Heavy quark current correlators for precise quark masses and strong coupling constant

Christian Sturm

Physics Department Brookhaven National Laboratory High Energy Theory Group Upton, New York

- I. Introduction & Motivation
- II. Methods & Calculation
- III. Analysis & Results
- IV. Summary & Conclusion

C. Sturm

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN 0/32

Introduction

Motivation

Precise determination of quark masses and strong coupling:

- Quark masses/strong coupling are fundamental parameters of the Standard Model
- Quark masses play an important role in Higgs physics: e.g. decay:

 $\Gamma(H
ightarrow bar{b}) = rac{G_f M_h}{4\sqrt{2}\pi} m_b^2 (1 + \mathcal{O}(lpha_s) + \dots), \quad \Gamma(H
ightarrow car{c}) \sim m_c^2$

- Flavor physics
- Experiments at different energies allow tests of energy dependence of α_s(μ) based on the RGE
- Convergence of the three gauge couplings to common value might reveal possibilities of embedding the SM in the framework of GUT
- Comparison with other methods

Methods

C Sturm

Here:

2 Methods:

I. Method: m_c and m_b from measured *R*-ratio II. Method: m_c and α_s from lattice simulations

Both methods require the perturbative computation of heavy quark correlators

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN 2/32

Method I: R-ratio

Experiment

C. Sturm

Fermilab, February 5th, 2009

Introduction & Motivation	Methods & Calculation	Analysis & Results	Summary & Conclusion
Method I Theory			
Heavy qu	ark correlator		
$\Pi^{\mu u}(oldsymbol{q},oldsymbol{j})$	$=i\int dx e^{iqx}\langle 0 Tj^{\mu}$	$(x)j^ u(0) 0 angle$	
Here:	$j^{\mu}(x)$ electromagn	etic heavy quark <u>v</u>	ector current
Diagram	natically:		
$\Pi^{\mu\nu}(\boldsymbol{q},\boldsymbol{j}) = \cdot $	4-loop-QCD-c	xorrections	ж. Сана рана и стана
Relation	to polarization funct $\Pi^{\mu u}(q)=(-g^{\mu u})$	tion Π (q^2) : $(q^2 + q^\mu q^ u)$ Π (q^2)	

C. Sturm

BROOKHAVEN 4/32

Method I Relation: Experiment ⇐⇒ Theory

With the help of dispersion-relations

$$\Pi(q^2) = \Pi(q^2 = 0) + \frac{q^2}{12\pi^2} \int ds \frac{R(s)}{s(s-q^2)}$$

C. Sturm

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN 5/32

Method I

Relation: Theory \iff Experiment

Exp. moments are related to derivatives of $\Pi(q^2)$ at $q^2 = 0$:

$$\frac{12\pi}{n!} \left(\frac{d}{dq^2}\right)^n \Pi(q^2) \Big|_{q^2=0} = \mathcal{M}_n^{\exp} = \int \frac{ds}{s^{n+1}} \mathcal{R}^{\exp}(s^{n+1}) \mathcal{R}$$

In terms of expansion coefficients:

$$\Pi(q^2) = \frac{3Q_f^2}{16\pi^2} \sum_n \overline{C}_n^v \left(\frac{q^2}{4m^2}\right)^n, \qquad \begin{array}{l} Q_f: \text{ charge of quark} \\ m = m(\mu) : \overline{\text{MS}} \text{ mass} \\ \overline{C}_n^v \text{ can be calculated perturbatively} \end{array}$$

First and higher derivatives of Π(q²) allow direct <u>determination of the MS charm</u>- and bottom-quark mass:

$$\overline{m}(\mu) = \frac{1}{2} \left(Q_f^2 \frac{9}{4} \frac{\overline{C}_n^{\nu}}{\mathcal{M}_n^{\text{exp}}} \right)^{1/(2n)}$$

Theory

c-quarks: Novikov et al. '78; b-quarks: Reinders et al. '85 \overline{C}_n^V depend on the quark mass through $\log(m(\mu)^2/\mu^2)$

C. Sturm

```
Fermilab, February 5th, 2009
```

Method II: Data from Lattice

I. Allison, E. Dalgic, C.T.H. Davies, E. Follana, R.R. Horgan, K. Hornbostel, G.P. Lepage, C. McNeile, J. Shigemitsu, H. Trottier, R.M. Woloshyn(HPQCD), K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, C.S.

