Non-Unitarity and Non-Standard Neutrino Interactions

Enrique Fernández-Martínez MPI für Physik Munich

Based on collaborations with: S. Antusch, J. Baumann, C. Biggio, M. Blennow, B. Gavela and J. López Pavón

- Non-unitary lepton mixing matrix
 - Neutrino masses and non-unitarity
 - Effects of non-unitarity in present oscillation data
 - Measurements of non-unitarity in future oscillation experiments
 - Non-unitarity as NSI
- Non Standard neutrino Interactions
 - Conditions to realize large NSI
 - Avoiding constraints without cancellations
 - Avoiding constraints with cancellations
 - NSI in loops

Neutrino masses in the SM

All SM fermions acquire Dirac masses via Yukawa couplings

All SM fermions acquire Dirac masses via Yukawa couplings

$$Y_{f}\overline{f_{L}}\phi f_{R} \xrightarrow{\mathsf{SSB}} \frac{Y_{f} \mathbf{v}}{\sqrt{2}} \overline{f_{L}} f_{R} \qquad m_{f} = \frac{Y_{f} \mathbf{v}}{\sqrt{2}}$$

Adding v_R to the SM, a Majorana mass is also allowed $M \overline{v}_R^C v_R$

The only d = 5 operator is a Majorana mass for neutrinos

$$\frac{1}{M} \langle \phi \rangle \langle \phi \rangle \overline{\mathbf{v}}_{L}^{C} \mathbf{v}_{L}$$

This operator cannot be generated in the SM since it violates B - L, an accidental, non anomalous SM symmetry

Hints that this symmetry is broken at a scale M beyond the SM

The SM is extended by:

$$\mathcal{L}^{SM} + i \,\overline{N_R} \,\partial N_R - \overline{\ell_L} \,\widetilde{\phi} \, Y_N^{\dagger} \, N_R - \frac{1}{2} \,\overline{N_R} \, M_N \, N_R^{\ c} + \mathrm{h.c.}$$

If the right-handed neutrino N_R is heavy it can be integrated out:

The SM is extended by:

$$\mathcal{L}^{SM} + i \,\overline{N_R} \,\partial N_R - \overline{\ell_L} \,\widetilde{\phi} \, Y_N^{\dagger} \, N_R - \frac{1}{2} \,\overline{N_R} \, M_N \, N_R^{\ c} + \text{h.c.}$$

If the right-handed neutrino N_R is heavy it can be integrated out:

$$\frac{Y_N^T}{M_N} \frac{1}{M_N} Y_N \quad \left(\overline{L}_{\beta}^c i \sigma_2 \phi\right) \left(\phi^t i \sigma_2 L_{\alpha}\right) \qquad \underbrace{\text{SSB}}_{\langle \phi \rangle = \frac{v}{\sqrt{2}}} \qquad m_{\nu} = \frac{Y_N^T}{M_N} \frac{1}{M_N} Y_N \frac{v^2}{2}$$

$$\frac{\langle \phi \rangle = \frac{v}{\sqrt{2}}}{\text{Weinberg 1979}}$$

The SM is extended by:

$$\mathcal{L}^{SM} + i \,\overline{N_R} \,\partial N_R - \overline{\ell_L} \,\widetilde{\phi} \, Y_N^{\dagger} \, N_R - \frac{1}{2} \,\overline{N_R} \, M_N \, N_R^{\ c} + \mathrm{h.c.}$$

If the right-handed neutrino N_R is heavy it can be integrated out:

$$Y_{N}^{T} \frac{1}{M_{N}} Y_{N} \quad \left(\overline{L}_{\beta}^{c} i \sigma_{2} \phi\right) \left(\phi^{t} i \sigma_{2} L_{\alpha}\right) \xrightarrow{\mathsf{SSB}} m_{\nu} = Y_{N}^{T} \frac{1}{M_{N}} Y_{N} \frac{v^{2}}{2}$$

$$\langle \phi \rangle = \frac{v}{\sqrt{2}} \qquad \text{Weinberg 1979}$$

$$Y_{N}^{\dagger} \frac{1}{|M_{N}|^{2}} Y_{N} \quad \left(\overline{L}_{\beta} i \sigma_{2} \phi^{*}\right) i \partial \left(\phi^{t} i \sigma_{2} L_{\alpha}\right) \xrightarrow{\mathsf{SSB}} i \overline{V}_{\alpha} \partial K_{\alpha\beta} V_{\beta}$$

$$\langle \phi \rangle = \frac{v}{\sqrt{2}}$$

A. Broncano, M. B. Gavela and E. Jenkins hep-ph/0210192

 $L = i \overline{\nu}_{\alpha} \partial K_{\alpha\beta} \nu_{\beta} + \overline{\nu}_{\alpha} M_{\alpha\beta} \nu_{\beta} - \frac{g}{\sqrt{2}} \left(W_{\mu}^{+} \overline{l}_{\alpha} \gamma^{\mu} P_{L} \nu_{\alpha} + h.c. \right) - \frac{g}{\cos \theta_{W}} \left(Z_{\mu} \overline{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\alpha} + h.c. \right) + \dots$

$$L = i \overline{\nu}_{\alpha} \partial K_{\alpha\beta} \nu_{\beta} + \overline{\nu}_{\alpha} M_{\alpha\beta} \nu_{\beta} - \frac{g}{\sqrt{2}} \left(W^{+}_{\mu} \overline{l}_{\alpha} \gamma^{\mu} P_{L} \nu_{\alpha} + h.c. \right) - \frac{g}{\cos \theta_{W}} \left(Z_{\mu} \overline{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\alpha} + h.c. \right) + \dots$$

Diagonal mass and canonical kinetic terms

$$L = i \overline{\nu_i} \partial \nu_i + \overline{\nu_i} m_{ii} \nu_i - \frac{g}{\sqrt{2}} \left(W^+_\mu \overline{l}_\alpha \gamma^\mu P_L N_{\alpha i} \nu_i + h.c. \right) - \frac{g}{\cos \theta_W} \left(Z_\mu \overline{\nu_i} \gamma^\mu P_L (N^\dagger N)_{ij} \nu_j + h.c. \right) + \dots$$

$$L = i \overline{\nu}_{\alpha} \partial K_{\alpha\beta} \nu_{\beta} + \overline{\nu}_{\alpha} M_{\alpha\beta} \nu_{\beta} - \frac{g}{\sqrt{2}} \left(W^{+}_{\mu} \overline{l}_{\alpha} \gamma^{\mu} P_{L} \nu_{\alpha} + h.c. \right) - \frac{g}{\cos \theta_{W}} \left(Z_{\mu} \overline{\nu}_{\alpha} \gamma^{\mu} P_{L} \nu_{\alpha} + h.c. \right) + \dots$$

Diagonal mass and canonical kinetic terms

$$L = i \overline{\nu_i} \partial \nu_i + \overline{\nu_i} m_{ii} \nu_i - \frac{g}{\sqrt{2}} (W^+_\mu \overline{l}_\alpha \gamma^\mu P_L N_{\alpha i} \nu_i + h.c.) - \frac{g}{\cos \theta_W} (Z_\mu \overline{\nu_i} \gamma^\mu P_L (N^\dagger N)_{ij} \nu_j + h.c.) + \dots$$
$$V_\alpha = N_{\alpha i} \nu_i \qquad N \text{ is not unitary}$$

$$L = i \overline{v}_{\alpha} \partial K_{\alpha\beta} v_{\beta} + \overline{v}_{\alpha} M_{\alpha\beta} v_{\beta} - \frac{g}{\sqrt{2}} (W_{\mu}^{+} \overline{l}_{\alpha} \gamma^{\mu} P_{L} v_{\alpha} + h.c.) - \frac{g}{\cos \theta_{W}} (Z_{\mu} \overline{v}_{\alpha} \gamma^{\mu} P_{L} v_{\alpha} + h.c.) + ...$$
Diagonal mass and canonical kinetic terms
$$L = i \overline{v}_{i} \partial v_{i} + \overline{v}_{i} m_{ii} v_{i} - \frac{g}{\sqrt{2}} (W_{\mu}^{+} \overline{l}_{\alpha} \gamma^{\mu} P_{L} N_{\alpha i} v_{i} + h.c.) - \frac{g}{\cos \theta_{W}} (Z_{\mu} \overline{v}_{i} \gamma^{\mu} P_{L} (N^{\dagger} N)_{ij} v_{j} + h.c.) + ...$$
unchanged
$$V_{\alpha} = N_{\alpha i} V_{i}$$
 $N \text{ is not unitary}$

$$\downarrow V_{\alpha} = N_{\alpha i} V_{i}$$

The general idea...

