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Flavor physics

Extensions of the Standard Model generically predict new CP-violating phases
and flavor changing interactions.

Without additional assumptions, absence of new physics places stringent
constraints on energy scale of new physics.
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The flavor sector
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Constraining the Unitarity Triangle

Plot from Lunghi and Soni, Phys. Lett. B666:162-165, 2008 (arXiv:0803.4340)
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Constraining the Unitarity Triangle

Plot from Lunghi and Soni, Phys. Lett. B666:162-165, 2008 (arXiv:0803.4340)
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Nonperturbative input needed
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ǫK = (known factor) (CKM factor)(QCD factor) (4)

|ǫK | = CǫκǫBKA2η{−η1S0(xc)(1 − λ2/2)+η3S0(xc, xt)+η2S0(xt)A
2λ2(1 − ρ)}
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Lattice QCD

Allows non-perturbative calculations from first principles

Path integral can be evaluated on a computer using Monte Carlo
methods

Simulations require a finite-sized grid with lattice spacing a and size L

Even with today’s computers this is still a difficult task! However,
unquenched calculations, including the fermion determinant, are now the
norm.
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Treatment of light quarks

QCD Light quarks are expensive. One must extrapolate to the physical u and d
quark masses.

For this one uses chiral perturbation theory (ChPT).

Typically one uses partially quenched ChPT (not as bad as it sounds!) When
the number of light quarks is the physical value the low energy constants of
ChPT are the physical ones.

One also uses lattice ChPT where the discretization effects are incorporated
by introducing additional operators consistent with the lattice symmetries. This
is essential for doing chiral fits to lattice data!
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Types of fermions on the lattice

Wilson Fermions: Introduces an additional “irrelevant” term to the action.
Hard breaking of chiral symmetry. Bad for light fermions but not a
problem for heavy ones.

Staggered Fermions: Identifies some of the extra fermions with the 4
different spin components of a single fermion. This brings us down to 4
extra fermions. This factor of 4 is eliminated by taking the 4th root of the
fermion determinant. Some open theoretical issues with this. No one
would bother except staggered is much cheaper than all the alternatives!

Domain Wall Fermions: Solves chiral symmetry problem by using Wilson
type quarks in five dimensions. More costly because of the extra
dimension. There is a small chiral symmetry breaking due to the
finiteness of the fifth dimension.

Overlap Fermions: Exact chiral symmetry. Very expensive.
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Staggered fermions

Staggered fermions are the cheapest fermions on the market at the
present time.

The staggered action has extra unphysical species of fermions (called
“tastes”) due to lattice artifacts which vanish in the continuum limit. There
is no rigorous proof that staggered quarks recover QCD in the continuum
limit. There has been much recent theoretical progress, and the recovery
of the correct continuum limit appears plausible. (Sharpe,
hep-lat/0610094; Kronfeld, arXiv:0711.0699.)

Extra “tastes” complicate the analysis with staggered fermions, as
compared to “chiral” fermions such as domain-wall or overlap, which are
many times more expensive.

Staggered chiral perturbation theory gives good control over staggered
discretization effects (MILC, arXiv:hep-lat/0407028).
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Mixed action project

In collaboration with Christopher Aubin and Ruth Van de Water
(hep-lat/0609009).
Mixed action: MILC lattices with 2+1 flavors of improved (asqtad) staggered
quarks in the sea sector and domain wall quarks in the valence sector. This is
the method adopted by the LHP Collaboration (hep-lat/0409130).

Advantages

Has best of both worlds. Cheap configurations, and the good chiral
properties of the valence sector make things nearly as simple as using
chiral quarks throughout. Non-perturbative renormalization goes through
the same way as for chiral quarks.

A large number of ensembles with different volumes, sea quark masses
and lattice spacings exist and are publicly available.
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Mixed action calculations

Due to small chiral symmetry breaking, domain wall fermions get a small
residual additive quark mass renormalization.

m2
dw = 2µdw(mv + mres) , (5)

In 1-loop Mixed Action χPT only two parameters beyond those of domain-wall:

m2
I = 2µstagms + a2∆I , (6)

m2
mix = µdw(mv + mres) + µstagms + a2∆mix, (7)
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Testing the method

Study lattice artifacts mres and ∆mix

Worst-case scenario for quenching artifacts-the isovector-scalar
correlator. Can mixed-action chiral perturbation theory describe it?

