# Electroweak Symmetry Breaking: The Next Generation

#### Gustavo Burdman

FNAL and University of São Paulo

Based on arXiv:0710.0623, arXiv:0812.0368, +... with Oscar Eboli, Leandro Da Rold, Ricardo Matheus, Eduardo Lascio and Carlos Haluch

伺 ト イ ヨ ト イ ヨ ト

# Outline



- The Origin of the Electroweak Symmetry Breaking
- EWSB from Fermion Condensation
- 2 EWSB from Fourth Generation Condensation
  - Basic Ingredients
- Fourth Generation in AdS<sub>5</sub>
  - General AdS<sub>5</sub> Setup
  - EWSB from Fourth-Generation Condensation in  $AdS_5$
- 4 Phenomenology of the Strongly Coupled Fourth Generation
  - Constraints on 4th Generation Model
  - Production of 4G Quarks at the LHC
  - The Lepton Sector
  - What about the Tevatron ?
  - 5 Summary/Outlook

EWSB from Fourth Generation Condensation Fourth Generation in Ad5<sub>5</sub> Phenomenology of the Strongly Coupled Fourth Generation Summary/Outlook

The Origin of the Electroweak Symmetry Breaking EWSB from Fermion Condensation

# The Problem with the Standard Model

The SM appears to describe well all interactions among all elementary particles

But description of EWSB sector unsatisfactory

- $M_W$  unstable under radiative corrections  $\implies$  Hierarchy Problem
- Origin of fermion mass spectrum

#### In the last $\sim 10$ years

Many new ideas proposed to solve the Hierarchy Problem

- Compact Extra Dimensions: Large, Universal, Warped
- Little Higgs, Twin Higgs, ...

EWSB from Fourth Generation Condensation Fourth Generation in Ad55 Phenomenology of the Strongly Coupled Fourth Generation Summary/Outlook

The Origin of the Electroweak Symmetry Breaking EWSB from Fermion Condensation

# The Origin of Electroweak Symmetry Breaking

With some exceptions (e.g. ADD, original RS1), solution to the HP  $\iff$  origin of EWSB

#### In these cases:

• EWSB scalar sector is elementary  $\leftrightarrow$  SUSY

#### or

• EWSB scalar sector is composite or absent: Technicolor, Topcolor, Top See-saw, Little Higgs, ...

. . . . . . .

EWSB from Fourth Generation Condensation Fourth Generation in Ad5<sub>5</sub> Phenomenology of the Strongly Coupled Fourth Generation Summary/Outlook

The Origin of the Electroweak Symmetry Breaking EWSB from Fermion Condensation

The Origin of Electroweak Symmetry Breaking

#### Composite EWSB Sector:

• Technicolor: Asymptotically free, unbroken gauge interaction

$$\Rightarrow \langle \bar{F}_L F_R \rangle \neq 0 \qquad \Rightarrow \text{EWSB}$$

F's are confined fermions, just as quarks in QCD.

 Alternative: gauge interaction spontaneously broken at ∧ ~ 1 TeV ⇒ F's un-confined heavy fermions with EW quantum #'s

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

EWSB from Fourth Generation Condensation Fourth Generation in Ad5<sub>5</sub> Phenomenology of the Strongly Coupled Fourth Generation Summary/Outlook

The Origin of the Electroweak Symmetry Breaking EWSB from Fermion Condensation

# Strongly Coupled Heavy Fermions

Heavy Chiral Fermions: strongly coupled to EWSB sector

• Top quark:

- $m_t \simeq v \qquad \Rightarrow \qquad y_t \sim 1$
- If Heavy Fourth Generation  $\Rightarrow y_4 > 1$

Higgs sector is strongly coupled

• Natural to assume composite Higgs sector

・ロト ・得ト ・ヨト ・ヨト

EWSB from Fourth Generation Condensation Fourth Generation in Ad5<sub>5</sub> Phenomenology of the Strongly Coupled Fourth Generation Summary/Outlook

The Origin of the Electroweak Symmetry Breaking EWSB from Fermion Condensation

# Top Condensation – Topcolor

Top Condensation: Nambu '89, Bardeen-Hill-Lindner '89

#### New interaction at scale $\Lambda$

- Coupled strongly to third generation, particularly to the top quark
- Leads to top condensation:

 $\langle \overline{t}t \rangle \neq 0$ 

Breaks EW symmetry, gives dynamical mass to top

伺 と く ヨ と く ヨ と

EWSB from Fourth Generation Condensation Fourth Generation in Ad5<sub>5</sub> Phenomenology of the Strongly Coupled Fourth Generation Summary/Outlook

The Origin of the Electroweak Symmetry Breaking EWSB from Fermion Condensation

### Top Condensation – Topcolor

#### But, to get $m_t \sim 170$ GeV need $\Lambda \sim 10^{15}$ GeV !!

This scenario is as fine-tuned as the SM !

