Exact lattice supersymmetry

Simon Catterall

Syracuse University

Lattice SUSY

- Old problem.
- Difficult. SUSY extends Poincaré broken by discretization.
- Folklore: Impossible to put SUSY on lattice exactly.
- Leads to (very) difficult fine tuning lots of relevant SUSY breaking counterterms...

Way out!

Motivations ?

- Rigorous definition of SUSY QFT like lattice QCD.
- Dynamical SUSY breaking. Predicting soft terms in MSSM ...
- Gauge-gravity duality ? Eg. large N strongly coupled $\mathcal{N} = 4$ SYM and type II string theory in 5d AdS.

New ideas

- Topological twisting
- Orbifolding/deconstruction (D. B. Kaplan, M. Unsäl, A. Cohen, …)
- Focus on former. Emphasizes geometry. Continuum limit clear.
- Warning: Tricks work only for no. SUSYs Q multiple 2^D In D = 4 unique theory: $\mathcal{N} = 4$ SYM

Example: Twisting in 2D

Simplest theory contains 2 fermions λ_{α}^{i} Global symmetry: $SO_{\text{Lorenz}}(2) \times SO_{\text{R}}(2)$ Twist: decompose under diagonal subgroup Consider fermions as matrix

$$\lambda^i_{\alpha} \to \Psi_{\alpha\beta}$$

Natural to expand:

$$\Psi = \frac{\eta}{2}I + \psi_{\mu}\gamma_{\mu} + \chi_{12}\gamma_{1}\gamma_{2}$$

scalar, vector and tensor (twisted) components!

Twisted supersymmetry

- **•** Twisted theory has scalar SUSY Q.
- $\{Q, \overline{Q}\} = \gamma_{\mu} p_{\mu}$ implies:
 - $Q^2 = 0$
- Plausible: $S = Q\Lambda(\Phi, \Psi)$

Basic idea of lattice theory: discretize twisted formulation, exact (scalar) SUSY only requires $Q^2 = 0$

Example: Q = 4 **SYM in 2D**

In twisted form (adjoint fields AH generators)

$$S = \frac{1}{g^2} \mathcal{Q} \int \text{Tr} \left(\chi_{\mu\nu} \mathcal{F}_{\mu\nu} + \eta [\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}] - \frac{1}{2} \eta d \right)$$

$$\begin{array}{rcl} \mathcal{Q} \ \mathcal{A}_{\mu} &=& \psi_{\mu} \\ \mathcal{Q} \ \psi_{\mu} &=& 0 \\ \mathcal{Q} \ \overline{\mathcal{A}}_{\mu} &=& 0 \\ \mathcal{Q} \ \overline{\mathcal{A}}_{\mu\nu} &=& -\overline{\mathcal{F}}_{\mu\nu} \\ \mathcal{Q} \ \eta &=& d \\ \mathcal{Q} \ d &=& 0 \end{array}$$

Note: complexified gauge field $A_{\mu} = A_{\mu} + iB_{\mu}$

Action

Q-variation, integrate d:

$$S = \frac{1}{g^2} \int \operatorname{Tr} \left(-\overline{\mathcal{F}}_{\mu\nu} \mathcal{F}_{\mu\nu} + \frac{1}{2} [\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}]^2 - \chi_{\mu\nu} \mathcal{D}_{[\mu} \psi_{\nu]} - \eta \overline{\mathcal{D}}_{\mu} \psi_{\mu} \right)$$

Rewrite as

$$S = \frac{1}{g^2} \int \text{Tr} \left(-F_{\mu\nu}^2 + 2B_{\mu}D_{\nu}D_{\nu}B_{\mu} - [B_{\mu}, B_{\nu}]^2 + L_F \right)$$

where

$$L_F = \begin{pmatrix} \chi_{12} & \frac{\eta}{2} \end{pmatrix} \begin{pmatrix} -D_2 - iB_2 & D_1 + iB_1 \\ D_1 - iB_1 & D_2 - iB_2 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

Moral

- Twisting changes spins fields:
 - Scalars become vectors. Naturally embedded in complexified connection
 - Fermions integer spins. Form components of Kähler-Dirac field.
- Twisted entire Lorentz symmetry with R-symmetry maximal twist. Necessary for lattice.
- Flat space twisting just change of variables.