$$U = \begin{pmatrix} c_{13}c_{12} & s_{12}c_{13} & s_{13}e^{i\delta} \\ -s_{12}c_{23} - s_{23}s_{13}c_{12}e^{-i\delta} & c_{12}c_{23} - s_{23}s_{13}s_{12}e^{-i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{-i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{-i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$N = \begin{pmatrix} N_{e1} & N_{e2} & N_{e3} \\ N_{\mu 1} & N_{\mu 2} & N_{\mu 3} \\ N_{\tau 1} & N_{\tau 2} & N_{\tau 3} \end{pmatrix}$$

N elements from oscillations only

Atmospheric + K2K + MINOS: $\Delta_{12} \approx 0$ $\hat{P}(v_{\mu} \rightarrow v_{\mu}) \cong (|N_{\mu 1}|^{2} + |N_{\mu 2}|^{2})^{2} + |N_{\mu 3}|^{4} + 2(|N_{\mu 1}|^{2} + |N_{\mu 2}|^{2})N_{\mu 3}|^{2} \cos(\Delta_{23})$

N elements from oscillations only

Atmospheric + K2K + MINOS:
$$\Delta_{12} \approx 0$$

 $\hat{P}(v_{\mu} \rightarrow v_{\mu}) \cong \left(\left| N_{\mu 1} \right|^{2} + \left| N_{\mu 2} \right|^{2} \right)^{2} + \left| N_{\mu 3} \right|^{4} + 2 \left(\left| N_{\mu 1} \right|^{2} + \left| N_{\mu 2} \right|^{2} \right) N_{\mu 3} \right|^{2} \cos(\Delta_{23})$
without unitarity
OSCILLATIONS $\left| N \right| = \left(\begin{array}{c} 0.75 - 0.89 & 0.45 - 0.66 & < 0.34 \\ \left| \left| N_{\mu 1} \right|^{2} + \left| N_{\mu 2} \right|^{2} \right|^{1/2} = & 0.57 - 0.86 \\ \hline 2 & 2 & 2 \end{array} \right)$

3σ

with unitarity

OSCILLATIONS

$$|U| = \begin{pmatrix} 0.79 - 0.88 & 0.47 - 0.61 & < 0.20 \\ 0.19 - 0.52 & 0.42 - 0.73 & 0.58 - 0.82 \\ 0.20 - 0.53 & 0.44 - 0.74 & 0.56 - 0.81 \end{pmatrix}$$

M. C. González García hep-ph/0410030

(NN^{\dagger}) from decays

Info on $(NN^{\dagger})_{\alpha\beta}$

$$|NN^{\dagger}| \approx \begin{pmatrix} 0.994 \pm 0.005 & < 7.0 \cdot 10^{-5} & < 1.6 \cdot 10^{-2} \\ < 7.0 \cdot 10^{-5} & 0.995 \pm 0.005 & < 1.0 \cdot 10^{-2} \\ < 1.6 \cdot 10^{-2} & < 1.0 \cdot 10^{-2} & 0.995 \pm 0.005 \end{pmatrix}$$
 Experimentally

E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228 D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228 S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-ph/0607020

The diagonal elements are somewhat smaller than 1 due to the nearly 2σ deviation from 3 in the number of v measured by the Z width

$$N_{\nu} = 2.984 \pm 0.009$$

without unitarity OSCILLATIONS +DECAYS

$$|N| = \begin{pmatrix} 0.75 - 0.89 & 0.45 - 0.65 & < 0.20 \\ 0.19 - 0.55 & 0.42 - 0.74 & 0.57 - 0.82 \\ 0.13 - 0.56 & 0.36 - 0.75 & 0.54 - 0.82 \end{pmatrix}$$

S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-ph/0607020 3σ

$$|U| = \begin{pmatrix} 0.79 - 0.88 & 0.47 - 0.61 & < 0.20 \\ 0.19 - 0.52 & 0.42 - 0.73 & 0.58 - 0.82 \\ 0.20 - 0.53 & 0.44 - 0.74 & 0.56 - 0.81 \end{pmatrix}$$

M. C. González García hep-ph/0410030

with unitarity OSCILLATIONS

If we parametrize
$$N = (1 + \mathcal{E}) \cdot U$$
 with $U \approx U_{PMNS}$
and
 $\mathcal{E} = \begin{pmatrix} \mathcal{E}_{ee} & \mathcal{E}_{e\mu} & \mathcal{E}_{e\tau} \\ \mathcal{E}_{e\mu}^* & \mathcal{E}_{\mu\mu} & \mathcal{E}_{\mu\tau} \\ \mathcal{E}_{e\tau}^* & \mathcal{E}_{\mu\tau}^* & \mathcal{E}_{\tau\tau} \end{pmatrix} \qquad P_{\alpha\beta} \approx \left| 2\mathcal{E}_{\alpha\beta} - i\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{4E}\right) \right|^2$
If L/E small

If we parametrize
$$N = (1 + \mathcal{E}) \cdot U$$
 with $U \approx U_{PMNS}$
and
 $\mathcal{E} = \begin{pmatrix} \mathcal{E}_{ee} & \mathcal{E}_{e\mu} & \mathcal{E}_{e\tau} \\ \mathcal{E}_{e\mu}^* & \mathcal{E}_{\mu\mu} & \mathcal{E}_{\mu\tau} \\ \mathcal{E}_{e\tau}^* & \mathcal{E}_{\mu\tau}^* & \mathcal{E}_{\tau\tau} \end{pmatrix} \qquad P_{\alpha\beta} \approx \left| 2\mathcal{E}_{\alpha\beta} - i\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{4E}\right) \right|^2$
If L/E small
 $P_{\alpha\beta} = \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right) + 2\operatorname{Im}(\mathcal{E}_{\alpha\beta})\sin(2\theta)\sin\left(\frac{\Delta m^2 L}{2E}\right) + 4\left|\mathcal{E}_{\alpha\beta}\right|^2$
SM CP violating interference Zero dist.

Non-unitarity in future facilities

At a Neutrino Factory of 50 GeV with L = 130 Km

$$\sin\left(\frac{\Delta m_{23}^2 L}{2E}\right) \approx 0.03 \quad \longrightarrow \quad \text{The SM background} \\ \text{is suppressed} \quad \text{is suppressed}$$

Measuring unitarity deviations

Non-Unitarity at a NF

Golden channel at NF is sensitive to \mathcal{E}_{π}

 v_{μ} disappearance channel linearly sensitive to $\varepsilon_{\tau\mu}$ through matter effects Near τ detectors can improve the bounds on $\varepsilon_{\tau e}$ and $\varepsilon_{\tau\mu}$ Combination of near and far detectors sensitive to the new CP phases

> S. Antusch, M. Blennow, EFM and J. López-pavón 0903.3986 See also EFM, B. Gavela, J. López Pavón and O. Yasuda hep-ph/0703098; S. Goswami and T. Ota 0802.1434; G. Altarelli and D. Meloni 0809.1041,....

Generic new physics affecting v oscillations can be parameterized as 4-fermion Non-Standard Interactions:

Production or detection of a v_{β} associated to a l_{α}

$$2\sqrt{2}G_{F}\varepsilon_{\alpha\beta}(\overline{\nu}_{\beta}\gamma^{\mu}P_{L}l_{\alpha})(\overline{f}\gamma_{\mu}P_{L,R}f') \qquad \pi \longrightarrow \mu + \nu_{\beta}$$

So that $|\nu_{\alpha}\rangle \rightarrow |\nu_{\alpha}\rangle + \sum_{\beta=e,\mu,\tau} \varepsilon_{\alpha\beta}|\nu_{\beta}\rangle \qquad n + \nu_{\beta} \longrightarrow p + l_{\alpha}$

Generic new physics affecting v oscillations can be parameterized as 4-fermion Non-Standard Interactions:

Production or detection of a v_{β} associated to a l_{α}

$$2\sqrt{2}G_{F}\varepsilon_{\alpha\beta}(\overline{\nu}_{\beta}\gamma^{\mu}P_{L}l_{\alpha})(\overline{f}\gamma_{\mu}P_{L,R}f') \qquad \pi \longrightarrow \mu + V_{\beta}$$

So that $|\nu_{\alpha}\rangle = |\nu_{\alpha}\rangle + \sum_{\beta=e,\mu,\tau} \varepsilon_{\alpha\beta}|\nu_{\beta}\rangle \qquad n + V_{\beta} \longrightarrow p + l_{\alpha}$

The general matrix N can be parameterized as:

 $N = (1 + \varepsilon)U$ where $\varepsilon = \varepsilon^{\dagger}$

Also gives $|\nu_{\alpha}\rangle = |\nu_{\alpha}\rangle + \sum_{\beta=e,\mu,\tau} \varepsilon_{\alpha\beta} |\nu_{\beta}\rangle$ but with $\varepsilon_{\alpha\beta} = \varepsilon_{\beta\alpha}^{*}$

