DISCOVERING NONSTANDARD DARK MATTER

Spencer Chang (UC Davis) in collaboration w/ A. de Gouvea, G. Kribs, A. Pierce, D. Tucker-Smith, N. Weiner

Fermilab Theory Seminar 3/5/09

EVIDENCE FOR DARK MATTER

Cosmic Microwave Background, Galaxy, and Supernovae Surveys

EVIDENCE FOR DARK MATTER

BUT WHAT IS IT?

- Missing the Particle Physics story
- Want to observe it directly in the lab
- Can produce it directly at colliders (LHC)
- Look for interactions with dark matter in our halo

ENDGOAL (WIMP)

- Observe it at colliders, direct, indirect
 experiments
- Measure its mass, couplings (and potentially for its interacting partners)
- Compute relic density and compare to WMAP
- Celebrate!

Discover SUSY at the LHC

ENDGOAL (WIMP)

- Observe it at colliders, direct, indirect experiments
- Measure its mass, couplings (and potentially for its interacting partners)
- Compute relic density and compare to WMAP
- Celebrate!

Timeline

LF	HC	LHC	LHC	SLI	HC	
10	ГeV	14 TeV	14 TeV	7 14 T	CeV	ILC
10) ³¹	10 ³²⁻³³	10 ³⁴	10	35	
	~ 3-5 y	vrs				
_						
	Indire	ct	~ 1-3 yrs	5		
CDAS	& Dire	ct ←			Next G	en
	Current	Jen				~
	et sur		Formi		The second	•••
Dama	Pamela	5		IceCube	UCDAV	IS

Monday, March 16, 2009

EARLY STEPS IN A LONG JOURNEY

- Avoid theoretical prejudice, get the complete picture
- Look for new signals of DM, don't miss a discovery
- Test signals of DM, don't make any mistakes

OUTLINE

Dark matter searches: Need for nonstandard searches

- Colliders: Fake dark matter
- Direct detection: Inelastic & other nonstandard dark matter interactions

Conclusions

DM COLLIDER SIGNAL

Dark matter escapes detector

Imbalance in transverse energy-momentum

Jets+leptons+MET

• Does this signal (MET events) truly indicate a new stable particle?

• Does this signal (MET events) truly indicate a new stable particle?

• Are there alternative explanations with no WIMP-like particle?

- Does this signal (MET events) truly indicate a new stable particle?
- Are there alternative explanations with no WIMP-like particle?
- If so, how can we tell these scenarios apart?

Fake Dark Matter SC, de Gouvea

- Neutrinos are a known source of missing energy, new physics w/ neutrinos can fake the DM signal
- Look for "SUSY" lookalikes, cascades that produce neutrinos
- Assume no visible decays or displaced vertices

Fake Dark Matter phenomenology

Fake Dark Matter SC, de Gouvea

- Neutrinos are a known source of missing energy, new physics w/ neutrinos can fake the DM signal
- Look for "SUSY" lookalikes, cascades that produce neutrinos
- Assume no visible decays or displaced vertices

Fake Dark Matter phenomenology

RPV IN THE MSSM

- Examples of fake dark matter exist within the best known BSM theory
- R-parity violation with neutrinos must involve L superfield
- LLE and LQD couplings (considered one at a time) lead to different phenomenologies

LLE

- Well studied RPV operator
- Collider pheno emphasis is on leptons
- MET still appears from neutrinos
- Sneutrinos could lead to visible events, except usually produced with neutrinos

LLE

LLE CONSEQUENCES

- Many charged leptons appear in each event
- LLE operator violates lepton flavor, so lepton flavor counts will show asymmetry
- Can look for sneutrino mass peaks in lepton pairs, potentially of different flavors

LQD

Less well known

• Fake dark matter realization is more nontrivial

• Many visible decays, preventing RPV coupling from being O(1) and restricting LSP to not have visible decay

LQD CONSEQUENCES

Only down-type squarks have neutrino decays

For tan $\beta > 1$, d_L squark is heavier than 1) $\tilde{d}_L \rightarrow d_R \nu$ u_L partner from D-term splitting Exception is 3rd-gen squarks, since top quark is heavier than bottom Flavor alignment means d_R is b-quark 2) $\tilde{d}_R \to u_L e$ or $d_L \nu$ First decay is closed if u_L is top, so again d_L is a b-quark