Lattice ?

- $\mathcal{A}_{\mu}(x) \rightarrow \mathcal{U}_{\mu}(n)$. Complexified Wilson links.
- Natural fermion assignment η on sites, ψ_{μ} links, χ_{12} diagonal links of cubic lattice.
- Fields pick up non-standard U(N) gauge transformations:

$$\eta(\mathbf{x}) \rightarrow G(\mathbf{x})\eta(\mathbf{x})G^{\dagger}(\mathbf{x})$$

$$\psi_{\mu}(\mathbf{x}) \rightarrow G(\mathbf{x})\psi_{\mu}(\mathbf{x})G^{\dagger}(\mathbf{x}+\mu)$$

$$\chi_{\mu\nu}(\mathbf{x}) \rightarrow G(\mathbf{x}+\mu+\nu)\chi_{\mu\nu}(\mathbf{x})G^{\dagger}(\mathbf{x})$$

$$\mathcal{U}_{\mu}(\mathbf{x}) \rightarrow G(\mathbf{x})\mathcal{U}_{\mu}(\mathbf{x})G^{\dagger}(\mathbf{x}+\mu)$$

$$\overline{\mathcal{U}}_{\mu}(\mathbf{x}) \rightarrow G(\mathbf{x}+\mu)\overline{\mathcal{U}}_{\mu}(\mathbf{x})G^{\dagger}(\mathbf{x})$$

Choice of orientations ensure G.I

Lattice supersymmetry

As in continuum:

$$\begin{array}{rcl} \mathcal{Q} \ \mathcal{U}_{\mu} &=& \psi_{\mu} \\ \mathcal{Q} \ \psi_{\mu} &=& 0 \\ \mathcal{Q} \ \overline{\mathcal{U}}_{\mu} &=& 0 \\ \mathcal{Q} \ \overline{\mathcal{U}}_{\mu\nu} &=& \mathcal{F}^{L\dagger}_{\mu\nu} \\ \mathcal{Q} \ \eta &=& d \\ \mathcal{Q} \ d &=& 0 \end{array}$$

Note: $Q^2 = 0$ still.

Derivatives

$$\mathcal{D}_{\mu}^{(+)} f_{\nu}(\mathbf{x}) = \mathcal{U}_{\mu}(\mathbf{x}) f_{\nu}(\mathbf{x}+\mu) - f_{\nu}(\mathbf{x}) \mathcal{U}_{\mu}(\mathbf{x}+\nu)$$

$$\overline{\mathcal{D}}_{\mu}^{(-)} f_{\mu}(\mathbf{x}) = f_{\mu}(\mathbf{x}) \overline{\mathcal{U}}_{\mu}(\mathbf{x}) - \overline{\mathcal{U}}_{\mu}(\mathbf{x}-\mu) f_{\mu}(\mathbf{x}-\mu)$$

✓ For $U_{\mu}(x) = 1 + A_{\mu}(x) + ...$ reduce to adjoint covariant derivatives

$$\mathcal{F}_{\mu\nu} = \mathcal{D}_{\mu}^{(+)} \mathcal{U}_{\nu}(\mathbf{x}) = \mathcal{U}_{\mu}(\mathbf{x}) \mathcal{U}_{\nu}(\mathbf{x}+\mu) - \mathcal{U}_{\nu}(\mathbf{x}) \mathcal{U}_{\mu}(\mathbf{x}+\nu)$$

Remarkably satisfy exact Bianchi identity: $\epsilon_{\mu\nu\rho\lambda}D^{(+)}{}_{\nu}\mathcal{F}_{\rho\lambda}=0$

Recap

- Discretize twisted version of continuum SYM
- Need subgroup of R-symmetry to match SO(D).
- Ensures all fermions represented by integer spin forms. Natural map to lattice.
- In flat space: twisted formulation completely equivalent to usual theory
- Absence of fermion doubling twisted fermions fill out Kähler-Dirac field (like staggered quarks)
- Lattice theory G.I, possesses exact Q and a point group symmetry which is subgroup of twisted rotational symmetry.