Idea: Replace moments obtained from *R*-ratio by computation of correlator through lattice simulations

Allows to substitute electromagnetic current by pseudoscalar operator $r_{2k+2} = (\overline{C}_k^p / \overline{C}_k^{p,(0)})^{\frac{1}{2k-2}}$, $_{k=2,3,...} \overline{C}_k^p$: expansion coeff. of pseudoscalar correlator

Quark mass:

Pert. theory

Lattice Sim. нросо

Strong coupling:

 $r_4(\alpha_s, \mu/m_c) = \mathcal{R}_4^{LQCD}$

+ ratios of moments, weak dependence on quark mass

C. Sturm

Fermilab, February 5th, 2009

BROOKHAVEN 7/32

Pert. calculation of expansion coefficients

Expansion diagrammatically:

 \hookrightarrow One-scale multi-loop integrals in pQCD

Sample diagrams

■ 3-loop(order α_s^2) coefficients \overline{C}_n up to n=8^{Chetyrkin,Kühn,Steinhauser 96} up to higher moments $n \sim 30$ Czakon et al. 06; Maierhöfer, Maier, Marquard 07 for correlators VV, AA, PP, SS

Calculation

Techniques

Integration-by-parts (IBP): K.G. Chetyrkin, F.V. Tkachov $0 = \int [\boldsymbol{d}^{D} \ell_{1}] \dots [\boldsymbol{d}^{D} \ell_{4}] \quad \partial_{(\ell_{j})_{\mu}} \left(\ell_{I}^{\mu} \boldsymbol{I}_{\alpha\beta} \right) \ , \quad \text{ $j, I = 1, \dots, loops=4$}$ $I_{\alpha\beta}$: Generic integrand with propagator powers $\alpha = \{\alpha_1, \dots\}$ and scalar-product powers $\beta = \{\beta_1, \ldots\}$ Laporta-Algorithm: S. Laporta, E. Remiddi Idea: – IBP-identities for explicit numerical values of $\alpha_{,\beta}$ Introduction of an order among the integrals Solving a linear system of equations Automation: Generation & solution of the system of lin. equations with:

- Implementation based on FORM3 J.A.M. Vermaseren
- Simplification of rational functions in d by FERMAT R.H. Lewis

C Sturm

Introduction & Motivation Methods & Calculation		Analysis & Results	Summary & Conclusion

... an example for integration-by-parts:

$$\int d\ell_1 \int d\ell_2 \frac{1}{(\ell_1^2 + m^2)(\ell_2^2 + m^2)(\ell_1 + \ell_2)^2} = \int d\ell_1 \int d\ell_2 \frac{1}{D_1^1 D_2^1 D_3^1} = f(1, 1, 1)$$

IBP-identities:

~~

I) $0 = \int d\ell_1 \int d\ell_2 \frac{1}{D_1 D_2 D_3}$ II) $0 = \int d\ell_1 \int d\ell_2 \frac{1}{D_1 D_2 D_3}$

$$0 = f(1, 1, 1) - f(2, 1, 0) -2m^2 f(2, 1, 1) - f(1, 1, 1) -f(1, 1, 1) 0 = df(1, 1, 1) -2f(1, 1, 1) + 2m^2 f(2, 1, 1) -f(1, 1, 1) -f(1, 1, 1) -f(1, 1, 1) -2f(1, 1, 1) - f(2, 1, 0) -2f(2, 1, 1) - f(2, 1, 0) \\ -2f(2, 1, 1) - f(2, 1, 1) \\ -2f(2, 1, 1) - f(2, 1, 1) - f(2, 1, 1) \\ -2f(2, 1, 1) - f(2, 1, 1) - f(2, 1, 1) \\ -2f(2, 1, 1) - f(2, 1, 1) - f(2, 1, 1) \\ -2f(2, 1, 1) - f(2, 1, 1) - f(2, 1, 1) - f(2, 1) -$$

$$\Rightarrow f(2,1,1) = -\frac{1}{2m^2}f(2,1,0)$$

 $=\frac{-1}{2m^2}$

$$\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right) = \frac{1}{d-3} \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right)$$

