^{+++}\Phi^{---}$

Neutrino mass hierarchy
 If mass of Φ⁺⁺⁺ < 3W, then Φ⁺⁺⁺ → W⁺I⁺I⁺ dominate

 ⇒ ee, eµ, µµ, along with τ's.
 Dominance of µµ → Normal Hierarchy
 Dominance of eµ (ee) ⇒Inverted Hierarchy

(4月) (4日) (4日) 日

- Presented a new mechanism for the generation of neutrino masses
- via dimension 7 operators: $\frac{1}{M^3} || HH(H^{\dagger}H)$
- Leads to new formula for the light neutrino masses : $m_
 u \sim rac{v^4}{M^3}$
- This is distinct from the usual see-saw formulae : $m_
 u \sim rac{v^2}{M}$
- Scale of new physics can be naturally at the TeV scale

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Conclusions (continued)

- Microscopic theory that generated d = 7 operator has an isospin 3/2 Higgs multiplet Φ containing triply charged Higgs boson with mass around ~ TeV or less.
- Can be produced at the LHC (and possibly at the Tevatron)
- Distinctive multi-W and multi-lepton final states
- Can be long-lived with the possibility of displaced vertices, or even escaping the detector
- Leptonic decay modes carry information about the nature of neutrino mass hierarchy

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●