Bonuses

Topological subsector:

 $< O(x_1) \dots O(x_N) >$ independent of coupling g^2 , and points $x_1 \dots x_N$ if QO = 0. Eg

$$\frac{\partial < O >}{\partial g^2} = < \mathcal{Q}(\Lambda O) > = 0$$

Novel gauge invariance properties of lattice theory strongly constrains possible counter terms – reduces substantially fine tuning needed to get full SUSY in continuum limit.

Q = 16 SYM in 4D

- Twist: diagonal subgroup of $SO_{Lorenz}(4) \times SO_{R}(4)$
- Again after twisting regard fermions as 4×4 matrix.
- To represent 10 bosons of $\mathcal{N} = 4$ theory with complex connections is most natural in five dimensions.
- Fermion counting requires multiplet $(\eta, \psi_a, \chi_{ab})$ where $a, b = 1 \dots 5$
- Action contains same Q-exact term as for Q = 4 plus new Q-closed piece.

Details

- Dimensional reduction to $4D A_5$ plus imag parts of $A_{\mu}, \mu = 1 \dots 4$ yield 6 scalars of $\mathcal{N} = 4$
- Fermions: $\chi_{ab} \to \chi_{\mu\nu} \oplus \overline{\psi}_{\mu}, \ \psi_a \to \psi_{\mu} \oplus \overline{\eta}$

•
$$S = \mathcal{Q}\Lambda - \frac{1}{8}\int \epsilon_{abcde}\chi_{de}\overline{\mathcal{D}}_c\chi_{ab}$$

- Twisted action reduces to Marcus topological twist of $\mathcal{N} = 4$ (GL-twist). Equivalent to usual theory in flat space.
- Identical to Q = 16 orbifold action (Kaplan, Unsäl)

Transition to lattice

- Introduce cubic lattice with unit vectors $\mu_a^i = \delta_a^i, a = 1 \dots 4$. Additional vector $\mu_5 = (-1, -1, -1, -1)$.
- Notice: $\sum_{a} \mu_{a} = 0$. Needed for G.I.
- ▲ Assign fields to links in cubic lattice (plus diagonals). Eg $\chi_{ab}(\mathbf{x})$ lives on link from $(\mathbf{x} + \mu_a + \mu_b) \rightarrow \mathbf{x}$.
- Derivatives similar to Q = 4. eg $D_a^{(+)} f(\mathbf{x}) = \mathcal{U}_a(\mathbf{x}) f(\mathbf{x} + \mathbf{a}) f(\mathbf{x}) \mathcal{U}_a(\mathbf{x})$

Simulations

- Integrate out fermions. Resulting $Pf[M_F(A)]$ simulated using RHMC alg. (lattice QCD)
- Use pbc SUSY exact. Z = W Witten index -Q-invariance exhibits topological invariance W.
- Preliminary results from single core code. Parallel code now finished..
- Test SUSY, I.R divergences, check sign problems. D = 2 with Q = 4 and D = 4 with Q = 16.

Supersymmetric Ward identity

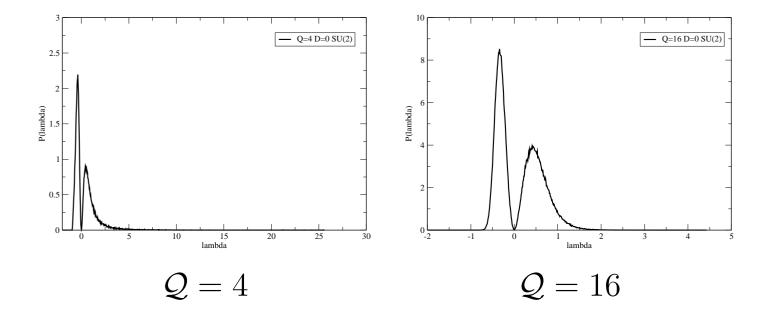
Q-exactness ensures that
$$\frac{\partial \ln Z_{\text{pbc}}}{\partial \kappa} = 0$$

where $\kappa = \frac{1}{g^2} \frac{L^D}{V^{4-D}}$
Ensures: $\langle \kappa S_B \rangle = \frac{1}{2} V (N^2 - 1) (n_{\text{bosons}} - 1)$
Example: $D = 0 SU(2)$

κ	κS_B	exact		κ	κS_B	exact
1.0	4.40(2)	4.5		1.0	13.67(4)	13.5
10.0	4.47(2)	4.5		10.0	13.52(2)	13.5
100.0	4.49(1)	4.5		100.0	13.48(2)	13.5
$\mathcal{Q} = 4$			$\mathcal{Q} = 16$			

Vacuum stability - flat directions

Is integration over moduli space $[B_{\mu}, B_{\nu}] = 0$ divergent ?