Alternatively, if we want to avoid fine-tuning

 $\Lambda \sim 1 \text{ TeV} \Rightarrow m_t \simeq (600 - 800) \text{ GeV}$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

EWSB from Fourth Generation Condensation Fourth Generation in Ad5<sub>5</sub> Phenomenology of the Strongly Coupled Fourth Generation Summary/Outlook

The Origin of the Electroweak Symmetry Breaking EWSB from Fermion Condensation

# Top Condensation – Possible Fixes

- Topcolor-assisted Technicolor (Hill '95):
  - TC breaks (most of) EW symmetry
  - ETC gives masses up to O(1) GeV
  - Topcolor interaction  $\Rightarrow \langle \bar{t}t \rangle \neq 0$ , responsible for  $m_t$ .
- Top See-saw (Dobrescu, Hill '97):
  - Topcolor + Singlet fermion without TC
  - $\chi_L$  and  $\chi_R$  have quantum numbers of  $t_R$
  - The actual dynamical mass is 600 GeV, but through mixing results in  $m_t$
- Assume a Chiral Fourth Generation:
  - Couples strongly to new interaction
  - 4G condensation  $\Rightarrow$  EWSB,  $m_4 \sim 600$  GeV

A B + A B +

**Basic Ingredients** 

### EWSB from Fourth Generation Condensation

#### Ingredients:

• Chiral Fourth Generation

$$Q_{L}^{4} = \begin{pmatrix} U_{4} \\ D_{4} \end{pmatrix}_{L}, \qquad U_{4R}, \qquad D_{4R}$$
$$L^{4} = \begin{pmatrix} N_{4} \\ E_{4} \end{pmatrix}_{L}, \qquad N_{4R}, \qquad E_{4R}$$

・ 同 ト ・ ヨ ト ・ - ヨ ト …

э

**Basic Ingredients** 

## EWSB from Fourth Generation Condensation

#### Ingredients (cont.):

- New strong interaction at the O(1) TeV scale:
  - E.g. Broken gauge symmetry  $M \sim TeV$
  - Strongly coupled to the fourth generation



- Somewhat less to 3rd generation quarks
- Weakly coupled to light fermions

**Basic Ingredients** 

## EWSB from Fourth Generation Condensation

#### Ingredients (cont.):

• At least one of 4G fermions condenses

 $\langle \bar{U}_4 U_4 \rangle 
eq 0$ 



 $\Rightarrow$  EWSB, dynamical mass for condensing fermion  $m_{dvn.} \sim 600 {
m ~GeV}$ 

A 3 b

**Basic Ingredients** 

#### Fermion Masses

We need higher dimensional operators like

 $\frac{x_{ij}}{\Lambda^2} \ \bar{f}_L^i f_R^j \ \bar{U}_R U_L$ 

such that  $\langle \bar{U}_R U_L \rangle \sim m_U^3$  gives

$$m_{ij} \sim x_{ij} m_U \left(\frac{m_U}{\Lambda}\right)^2$$

with  $m_U$  the dynamically generated mass

A 10

• = • • = •

-

 $\begin{array}{l} \mbox{General AdS}_5 \mbox{ Setup} \\ \mbox{EWSB from Fourth-Generation Condensation in AdS}_5 \end{array}$ 

# Fourth Generation Condensation and AdS<sub>5</sub>

Models of 4G Condensation in Compact Extra Dimensions (G.B., Da Rold '07, top see-saw version in Bai, Carena, Pontón '08)

Extra dimensional theories in compact  $AdS_5$  dual to strongly coupled theories in 4D:

- Naturally results in strongly coupled heavy fermions
- $\bullet$  Higher-dimensional operators among light fermions suppressed by large UV scale  $\Lambda$
- Build gauge theory in AdS<sub>5</sub> with one extra chiral generation as *only new element*.