Non-Standard v scattering off matter can also be parameterized as 4-fermion Non-Standard Interactions:

$$2\sqrt{2}G_{F}\varepsilon_{\alpha\beta}^{m}\left(\overline{v}_{\beta}\gamma^{\mu}P_{L}v_{\alpha}\right)\left(\overline{f}\gamma_{\mu}P_{L,R}f\right)$$

so that
$$\tilde{V}_{MSW} = a_{CC} \begin{pmatrix} 1 + \varepsilon_{ee}^m & \varepsilon_{e\mu}^m & \varepsilon_{e\tau}^m \\ \varepsilon_{e\mu}^{m*} & \varepsilon_{\mu\mu}^m & \varepsilon_{\mu\tau}^m \\ \varepsilon_{e\tau}^{m*} & \varepsilon_{\mu\tau}^{m*} & \varepsilon_{\tau\tau}^m \end{pmatrix}$$

Non-Standard v scattering off matter can also be parameterized as 4-fermion Non-Standard Interactions:

$$2\sqrt{2}G_{F}\varepsilon_{\alpha\beta}^{m}\left(\overline{\nu}_{\beta}\gamma^{\mu}P_{L}\nu_{\alpha}\right)\left(\bar{f}\gamma_{\mu}P_{L,R}f\right)$$

so that
$$\tilde{V}_{MSW} = a_{CC} \begin{pmatrix} 1 + \varepsilon_{ee}^m & \varepsilon_{e\mu}^m & \varepsilon_{e\tau}^m \\ \varepsilon_{e\mu}^{m*} & \varepsilon_{\mu\mu}^m & \varepsilon_{\mu\tau}^m \\ \varepsilon_{e\tau}^{m*} & \varepsilon_{\mu\tau}^{m*} & \varepsilon_{\tau\tau}^m \end{pmatrix}$$

Integrating out the W and Z, 4-fermion operators are obtained also for the non-unitary mixing matrix

They are related to the production and detection NSI

Integrating out the *W* and *Z*, 4-fermion operators for matter NSI are obtained from non-unitary mixing matrix $2\sqrt{2C} c^m (\overline{u} \alpha^\mu P u) (\overline{f} \alpha P - f)$

$$2\sqrt{2}G_F \mathcal{E}_{\alpha\beta}(V_{\beta}\gamma^{\prime} \Gamma_L V_{\alpha})(J\gamma_{\mu}\Gamma_{L,R}J)$$

$$\boldsymbol{\varepsilon}^{m} = \begin{pmatrix} \boldsymbol{\varepsilon}_{ee}(n_{n}/n_{e}-2) & \boldsymbol{\varepsilon}_{e\mu}(n_{n}/n_{e}-1) & \boldsymbol{\varepsilon}_{e\tau}(n_{n}/n_{e}-1) \\ \boldsymbol{\varepsilon}_{e\mu}(n_{n}/n_{e}-1) & \boldsymbol{\varepsilon}_{\mu\mu}n_{n}/n_{e} & \boldsymbol{\varepsilon}_{\mu\tau}n_{n}/n_{e} \\ \boldsymbol{\varepsilon}_{e\tau}(n_{n}/n_{e}-1) & \boldsymbol{\varepsilon}_{\mu\tau}n_{n}/n_{e} & \boldsymbol{\varepsilon}_{\tau\tau}n_{n}/n_{e} \end{pmatrix}$$

They are related to the production and detection NSI

Non-unitarity and NSI

The bounds on

$$\left|NN^{\dagger}\right| = \left|(1+\varepsilon)^{2}\right| \approx \left|1+2\varepsilon\right|$$

Also apply to \mathcal{E}

$$\left| \mathcal{E} \right| \approx \begin{pmatrix} <2.5 \cdot 10^{-3} & <3.6 \cdot 10^{-5} & <8.0 \cdot 10^{-3} \\ <3.6 \cdot 10^{-5} & <2.5 \cdot 10^{-3} & <5.0 \cdot 10^{-3} \\ <8.0 \cdot 10^{-3} & <5.0 \cdot 10^{-3} & <2.5 \cdot 10^{-3} \end{pmatrix}$$

Very strong bounds for NSI from non-unitarity...

...also for the related NSI in matter

From μ , β , π decays and zero distance oscillations

$$2\sqrt{2}G_{F}\varepsilon_{\alpha\beta}^{ud}(\bar{l}_{\beta}\gamma^{\mu}P_{L}\nu_{\alpha})(\bar{u}\gamma_{\mu}P_{L,R}d) \qquad 2\sqrt{2}G_{F}\varepsilon_{\alpha\beta}^{\mu e}(\bar{\mu}\gamma^{\mu}P_{L}\nu_{\beta})(\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}e)$$

$$\left| \boldsymbol{\varepsilon}^{ud} \right| < \begin{pmatrix} 0.042 & 0.025 & 0.042 \\ 2.6 \cdot 10^{-5} & 0.1 & 0.013 \\ 0.087 & 0.013 & 0.13 \end{pmatrix} \qquad \left| \boldsymbol{\varepsilon}^{\mu e} \right| < \begin{pmatrix} 0.025 & 0.03 & 0.03 \\ 0.025 & 0.03 & 0.03 \\ 0.025 & 0.03 & 0.03 \end{pmatrix}$$

Bounds order $\sim 10^{-2}$

If matter NSI are uncorrelated to production and detection direct bounds are mainly from v scattering off e and nuclei $2\sqrt{2}G_F \varepsilon^m_{\alpha\beta} (\overline{v}_\beta \gamma^\mu P_L v_\alpha) (\overline{f} \gamma_\mu P_{L,R} f)$ $|\varepsilon^m| < \begin{pmatrix} 3.8 & 0.33 & 3.1 \\ 0.33 & 0.064 & 0.33 \\ 3.1 & 0.33 & 21 \end{pmatrix}$

Rather weak bounds...

... can they be saturated avoiding additional constraints?

e

S. Davidson, C. Peña garay, N. Rius and A. Santamaria hep-ph/0302093 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle hep-ph/0512195 J. Barranco, O. G. Miranda, C. A. Moura and J. W. F. Valle 0711.0698 C. Biggio, M. Blennow and EFM 0902.0607

Huge effects in v oscillations

N. Kitazawa, H. Sugiyama and O. Yasuda hep-ph/0606013 See also M. Blennow, T. Ohlsson and J. Skrotzki hep-ph/0702059

Gauge invariance

However
$$2\sqrt{2}G_F \varepsilon^m_{\alpha\beta} (\overline{v}_\beta \gamma^\mu P_L v_\alpha) (\overline{f} \gamma_\mu P_{L,R} f)$$

is related to
$$2\sqrt{2}G_F \varepsilon^m_{lphaeta} (\bar{l}_{eta} \gamma^\mu P_L l_{lpha}) (\bar{f} \gamma_\mu P_{L,R} f)$$

by gauge invariance and very strong bounds exist

$$\begin{aligned} \mathcal{E}_{e\mu}^{m} < &\sim 10^{-6} \\ \mathcal{E}_{e\tau}^{m} < &\sim 10^{-2} \\ \mathcal{E}_{\mu\tau}^{m} < &\sim 10^{-2} \end{aligned} \qquad \begin{array}{l} \mu \to e \ \gamma \\ \mu \to e \ \text{in nucleai} \\ \tau \ \text{decays} \end{aligned}$$

S. Bergmann et al. hep-ph/0004049 Z. Berezhiani and A. Rossi hep-ph/0111147

We search for gauge invariant SM extensions satisfying:

- Matter NSI are generated at tree level
- 4-charged fermion ops not generated at the same level
- No cancellations between diagrams with different messenger particles to avoid constraints
- The Higgs Mechanism is responsible for EWSB

S. Antusch, J. Baumann and EFM 0807.1003

Large NSI?