How do we do for even simpler quantities like fK and fπ, the
pseudoscalar decay constants?
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The residual mass
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Determining the splitting ∆mix
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Scalar bubble prediction
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Scalar bubble prediction
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Scalar bubble prediction vs. data
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Scalar bubble prediction vs. data
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Approach to chiral fits

We have generated data with relatively high statistics so that we can resolve a
correlation matrix and obtain reliable confidence levels in fits.

Using SU(3) chiral perturbation theory in order to interpolate about the strange
quark mass and extrapolate in the light quark mass. We are using one-loop
SU(3) mixed action χPT and higher order analytic terms.

Separate fits to m2
π/mq and fπ, where leading order µ is taken from linear fits

to m2
π data, evaluated in region of data, rather than chiral limit. fπ evaluated at

physical pion point.
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m2

π/mq chiral fit
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fπ chiral fit
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fπ chiral fit (compared w/ MILC)
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Fit results to subset of data

Various “low-mass” fits to NLO χPT + NNLO analytic terms, leaving out
different improvements.

type of fπ fit χ2/d.o.f. C.L.

NNLO analytic 0.99 0.54

No NNLO 6.15 9 × 10−41

No NLO logs 1.22 0.17

No FV 1.34 0.08

No taste-breaking 1.08 0.37

type of m2
π/mq fit χ2/d.o.f. C.L.

NNLO analytic 1.12 0.31

No NNLO 6.30 4 × 10−42

No NLO logs 2.43 4 × 10−7

No FV 2.34 1 × 10−6

No taste-breaking 1.50 0.02
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Preliminary error budget

Table 1: Uncertainties are shown as percentages.
source fK fπ fK/fπ

statistics 1.0 1.1 1.1
input r1 0.7 0.9 0.3
chiral-continuum extrapolation 1.0 1.2 1.1
finite volume 0.6 0.9 0.9

total error 1.7 2.1 1.8

fπ = 131.1(15)(23) MeV, fK = 156.3(15)(20) MeV, fK/fπ = 1.192(13)(17).
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Preliminary quark masses

Using “partially non-perturbative” method to renormalize quark masses
(inspired by Fermilab approach to renormalizing heavy-light currents). The
ratio of currents ZA/ZS is close to one. The difference from 1 is computed
using 1-loop lattice perturbation theory. ZA is computed non-perturbatively.
Zm = 1/ZS . Quark masses, in MS at 2 GeV are:

bm = 3.1(0)(2)(4)(0)MeV,

ms = 88(0)(5)(8)(0)MeV,

mu = 1.7(0)(2)(2)(1)MeV,

md = 4.4(0)(2)(4)(1)MeV. (8)

ms

bm = 28.9(3)(14)(0)(0),

mu

md

= 0.39(1)(3)(0)(4). (9)

Errors are: statistical, lattice systematic, perturbative, electromagnetic.
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Matching BK to the continuum

We must match the lattice renormalization scheme to the MS scheme.

We use the Rome-Southampton non-perturbative renormalization method:
First match to the regularization-independent (RI-mom) scheme
non-perturbatively. Then match the RI-mom scheme to MS using known
continuum perturbation theory to 1 loop order in αs.

As a cross-check, we also match to the MS scheme directly using 1-loop
lattice perturbation theory.
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BK chiral fit

Band is for degenerate valence masses in SU(3) limit
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Convergence of ChPT forBK

Curves are continuum QCD in SU(3) limit
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BK extrapolation to physical point

Grey curve is full QCD at tuned sea and strange masses
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BK extrapolation to physical point
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Result for BK

uncertainty BK

statistics 1.2%
chiral & continuum extrapolation 1.9%
scale and quark mass uncertainties 0.8%
finite volume errors 0.6%
renormalization factor 3.3%

total 4.1%

bBK = 0.724(8)(28)

Compare to bBK = 0.720(13)(37) [5.6% error] RBC/UKQCD (PRL 100:032001,

2008) and bBK = 0.83(18) [22% error] HPQCD (PRD 73, 114502, 2006).
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Unitarity triangle fit (Lunghi Fitter)
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How does newBK compare with UT fits?

Work with E. Lunghi, and R. Van de Water, in preparation.

( bBK)fit =

8
><
>:

1.08 ± 0.13 |Vcb|excl

0.875 ± 0.085 |Vcb|incl

0.95 ± 0.11 |Vcb|excl+incl

(10)

Differs from new world average bBK = 0.725 ± 0.026 by 2.6, 1.7, and 2.0 σ,
respectively.
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Conclusions

Good consistency with MILC calculations on decay constants and quark
masses.

Agreement with RBC/UKQCD on BK .

Some tension in the CKM fit. Improved determination of |Vcb| is necessary.
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