・ロト ・得ト ・ヨト ・ヨト

 $\begin{array}{l} \mbox{General AdS}_5 \mbox{ Setup} \\ \mbox{EWSB from Fourth-Generation Condensation in AdS}_5 \end{array}$ 

# Solving the Hierarchy Problem in AdS<sub>5</sub>

Metric in extra dimension  $\Rightarrow$  small energy scale from  $M_P$  (Randall, Sundrum '99)

$$ds^2=e^{-2\kappa|y|}\,\eta^{\mu
u}dx_\mu dx_
u-dy^2$$



Corrections to  $m_h$  OK If Higgs close to TeV brane

Need Higgs IR localization

 $\begin{array}{l} \mbox{General AdS}_5 \mbox{ Setup} \\ \mbox{EWSB from Fourth-Generation Condensation in AdS}_5 \end{array}$ 

#### Bulk AdS<sub>5</sub> Models

Allowing Gauge and Matter fields in 5D bulk

- Avoid effects of Higher Dimensional Operators only suppressed by IR/TeV scale
- Natural Models of Flavor: Zero-mode fermion localization ↔ fermion mass

→ □ → → □ →

 $\begin{array}{l} \mbox{General AdS}_5 \mbox{ Setup} \\ \mbox{EWSB from Fourth-Generation Condensation in AdS}_5 \end{array}$ 

# The Origin of Flavor Hierarchies

• <u>Fermion Fields in the bulk</u>: 5D fermion field KK decomposition

$$\Psi_{L,R}(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_{n=0} \psi_n^{L,R}(x) e^{2\kappa |y|} f_n^{L,R}(y)$$

• 5D fermion bulk mass term  $\longrightarrow$  localization of fermion fields:

$$S_f = \int d^4x \, dy \, \sqrt{g} \left\{ \cdots - c \, \kappa \overline{\Psi}(x,y) \Psi(x,y) \right\} \, ,$$

with  $c \simeq O(1)$ .

•  $\Rightarrow$  Fermion zero-modes can be localized by choosing c :

$$f_0^{R,L}(y) = \sqrt{\frac{\kappa \pi R (1 \pm 2c)}{e^{\kappa \pi R (1 \pm 2c)} - 1}} e^{\pm c \kappa y}$$

 $\begin{array}{l} \mbox{General AdS}_5 \mbox{ Setup} \\ \mbox{EWSB from Fourth-Generation Condensation in AdS}_5 \end{array}$ 

### Flavor in bulk AdS<sub>5</sub> Models

• With proper normalization of zero-mode fermion the zero-mode fermion wave-function is

$$F_{\rm ZM}^{L}(y) = \frac{1}{\sqrt{2\pi R}} f_0^{L}(0) e^{(\frac{1}{2} - c_L) ky}$$

• If  $c_L > 1/2 \Rightarrow$  fermion localized near y = 0, Planck brane. If  $c_L < 1/2 \Rightarrow$  fermion localized near  $y = \pi R$ , TeV brane.

伺 ト く ヨ ト く ヨ ト

 $\begin{array}{l} \mbox{General AdS}_5 \mbox{ Setup} \\ \mbox{EWSB from Fourth-Generation Condensation in AdS}_5 \end{array}$ 

## Flavor Violation in AdS<sub>5</sub> Models

KK Gauge Bosons couple stronger to heavier fermions



 $\Rightarrow$  Tree-level flavor violation is hierarchical:

Only important with the heavier generations

・ 同 ト ・ ヨ ト ・ ヨ ト

# Fermion Condensation in AdS<sub>5</sub>

Fourth-Generation Condensation in AdS<sub>5</sub>

- $\bullet\,$  Fourth Generation in the  $AdS_5$  bulk
- $\bullet\,$  Choose zero-mode fermions IR localized  $\Rightarrow$  strongly coupled to KK gauge bosons



- $\bullet\,\Rightarrow\,4G$  zero-mode quarks couple strongly to KK gluon
- We can arrange for at least one 4G to be super-critically coupled. E.g.:

$$\longrightarrow \langle \bar{U}_4 U_4 \rangle \neq 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

EWSB from Fourth-Generation in AdS<sub>5</sub>

If 
$$g_U > g_U^{ ext{crit.}}$$
,  $\Rightarrow \langle \bar{U}_L U_R 
angle 
eq 0$ 

