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Unsolved issues in the standard model

• Horizon problem
Why is the CMB so smooth ?

• The flatness problem
Why is the Universe flat ? Why is  Ω ~ 1 ?

• The structure problem
Where do the fluctuations in the CMB come from ?

• The relic problem 
Why aren’t there magnetic monopoles ?



Outstanding Problems
• Why is the CMB so isotropic?

– consider matter-only universe:
• horizon distance dH(t) = 3ct
• scale factor a(t) = (t/t0)2/3

• therefore horizon expands faster than 
the universe

– “new” objects constantly coming 
into view

– CMB decouples at 1+z ~ 1000
• i.e. tCMB = t0/104.5

• dH(tCMB) = 3ct0/104.5

• now this has expanded by a factor of 
1000 to 3ct0/101.5

• but horizon distance now is 3ct0
• so angle subtended on sky by one CMB 

horizon distance is only 10−1.5 rad ~ 2°
– patches of CMB sky >2° apart should not be 

causally connected
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Outstanding Problems
• Why is universe so flat?

– a multi-component universe satisfies

and, neglecting Λ,

– therefore 
• during radiation dominated era |1 – Ω(t)|  a2

• during matter dominated era     |1 – Ω(t)|  a
• if |1 – Ω0| < 0.06 (WMAP) ...  then at CMB emission                    

|1 – Ω| < 0.00006
– we have a fine tuning problem!
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Outstanding Problems
• Where is everything coming from ?

Models like  CDM nicely explain how the fluctuations we can 
observe in the CMB grew to form galaxies.  
They can also reproduce the observe large scale 
distribution of galaxies and clusters.

BUT .. why are there fluctuations in the first place ?
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Outstanding Problems
• The monopole problem

– big issue in early 1980s 
• Grand Unified Theories of particle physics → at high 

energies the strong, electromagnetic and weak forces are 
unified

• the symmetry between strong and electroweak forces 
‘breaks’ at an energy of ~1015 GeV (T ~ 1028 K, t ~ 10−36 s)

– this is a phase transition similar to freezing
– expect to form ‘topological defects’ (like defects in crystals)
– point defects act as magnetic monopoles and have mass 

~1015 GeV/c2 (10−12 kg)
– expect one per horizon volume at t ~ 10−36 s, i.e. a number 

density of 1082 m−3 at 10−36 s
– result: universe today completely dominated by monopoles 

(not!)



The concept of inflation

The idea (A. Guth and A. Linde, 1981): Shortly after the
Big Bang, the Universe went through a phase of rapid
(exponential) expansion.  In this phase the energy and
thus the dynamics of the Universe was determined by a 
term similar to the cosmological constant (vacuum
energy).

Why would the Universe do that ?

Why does it help ?



Inflation and the horizon
• Assume large positive cosmological 

constant Λ acting from tinf to tend

• then for tinf < t < tend
a(t) = a(tinf) exp[Hi(t – tinf)]
– Hi = (⅓ Λ)1/2

– if Λ large a can increase by many 
orders of magnitude in a very short 
time

• Exponential inflation is the usual 
assumption but a power law a = 
ainf(t/tinf)n works if n > 1
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Inflation and flatness
• We had

– for cosmological constant H is constant, so 1 – Ω  a−2

– for matter-dominated universe 1 – Ω  a
• Assume at start of inflation 

|1 – Ω| ~ 1
• Now |1 – Ω| ~ 0.06

– at matter-radiation equality 
|1 – Ω| ~ 2 ×10−5, t ~ 50000 yr

– at end of inflation |1 – Ω| ~ 10−50

– so need to inflate by 1025 = e58
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Inflation and the structure 
problem

• Before inflation: quantum fluctuations

• Inflation amplifies quantum fluctuations to macroscopic
scales

• After inflation macroscopic fluctuations (as can be 
observed in the CMB radiation) provide the seeds from
which galaxies form.



Inflation and the relic problem



What powers inflation?
• We need Hinf(tend – tinf) ≥ 58

– if tend ~ 10−34 s and tinf ~ 10−36 s, Hinf ~ 6 × 1035 s−1

– energy density ρΛ ~ 6 × 1097 J m−3 ~ 4 × 10104 TeV m−3

• cf. current value of Λ ~ 10−35 s−2, ρΛ ~ 10−9 J m−3 ~ 0.004 TeV m−3

• We also need an equation of state with negative 
pressure

accelerating expansion needs P < 0
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Inflation with scalar field
• Need potential U with broad nearly flat 

plateau near φ = 0
– metastable false vacuum
– inflation as φ moves very slowly away from 0 
– stops at drop to minimum 

(true vacuum)
• decay of inflaton field at this

point reheats universe, 
producing photons, quarks etc.
(but not monopoles – too heavy)

• equivalent to latent heat of a 
phase transition
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Inflation and particle physics
• At very high energies particle 

physicists expect that all forces 
will become unified
– this introduces new particles
– some take the form of scalar 

fields φ with equation of state
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Life without a fundamental scalar

Good news : Bardeen, Hill and Lindner used a top
quark condensate to replace the Higgs.  The theory
can predict both: the top mass and EWSB scale.