 $\Rightarrow f(1,1,1) = \frac{1}{d-3}f(2,1,0)$

Fermilab, February 5th, 2009

C. Sturm

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN

ntroduction & Motivation Methods & Calculation		Analysis & Results	Summary & Conclusion

... an example for integration-by-parts:

$$\int d\ell_1 \int d\ell_2 \frac{1}{(\ell_1^2 + m^2)(\ell_2^2 + m^2)(\ell_1 + \ell_2)^2} = \int d\ell_1 \int d\ell_2 \frac{1}{D_1^1 D_2^1 D_3^1} = f(1, 1, 1)$$

IBP-identities:

~~

C. Sturm

I) $0 = \int d\ell_1 \int d\ell_2 \ \frac{\partial_{\ell_1} \ell_2}{\partial_{\ell_1} D_2 D_3}$ II) $0 = \int d\ell_1 \int d\ell_2 \ \frac{\partial_{\ell_1} \ell_1}{\partial_{\ell_1} D_2 D_3}$

$$0 = f(1, 1, 1) - f(2, 1, 0) -2m^2 f(2, 1, 1) - f(1, 1, 1) -f(1, 1, 1) 0 = df(1, 1, 1) -2f(1, 1, 1) + 2m^2 f(2, 1, 1) -f(1, 1, 1) -f(1, 1, 1) -f(1, 1, 1) -2f(1, 1, 1) - f(2, 1, 0) -2f(2, 1, 1) - f(2, 1, 0) \\ -2f(2, 1, 1) - f(2, 1, 1) - f(2, 1, 1) \\ -2f(2, 1, 1) - f(2, 1, 1) - f(2, 1, 1) \\ -2f(2, 1, 1) - f(2, 1, 1) - f(2, 1, 1) \\ -2f(2, 1, 1) - f(2, 1) - f$$

$$\Rightarrow f(2,1,1) = -\frac{1}{2m^2}f(2,1,0)$$

$$\bullet = \frac{-1}{2m^2} \bullet = \frac{d-2}{4m^4}$$

$$\Rightarrow f(1,1,1) = \frac{1}{d-3}f(2,1,0)$$

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

Introduction & Motivation	Methods & Calculation	Analysis & Results	Summary & Conclusion
Techniques			
Reducible:	Diagrams which o diagrams with les	can be mapped on s lines	
At 4-loop: Problem:	Dramatic growth	of number of equatio	ns

Here: >30 million IBP-identities generated and solved → About 6 Gbyte of integral-tables with solutions for around 5 million integrals, expressed in terms of 13 masters Consider all symmetries of diagrams

Important:

C Sturm

- → Smaller number of IBP-equations,
 - ~ Keep size of integral-tables under control

in the Standard Basis

13 Master integrals:

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHOVEN 1

with difference equations

Raise one propagator to symbolic power x:

e.g.
$$M = \bigcirc \longrightarrow M(x) = \bigcirc = \int \frac{[dk_1] \dots [dk_4]}{D_1^x D_2 \dots D_8}$$

Use IPB and Laporta alg. to construct difference equations $\sum_{i=0}^{R} p_i(d, x) M(x - j) = \text{combination of subtopologies of } M(x)$

^{j=0} Ansatz: factorial series $M(x) = \mu^x \sum_{s=0}^{\infty} a_s \frac{\Gamma(x+1)}{\Gamma(x+1+s-K)}$

- recursion formula for $a_s \rightarrow sum$ up to specified $s_{max} \sim 1000 2000$
- better convergence for large $x \rightarrow$ use DE to get M(1)

Fermilab, February 5th, 2009

Example result for DE M. Faisst, P. Maierhöfer, C.S.