At d=6 only one possibility: charged scalar singlet

$$\mathcal{L}_{NSI}^{d=6,as} = c_{\alpha\beta\gamma\delta}^{d=6,as} \left(\overline{L}_{\alpha}^{c} i \sigma_{2} L_{\beta} \right) \left(\overline{L}_{\gamma}^{c} i \sigma_{2} L_{\delta}^{c} \right) \qquad \varepsilon_{\alpha\beta}^{m,e_{\mathrm{L}}} = \sum_{i} \frac{\lambda_{e\beta}^{i} \lambda_{e\alpha}^{i*}}{\sqrt{2} G_{F} m_{S_{i}}^{2}}$$

M. Bilenky and A. Santamaria hep-ph/9310302

Since $\lambda_{\alpha\beta} = -\lambda_{\beta\alpha}$ only $\varepsilon_{\mu\mu}$, $\varepsilon_{\mu\tau}$ and $\varepsilon_{\tau\tau} \neq 0$

Very constrained:

$$\begin{split} |\varepsilon_{\mu\mu}^{m,e_{\rm L}}| &< 8.2 \cdot 10^{-4} & \mu \rightarrow e \gamma \\ |\varepsilon_{\tau\tau}^{m,e_{\rm L}}| &< 8.4 \cdot 10^{-3} & \mu \text{ decays} \\ |\varepsilon_{\mu\tau}^{m,e_{\rm L}}| &< 1.9 \cdot 10^{-3} & \text{CKM unitarity} \end{split}$$

F. Cuypers and S. Davidson hep-ph/9310302 S. Antusch, J. Baumann and EFM 0807.1003

At d=8 more freedom

- Can add 2 *H* to break the symmetry between ν and l with the vev $(\overline{L}_{\beta}i\sigma_{2}H^{*})\gamma^{\mu}(H^{t}i\sigma_{2}L_{\alpha})(\overline{f}\gamma_{\mu}f) \longrightarrow -\nu^{2}/2 (\overline{\nu}_{\beta}\gamma^{\mu}\nu_{\alpha})(\overline{f}\gamma_{\mu}f)$
- Z. Berezhiani and A. Rossi hep-ph/0111147; S. Davidson et al hep-ph/0302093

There are 3 topologies to induce effective d=8 ops with *HHLLff* legs:

Just contributes to the scalar propagator after EWSB $v^{2/2} (\overline{L}_{\alpha}^{c} i \sigma_{2} L_{\beta}) (\overline{L}_{\gamma} i \sigma_{2} L_{\delta}^{c})$

Same as the d=6 realization with the scalar singlet

The Higgs coupled to the N_R selects ν after EWSB

$$(\overline{L}_{\beta}i\sigma_{2}H^{*})\gamma^{\mu}(H^{t}i\sigma_{2}L_{\alpha})(\overline{f}\gamma_{\mu}f) \longrightarrow -\nu^{2}/2 (\overline{\nu}_{\beta}\gamma^{\mu}\nu_{\alpha})(\overline{f}\gamma_{\mu}f)$$

Large NSI?

But can be related to non-unitarity and constrained

For the matter **NSI**

$$\begin{aligned} |\varepsilon_{\alpha\beta}^{m,f}| < \begin{pmatrix} 1.4 \cdot 10^{-3} & 6.4 \cdot 10^{-4} & 1.1 \cdot 10^{-3} \\ 6.4 \cdot 10^{-4} & 5.8 \cdot 10^{-4} & 7.3 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} & 7.3 \cdot 10^{-4} & 1.9 \cdot 10^{-3} \end{pmatrix} \frac{\hat{\rho}^{(f)}}{G_F} \end{aligned}$$

Where $\hat{\rho}^{(f)}$ is the largest eigenvalue of $\rho_{i\,i}^{(f)}$

And additional source, detector and matter NSI are generated through non-unitarity by the d=6 op

Mixed case, Higgs selects one ν and scalar singlet S the other

Large NSI?

Can be related to non-unitarity and the d=6 antisymmetric op

At d=8 we found no new ways of selecting ν

The d=6 constraints on non-unitarity and the scalar singlet apply also to the d=8 realizations

What if we allow for cancellations among diagrams?

Large NSI?