 $\Rightarrow$  Solution to the gap equation:



This implies

- Electroweak Symmetry Breaking
- Dynamical  $m_U^{(0)} \sim (500 700)$  GeV
- A heavy Higgs:  $m_h \simeq (600 900)$  GeV

General AdS $_5$  Setup EWSB from Fourth-Generation Condensation in AdS $_5$ 

#### Fermion Masses

• Bulk 4-fermion ops. suppressed by  $M_P$ :

$$\int dy \sqrt{g} \, \frac{C^{ijk\ell}}{M_P^3} \, \bar{\Psi}_L^i(x,y) \Psi_R^j(x,y) \bar{\Psi}_R^k(x,y) \Psi_L^\ell(x,y) \; ,$$

• Zero-mode fermion masses from zero-mode four-fermion operators

$$C^{ij44} N^{ij44} \frac{e^{k\pi R(4-c_L^i+c_R^j+c_R^4-c_L^4)}}{4-c_L^i+c_R^j+c_R^4-c_L^4} \frac{k}{M_P^3} \bar{f}_L^i f_R^j \bar{U}_R U_L$$

• When  $\langle \overline{U}_4 U_4 \rangle \neq 0$  this results in  $m_{ij}$ 

A B + A B +

#### Fermion Masses (cont.)

Light fermions have small overlap with condensate (TeV) 3rd and 4th generation fermions: more TeV localized

• Light fermions (~ 1st and 2nd generations):  $(c_L^i, -c_R^j) > 1/2$ .

$$m_{ij} \sim e^{k\pi R(1-c_L^i+c_R^j)} m_U$$

• Heavy fermions (~ 3rd and 4th generations):  $(c_L^i, -c_R^j) < 1/2$ Plus at least one of  $c_L^i$  or  $-c_R^j > -0.12$  to avoid condensation.

 $m_{ij} \sim m_U$ 

### Flavor Hierarchy

O(1) flavor breaking in bulk can generate fermion mass hierarchy:



TeV localization  $\rightarrow$  larger  $m_{ij}$ Planck localization  $\rightarrow$  suppressed  $m_{ij}$ 

< A >

∃ → < ∃ →</p>

#### The full Bulk AdS<sub>5</sub> Picture

Including the Electroweak sector in the bulk:

Needs to be

 $SU(2)_L \times SU(2)_R \times U(1)_X$ 

to avoid large isospin violation

Broken down to  $\implies SU(2)_L \times U(1)_Y$  at UV.

伺 ト イヨト イヨト

# Bounds on Bulk AdS<sub>5</sub> Models

Electroweak precision bounds:

- T = 0 at tree-level due to  $SU(2)_L \times SU(2)_R$
- Tree-level contributions to *S* through *Z*<sup>0</sup> mixing with KK sector:

$$M_{KK} \gtrsim$$
 (2.5) TeV

- $Z \rightarrow \overline{b}b$  require discrete symmetry  $(L \leftrightarrow R)$ (Agashe, Contino, Da Rold, Pomarol '05)
- Large Flavor Violation effects can be circumvented with some tweaking

Constraints on 4th Generation Model Production of 4G Quarks at the LHC The Lepton Sector What about the Tevatron ?

# Constraints on 4th Generation Model

#### S parameter:

- PDG quoted "total annihilation" exclusion (99.999% C.L.)
- But re-examination of bounds practically eliminates this (Kribs, Plehn, Spannowsky, Tait '07)

#### Heavy Higgs:

- EW precision bounds allow  $m_h \simeq 750$  GeV @ 95 % C.L. (KPST)
- But in AdS<sub>5</sub> theories bounds on m<sub>h</sub> are affected by divergences (G.B. Da Rold '08)

- 4 B b 4 B b

Constraints on 4th Generation Model Production of 4G Quarks at the LHC The Lepton Sector What about the Tevatron ?

# Constraints on 4h Generation Model

#### Flavor Physics:

- Tree-level FCNCs: Bounds can be safely evaded with minimal model assumptions (E.g. Fitzpatrick, Perez, Randall '07)
- Loop contributions interesting, but not dangerous (E.g. Bobrowski, Lenz, Riedl, Rohrwild '09)

伺 ト イヨト イヨト

Constraints on 4th Generation Model Production of 4G Quarks at the LHC The Lepton Sector What about the Tevatron ?