- $-\,9.86872356982626095206640482817811665743165295900717\,\epsilon^{-2}$
- 46.6303411944320215719397994165165851567120807356798 ϵ^{-1}
- -137.332112842523179736741159027274031745616189046337
- $\ 929.858212294016976382457232976107077779091868024097 \, \epsilon^1$
- $-\ 1698.90639250653423244336742929239614618805875415910 \, \epsilon^2 \\ + \, \mathcal{O}(\epsilon^3)$
- High numerical precision (usually > 30 digits)
- However, construction of difference equations increasingly tedious for masters with many lines
- Pole part analytically

in the *ɛ*-finite basis K.G. Chetyrkin, M. Faisst, C.S., M. Tentyukov

<u>Problem:</u> Coefficient functions c_{ij} in $I_i = \sum_j c_{ij}M_j$ can have "spurious" poles

Example:

Arise while solving IBP-identities through division by (d - 4).

 \rightsquigarrow Master integrals with spurious poles as coefficient need to be known in higher order in ε

But: Choice of master integrals is not unique

Idea: Select a new basis with finite coefficient functions

Solution:

" ε -finite basis"

 \rightsquigarrow Advantage: Members need only be evaluated up to order ε^0

C. Sturm

Fermilab, February 5th, 2009

15/32

Heavy quark current correlators for precise quark masses and strong coupling constant

Constructing an *e*-finite basis K.G. Chetyrkin, M. Faisst, C.S., M. Tentyukov

Members of ε -finite basis can be found among the set of initial integrals I_i

Algorithm:

- 1 Express all initial integrals in terms of standard masters $I_i = \sum_j c_{ij} M_j$
- 2 Choose equation with highest ϵ -pole in a coefficient c_{ij}
- 3 Solve it for M_i

 \rightarrow All coefficients in the new equation are finite

- Replace *M_j* in all equations and treat *I_i* as new master integral
- 5 Repeat steps 2-4 until all coefficients are finite

Fermilab, February 5th, 2009

€-finite basis K.G. Chetyrkin, M. Faisst, C.S., M. Tentyukov

 $[i/j](q^2)$: Same low- and high-energy behavior like $F(p^2)$

Fermilab, February 5th, 2009

C. Sturm

€-finite basis K.G. Chetyrkin, M. Faisst, C.S., M. Tentyukov

C. Sturm

Fermilab, February 5th, 2009

Example result M. Faisst, P. Maierhöfer, C.S.

- Pole part analytically
 - \Rightarrow Allows analytical cancellation of (UV-) ϵ -poles
- Express standard basis through ε-finite one (and vice versa):

standard basis

IBP-relations

 ε -finite basis

 \rightsquigarrow Can be used to get analytical information also for standard basis:

Example:

$$\underbrace{ -\frac{1}{6} \epsilon^{-4} - \frac{3}{2} \epsilon^{-3} - \left(\frac{26}{3} + \zeta_3\right) \epsilon^{-2} - \left(41 + \frac{\pi^4}{60} + \frac{10}{3}\zeta_3\right) \epsilon^{-1} }_{6} - \frac{1039}{6} - \frac{7}{30} \pi^4 + 3\zeta_3 + 53\zeta_5 \\ - 929.858212294016976382457232976107077779091868024097 \epsilon^1 \\ - 1698.90639250653423244336742929239614618805875415910 \epsilon^2 \\ + \mathcal{O}(\epsilon^3)$$

C. Sturm

Fermilab, February 5th, 2009

Results at 4-loops

Theory

Vector case:

- first moments \overline{C}_0 , \overline{C}_1

K. G. Chetyrkin, J. H. Kühn, C.S.'06; R. Boughezal, M. Czakon, T. Schutzmeier'06

- second moment C₂ A. Maier, P. Maierhöfer, P. Marquard'08

Pseudoscalar case:

- first moments C
 ₀, C
 ₁, C
 ₂. Allison, E. Dalgic, C.T.H. Davies, E. Follana, R.R. Horgan, K. Hornbostel, G.P. Lepage, C. McNeile, J. Shigemitsu, H. Trottier, R.M. Woloshyn, K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, C.S. 08

- third moment C₃ A. Maier, P. Maierhöfer, P. Marquard'08

Axial-vector and scalar case:

- first moments \overline{C}_0 , \overline{C}_1 C. S.'08

C. Sturm

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN 19/32

Result

$$\begin{aligned} \overline{C}_n &= \overline{C}_n^{(0)} + \left(\frac{\alpha_s}{\pi}\right) \left(\overline{C}_n^{(10)} + \overline{C}_n^{(11)} I_{m_c}\right) \\ &+ \left(\frac{\alpha_s}{\pi}\right)^2 \left(\overline{C}_n^{(20)} + \overline{C}_n^{(21)} I_{m_c} + \overline{C}_n^{(22)} I_{m_c}^2\right) \\ &+ \left(\frac{\alpha_s}{\pi}\right)^3 \left(\overline{C}_n^{(30)} + \overline{C}_n^{(31)} I_{m_c} + \overline{C}_n^{(32)} I_{m_c}^2 + \overline{C}_n^{(33)} I_{m_c}^3\right) \\ &+ \dots, \text{with } I_{m_c} = \log(m_c^2/\mu^2) \end{aligned}$$

Pseudoscalar case($n_f = 4$):

	1-loop	2-10	оор	3-loop				4-lc	ор	
n	$\overline{C}_{n}^{(0)}$	$\overline{C}_{n}^{(10)}$	$\overline{C}_n^{(11)}$	$\overline{C}_{n}^{(20)}$	$\overline{C}_{n}^{(21)}$	$\overline{C}_{n}^{(22)}$	$\overline{C}_{n}^{(30)}$	$\overline{C}_{n}^{(31)}$	$\overline{C}_{n}^{(32)}$	$\overline{C}_{n}^{(33)}$
1	1.3333	3.1111	0.0000	0.1154	-6.4815	0.0000	-1.2224	2.5008	13.5031	0.0000
2	0.5333	2.0642	1.0667	7.2362	1.5909	-0.0444	7.0659	-7.5852	0.5505	0.0321
3	0.3048	1.2117	1.2190	5.9992	4.3373	1.1683	14.5789	7.3626	4.2523	-0.0649
4	0.2032	0.7128	1.2190	4.2670	4.8064	2.3873	- 1	14.7645	11.0345	1.4589

Result also available completely analytically

C. Sturm

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN

Result

$$\begin{aligned} \overline{C}_n &= \overline{C}_n^{(0)} + \left(\frac{\alpha_s}{\pi}\right) \left(\overline{C}_n^{(10)} + \overline{C}_n^{(11)} I_{m_c}\right) \\ &+ \left(\frac{\alpha_s}{\pi}\right)^2 \left(\overline{C}_n^{(20)} + \overline{C}_n^{(21)} I_{m_c} + \overline{C}_n^{(22)} I_{m_c}^2\right) \\ &+ \left(\frac{\alpha_s}{\pi}\right)^3 \left(\overline{C}_n^{(30)} + \overline{C}_n^{(31)} I_{m_c} + \overline{C}_n^{(32)} I_{m_c}^2 + \overline{C}_n^{(33)} I_{m_c}^3\right) \\ &+ \dots, \text{with } I_{m_c} = \log(m_c^2/\mu^2) \end{aligned}$$

Vector case($n_f = 4$):