LQD CONSEQUENCES

Only down-type squarks have neutrino decays

For tan $\beta > 1$, d_L squark is heavier than 1) $\tilde{d}_L \rightarrow d_R \nu$ u_L partner from D-term splitting Exception is 3rd-gen squarks, since top quark is heavier than bottom Flavor alignment means d_R is b-quark 2) $d_R \to u_L e$ or $d_L \nu$ First decay is closed if u_L is top, so again d_L is a b-quark LQD is bottom heavy and LSP has mass O(mtop)

MASS MEASUREMENTS

Model independent test: measure missing mass

A lot of work recently in terms of mass measurements

Depending on cascade topology,

1) Long cascade: can solve 4momenta and mass,

2) Short cascade: can look at max $m_T 2$ and find kink at true mass m_v

E.G. GLUINO DECAYS (CHO 0709.0288)

Monday, March 16, 2009

TOP ALL LEPTONIC "DATA" TAKEN FROM CHO 0804.2185

- For massless particles, there is no kink
- Difficult to measure no kink, χ² fit gives m_{inv} < 18 GeV (95% CL)
- Mass resolution can be expected to be O(10) GeV

max M_T2 (m_v) for t \rightarrow b l v

FAKE DARK MATTER SUMMARY

- Missing energy events are not always tied to new stable particles
- Should know what possibilities exist
- RPV leads to events with leptons and b-jets, can tag MSSM fake dark matter
- Further predictions, flavor violation, mass of NLSP, and massless final state, can provide further evidence
- Mass resolution is estimated to be O(10) GeV

OUTLINE

Dark matter searches: Need for nonstandard searches

- Colliders: Fake dark matter
- <u>Direct detection: Inelastic & other</u> nonstandard dark matter interactions
- Conclusions

DIRECT DETECTION EXPERIMENTS

Experimental strategies are evolving, sensitivities are close to expected range

Gaitskell

DIRECT DETECTION EXPERIMENTS

Experimental strategies are evolving, sensitivities are close to expected range

Gaitskell

DM SCATTERING

For nuclei, $E_R \sim 10 \text{ keV}$

Also, for given E_R , DM with $v > v_{min} = \sqrt{(2m E_R/\mu^2)}$ give contribution

Example plot of scattering rate

Exponential falloff, due to exponential tail of velocity distribution

DM SCATTERING

For nuclei, $E_R \sim 10 \text{ keV}$

Also, for given E_R , DM with $v > v_{min} = \sqrt{(2m E_R/\mu^2)}$ give contribution

Example plot of scattering rate

Exponential falloff, due to exponential tail of velocity distribution

DAMA

- Strategy is different from other experiments
- Does not try to distinguish nuclear from electron recoils
- Instead it tries to detect a yearly variation in the rate (modulation)
- Claims a consistent effect which persists in new data

MODULATION Drukier, Freese, Spergel

Dark Matter Speed Distribution changes annually due to Earth's motion around the sun

MODULATION PREDICTION

$$\frac{dR}{dE_R} = S_0 + S_m \cos \frac{2\pi(t - t_0)}{T}$$

• t_0 = June 2nd, T = 1 year

• S_m can be positive or negative, starts negative at low E_R and becomes positive at high E_R

DAMA

new data

	$A \; (\mathrm{cpd/kg/keV})$	$T = \frac{2\pi}{\omega}$ (yr)	t_0 (day)	C.L.
DAMA/NaI				
(2-4) keV	0.0252 ± 0.0050	1.01 ± 0.02	125 ± 30	5.0σ
(2-5) keV	0.0215 ± 0.0039	1.01 ± 0.02	140 ± 30	5.5σ
(2-6) keV	0.0200 ± 0.0032	1.00 ± 0.01	140 ± 22	6.3σ
DAMA/LIBRA				
(2-4) keV	0.0213 ± 0.0032	0.997 ± 0.002	139 ± 10	6.7σ
(2-5) keV	0.0165 ± 0.0024	0.998 ± 0.002	143 ± 9	6.9σ
(2-6) keV	0.0107 ± 0.0019	0.998 ± 0.003	144 ± 11	5.6σ
DAMA/NaI+ DAMA/LIBRA				
(2-4) keV	0.0223 ± 0.0027	0.996 ± 0.002	138 ± 7	8.3σ
(2-5) keV	0.0178 ± 0.0020	0.998 ± 0.002	145 ± 7	8.9σ
(2-6) keV	0.0131 ± 0.0016	0.998 ± 0.003	144 ± 8	8.2σ