D = 0. SU(2). Periodic bcs. Eigenvalues of $\mathcal{U}_{\mu}^{\dagger}\mathcal{U}_{\mu} - 1$ Scalars localized close to origin. Power law tails. $p(\mathcal{Q} = 4) \sim 3, p(\mathcal{Q} = 16) \sim 15$ (Staudacher et al.)

Pfaffian phase

Simulation uses $|Pf(\mathcal{U})|$. Measure phase $\alpha(\mathcal{U})$.

$$< O >= \frac{< Oe^{\alpha} >_{\text{phase quenched}}}{< e^{\alpha} >_{\text{phase quenched}}}$$

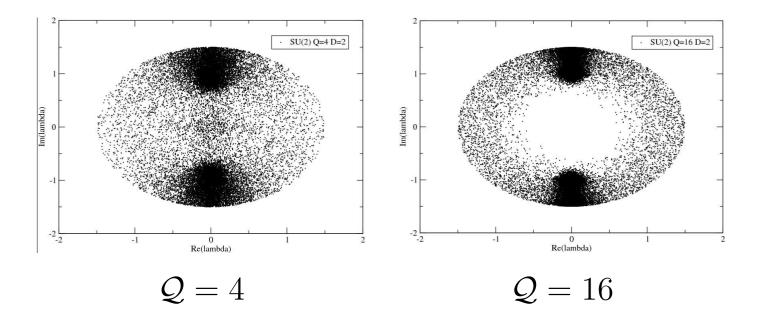
 $SU(2) D = 2: 4^2.$

\mathcal{Q}	S^q_B	S_B	S^e_B	$\cos lpha$
4	70.61(4)	65(5)	72.0	-0.016(6)
16	214.7(4)	214.6(3)	216.0	0.999994(3)

 $< e^{i\alpha(\mathcal{U}_{\mu})} >_{\text{phase quenched pbc}} = W = 0 \text{ for } \mathcal{Q} = 4 ?$ SUSY breaking (Tong et. al) ?

Fermion eigenvalue distribution

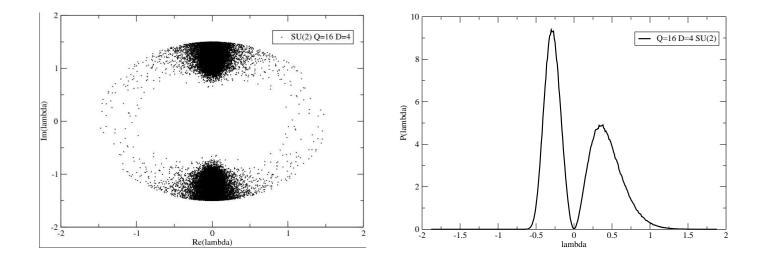
 $SU(2) D = 2: 2^2$



Non-zero density for Q = 4 close to origin – linked to log divergence of $< \delta \lambda^2 > ?$ Potential Goldstino ?

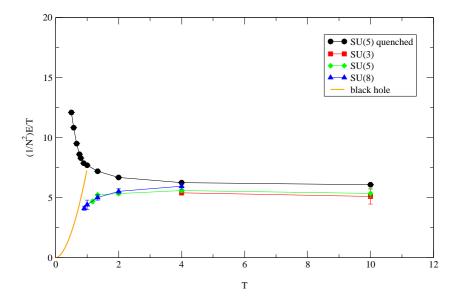
$\mathcal{N} = 4$ SYM in four dimensions

Initial results encouraging: 6000 trajs on SU(2) 2⁴ lattice (1000 hrs) $S_B/S_B^{\text{exact}} = 0.98 < \cos{(\alpha)} >= 0.98(1)$



Larger lattices currently under study using parallel code.