# Phenomenology at the LHC

Gustavo Burdman Electroweak Symmetry Breaking: The Next Generation

- 4 同 6 4 日 6 4 日 6

э

Constraints on 4th Generation Model **Production of 4G Quarks at the LHC** The Lepton Sector What about the Tevatron ?

# Heavy Quark Production at the LHC

Production of  $U_4$  and  $D_4$  at the LHC: (G.B., Da Rold, Eboli, Matheus '09) Consider  $m_{U_4} > m_{D_4}$  (favored by EWPC):

- $pp \rightarrow D_4 \overline{D}_4 \rightarrow t \overline{t} W^+ W^- \Rightarrow 4W$ 's final state
- $pp \rightarrow U_4 \bar{U}_4 \rightarrow D_4 \bar{D}_4 W^+ W^- \Rightarrow 6W$ 's final state
- $\Rightarrow$  Start with the  $D_4$  production

Two sources:

- SM QCD Production: Same for any theory with a 4th generation
- Production via s-channel KK Gluons

イロト イポト イヨト イヨト 三日

Constraints on 4th Generation Model **Production of 4G Quarks at the LHC** The Lepton Sector What about the Tevatron ?

## Heavy Quark Production at the LHC

 $D_4$  pair production:

To beat backgrounds  $(t\bar{t}, V's + j's)$  use same-sign dilepton modes



$$pp \rightarrow \ell^{\pm} \ell^{\pm} 6 j \not E_T$$

Constraints on 4th Generation Model **Production of 4G Quarks at the LHC** The Lepton Sector What about the Tevatron ?



Constraints on 4th Generation Model **Production of 4G Quarks at the LHC** The Lepton Sector What about the Tevatron ?

#### Cuts in the same-sign dilepton analysis:

$$p_T^{j_{1,2}} > 100 \,\, {
m GeV}; \qquad p_T^{\ell_{1,2}} > 50 \,\, {
m GeV};$$

| $m_{D_4}$ | $\sigma_{\mathcal{S}}[\text{fb}]$ | $\sigma_{\mathcal{B}}[\text{fb}]$ | $\mathcal{S}/\mathcal{B}$ | $\mathcal{L}_{min}[pb^{-1}]$ |
|-----------|-----------------------------------|-----------------------------------|---------------------------|------------------------------|
| 300 GeV   | 87.0                              | 6.2                               | 14.                       | 44                           |
| 450 GeV   | 54.2                              | 6.2                               | 8.7                       | 84                           |
| 600 GeV   | 17.8                              | 6.2                               | 2.9                       | 460                          |

(日) (同) (三) (三)

э

Constraints on 4th Generation Model **Production of 4G Quarks at the LHC** The Lepton Sector What about the Tevatron ?

Also  $H_T = \sum_i (E_T^i + E_T)$  follows  $m_{D_4}$ 



Ultimately, need to reconstruct  $m_{D_A}$ 

< 一型

< E

э

Constraints on 4th Generation Model **Production of 4G Quarks at the LHC** The Lepton Sector What about the Tevatron ?

# Heavy Quark Production at the LHC

#### Incremental Goals

- ID  $D_4$  signal over background takes O(1)  $fb^{-1}$  in same-sign dilepton channel
- Observing  $U_4$  and mass reconstruction: O(10)'s  $fb^{-1}$
- Separating the KK Gluon contribution from QCD: Signal of presence of new strong interaction

- 4 同 6 4 日 6 4 日 6

Constraints on 4th Generation Model **Production of 4G Quarks at the LHC** The Lepton Sector What about the Tevatron ?

Strongly Coupled Fourth Generation at the LHC

KK Gluon so strongly coupled to 4th generation quarks that

 $\Gamma_G \simeq M_G$ 

 $\Rightarrow$  KK Gluon too broad to be observed at LHC

But to validate this picture need to observe strong interaction

Can't see it in  $Q_4$  pair-production: featureless 10% excess



Constraints on 4th Generation Model **Production of 4G Quarks at the LHC** The Lepton Sector What about the Tevatron ?