Predictions

152

1

MORE INFO FROM DAMA

Older data was only able to give two bins 2-6 keV and 6-14 keV

MORE INFO FROM DAMA

Monday, March 16, 2009

CONSISTENT DM MODELS

- DAMA/LIBRA signal data is specific enough to pin down parameters of dark matter
- Gives a precise target to compare with exclusion limits from other experiments
- Use its signal as inspiration for new DM properties

MODELS

Will cover some simple examples
SI Elastic (SC, Pierce, Weiner)
SI Inelastic (SC, Kribs, Smith, Weiner)
Also considering SI, SD Q² suppressed (SC, Pierce, Weiner still in progress)

ELASTIC DARK MATTER

Only two parameters, mass and overall rate σ gives a very simple fit to DAMA data

Example fits to DAMA spectra

for different masses

FITS TO THE DATA

Old two bin contours are shown in empty white contour New spectral information says that consistent story is constrained

FITS TO THE DATA

Old two bin contours are shown in empty white contour

New spectral information says that consistent story is constrained

HOW TO TEST ELASTIC DARK MATTER

- Low mass dark matter means that it is best probed at low threshold experiments
- CoGeNT, low threshold runs at CDMS (Si or Ge), more running at XENON, future Argon experiments

INELASTIC DARK MATTER

- Simple modification originally proposed to explain older DAMA, CDMS conflict (Smith, Weiner)
- One new parameter, mass splitting $\delta = m_{X^*} m_X$
- Change in kinematics has profound effect that can fit spectrum

IDM SPECTRUM

$$v_{min} = \sqrt{\frac{1}{2m_N E_R}} \left(\frac{m_N E_R}{\mu} + \delta\right)$$
 [Threshold E_R

Inelastic nature changes spectrum No longer exponential at low energies Shape is suggestive of DAMA spectrum

Example inelastic scattering spectrum

SUPPRESSED RATES

$$v_{th}^2 = \frac{2\delta}{m_X} \left(1 + \frac{m_X}{m_N} \right)$$

Threshold velocity is lower for heavier targets, so light targets have suppressed rates (127I in DAMA versus 73Ge in CDMS)

IDM FIT

IDM CONSTR

 \widehat{a}

 10^{-40}

Monday, March 16, 2009

Xenon 10 limits are weaker for a different reason

Spectrum is of the right shape, event rate is similar, so limit is weaker

There is an ongoing reanalysis of high energy region

Monday, March 16, 2009

CRESST CONSTRAINT

Strongest constraint due to heavy Tungsten target, however observed events are not background like

HOW TO TEST INELASTIC DARK MATTER

- Heavy targets are preferred, so Xenon, Iodine, and Tungsten targets can probe all regions
- CDMS can detect it at heavy enough dark matter mass or small mass splitting
- Most importantly, spectrum is not peaked at low energy, but instead at intermediate energy region
- Experiments should work on backgrounds and analyses for this sometimes neglected region

CONCLUSIONS

- Dark matter will be directly tested in the near future
- Journey with many steps, should do as much as possible with the data
- Should be suspicious of signal, motivates thinking about fake dark matter signals involving neutrinos

CONCLUSIONS (CONT.)

- Direct detection has many possible signals (used DAMA signal as inspiration)
- Elastic dark matter (w/ or w/o q² effects), can get low energy suppression through matrix element
- Inelastic dark matter, get low energy suppression through kinematic requirement on velocity
- Such low energy suppressions could reappear at future direct detection experiments