#	Dim. eight operator	\mathcal{C}^{1}_{IFH}	$\mathcal{C}^{3}_{I F H}$	$\mathcal{O}_{\rm NSI}$?	Mediators	#	Dim. eight operator	\mathcal{C}_{LLH}^{111}	\mathcal{C}^{331}_{LLH}	\mathcal{C}^{133}_{LLH}	\mathcal{C}^{313}_{LLH}	\mathcal{C}^{333}_{LLH}	$\mathcal{O}_{\rm NSI}$?	Mediators
$\frac{1}{\text{Combination } \bar{L}L}$								I)						
1	$(\bar{L}\gamma^{\rho}L)(\bar{E}\gamma_{\rho}E)(H^{\dagger}H)$	1			1^v_0	31	$(\bar{L}\gamma^{\rho}L)(\bar{L}\gamma_{\rho}L)(H^{\dagger}H)$	1						1_0^v
2	$(\bar{L}\gamma^{\rho}L)(\bar{E}H^{\dagger})(\gamma_{o})(HE)$	1			$1^{v}_{0} + 2^{L/R}_{2}$	32	$(L\gamma^{\rho}\vec{\tau}L)(L\gamma_{\rho}\vec{\tau}L)(H^{\dagger}H)$		1					3_0^v
3	$(\bar{L} \sim \rho L) (\bar{E} H^T) (\sim) (H^* E)$	1			$1^{v}_{-} + 2^{L/R}$	33	$(L\gamma^{\rho}L)(L\gamma_{\rho}\vec{\tau}L)(H^{\dagger}\vec{\tau}H)$			1	1			$1_0^v + 3_0^v$
4	$(\overline{L}, \overline{\rho}, \overline{\mu}, \overline{L})$	T	1		10 + 2 - 1/2 9v + 1v	34	$(L\gamma^{\rho}\tau L)(L\gamma_{\rho}L)(H^{\dagger}\tau H)$				1	1	($1_{0}^{\circ} + 3_{0}^{\circ}$
4	$(L\gamma' \uparrow L)(E\gamma_{\rho}E)(H^{\dagger}\uparrow H)$ $(\bar{L}z)^{\rho}\vec{z}L)(\bar{E}H^{\dagger})(z,\vec{z})(HE)$		1		$\mathbf{s}_0 + 1_0$ $\mathbf{s}_v + \mathbf{s}_{L/R}$	50	$(\overline{L} \sim \tau^{b} L)(H^{\dagger} \tau^{c} H)$					1	v	\mathbf{J}_0
3	$(L\gamma^{r\gamma}L)(E\Pi^{\gamma})(\gamma_{\rho\gamma})(\Pi E)$		1		$3_0 + 2_{-3/2}$	Cor	$\frac{(\bar{L}^{\beta}\bar{L}_{\alpha})(\bar{L}^{\delta}H)}{(\bar{L}^{\beta}L_{\alpha})(\bar{L}^{\delta}H)(H^{\dagger}L_{\alpha})}$	~)						
6	$\frac{(L\gamma^{\rho}\vec{\tau}L)(EH^{T})(\gamma_{\rho}\vec{\tau})(H^{*}E)}{2}$		1		$3_0^v + 2_{-1/2}^{\nu/n}$	36	$(\bar{L}\gamma^{\rho}L)(\bar{L}H)(\gamma_{\rho})(H^{\dagger}L)$	1/2		1/2			\checkmark	$1_0^v + 1_0^R$
Co	mbination $\bar{E}L$					37	$(\bar{L}\gamma^{\rho}L)(\bar{L}\vec{\tau}H)(\gamma_{\rho})(H^{\dagger}\vec{\tau}L)$	3/2		-1/2				$1_{0}^{v} + 3_{0}^{L/R}$
7	$(\bar{L}E)(\bar{E}L)(H^{\dagger}H)$	-1/2			$2^{s}_{\pm 1/2}$	38	$(\bar{L}\gamma^{ ho}\vec{\tau}L)(\bar{L}\vec{\tau}H)(\gamma_{ ho})(H^{\dagger}L)$		1/2		1/2	1/2	\checkmark	$1_{0}^{v} + 1_{0}^{R} + 3_{0}^{L/R}$
8	$(\bar{L}E)(\vec{\tau})(\bar{E}L)(H^{\dagger}\vec{\tau}H)$		-1/2		$2^{s}_{\pm 1/2}$	39	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}H)(\gamma_{\rho})(H^{\dagger}\vec{\tau}L)$		1/2		1/2	-1/2	\checkmark	$1_{0}^{v} + 1_{0}^{R} + 3_{0}^{L/R}$
9	$(\bar{L}H)(H^{\dagger}E)(\bar{E}L)$	-1/4	-1/4	\checkmark	$2^{s}_{+1/2} + 1^{R}_{0} + 2^{L/R}_{-1/2}$	40	$(-i\epsilon^{abc})(L\gamma^{\rho}\tau^{a}L)\times$		1		$^{-1}$			$3_{0}^{v}+1_{0}^{R}+3_{0}^{L/R}$
10	$(\bar{L}\vec{\tau}H)(H^{\dagger}E)(\vec{\tau})(\bar{E}L)$	-3/4	1/4		2^{s} $+ 3^{L/R}$ $+ 2^{L/R}$	-	$\frac{(L\tau^{o}H)(\gamma_{\rho})(H^{\dagger}\tau^{c}L)}{(\bar{\tau}^{c}H^{\dagger})(\bar{\tau}^{c}L)}$	T \						
11	$(\bar{L};\pi^2H^*)(H^TE)(i\tau^2)(\bar{E}L)$	1/4	-1/4		$2_{\pm 1/2}^{\pm 1/2} + 2_{0}^{\pm 1/2} + 2_{-1/2}^{\pm 1/2}$	Con	nbination $(L^{\beta}L_{\alpha})(L^{\beta}H^{\dagger})(L_{\gamma}H^{\dagger})$	1)		1 /9				$1v + 1^{L/R}$
10	$(\overline{L} \overrightarrow{I} \overrightarrow{I} 2)(\overline{I} \overrightarrow{L})(\overline{I} \overrightarrow{I})(\overline{L} \overrightarrow{L})$	1/4	-1/1 1/4		2 + 1/2 + 1 - 1 + 2 - 3/2	41	$(L\gamma^{r}L)(L\tau^{-}H^{*})(\gamma_{\rho})(H^{-}\tau^{-}L)$ $(\bar{L}\gamma^{\rho}L)(\bar{L}\vec{\tau}\tau^{2}H^{*})(\gamma_{\rho})(H^{T}\tau^{2}\vec{\tau}L)$	-1/2 -3/2		$\frac{1}{2}$				$1_0 + 1_{-1}$ $1^v + 3^{L/R}$
12	$\frac{(L\tau_1\tau^2H^2)(H^2E)(1\tau^2\tau)(EL)}{\Box}$	3/4	1/4		$\mathbf{z}_{+1/2}^{\circ} + 3_{-1}^{'} + 2_{-3/2}^{'}$	43	$(\bar{L}\gamma^{\rho}\tau L)(\bar{L}\tau \Pi^{-}\Pi^{-})(\gamma^{\rho})(\Pi^{-}\Pi^{-}\tau L)$ $(\bar{L}\gamma^{\rho}\tau L)(\bar{L}\tau \tau^{2}H^{*})(\gamma^{\rho})(H^{T}\tau^{2}L)$	-3/2	-1/2	-1/2	1/2	1/2		$3_{0}^{v} + 3_{-1}^{L/R} + 3_{-1}^{L/R}$
Co	mbination $E^{c}L$					44	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}i\tau^{2}H^{*})(\gamma_{\rho})(H^{T}i\tau^{2}\vec{\tau}L)$		-1/2		1/2	-1/2		$3_0^v + 1_{-1}^{L/R} + 3_{-1}^{L/R}$
13	$(L\gamma^{\rho}E^{c})(E^{c}\gamma_{\rho}L)(H^{\dagger}H)$	-1			$2_{-3/2}^{v}$	45	$(-i\epsilon^{abc})(\bar{L}\gamma^{\rho}\tau^{a}L)\times$		-1		-1	,	\checkmark	$3_0^v + 3_{-1}^{L/R}$
14	$(\bar{L}\gamma^{\rho}E^{c})(\vec{\tau})(\overline{E^{c}}\gamma_{\rho}L)(H^{\dagger}\vec{\tau}H)$		$^{-1}$		$2^v_{-3/2}$		$(\bar{L}\tau^b \mathrm{i}\tau^2 H^*)(\gamma_{\rho})(H^T \mathrm{i}\tau^2 \tau^c L)$							
15	$(\bar{L}H)(\gamma^{\rho})(H^{\dagger}E^{c})(\overline{E^{c}}\gamma_{\rho}L)$	-1/2	-1/2	\checkmark	$2^{v}_{-3/2} + 1^{R}_{0} + 2^{L/R}_{+3/2}$	Con	mbination $(\overline{L}^{\beta}(L^c)^{\delta})((\overline{L^c})_{\alpha}L_{\gamma})$	$(H^{\dagger}H)$						
16	$(\bar{L}\vec{\tau}H)(\gamma^{\rho})(H^{\dagger}E^{c})(\vec{\tau})(\overline{E^{c}}\gamma_{\rho}L)$	-3/2	1/2		$2^{v}_{2/2} + 3^{L/R}_{0} + 2^{L/R}_{12/2}$	46	$(Li\tau^2 L^c)(\overline{L^c}i\tau^2 L)(H^{\dagger}H)$	1/4	-1/4				\checkmark	1^{s}_{-1}
17	$(\overline{L}i\tau^2 H^*)(\gamma^{\rho})(H^T E^c)(i\tau^2)(\overline{E^c}\gamma_o L)$	-1/2	1/2		$2^{v}_{a,a} + 1^{L/R}_{1} + 2^{L/R}_{1,a}$	47	$\frac{(L\tau i\tau^2 L^c)(L^c i\tau^2 \tau L)(H^{\dagger}H)}{(\bar{L} = 2L^c)(\bar{L} = 2\bar{L})(H^{\dagger} = H)}$	-3/4	-1/4	1 / 4	1 / 4	1 / 4	/	3^{s}_{-1}
18	$(\bar{L}\vec{\tau}i\tau^2H^*)(\gamma^\rho)(H^TE^c)(i\tau^2\vec{\tau})(\overline{E^c}\gamma_oL)$	-3/2	-1/2		$2^{v}_{2,0} + 3^{L/R}_{1} + 2^{L/R}_{1,1/2}$	48 49	$(L^{\dagger}\tau^{-}L^{c})(L^{c}^{\dagger}\tau^{-}\tau L)(H^{\dagger}\tau H)$ $(\bar{L}\vec{\tau}i\tau^{2}L^{c})(\bar{L}^{c}i\tau^{2}L)(H^{\dagger}\vec{\tau}H)$			$\frac{1}{4}$ -1/4	-1/4 1/4	-1/4 -1/4	~	$1^{s}_{-1} + 3^{s}_{-1} \\ 1^{s}_{-1} + 3^{s}_{-1}$
Co	$\frac{1}{1}$	/	/		-3/2 -1 $+1/2$	50	$(-i\epsilon^{abc})(\bar{L}\tau^a i\tau^2 L^c) \times$			-1/2	-1/2	-/ -		3^{s}_{-1}
10	$(\bar{I} F)(\bar{F} H)(H^{\dagger} I)$	1/4	1 / 4	/	$9^s + 1^R + 9^{L/R}$		$(\overline{L^c} \mathrm{i} \tau^2 \tau^b L) (H^{\dagger} \tau^c H)$,	1			-1
19	$(\underline{E}\underline{E})(\underline{E}\underline{H})(\underline{H}^{\dagger}\underline{E}\underline{L})$	-1/4	-1/4	v	$2_{+1/2} + 1_0 + 2_{-1/2}$	Con	nbination $(\bar{L}^{\beta}H^{\dagger})((L^{c})^{\delta}H)((\bar{L}^{c})^{\delta}H$	$(L^c)_{\alpha}L_{\gamma})$						
20	$(LE)(\tau)(EH)(H^{\dagger}\tau L)$	-3/4	1/4		$\mathbf{z}_{+1/2}^{\circ} + 3_{0}^{\circ} + 2_{-1/2}^{\circ}$	51	$(\bar{L}i\tau^2H^*)(H^TL^c)(\overline{L^c}i\tau^2L)$	1/8	-1/8	1/8	-1/8	1/8	\checkmark	$1_{-1}^s + 1_0^{\scriptscriptstyle L} + 1_{-1}^{\scriptscriptstyle L/R}$
21	$(LH)(\gamma^{\rho})(H^{\dagger}L)(E\gamma_{\rho}E)$	1/2	1/2	\checkmark	$1_0^v + 1_0^R$	52	$(L\vec{\tau}\mathrm{i}\tau^2H^*)(H^TL^c\vec{\tau})(\overline{L^c}\mathrm{i}\tau^2L)$	-3/8	3/8	1/8	-1/8	1/8	\checkmark	$1_{-1}^{s} + 3_{0}^{L/R} + 1_{-1}^{L/R}$
22	$(L\vec{\tau}H)(\gamma^{\rho})(H^{\dagger}\vec{\tau}L)(E\gamma_{\rho}E)$	3/2	-1/2		$1_0^v + 3_0^{L/R}$	53	$(L\vec{\tau}i\tau^2H^*)(H^TL^c)(L^ci\tau^2\vec{\tau}L)$	-3/8	-1/8	-3/8	-1/8	1/8	\checkmark	$3_{-1}^{s} + 1_{0}^{L} + 3_{-1}^{L/R}$
23	$(L\gamma^{\rho}E^{c})(E^{c}H)(\gamma^{\rho})(H^{\dagger}L)$	-1/2	-1/2	\checkmark	$2_{-3/2}^v + 1_0^{\scriptscriptstyle R} + 2_{+3/2}^{\scriptscriptstyle L/R}$	54	$(L_1\tau^2 H^*)(H^1 \tau L^c)(L^c_1\tau^2 \tau L)$	3/8	1/8	-1/8	-3/8	-1/8		$3_{-1}^s + 3_0^{L/R} + 1_{-1}^{L/R}$
24	$(\bar{L}\gamma^{\rho}E^{c})(\overline{E^{c}}H)(\gamma^{\rho})(H^{\dagger}L)$	-3/2	1/2		$2_{-3/2}^v + 3_0^{L/R} + 2_{+3/2}^{L/R}$	99	$(-1\epsilon^{-1})(L\tau^{-1}\tau^{-H^{-1}})\times$ $(H^{T}\tau^{b}I^{c})(\overline{I^{c}};\tau^{2}\tau^{c}I)$	3/4	1/4	-1/4	1/4	1/4		$3_{-1}^{2} + 3_{0}^{2} + 1_{-1}^{2}$
Co	mbination HL	$\frac{(\Pi^{-1}L^{-1})(L^{-1}I^{-1}L)}{\text{nbination}(\overline{L}^{\beta}(L^{c})^{\delta})(H^{\dagger}(\overline{L^{c}})_{-})}$	(L,H)											
25	$(\bar{L}E)(\mathrm{i}\tau^2)(\bar{E}H^*)(H^T\mathrm{i}\tau^2L)$	1/4	-1/4		$2_{+1/2}^{s} + 1_{-1}^{L/R} + 2_{-2/2}^{L/R}$	56	$(\overline{L}i\tau^2 L^c)(\overline{L^c}H^*)(H^Ti\tau^2 L)$	1/8	-1/8	-1/8	1/8	1/8	\checkmark	$1^{s}_{1} + 1^{L}_{0} + 1^{L/R}_{1}$
26	$(\bar{L}E)(\vec{\tau}i\tau^2)(\bar{E}H^*)(H^Ti\tau^2\vec{\tau}L)$	$\frac{3}{4}$	1/4		$2^{s}_{1,1/2} + 3^{L/R}_{1} + 2^{L/R}_{2/2}$	57	$(\bar{L}\vec{\tau}\mathrm{i}\tau^2 L^c)(\overline{L^c}\vec{\tau}H^*)(H^T\mathrm{i}\tau^2 L)$	3/8	1/8	-3/8	-1/8	-1/8		$3_{-1}^{s} + 3_{0}^{L/R} + 1_{-1}^{L/R}$
27	$(\overline{L}i\tau^2 H^*)(\gamma^\rho)(H^Ti\tau^2 L)(\overline{E}\gamma E)$	-1/2	1/2		$1^{v} \pm 1^{L/R}$	58	$(\bar{L}i\tau^2 L^c)(\overline{L^c}\vec{\tau}H^*)(H^Ti\tau^2\vec{\tau}L)$	-3/8	3/8	-1/8	1/8	1/8	\checkmark	$1_{-1}^{s} + 3_{0}^{L/R} + 3_{-1}^{L/R}$
28	$(L\vec{\tau}i\tau^2H^*)(\gamma^\rho)(H^Ti\tau^2\vec{\tau}L)(E\sim E)$	$-\frac{1}{2}$	-1/2		10 + 1 - 1 $1v + 3^{L/R}$	59	$(\bar{L}\vec{\tau}\mathrm{i}\tau^2 L^c)(\overline{L^c}H^*)(H^T\mathrm{i}\tau^2\vec{\tau}L)$	-3/8	-1/8	-1/8	-3/8	1/8	5	$3_{-1}^{s} + 1_{0}^{L} + 3_{-1}^{L/R}$
20	$(\bar{L} \sim \rho E^c)(i\tau^2)(\bar{E} = H^*)(\gamma)(H^T = I^2)(E^T = \rho E^c)$	$\frac{3}{2}$	-1/2		$2^{v} + 1^{L/R} + 2^{L/R}$	60	$(-i\epsilon^{abc})(L\tau^a i\tau^2 L^c) \times$	3/4	1/4	1/4	-1/4	1/4		$3_{-1}^s + 3_0^{L/R} + 3_{-1}^{L/R}$
29	$(\overline{L} \circ \rho E^{c})(\overrightarrow{z} - 2)(\overline{E^{c}} II^{*})(\overrightarrow{z} - 1)(\overline{I} - 1)(\overline{L})$	1/2 2/2	1/0		-3/2 + 1 - 1 + 2 + 1/2		$(L^c \tau^o H^*)(H^T \mathrm{i} \tau^2 \tau^c L)$							
30	$(L\gamma^r E^-)(\tau_1\tau^-)(E^\circ H^-)(\gamma_\rho)(H^+_1\tau^-\tau L)$	3/2	1/2		$\mathbf{z}_{-3/2} + 3_{-1} + 2_{+1/2}$									