	1-loop	2-10	оор	3-loop			4-1	оор		
n	$\overline{C}_{n}^{(0)}$	$\overline{C}_{n}^{(10)}$	$\overline{C}_n^{(11)}$	$\overline{C}_{n}^{(20)}$	$\overline{C}_{n}^{(21)}$	$\overline{C}_{n}^{(22)}$	$\overline{C}_{n}^{(30)}$	$\overline{C}_{n}^{(31)}$	$\overline{C}_{n}^{(32)}$	$\overline{C}_{n}^{(33)}$
1	1.0667	2.5547	2.1333	2.4967	3.3130	-0.0889	-7.7624	-0.0599	1.5851	-0.0543
2	0.4571	1.1096	1.8286	3.2319	5.0798	1.9048	-3.4937	4.0100	7.2551	0.1058
3	0.2709	0.5194	1.6254	2.0677	4.5815	3.3185	-	5.6496	13.4967	2.3967
4	0.1847	0.2031	1.4776	1.2204	3.4726	4.4945	-	3.9381	17.2292	6.2423

Result also available completely analytically

C. Sturm

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN

Method I: R-ratio

C. Sturm

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN 21/32

Extraction of the exp. moments from R(s) (charm quark case) J.H. Kühn, M. Steinhauser, C.S.

<u>Determine</u>: $\mathcal{M}_n^{exp} = \int \frac{ds}{s^{n+1}} \mathcal{R}^{exp}(s) = \mathcal{M}_n^{res} + \mathcal{M}_n^{thr} + \mathcal{M}_n^{cont}$

For charm quarks:

 $\mathcal{M}_n^{\text{res}}$: Contains: $J/\Psi, \Psi(2S)$ treated in narrow width approximation

$\mathcal{R}^{res}(s) = rac{9\pi M_{\mathcal{R}}\Gamma_{ee}}{lpha^2} \left(rac{lpha}{lpha(s)} ight)^2 \delta(s - M_{\mathcal{R}}^2)$						
	J/Ψ	Ψ(2S)				
<i>M</i> _Ψ (GeV)	3.096916(11)	3.686093(34)				
Γ _{ee} (keV)	5.55(14)	2.48(6)				
$(\alpha/\alpha(M_{\Psi}))^2$	0.957785	0.95554				

 \mathcal{M}_n^{thr} :

BES data ($\sqrt{s} \ge 3.73$ GeV) subtract background from R_{uds} ,

 \bar{R} from data below 3.73 GeV, \sqrt{s} -dependence from theory

C. Sturm

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

Extraction of the exp. moments from R(s) (charm quark case) J.H. Kühn, M. Steinhauser, C.S.

 \mathcal{M}_n^{cont} : pQCD above $\sqrt{s} \ge 4.8 \text{ GeV}$,

no data,

R(s) with full quark mass dependence rhad: R. Harlander, M. Steinhauser '02

 \mathcal{M}_n^{exp} :

n	$\mathcal{M}_n^{\mathrm{res}}$	$\mathcal{M}_n^{\mathrm{thresh}}$	$\mathcal{M}_n^{\mathrm{cont}}$	\mathcal{M}_n^{\exp}	\mathcal{M}_n^{np}
	×10 ⁽ⁿ⁻¹⁾	×10 ⁽ⁿ⁻¹⁾	×10 ⁽ⁿ⁻¹⁾	×10 ⁽ⁿ⁻¹⁾	×10 ⁽ⁿ⁻¹⁾
1	0.1201(25)	0.0318(15)	0.0646(11)	0.2166(31)	-0.0001(2)
2	0.1176(25)	0.0178(8)	0.0144(3)	0.1497(27)	0.0000(0)
3	0.1169(26)	0.0101(5)	0.0042(1)	0.1312(27)	0.0007(14)
4	0.1177(27)	0.0058(3)	0.0014(0)	0.1249(27)	0.0027(54)

$$\delta \mathcal{M}_{n}^{\mathrm{np}} = \frac{12\pi^{2}Q_{c}^{2}}{(4m_{c}^{2})^{(n+2)}} \left\langle \frac{\alpha_{s}}{\pi} G^{2} \right\rangle a_{n} \left(1 + \frac{\alpha_{s}}{\pi} \bar{b}_{n} \right)$$
 D.J. Broadhurst, P.A. Baikov, V.A. Ilyin, J. Fleischer, O.V. Tarasov, V.A. Smirnov

C. Sturm

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN NATIONAL LABORATORY

Determination of the charm quark mass from R(s) J.H. Kühn, M. Steinhauser, C.S.