# Observing the New Strong Interaction

#### Other possible ways

• Flavor violation of KK Gluon interactions:

$$G^{(1)} 
ightarrow U_4 \ ar{t} \ ext{or} \ G^{(1)} 
ightarrow D_4 \ ar{b}$$

 $\Rightarrow$  Single production of fourth-generation quarks

• Observing the strong interactions of the 4G lepton sector

4 E 6 4 E

Constraints on 4th Generation Model Production of 4G Quarks at the LHC **The Lepton Sector** What about the Tevatron ?

# The Fourth-Generation Lepton Sector

$$L_4 = \begin{pmatrix} N_4 \\ E_4 \end{pmatrix}_L$$
,  $E_{4R}$ ,  $N_{4R}$  Acquire masses  $O(m_{U_4})$ 

#### Neutrino Masses and Mixings

• <u>See-saw</u>:

UV-localized Majorana mass term  $\Rightarrow$  usual see-saw for light neutrinos.

See-saw not affecting IR-localized N<sub>4</sub>, remain heavy.

- To obtain correct pattern in  $V_{MNS}$  results in L<sub>4</sub> coupling  $\simeq$  equally to the 3 lighter generations
- $\mu \rightarrow e\gamma$ :  $V_{4i} < O(0.01)$

- 4 同 6 4 日 6 4 日 6

Constraints on 4th Generation Model Production of 4G Quarks at the LHC **The Lepton Sector** What about the Tevatron ?

# The Fourth-Generation Lepton Sector at the LHC

Heavy Lepton pair-production at the LHC

(G.B., Da Rold, Eboli, Matheus in progress)

Assuming  $m_{E_4} > m_{N_4}$ :  $N_4 \rightarrow \ell^- W^+$ , with  $\ell = e, \mu, \tau$ For instance using

$$pp \rightarrow N_4 \bar{N}_4 \rightarrow e^{\pm} \mu^{\mp} W^+ W^-$$

backgrounds should be manageable

#### Seeing the Strong Interaction

- Electroweak KK Gauge bosons are narrower than KK gluon
- They represent more than 1/3 of the cross section
- $\sigma(pp \rightarrow N_4 \bar{N}_4 \rightarrow e^{\pm} \mu^{\mp} W^+ W^-) \simeq O(\text{few}) \text{ fb}$

ヘロマ ヘ動 マイロマ

Constraints on 4th Generation Model Production of 4G Quarks at the LHC The Lepton Sector What about the Tevatron ?

## Lowering the New Dynamics Mass Scale

Can the KK-gluon mass be  $M_{KK}$  < 2.5 TeV ?

 We can *deconstruct* the 5D theory differently for SU(3) than for SU(2)<sub>L</sub> × SU(2)<sub>R</sub> × U(1)<sub>X</sub>



- EWPC  $\implies M_{KK}^{\rm EW} > 2.5 \text{ TeV}$
- But  $M_{KK}^{
  m strong}$  can be as low as  $\sim 1~
  m TeV$

・ 同 ト ・ ヨ ト ・ ヨ ト

Constraints on 4th Generation Model Production of 4G Quarks at the LHC The Lepton Sector What about the Tevatron ?

Lowering the New Dynamics Mass Scale

- KK Gluon exchange in 4G-quark production at LHC now a O(25%) effect: at LHC  $gg \rightarrow Q\bar{Q}$  dominates
- But at the Tevatron KK Gluon exchange dominates 4G-quark production for  $M_{KK} \simeq 1$  TeV
- What is the Tevatron reach ?

(\* ) \* ) \* ) \* )

Constraints on 4th Generation Model Production of 4G Quarks at the LHC The Lepton Sector What about the Tevatron ?

#### Sensitivity at the Tevatron

#### Actually, the Tevatron might have seen the $U_4$ (or $D_4$ )

(Dobrescu, Kong, Mahbubani '09; G.B. Da Rold, Matheus, in progress)



7 Events on a background of 2, consistent with  $M_{KK}\simeq 1~{
m TeV}$ 

# Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Existence of 4th Generation would suggest special role in EWSB
- Possible to build viable models of 4th Generation condensation leading to EWSB and Fermion masses
- Identification of new strong interaction with 4G quarks hard at the LHC. The Tevatron could help if  $M_{\rm strong} \simeq 1$  TeV.
- Alternatively, use electroweak resonances (narrower than color-octet) in the production of 4G leptons
- Or flavor-violating single production of  $U_4$ , or  $D_4$  (in progress).

3