QCD radiation and New Physics production at the LHC

Johan Alwall, SLAC

Fermilab Theory group, Feb 26, 2009

Outline

- Introduction: The Standard Model and the LHC
- SUSY-like signatures and their difficulties
- How to simulate QCD radiation
 - Parton showers and Matrix elements
 - Matching of jet production
- QCD radiation in New Physics processes
 - Difficulties in squark-gluino separation
 - Non-standard gluinos at the Tevatron
- Conclusions and outlook

• The Standard Model – one of the most successful theories in the history of physics

Johan Alwall - QCD and New Physics at the LHC

- The Standard Model one of the most successful theories in the history of physics
- Describes the particle content and interactions of the microscopical world with no major discrepancies with experiment

- The Standard Model one of the most successful theories in the history of physics
- Describes the particle content and interactions of the microscopical world with no major discrepancies with experiment
- Yet undiscovered: The Higgs particle, breaks the Electroweak symmetry and gives mass to all particles
 Quarks
 Leptons

Problems with the Standard Model

 Quadratic quantum corrections to the mass of the Higgs particle → hierarchy problem

H---- H
$$\Delta M_{H}^{2} \sim M_{Pl}^{2}$$
 new physics
 $\tilde{t} \sim 100 \text{ GeV}$ $M_{Pl}^{2} \sim 10^{19} \text{ GeV}$

- Dark matter observations in the sky
- Grand unification

Solutions (to hierarchy problem)

• New weakly interacting particles and symmetries that cancel the quadratic loops

- Composite Higgs (new strong interactions, Technicolor)
- Removing the hierarchy by strengthening gravity (extra spacial dimensions)

Solutions (to hierarchy problem)

Most popular: SUSI New weakly interacting particles and symmetries that cancel the quadratic loops

- Composite Higgs (new strong interactions, **Technicolor**)
- Removing the hierarchy by strengthening gravity (extra spacial dimensions)

Solutions to the hierarchy problem predict new particles which protect the Higgs mass

- Particle masses must be around 100 GeV-1 TeV – within reach for the 14 TeV LHC
- Some new particles charged under QCD

 easy to produce at a hadron collider
- We are (quite) confident that something new will be discovered at the LHC!

Typical SUSY-like signatures

- At the LHC, mainly particles charged under QCD (quark and gluon partners) will be directly produced
- Decay through "cascades" emitting quarks and leptons until reach lightest particle (dark matter) g 000000
- Signature: High-E hadron jets, leptons and missing transverse momentum

Difficulties with SUSY-like signatures

- No visible resonances no simple features above Standard Model backgrounds
- Complicated to measure jets and missing transverse momentum
- Difficult determining overall mass scale only mass differences readily observable
- QCD radiation generates extra hard jets besides the decay products

Main topic of this talk

QCD radiation

Main backgrounds for SUSY-like signatures:

- W and Z production + jets
- Top quark pair production + jets
- Very high-energy pure QCD jet production

"Plus jets" = additional quarks and gluons emitted in QCD bremsstrahlung radiation from incoming or outgoing quark/gluon-lines

QCD radiation

Main backgrounds for SUSY-like signatures:

- W and Z production + jets
- Top quark pair production + jets
- Very high-energy pure QCD jet production

How to simulate QCD radiation

- Traditional method (~20 years): Parton showers
- Since ~10 years:

Automatic calculation of tree-level multi-parton matrix elements

Strengths and weaknesses with both approaches!

• Since ~5 years:

Matching of partons showers and matrix elements

- Based on soft-collinear approximation
- Step-by-step subsequent QCD emissions
 - Fast, computationally cheap $(1\rightarrow 2 \text{ splittings})$
 - No limit on particle multiplicity
- Necessary for interfacing to hadronization

Formally correct only close to collinear region

Matrix Elements (ME)

Diagrams for $u\bar{d} \rightarrow e^+ \nu_e u\bar{u}g$ by MadGraph

- Correct description away from the collinear region
 - diverges in the collinear region
- Includes interference and finite terms
- Necessary for calculation of high-energy jets
- Fixed particle multiplicity
- Slow, computationally heavy

Importance of Matrix Elements

Parton showers get multiple hard jet production from QCD radiation wrong by orders of magnitude

Matching ME and PS

Difficulties combining the two descriptions:

- Same phase space configuration can be described by both n+1-parton ME event and n-parton event + PS
 → Double counting
- Transition between ME and PS should be smooth
- Cross section should not be affected
- Minimize dependence on highest ME multiplicity

Solutions:

- Catani, Krauss, Kuhn, Webber [2001]
- Lönnblad [2001]
- M.L. Mangano [2002, 2006]

Matching ME and PS

Common approach for all matching schemes:

- Separate "hard jet" and "soft/collinear jet" regions using phase-space cutoff
- Allow ME jets to populate only "hard" region and PS emissions only "soft" region
- Modify ME description to mimick the parton shower near the cutoff
 - Reweighting of α_s in each emission vertex
 - Sudakov reweighting to account for no PS emissions in hard region and ensure stable cross section

Done differently in different schemes

Results of matching

W+jets production at the Tevatron MadEvent+Pythia (k₊-jet MLM scheme)

Comparison with Tevatron Data $p_T(W^{+/-})$ at the Tevatron $v_{1,jet}$

Johan Alwall - QCD and New Physics at the LHC

MadGraph/MadEvent

Steltzer, Maltoni [1994,2003], J.A. et al [arXiv:0706.2334]

- MadGraph/MadEvent an automatized Matrix Element and event generator
- On-demand simulation of (almost) any process in the SM or beyond (at tree level)
- Web-based or local simulation
- Interfaces to parton showers and detector simulations – full simulation chain!

Welcome to visit us at http://madgraph.hep.uiuc.edu !

MadGraph/MadEvent+Pythia J.A. et al [arXiv:0706.2334]

- Matching schemes implemented: $k_{\!_{\rm T}}$ and cone jet MLM schemes, new "shower $k_{\!_{\rm T}}$ " scheme
- Both Q^2 and p_{τ} -ordered Pythia parton showers
- CKKW-style matching with Pythia p_T-showers underway (with P. Skands)
- Extensively validated, W+jets compared with other generators [J.A. et al, arXiv:0706.2569]
- Allows matching in (most) SM and BSM processes

Matching in New Physics production J.A., de Visscher, Maltoni [arXiv:0810.5350]

- We know that matching of ME+PS is vital for jet production in SM backgrounds
- But is it relevant for heavy BSM particle production?
 - Very hard jets from decays
 - Parton showers expected to be more accurate for larger masses
- Using gluino and squark production as example
- Turns out there are many cases where matching is necessary for precise description!

Double counting

• Special difficulty in SUSY matching – double counting between squark and gluino production

Johan Alwall - Effects of Jet Matching in BSM Signals

Double counting

• Special difficulty in SUSY matching – double counting between squark and gluino production

Johan Alwall - Effects of Jet Matching in BSM Signals

Double counting

• Solved by keeping track of on-shell resonances in the production event files

<event></event>												
6 0	6 0 0.7992762E-		0.9118800E+		300E+(02 0.7816531E-02 (0.130	0000E+00				
2	21 -1	. 0	0	502	503	0.0000000000E+00	0.0	00000000000E+00	0.38916243784E+03	0.38916243784E+03	0.0000000000E+00 0.	1.
1	1 1	. 0	0	501	0	0.0000000000E+00	0.0	0000000000E+00	-0.16355197391E+04	0.16355197391E+04	0.0000000000E+00 0.	1.
100002	21 2	2 1	2	501	503	-0.22132854802E+03	-0.2	24366260777E+03	-0.12022753376E+04	0.13861620323E+04	0.60620830799E+03 0.	0.
0-	1 1	. 3	3	0	503	0.18372150189E+02	0.2	27121177112E+02	-0.34707630298E+02	0.47725399437E+02	0.0000000000E+00 0.	-1.
200000)1 1	. 3	3	501	0	-0.24000069821E+03	-0.2	27078378488E+03	-0.11675677073E+04	0.13384366329E+04	0.54522846200E+03 0.	-1.
200000)1 1	. 1	2	502	0	0.22162854802E+03	0.2	4366260777E+03	-0.44081963594E+02	0.63852014456E+03	0.54522846200E+03 0.	-1.

Allows to remove double-counted events at later step

 Double-check – perform generation without resonant diagrams (gauge-inv. only in NWA!)
 → Excellent agreement

- Shower "tweakable"
 - Strength for fitting data (after-the-fact)
 - Weakness for predictivity
- Most important parameters used here:
 - Type of shower (Q^2 or p_T -ordered)
 - Shower starting scale
 - Factorization scale (mass of produced particle) "wimpy"
 - Total energy of collider (14 TeV) "power"
- Wide range of predictions from shower

QCD radiation for different Pythia shower params

QCD radiation after matching with MG/ME

QCD radiation after matching with MG/ME

Johan Alwall - QCD and New Physics at the LHC

Dependence on the initial state: gg, qq

No single shower tune for all initial states!

Johan Alwall - QCD and New Physics at the LHC

Dependence on SUSY particle mass

Can QCD rad. help determine overall mass scale? Possibly for particles below ~ 1 TeV!