$$\mathcal{M}_{n}^{th} + \mathcal{M}_{n}^{np} = \mathcal{M}_{n}^{exp} \quad \text{with} \quad \mathcal{M}_{n}^{th} = \frac{9}{4} Q_{q}^{2} \left(\frac{1}{4m_{c}^{2}}\right)^{n} \overline{C}_{r}$$
$$m(\mu) = \frac{1}{2} \left(Q_{f}^{2} \frac{9}{4} \frac{\overline{C}_{n}}{\mathcal{M}_{n}^{exp} - \mathcal{M}_{n}^{np}} \right)^{1/(2n)}$$

$\mu = (3 \pm 1) \text{ GeV}$ $\alpha_s(M_Z) = 0.1189 \pm 0.002$

n	m _c (3 GeV)	exp	α_{s}	μ	np	total	$\delta \bar{C}_n^{(30)}$	$m_c(m_c)$
1	0.986	0.009	0.009	0.002	0.001	0.013	—	1.286
2	0.976	0.006	0.014	0.005	0.000	0.016	—	1.277
3	0.982	0.005	0.014	0.007	0.002	0.016	0.010	1.282
4	1.012	0.003	0.008	0.030	0.007	0.032	0.016	1.309
		_6.0 ≤ [°]	$\overline{C}_3^{(30)} \leq 5$	5.2, -6.0	$\leq \overline{C}_4^{(30)}$	≤ 3 .1		
n=2: old $m_c(3 \text{ GeV}) = 0.979 \text{ GeV}$; estimated $-6.0 \le \overline{C}_2^{(30)} \le 7.0$;								
ne	ew: <i>m</i> _c (3 GeV)	= 0.976 G	$eV; C_2^{(30)}$	= -3.49	37 A. Maier,	P. Maierhöfe	r, P. Marquarc	i

C. Sturm

Fermilab, February 5th, 2009

BROOKHAVEN

Determination of the charm quark mass from R(s) J.H. Kühn, M. Steinhauser, C.S.

Charm-quarks

C. Sturm

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN

Extraction of the exp. moments from R(s) (bottom quark case) J.H. Kühn, M. Steinhauser, C.S.

- \mathcal{M}_{n}^{th} : analog to charm case, only $n_f = 5$
- \mathcal{M}_{n}^{np} : negligible
- $\mathcal{M}_{n}^{\text{res}}$: $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S), \Upsilon(4S)$ $\mathcal{M}_{n}^{\text{thr.}}$: CLEO data up to 11.24 GeV
- Mcont: pQCD above 11.24 GeV

$$\mathcal{M}_n^{exp}$$

n	$\mathcal{M}_n^{\mathrm{res}}$	$\mathcal{M}_n^{\mathrm{thresh}}$	$\mathcal{M}_n^{\mathrm{cont}}$	\mathcal{M}_n^{\exp}
	$ imes 10^{(2n+1)}$	$ imes 10^{(2n+1)}$	$ imes 10^{(2n+1)}$	×10 ⁽²ⁿ⁺¹⁾
1	1.394(23)	0.296(32)	2.911(18)	4.601(43)
2	1.459(23)	0.249(27)	1.173(11)	2.881(37)
3	1.538(24)	0.209(22)	0.624(7)	2.370(34)
4	1.630(25)	0.175(19)	0.372(5)	2.178(32)

C. Sturm

Fermilab, February 5th, 2009

Heavy guark current correlators for precise guark masses and strong coupling constant

BROOKHAVEN

C. Sturm

Determination of the bottom quark mass from R(s) J.H. Kühn, M. Steinhauser, C.S.