Large NSI?

#	Dim. eight operator	\mathcal{C}^{111}_{LLH}	\mathcal{C}^{331}_{LLH}	\mathcal{C}^{133}_{LLH}	\mathcal{C}^{313}_{LLH}	\mathcal{C}^{333}_{LLH}	$\mathcal{O}_{\rm NSI}$?	Mediators	
Com	Dination $(\bar{L}^{\beta}L_{\alpha})(\bar{L}^{\delta}L_{\gamma})(H^{\dagger}H)$	()							
31	$(\bar{L}\gamma^{\rho}L)(\bar{L}\gamma_{\rho}L)(H^{\dagger}H)$	1						1_0^v	
32	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}\gamma_{\rho}\vec{\tau}L)(H^{\dagger}H)$		1					3_0^v	
33	$(\bar{L}\gamma^{\rho}L)(\bar{L}\gamma_{\rho}\vec{\tau}L)(H^{\dagger}\vec{\tau}H)$			1				$1^v_0 + 3^v_0$	
34	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}\gamma_{\rho}L)(H^{\dagger}\vec{\tau}H)$				1			$1^v_0 + 3^v_0$	
35	$(-i\epsilon^{abc})(\bar{L}\gamma^{ ho}\tau^{a}L) imes$					1	\checkmark	3_0^v	
	$(\bar{L}\gamma_{\rho}\tau^{b}L)(H^{\dagger}\tau^{c}H)$								
Combination $(\bar{L}^{\beta}L_{\alpha})(\bar{L}^{\delta}H)(H^{\dagger}L_{\gamma})$									
36	$(\bar{L}\gamma^{\rho}L)(\bar{L}H)(\gamma_{\rho})(H^{\dagger}L)$	1/2		1/2			\checkmark	$1_0^v + 1_0^R$	
37	$(\bar{L}\gamma^{\rho}L)(\bar{L}\vec{\tau}H)(\gamma_{\rho})(H^{\dagger}\vec{\tau}L)$	3/2		-1/2				$1_0^v + 3_0^{L/R}$	
38	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}\vec{\tau}H)(\gamma_{\rho})(H^{\dagger}L)$		1/2		1/2	1/2	\checkmark	$1_0^v + 1_0^{\scriptscriptstyle R} + 3_0^{\scriptscriptstyle L/R}$	
39	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}H)(\gamma_{\rho})(H^{\dagger}\vec{\tau}L)$		1/2		1/2	-1/2	\checkmark	$1_0^v + 1_0^{\scriptscriptstyle R} + 3_0^{\scriptscriptstyle L/R}$	
40	$(-i\epsilon^{abc})(\bar{L}\gamma^{\rho}\tau^{a}L)\times$		1		-1			$3_0^v + 1_0^R + 3_0^{L/R}$	
	$(\bar{L}\tau^b H)(\gamma_\rho)(H^\dagger \tau^c L)$								
tick	means selects v at d=		bold means induces 4-charged fermion						
\ <u>\</u>	hout 4-charged formior	i	at d=6, have to cancel it!!						
VVIL		1			,				

There is always a 4 charged fermion op that needs canceling

Toy model

$$\mathscr{L} = \mathscr{L}_{\rm SM} - (y)_{\beta}{}^{\gamma} (L^{\beta})^{i} E_{\gamma} \Phi_{i} - (g)_{\beta\delta} (L^{\beta})^{i} \gamma^{\rho} (E^{c})^{\delta} (V_{\rho})_{i} + \lambda_{1s} (H^{\dagger} H) (\Phi^{\dagger} \Phi) + \lambda_{3s} (H^{\dagger} \vec{\tau} H) (\Phi^{\dagger} \vec{\tau} \Phi) + \lambda_{1v} (H^{\dagger} H) (V_{\rho}^{\dagger} V^{\rho}) + \lambda_{3v} (H^{\dagger} \vec{\tau} H) (V_{\rho}^{\dagger} \vec{\tau} V^{\rho}) + \text{h.c.} + ..$$