Squark/Gluino separation

Squark decay
 → quark + weak gaugino

• Differ by 1 jet – hard/soft depending on Δ (mass)

Jet counting in gluino decay

600 GeV gluino pair production

Squark/Gluino separation

Scenario: squark pair production only (gluinos too heavy to be produced)

Johan Alwall - QCD and New Physics at the LHC

Squark/Gluino separation

Scenario: squark pair production only (gluinos too heavy to be produced)

J.A., Le, Lisanti, Wacker [arXiv:0803.0019]

Many models/ideas for physics beyond the Standard Model at the LHC giving signatures with leptons, jets and missing energy

- Differences between models often subtle difficult to distinguish in early data
- Many models (cf. SUSY) have many parameters most unmeasurable at LHC
- Constrained versions of models introduce strong relations between observables
- See further J.A., Schuster, Toro [arXiv:0810.3921], J.A., Le, Lisanti, Wacker [arXiv:0809.3264]

- Most common experimental approach: Exclusions in model space of minimal model (mSUGRA/mGMSB/mAMSB) with few (~4-5) parameters
- Problems:
 - Fixed relations between parameters, e.g. $m_{\tilde{g}}:m_{\tilde{W}}:m_{\tilde{B}} \sim 6:2:1$ LSP
 - Light flavor squark masses \gtrsim gluino mass
 - Fixed decays and branching ratios
 - Not all possible parameter space covered

Non-unified/non-standard SUSY scenarios, and other models, can have $m_{\tilde{g}}:m_{\tilde{B}}$ ratio free

- A priori unclear where Tevatron is sensitive
- Need combination of $\not{\mathbb{E}}_{\tau}$ +1-jet, 2-jet, 3-jet and multijet searches to cover whole \widetilde{g} - \widetilde{B} mass plane

- Special difficulty when decay products nearly mass-degenerate with produced particle:
- No (small) missing transverse energy in decay

Special difficulty when decay products nearly mass-degenerate with produced particle:

- No (small) missing transverse energy in decay

- Prejudice-free model scenario and improved simulation allows us to find exclusion region in $\widetilde{g} - \widetilde{B}$ mass plane

Conclusions and outlook

- The LHC is coming! Are we prepared?
- Signals involving jets and missing energy will (probably) be crucial for discovery of new physics
- Precision simulations necessary, both for SM backgrounds and many New Physics scenarios
- Big advances in recent years, still much to do!
 - Automatization of next-to-leading order calculations
 - Further improvement of methods for model distinction
- Exciting times are ahead!

Backup slides

Johan Alwall - QCD and New Physics at the LHC

Details of matching schemes

- CKKW scheme
 - Sudakov reweighting using analytical NLL Sudakovs
 - Analytically relatively well-understood
- Lönnblad scheme
 - Sudakov reweighting by using shower Sudakovs
- MLM scheme
 - Run shower and reject events with too hard emission
 - Can use any shower implementation

MLM matching

J.A. et al. [arXiv:0706.2569],

cf. M.L. Mangano [2002, Alpgen home page]

Use shower hardness to separate ME/PS

- Generate multiparton event with cut on jet k_T
- 2 Cluster event and use k_T^2 for α_s scale
- Shower event (using Pythia) starting from hard scale
- Collect showered partons in k_T jets with $k_{Tcut} > k_{Tmin}$
- S Keep event only if each jet matched to one parton
- For highest multiplicity sample, allow extra jets softer than $k_{T\min}$

Keep

Discard unless highest multiplicity

Johan Alwall - QCD and New Physics at the LHC

CKKW matching

Imitate parton shower procedure for matrix elements

- Choose a cutoff (jet resolution) scale d_{ini}
- ² Generate multiparton event with $d_{\min} = d_{\min}$ and factorization scale d_{\min}
- **3** Cluster event with k_T algorithm to find "parton shower history"
- Use $d_i \simeq k_T^2$ in each vertex as scale for α_s
- Solution Weight event with NLL Sudakov factor Δ(d_j, d_{ini})/Δ(d_i, d_{ini}) for each parton line between vertices i and j (d_j can be d_{ini})
- Shower event, allowing only emissions with k_T < d_{ini} ("vetoed showers")
- For highest multiplicity sample, use $min(d_i)$ of event as d_{ini}

Boost-invariant k_{τ} measure:

$$\begin{cases} d_{iB} = p_{T,i}^2 \\ d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) F_{ij} \\ F_{ij} = 2 \left\{ \cosh(\eta_i - \eta_j) - \cos(\phi_i - \phi_j) \right\} \end{cases}$$

- For final-state showers: Combination of NLL Sudakov factors and vetoed NLL showers guarantees independenc of d_{ini} to NLL order
- For initial-state showers: No proof but works ok
- Problem in practice: No NLL shower implementation! (Sherpa uses Pythia-like showers)

Shower k_{T} scheme

- Keep/reject event based on k_T of hardest shower emission (as reported by Pythia)
- Highest multiplicity treatment as in CKKW, use min dparton as cutoff
- No jet clustering
- No need of "fiducial region", can use $k_T^{\text{match}} = d_{\text{cut}}^{\text{ME}}$
- Need similar kT definitions in ME and PS (only "new", p_T-ordered showers at present)