 $\mu = (10 \pm 5) \text{ GeV}; \quad \alpha_s(M_Z) = 0.1189 \pm 0.002$

n	<i>m</i> _b (10 GeV)	ехр	α_{s}	μ	total	$\delta \bar{C}_n^{(30)}$	$m_b(m_b)$			
1	3.593	0.020	0.007	0.002	0.021	—	4.149			
2	3.607	0.014	0.012	0.003	0.019	—	4.162			
3	3.618	0.010	0.014	0.006	0.019	0.008	4.173			
4	3.631	0.008	0.015	0.021	0.027	0.012	4.185			
	$-6.0 < \overline{C}_{2}^{(30)} < 5.2 - 6.0 < \overline{C}_{4}^{(30)} < 3.1$									

n=2: old $m_b(10 \text{ GeV}) = 3.609(25) \text{ GeV}$; estimated $-6.0 \le \overline{C}_2^{(30)} \le 7.0$; new: $m_b(10 \text{ GeV}) = 3.607(19) \text{ GeV}$; $\overline{C}_2^{(30)} = -2.6438$ A. Maier, P. Maierhöfer, P. Marquard

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN

Method II

C. Sturm

Charm mass I. Allison, E. Dalgic, C.T.H. Davies, E. Follana, R.R. Horgan, K. Hornbostel, G.P. Lepage, C. McNeile, J. Shigemitsu, H. Trottier, R.M. Woloshyn(HPQCD), K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, C.S.

 Lattice simulation of correlator moments R_{2k+2} for different currents

Fermilab, February 5th, 2009

BROOKHAVEN

Method I \leftrightarrow Method II

I. Allison, E. Dalgic, C.T.H. Davies, E. Follana, R.R. Horgan, K. Hornbostel, G.P. Lepage, C. McNeile, J. Shigemitsu, H. Trottier, R.M. Woloshyn(HPQCD), K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, C.S.

Reduced moments for VV correlator

can be used for comparison:

 Within combined errors experimental and simulation results agree within ~ 2%

C. Sturm

Fermilab, February 5th, 2009

Heavy quark current correlators for precise quark masses and strong coupling constant

BROOKHAVEN NATIONAL LABORATORY

Method II

Strong couplingI. Allison, E. Dalgic, C.T.H. Davies, E. Follana, R.R. Horgan, K. Hornbostel, G.P. Lepage, C. McNeile, Constant J. Shigemitsu, H. Trottier, R.M. Woloshyn(HPQCD), K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, C.S.

Lowest moment & ratios of moments \rightsquigarrow weak dependence on quark mass \rightsquigarrow extract α_s First step extract $\alpha_s(3\text{GeV}, n_f = 4)$, than run to $\alpha_s(M_z, n_f = 5)$ 0.130.125Result: 0.12 $\bar{\alpha}_{s}(M_{z}) = 0.1174(12)$ φ 0.115lattice + pQCD (compared to 0.11 $\bar{\alpha}_{s}(M_{z}) = 0.1176(20)$ PDG) 0.1058 12164

C. Sturm

 $\alpha_{\overline{\mathrm{MS}}}(M_Z, n_f = 5)$

Heavy quark current correlators for precise quark masses and strong coupling constant

Fermilab, February 5th, 2009

Comparison with other methods

charm-quarks

C. Sturm	Fermilab, February 5th, 2	009
Heavy quark current correlators for precise quark masses and strong coupling constant	BROOKHAVEN NATIONAL LABORATORY	31/3

Summary & Conclusion

- Heavy quark current correlators can be used to perform a precise quark mass determination in combination with experimentally measured *R*-ratio and with lattice simulations
- Extraction of charm- and bottom-quark masses from *R*-ratio including NNNLO results in pQCD
- Charm-quark mass and strong coupling from lattice simulations including NNNLO results in pQCD
- Quark masses & strong coupling:
 - Charm-mass: $m_c(3 \text{ GeV}) = 0.986(13) \text{ GeV} e^+e^- + pQCD}{m_c(3 \text{ GeV}) = 0.986(10) \text{ GeV}}$ lattice + pQCD
 - Bottom-mass:

 $m_b(10 \text{ GeV}) = 3.607(19) \text{ GeV} e^+e^- + pQCD + \overline{C}_2^{(30)}$

- strong coupling: $\bar{\alpha}_s(M_z) = 0.1174(12)$ lattice + pQCD

Fermilab, February 5th, 2009