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Lattice SUSY

Old problem.

Difficult. SUSY extends Poincaré – broken by
discretization.

Folklore: Impossible to put SUSY on lattice exactly.

Leads to (very) difficult fine tuning – lots of relevant
SUSY breaking counterterms...

Way out!
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Motivations ?

Rigorous definition of SUSY QFT - like lattice QCD.

Dynamical SUSY breaking. Predicting soft terms in
MSSM ...

Gauge-gravity duality ? Eg. large N strongly coupled
N = 4 SYM and type II string theory in 5d AdS.
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New ideas

Topological twisting

Orbifolding/deconstruction (D. B. Kaplan, M. Unsäl, A.
Cohen, ...)

Focus on former. Emphasizes geometry. Continuum
limit clear.

Warning: Tricks work only for no. SUSYs Q multiple 2D

... In D = 4 unique theory: N = 4 SYM
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Example: Twisting in 2D

Simplest theory contains 2 fermions λi
α

Global symmetry: SOLorenz(2) × SOR(2)
Twist: decompose under diagonal subgroup
Consider fermions as matrix

λi
α → Ψαβ

Natural to expand:

Ψ =
η

2
I + ψµγµ + χ12γ1γ2

scalar, vector and tensor (twisted) components!
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Twisted supersymmetry

Twisted theory has scalar SUSY Q.

{Q,Q} = γµpµ implies:

Q2 = 0

{Q,Qµ} = pµ

Plausible: S = QΛ(Φ,Ψ)

Basic idea of lattice theory: discretize twisted formulation,
exact (scalar) SUSY only requires Q2 = 0
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Example: Q = 4 SYM in 2D

In twisted form (adjoint fields AH generators)

S =
1

g2
Q

∫

Tr

(

χµνFµν + η[Dµ,Dµ] −
1

2
ηd

)

Q Aµ = ψµ

Q ψµ = 0

Q Aµ = 0

Q χµν = −Fµν

Q η = d

Q d = 0

Note: complexified gauge field Aµ = Aµ + iBµ
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Action

Q-variation, integrate d:

S =
1

g2

∫

Tr

(

−FµνFµν +
1

2
[Dµ,Dµ]2 − χµνD[µψν] − ηDµψµ

)

Rewrite as

S =
1

g2

∫

Tr
(

−F 2
µν + 2BµDνDνBµ − [Bµ, Bν ]

2 + LF

)

where

LF =
(

χ12
η
2

)

(

−D2 − iB2 D1 + iB1

D1 − iB1 D2 − iB2

)(

ψ1

ψ2

)
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Moral

Twisting changes spins fields:
Scalars become vectors. Naturally embedded in
complexified connection
Fermions integer spins. Form components of
Kähler-Dirac field.

Twisted entire Lorentz symmetry with R-symmetry –
maximal twist. Necessary for lattice.

Flat space - twisting just change of variables.
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Lattice ?

Aµ(x) → Uµ(n). Complexified Wilson links.

Natural fermion assignment – η on sites, ψµ links, χ12

diagonal links of cubic lattice.

Fields pick up non-standard U(N) gauge
transformations:

η(x) → G(x)η(x)G†(x)

ψµ(x) → G(x)ψµ(x)G†(x + µ)

χµν(x) → G(x + µ+ ν)χµν(x)G†(x)

Uµ(x) → G(x)Uµ(x)G†(x + µ)

Uµ(x) → G(x + µ)Uµ(x)G†(x)

Choice of orientations ensure G.I
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Lattice supersymmetry

As in continuum:

Q Uµ = ψµ

Q ψµ = 0

Q Uµ = 0

Q χµν = FL†
µν

Q η = d

Q d = 0

Note: Q2 = 0 still.
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Derivatives

D
(+)
µ fν(x) = Uµ(x)fν(x + µ) − fν(x)Uµ(x + ν)

D
(−)
µ fµ(x) = fµ(x)Uµ(x) − Uµ(x − µ)fµ(x − µ)

For Uµ(x) = 1 +Aµ(x) + . . . reduce to adjoint covariant
derivatives

Fµν = D
(+)
µ Uν(x) = Uµ(x)Uν(x + µ) − Uν(x)Uµ(x + ν)

Remarkably satisfy exact Bianchi identity:
ǫµνρλD

(+)νFρλ = 0
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Recap

Discretize twisted version of continuum SYM

Need subgroup of R-symmetry to match SO(D).

Ensures all fermions represented by integer spin forms.
Natural map to lattice.

In flat space: twisted formulation completely equivalent
to usual theory

Absence of fermion doubling – twisted fermions fill out
Kähler-Dirac field (like staggered quarks)

Lattice theory G.I, possesses exact Q and a point group
symmetry which is subgroup of twisted rotational
symmetry.
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Bonuses

Topological subsector:
< O(x1) . . . O(xN ) > independent of coupling g2, and
points x1 . . . xN if QO = 0. Eg

∂ < O >

∂g2
=< Q(ΛO) >= 0

Novel gauge invariance properties of lattice theory
strongly constrains possible counter terms – reduces
substantially fine tuning needed to get full SUSY in
continuum limit.
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Q = 16 SYM in 4D

Twist: diagonal subgroup of SOLorenz(4) × SOR(4)

Again after twisting regard fermions as 4 × 4 matrix.

To represent 10 bosons of N = 4 theory with complex
connections is most natural in five dimensions.

Fermion counting requires multiplet (η, ψa, χab) where
a, b = 1 . . . 5

Action contains same Q-exact term as for Q = 4 plus
new Q-closed piece.
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Details

Dimensional reduction to 4D – A5 plus imag parts of
Aµ, µ = 1 . . . 4 yield 6 scalars of N = 4

Fermions: χab → χµν ⊕ ψµ, ψa → ψµ ⊕ η

S = QΛ − 1
8

∫

ǫabcdeχdeDcχab

Twisted action reduces to Marcus topological twist of
N = 4 (GL-twist). Equivalent to usual theory in flat
space.