Applications: holography



Example of gauge-gravity duality: Thermodynamics of $N \rightarrow \infty, T \rightarrow 0 \ AdS_5$ black hole reproduced by $\mathcal{N} = 4$ SYM theory reduced to D = 1

Renormalization

Lattice symmetries:

- Gauge invariance
- *Q*-symmetry.
- Point group symmetry eg. natural lattice for $\mathcal{N} = 4$ is A_4^* .
- Exact fermionic shift symmetry.

Conclusion: Renormalized action contains same operators as bare theory except for SUSY mass term. Examine flows at 1-loop - in progress (with J. Giedt)

Future

- Nonperturbative exploration $\mathcal{N} = 4$ YM. Tests of AdSCFT. Supersymmetric Wilson loops.
- But what residual fine tuning needed to get full SUSY as $a \rightarrow 0$?
- Dimensional reductions duality between strings with Dp-branes and (p+1)-SYM ?
- Add fermions in fundamental .. (Matsuura, Sugino in D = 2 recently).
- **•** Break $\mathcal{N} = 4$ to $\mathcal{N} = 1$ a la Strassler ...

Marcus twist

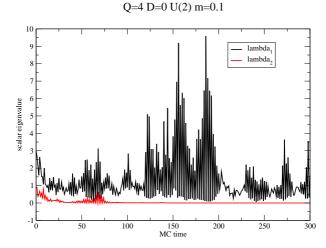
Reduces to:

$$S = \int \operatorname{Tr} \left(-\overline{\mathcal{F}}_{\mu\nu} \mathcal{F}_{\mu\nu} + \frac{1}{2} \left[\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu} \right]^{2} + \frac{1}{2} \left[\overline{\phi}, \phi \right]^{2} + (\mathcal{D}_{\mu}\phi)^{\dagger} (\mathcal{D}_{\mu}\phi)$$
$$- \chi_{\mu\nu} \mathcal{D}_{[\mu} \psi_{\nu]} - \overline{\psi}_{\mu} \mathcal{D}_{\mu} \overline{\eta} - \overline{\psi}_{\mu} \left[\phi, \psi_{\mu} \right]$$
$$- \eta \overline{\mathcal{D}}_{\mu} \psi_{\mu} - \eta \left[\overline{\phi}, \overline{\eta} \right] - \chi_{\mu\nu}^{*} \overline{\mathcal{D}}_{\mu} \overline{\psi}_{\nu} - \chi_{\mu\nu}^{*} \left[\overline{\phi}, \chi_{\mu\nu} \right] \right)$$

Vacuum stability - trace mode

Correspondence to continuum requires $\mathcal{U}_{\mu} = 1 + aA_{\mu} + O(a^2).$ For U(N) this is not true $< \frac{1}{N} \operatorname{Tr} \mathcal{U}_{\mu}^{\dagger}(x) \mathcal{U}_{\mu}(x) > \sim 0.5$ $\det(\mathcal{U}_{\mu}^{\dagger}(x)\mathcal{U}_{\mu}(x)) \to 0!$

Vacuum instability – $\det(\mathcal{U}^{\dagger}_{\mu}\mathcal{U}_{\mu}) \sim e^{B^{0}_{\mu}}$ implies $B^{0}_{\mu} \to -\infty$



Truncation

Cannot cure with mass $m^2 \sum \text{Tr} (\mathcal{U}^{\dagger}_{\mu}\mathcal{U}_{\mu} - I)^2$

m	$ <\mathcal{U}_{\mu}^{\dagger}\mathcal{U}_{\mu}> $
0.01	0.45(2)
0.1	0.57(6)
0.5	0.38(2)

 $S_B(e^{-\delta B^0_{\mu}}\mathcal{U}) \sim e^{-4\delta B^0_{\mu}}S(\mathcal{U}_{\mu})$ any $\{\mathcal{U}_{\mu}\}$ Exponential effective potential for B^0_{μ} . Fix ? - truncate to $SU(N) - \delta S \sim \frac{1}{N^2}O(a)$ Also removes exact 0 mode in fermion op.