Cancelling the 4-charged fermion ops.

$$-2(g^{\dagger})^{\gamma\alpha}(g)_{\beta\delta} + (y^{\dagger})_{\delta}^{\alpha}(y)_{\beta}^{\gamma} = 0$$

$$\lambda_{1s} + \lambda_{1v} = \lambda_{3s} + \lambda_{3v} \neq 0$$

$$(\overline{L}_{\alpha}i\sigma_{2}H^{*})\gamma^{\mu}(H^{t}i\sigma_{2}L_{\beta})(\overline{E}_{\gamma}\gamma_{\mu}E_{\delta})$$

Even if we arrange to have

$$\frac{O}{M^{4}} (\overline{L}_{\alpha} i \sigma_{2} H^{*}) \gamma^{\mu} (H^{\dagger} i \sigma_{2} L_{\beta}) (\overline{E}_{\gamma} \gamma_{\mu} E_{\delta})$$

$$= \frac{O}{2M^{4}} [(\overline{L}_{\alpha} \gamma^{\mu} L_{\beta}) (H^{\dagger} H) - (\overline{L}_{\alpha} \gamma^{\mu} \overline{\tau} L_{\beta}) (H^{\dagger} \overline{\tau} H)] (\overline{E}_{\gamma} \gamma_{\mu} E_{\delta})$$

Even if we arrange to have

$$\frac{O}{M^{4}} (\overline{L}_{\alpha} i \sigma_{2} H^{*}) \gamma^{\mu} (H^{\dagger} i \sigma_{2} L_{\beta}) (\overline{E}_{\gamma} \gamma_{\mu} E_{\delta})$$

$$= \frac{O}{2M^{4}} [(\overline{L}_{\alpha} \gamma^{\mu} L_{\beta}) (H^{\dagger} H) - (\overline{L}_{\alpha} \gamma^{\mu} \overline{\tau} L_{\beta}) (H^{\dagger} \overline{\tau} H)] (\overline{E}_{\gamma} \gamma_{\mu} E_{\delta})$$

We can close the Higgs loop, the triplet terms vanishes and

$$\frac{O}{2M^4} \frac{k\Lambda^2}{16\pi^2} \left(\overline{L}_{\alpha} \gamma^{\mu} L_{\beta} \right) \left(\overline{E}_{\gamma} \gamma_{\mu} E_{\delta} \right)$$

NSIs and 4 charged fermion ops induced with equal strength

NSI in loops

This loop has to be added to:

Used to set loop bounds on $\mathcal{E}_{e\mu}$ through the log divergence

However the log cancels when adding the diagrams...

NSI in loops

$$\frac{O}{2M^4} \frac{k\Lambda^2}{16\pi^2} \left(\overline{L}_{\alpha} \gamma^{\mu} L_{\beta} \right) \left(\overline{E}_{\gamma} \gamma_{\mu} E_{\delta} \right)$$

The loop contribution is a quadratic divergence

The coefficient k depends on the full theory completion

If no new physics below NSI scale $\Lambda = M$

Extra fine-tuning required at loop level to have k=0 or loop contribution dominates when $1/16\pi^2 > v^2/M^2$

- SM extensions to accommodate v masses often lead to a non-unitary lepton mixing matrix
 - Present oscillation data can only measure half the matrix elements
 - Deviations from unitarity tightly constrained by decays
 - All matrix elements can be measured
 - Future facilities still sensitive to unitary deviations
- Non-unitarity is a particular realization of NSI, but very constrained

- Models leading "naturally" to NSI imply:
 - O(10⁻²-10⁻³) bounds on the NSI
 - Relations between matter and production/detection NSI
- Probing O(10⁻³) NSI at future facilities very challenging but not impossible, near detectors excellent probes
- Saturating the mild model-independent bounds on matter NSI and decoupling them from production/detection requires strong fine tuning

Other models for \boldsymbol{v} masses

Type I seesaw Minkowski, Gell-Mann, Ramond, Slansky, Yanagida, Glashow, Mohapatra, Senjanovic, ...

 N_R fermionic singlet

Type II seesaw Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle, ...

 \varDelta scalar triplet

Type III seesaw

Foot, Lew, He, Joshi, Ma, Roy, Hambye et al., Bajc et al., Dorsner, Fileviez-Perez

 Σ_R fermionic triplet

Different d=6 ops

Type I:
$$c^{d=6}_{lphaeta}\left(\overline{\ell_{Llpha}} ilde{\phi}
ight)i\partial\hspace{-.15cm}\left(ilde{\phi}^{\dagger}\ell_{Leta}
ight)$$

Type III:
$$c^{d=6}_{lphaeta}\left(\overline{\ell_{Llpha}}ec{ au} ilde{\phi}
ight)iD\!\!D\left(ilde{\phi}^\daggerec{ au}_{Leta}
ight)$$

non-unitary mixing in CC
FCNC for v

- non-unitary mixing in CC
- FCNC for ν
- FCNC for charged leptons

Type II:
$$\delta \mathcal{L}_{4F} = \frac{1}{M_{\Delta}^2} \left(\overline{\ell_{L}} Y_{\Delta} \overrightarrow{\tau} \ell_{L} \right) \left(\overline{\ell_{L}} \overrightarrow{\tau} Y_{\Delta}^{\dagger} \widetilde{\ell_{L}} \right)$$
 • LFV 4-fermions interactions

A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

Types II and III induce flavour violation in the charged lepton sector Stronger constraints than in Type I

Low scale seesaws

But

$$d_5 = m_v = m_D^t M_N^{-1} m_D$$
 so

$$d_6 = m_D^{\dagger} M_N^{-2} m_D \approx \frac{m_v}{M_N} \parallel \parallel$$

The d=5 and d=6 operators are independent

Approximate $U(1)_L$ symmetry can keep d=5 (neutrino mass) small and allow for observable d=6 effects

See e.g. A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

The d=5 and d=6 operators are independent

Approximate $U(1)_L$ symmetry can keep d=5 (neutrino mass) small and allow for observable d=6 effects

See e.g. A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

Inverse (Type I) seesaw $\mu \ll M$ Type II seesaw L= 1 -1 1 $\begin{pmatrix} 0 & m_{D_1} & 0 \\ m_{D_1} & 0 & M_{N_1} \\ 0 & M_{N_1} & \mu \end{pmatrix}$ $\overline{\ell_L} Y_\Delta(\overrightarrow{\tau} \cdot \overrightarrow{\Delta}) \ell_L \quad \mu_\Delta \widetilde{\phi}^\dagger (\overrightarrow{\tau} \cdot \overrightarrow{\Delta})^\dagger \phi$ $d_5 = m_D^t M_N^{-1} \mu M_N^{-1} m_D$ $d_6 = m_D^\dagger M_N^{-2} m_D$ Mage, Wetterich, Lazarides, Shafi,

Wyler, Wolfenstein, Mohapatra, Valle, Bernabeu, Santamaría, Vidal, Mendez, González-García, Branco, Grimus, Lavoura, Kersten, Smirnov,.... Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle,...

Atmospheric + K2K: $\Delta_{12} \approx 0$ $\hat{P}(v_{\mu} \to v_{\mu}) \cong \left(\left| N_{\mu 1} \right|^{2} + \left| N_{\mu 2} \right|^{2} \right)^{2} + \left| N_{\mu 3} \right|^{4} + 2 \left(\left| N_{\mu 1} \right|^{2} + \left| N_{\mu 2} \right|^{2} \right) \left| N_{\mu 3} \right|^{2} \cos(\Delta_{23})$ UNITARITY 0.8 1. Degeneracy $|N_{\mu 1}|^2 + |N_{\mu 2}|^2$ 6.0 9.0 9.0 $\left|N_{\mu 1}\right|^{2} + \left|N_{\mu 2}\right|^{2} \leftrightarrow \left|N_{\mu 3}\right|^{2}$ **2.** $|N_{\mu 1}|^2$, $|N_{\mu 2}|^2$ 0.2 cannot be disentangled 0 0 0.2 0.40.6 0.8 $|N_{\mu 3}|^2$

N elements from oscillations: *e*-row

Only disappearance exps \rightarrow information only on $|N_{\alpha i}|^2$

CHOOZ:
$$\Delta_{12} \approx 0$$

 $\hat{P}(\bar{v}_e \to \bar{v}_e) \cong (|N_{e1}|^2 + |N_{e2}|^2)^2 + |N_{e3}|^4 + 2(|N_{e1}|^2 + |N_{e2}|^2)N_{e3}|^2 \cos(\Delta_{23})$
K2K $(v_\mu \to v_\mu)$: Δ_{23}
1. Degeneracy
 $|N_{e1}|^2 + |N_{e2}|^2 \leftrightarrow |N_{e3}|^2$
2. $|N_{e1}|^2$, $|N_{e2}|^2$
cannot be disentangled
UNITARITY
 $\frac{|N_{e1}|^2}{2}$, $|N_{e2}|^2$
 $Cannot be disentangled$