Identical to Q = 16 orbifold action (Kaplan, Unsäl)
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Transition to lattice

Introduce cubic lattice with unit vectors
µi

a = δi
a, a = 1 . . . 4. Additional vector

µ5 = (−1,−1,−1,−1).

Notice:
∑

a µa = 0. Needed for G.I.

Assign fields to links in cubic lattice (plus diagonals). Eg
χab(x) lives on link from (x + µa + µb) → x.

Derivatives similar to Q = 4. eg

D
(+)
a f(x) = Ua(x)f(x + a) − f(x)Ua(x)
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Simulations

Integrate out fermions. Resulting Pf [MF (A)] simulated
using RHMC alg. (lattice QCD)

Use pbc – SUSY exact. Z = W Witten index -
Q-invariance exhibits topological invariance W .

Preliminary results from single core code. Parallel code
now finished..

Test SUSY, I.R divergences, check sign problems.
D = 2 with Q = 4 and D = 4 with Q = 16.
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Supersymmetric Ward identity

Q-exactness ensures that ∂ ln Zpbc

∂κ = 0

where κ = 1
g2

LD

V 4−D

Ensures: < κSB >= 1
2V (N2 − 1)(nbosons − 1)

Example: D = 0 SU(2)

κ κSB exact
1.0 4.40(2) 4.5

10.0 4.47(2) 4.5
100.0 4.49(1) 4.5

κ κSB exact
1.0 13.67(4) 13.5

10.0 13.52(2) 13.5
100.0 13.48(2) 13.5

Q = 4 Q = 16
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Vacuum stability - flat directions

Is integration over moduli space [Bµ, Bν ] = 0 divergent ?
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D = 0. SU(2). Periodic bcs. Eigenvalues of U†
µUµ − 1

Scalars localized close to origin. Power law tails.
p(Q = 4) ∼ 3, p(Q = 16) ∼ 15 (Staudacher et al.)
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Pfaffian phase

Simulation uses |Pf(U)|. Measure phase α(U).

< O >=
< Oeα >phase quenched

< eα >phase quenched

SU(2) D = 2: 42.

Q Sq
B SB Se

B cosα

4 70.61(4) 65(5) 72.0 -0.016(6)
16 214.7(4) 214.6(3) 216.0 0.999994(3)

< eiα(Uµ) >phase quenched pbc= W = 0 for Q = 4 ?
SUSY breaking (Tong et. al) ?
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Fermion eigenvalue distribution

SU(2) D = 2: 22

Q = 4 Q = 16

Non-zero density for Q = 4 close to origin – linked to log
divergence of < δλ2 > ?
Potential Goldstino ?
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N = 4 SYM in four dimensions

Initial results encouraging: 6000 trajs on SU(2) 24 lattice
(1000 hrs)
SB/S

exact
B = 0.98 < cos (α) >= 0.98(1)
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Larger lattices currently under study using parallel code.
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Applications: holography
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Example of gauge-gravity duality: Thermodynamics of
N → ∞, T → 0 AdS5 black hole reproduced by N = 4 SYM
theory reduced to D = 1
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Renormalization

Lattice symmetries:

Gauge invariance

Q-symmetry.

Point group symmetry - eg. natural lattice for N = 4 is
A∗

4.

Exact fermionic shift symmetry.

Conclusion: Renormalized action contains same operators
as bare theory except for SUSY mass term.
Examine flows at 1-loop - in progress (with J. Giedt)
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Future

Nonperturbative exploration N = 4 YM. Tests of
AdSCFT. Supersymmetric Wilson loops.

But – what residual fine tuning needed to get full SUSY
as a→ 0 ?

Dimensional reductions – duality between strings with
Dp-branes and (p+ 1)-SYM ?

Add fermions in fundamental .. (Matsuura, Sugino in
D = 2 recently).

Break N = 4 to N = 1 a la Strassler ..
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Marcus twist

Reduces to:

S =

∫

Tr

(

−FµνFµν +
1

2

[

Dµ,Dµ

]2
+

1

2

[

φ, φ
]2

+ (Dµφ)†(Dµφ)

− χµνD[µψν] − ψµDµη − ψµ [φ, ψµ]

− ηDµψµ − η
[

φ, η
]

− χ∗µνDµψν − χ∗µν

[

φ, χµν

])
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Vacuum stability - trace mode

Correspondance to continuum requires
Uµ = 1 + aAµ +O(a2).

For U(N) this is not true < 1
N Tr U†

µ(x)Uµ(x) >∼ 0.5

det(U†
µ(x)Uµ(x)) → 0!

Vacuum instability – det(U†
µUµ) ∼ eB

0
µ implies B0

µ → −∞

0 50 100 150 200 250 300
MC time

-1

0

1

2

3

4

5

6

7

8

9

10

sc
al

ar
 e

ig
en

va
lu

e

lambda
1

lambda
2

Q=4 D=0 U(2) m=0.1

Exact lattice supersymmetry – p. 28



Truncation

Cannot cure with mass m2
∑

Tr (U†
µUµ − I)2

m < U†
µUµ >

0.01 0.45(2)
0.1 0.57(6)
0.5 0.38(2)

SB(e−δB0
µU) ∼ e−4δB0

µS(Uµ) any {Uµ}

Exponential effective potential for B0
µ.

Fix ? - truncate to SU(N) – δS ∼ 1
N2O(a)

Also removes exact 0 mode in fermion op.
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