Bad news: a lot of fine tunning was needed



Hitoshi Murayama B-L WS LBNL 18

R

R

R

R

R

R



Hitoshi Murayama B-L WS LBNL 19

R

R

R

R

R

R



Constructing the scalar field

The four fermion effective interaction for the right
handed neutrino below the scale Λ takes the form

G ( CR  R ) ( R CR )                        



Constructing the scalar field

The four fermion effective interaction for the right
handed neutrino below the scale Λ takes the form

G ( CR  R ) ( R CR )                        

When the right handed neutrinos condense

- m0
2 Φ†Φ + g0  (C

R  R Φ + h.c. )

with G = g0
2 / m0

2



Let’s keep the scalar field and integrate the short 
distance components of the  right handed neutrino 

g0  (C
R  R Φ + h.c.) +  ZΦ |D Φ|2 – mΦ

2 Φ†Φ - 0( Φ†Φ )2
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Let’s keep the scalar field and integrate the short 
distance components of the  right handed neutrino 

g0  (C
R  R Φ + h.c.) +  ZΦ |D Φ|2 – mΦ

2 Φ†Φ - 0( Φ†Φ )2

where

ZΦ = Nf g0
2 / (4)2   ln (Λ2 / 2 )

mΦ
2 = m0

2 – 2 Nf g0
2 / (4)2   (Λ2 - 2 )

0 = Nf g0
4 / (4)2   ln (Λ2 / 2 )

rescale the scalar field Φ → Φ / (ZΦ )1/2

g = g0 / (ZΦ )1/2

m2 = mΦ
2 / (ZΦ )

 = / 0 (ZΦ )2
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Finally …

g (C
R  R Φ + h.c.) +  |D Φ|2 - V(Φ)

with

V(Φ) =  m2 Φ†Φ - ( Φ†Φ )2

BUT        Φ = φ eiθ

V(φ) =  ( φ2 - m2 )2



Breaking the U(1)

The lowest dimension symmetry breaking operator
constructed from the right handed neutrinos is given by

G’[ ( CR  R )2 + ( R CR )2]



Breaking the U(1)

The lowest dimension symmetry breaking operator
constructed from the right handed neutrinos is given by

G’[ ( CR  R )2 + ( R CR )2]

Resorting to the scalar field

g´ (CR  R Φ† + R CR Φ )



at 1-loop

mR
2(θ) = (g2 + g´2 + 2 g g´ Cos(θ) ) v2

V(θ)=- g2 g’2 v4    g2 + g’2 + Cos(θ)     ln g2 + g’2 + 2gg´ Cos(θ)
(16 2) 2gg’[ ]2 [ ]
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The potential has its minimum at θ = 

mθ
2 =- g g’ v2  ( g - g’ )2 (1 +2  ln (g - g’ )2  )

32 2

V(θ)

θ



mR
2(θ) = (g2 + g´2 + 2 g g´ Cos(θ) ) v2

V(θ)=-

mθ
2 =- g g’ v2  ( g - g’ )2 (1 +2  ln (g - g’ )2   )

g2 g’2 v4    g2 + g’2 + Cos(θ)     ln g2 + g’2 + 2gg´ Cos(θ)

(16 2) 2gg’
[ ]2 [ ]

32 2



For g´  ‹‹  g 

V(θ)≈- g3 g’ v4  ( 1 + 2 ln(g2))  (1+ Cos(θ))
32 2



For g´  ‹‹  g 

V(θ)≈-

V(θ) = M4    (1+ Cos(θ))

g3 g’ v4  ( 1 + 2 ln(g2))  (1+ Cos(θ))
32 2



For g´  ‹‹  g 

V(θ)≈-

V(θ) = M4    (1+ Cos(θ))

g3 g’ v4  ( 1 + 2 ln(g2))  (1+ Cos(θ))
32 2



The scalar field and its circumstances
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The scalar field and its circumstances
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The scalar field and its circumstances

θ +  3 H θ + V´(θ ) = 0 (EOM)
..                .

H2 = 8  θ2 + V(θ)
3 MPl
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slow roll approximation
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The beginning of the end…
inflation stops

when -3 P < ρ

w > -1/3(w+1) 3/2 = Є

Є =  3  θ2/2

V(θ) + θ2/2
.

.
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The beginning of the end…
inflation stops

when -3 P < ρ

w > -1/3(w+1) 3/2 = Є

Є =  3  θ2/2

V(θ) + θ2/2
.

.

8  V(θ)N = dθ
3 MPl

2 V´(θ)
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Inflation phenomenology

Recall: quantum fluctuations become density perturbations

Quantum fluctuations in de Sitter space

< (δθ)2 > ≈ H2

δρ H2

θ
.ρ ≈ Scalar density fluctuations are 

given by different regions ending
inflation at different times
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Inflation phenomenology

Again: quantum fluctuations in de Sitter space

< (δθ)2 > ≈ H2

The two helicity states of the gravitational waves follow
independent equations of a scalar field. Hence gravity
waves fluctuations

h2 = H2 = V = M4

Scalar density perturbations depend on the shape of the
potential. Tensor perturbations just depend on the scale.
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Inflation phenomenology

Scalar and tensor perturbations are characterized by 
their amplitude and spectra

scalar perturbations : δρ/ρ ,  ns

tensor perturbations:  r,   nT r = -8 nT

dns/ d ln(k)
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A theory ENTIRELY written in terms of neutrino degrees
of freedom is equivalent to a theory containing Φ.

The resulting model is phenomenogically tighly
constrained and can be (dis) probed in the near future.

The model with more neutrinos is EVEN more beautiful

(if such a thing is possible).

Conclusions