KamLAND: $\Delta_{23} >> 1$

$$\hat{P}(\overline{V}_{e} \to \overline{V}_{e}) \cong |N_{e1}|^{4} + |N_{e2}|^{4} + |N_{e3}|^{4} + 2|N_{e1}|^{2}|N_{e2}|^{2} \cos(\Delta_{12})$$

 $\begin{cases} \left|N_{e1}\right|^{2} + \left|N_{e2}\right|^{2} \approx 1 \\ \left|N_{e3}\right|^{2} \approx 0 \end{cases}$

 \rightarrow first degeneracy solved

KamLAND: $\Delta_{23} >> 1$

$$\hat{P}(\overline{V}_{e} \to \overline{V}_{e}) \cong |N_{e1}|^{4} + |N_{e2}|^{4} + |N_{e3}|^{4} + 2|N_{e1}|^{2}|N_{e2}|^{2}\cos(\Delta_{12})$$

 $\begin{cases} \left|N_{e1}\right|^{2} + \left|N_{e2}\right|^{2} \approx 1\\ \left|N_{e3}\right|^{2} \approx 0 \end{cases}$

 \rightarrow first degeneracy solved

SNO:

$$\hat{P}(v_e \to v_e) \cong 0.1 |N_{e1}|^2 + 0.9 |N_{e2}|^2$$

 \rightarrow all $|N_{ei}|^2$ determined

(NN^{\dagger}) from decays: G_{F}

• W decays

• Universality tests

Quarks are detected as mass eigenstates \rightarrow we can directly measure $|V_{ab}|$

With V_{ab} we check unitarity conditions: ex: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0008 \pm 0.0011$

 \rightarrow Measurements of V_{CKM} elements relies on U_{PMNS} unitarity

Quarks are detected as mass eigenstates \rightarrow we can directly measure $|V_{ab}|$

With V_{ab} we check unitarity conditions: ex: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0008 \pm 0.0011$

 \rightarrow Measurements of V_{CKM} elements relies on U_{PMNS} unitarity

- decays \rightarrow only (NN[†]) and (N[†]N)
- With leptons: N elements \rightarrow we need oscillations
 - to study the unitarity of N: no assumptions on V_{CKM}

v oscillation in matter

$$-L^{\text{int}} = \sqrt{2}G_F n_e \overline{v}_e \gamma^0 v_e - \frac{1}{\sqrt{2}}G_F n_n \sum_{\alpha} \overline{v}_{\alpha} \gamma^0 v_{\alpha}$$
$$V_{CC} V_{CC} V_{NC}$$

 $i\frac{d}{dt}\begin{pmatrix} \mathbf{v}_e\\ \mathbf{v}_\mu \end{pmatrix} = \begin{bmatrix} U^* \begin{pmatrix} E_1 & 0\\ 0 & E_2 \end{pmatrix} U^t + \begin{pmatrix} V_{CC} - V_{NC} & 0\\ 0 & -V_{NC} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \mathbf{v}_e\\ \mathbf{v}_\mu \end{pmatrix}$

2 families

v oscillation in matter

$$-L^{\text{int}} = \sqrt{2}G_F n_e \overline{V}_e \gamma^0 V_e + \frac{1}{\sqrt{2}}G_F n_n \sum_{\alpha} \overline{V}_{\alpha} \gamma^0 V_{\alpha}$$
$$V_{CC} + V_{NC}$$

$$i\frac{d}{dt}\begin{pmatrix} V_e \\ V_{\mu} \end{pmatrix} = \begin{bmatrix} U^* \begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix} U^t + \begin{pmatrix} V_{CC} - V_{NC} & 0 \\ 0 & -V_{NC} \end{pmatrix} \end{bmatrix} \begin{pmatrix} V_e \\ V_{\mu} \end{pmatrix}$$

2 families

1. non-diagonal elements

2. NC effects do not disappear

Large NSI?

General basis for d=8 ops. with two fermions and two *H*

$$\begin{array}{l} (\mathcal{O}_{LEH}^{1})_{\alpha\gamma}^{\beta\delta} = (\bar{L}^{\beta}\gamma^{\rho}L_{\alpha})(\bar{E}^{\delta}\gamma_{\rho}E_{\gamma})\left(H^{\dagger}H\right), \\ (\mathcal{O}_{LEH}^{3})_{\alpha\gamma}^{\beta\delta} = (\bar{L}^{\beta}\gamma^{\rho}\tau L_{\alpha})(\bar{E}^{\delta}\gamma_{\rho}E_{\gamma})\left(H^{\dagger}\tau H\right), \\ (\mathcal{O}_{LLH}^{111})_{\alpha\gamma}^{\beta\delta} = (\bar{L}^{\beta}\gamma^{\rho}L_{\alpha})(\bar{L}^{\delta}\gamma_{\rho}\tau L_{\gamma})(H^{\dagger}H), \\ (\mathcal{O}_{LLH}^{331})_{\alpha\gamma}^{\beta\delta} = (\bar{L}^{\beta}\gamma^{\rho}\tau L_{\alpha})(\bar{L}^{\delta}\gamma_{\rho}\tau L_{\gamma})(H^{\dagger}\tau H), \\ (\mathcal{O}_{LLH}^{313})_{\alpha\gamma}^{\beta\delta} = (\bar{L}^{\beta}\gamma^{\rho}\tau L_{\alpha})(\bar{L}^{\delta}\gamma_{\rho}\tau L_{\gamma})(H^{\dagger}\tau H), \\ (\mathcal{O}_{LLH}^{313})_{\alpha\gamma}^{\beta\delta} = (\bar{L}^{\beta}\gamma^{\rho}\tau L_{\alpha})(\bar{L}^{\delta}\gamma_{\rho}L_{\gamma})(H^{\dagger}\tau H), \\ (\mathcal{O}_{LLH}^{333})_{\alpha\gamma}^{\beta\delta} = (-i\epsilon^{abc})(\bar{L}^{\beta}\gamma^{\rho}\tau^{a}L_{\alpha})(\bar{L}^{\delta}\gamma_{\rho}\tau^{b}L_{\gamma})(H^{\dagger}\tau^{c}H), \end{array}$$

Z. Berezhiani and A. Rossi hep-ph/0111147 B. Gavela, D. Hernández, T. Ota and W. Winter 0809.3451

To cancel the 4-charged fermion ops:

 $\mathcal{C}_{LEH}^{111} + \mathcal{C}_{LEH}^{331} = 0, \quad \mathcal{C}_{LLH}^{111} + \mathcal{C}_{LLH}^{331} + \mathcal{C}_{LLH}^{133} + \mathcal{C}_{LLH}^{313} = 0, \quad \mathcal{C}_{LLH}^{333} \text{ arbitr.}$

but

$$\mathcal{C}_{LEH}^{\mathbf{111}} + \mathcal{C}_{LEH}^{\mathbf{331}} = 0 \longrightarrow (\overline{L}_{\alpha} i \sigma_2 H^*) \gamma^{\mu} (H^t i \sigma_2 L_{\beta}) (\overline{E}_{\gamma} \gamma_{\mu} E_{\delta}) \qquad N_{R}$$

and

$$C_{LLH}^{111} + C_{LLH}^{331} = 0 \longrightarrow (\overline{L}_{\alpha}^{c} i \sigma_{2} L_{\beta}) (\overline{L}_{\gamma} i \sigma_{2} L_{\delta}^{c}) (H^{\dagger} H) \text{ scalar singlet}$$

$$C_{LLH}^{111} + C_{LLH}^{313} = 0 \longrightarrow (\overline{L}_{\alpha}^{c} i \sigma_{2} H^{*}) \gamma^{\mu} (H^{t} i \sigma_{2} L_{\beta}) (\overline{L}_{\gamma} \gamma_{\mu} L_{\delta}) N_{R}$$

$$C_{LLH}^{111} + C_{LLH}^{133} = 0 \longrightarrow (\overline{L}_{\alpha}^{c} \gamma_{\mu} L_{\beta}) (\overline{L}_{\gamma}^{c} i \sigma_{2} H^{*}) \gamma^{\mu} (H^{t} i \sigma_{2} L_{\delta}) N_{R}$$

$$C_{LLH}^{133} + C_{LLH}^{313} = 0 \longrightarrow C_{LLH}^{333} \text{ after a Fierz transformation}$$