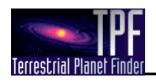

Very Large Sparse Aperture Concept

Martin Flannery


Sparse Aperture Concept Description

- Eyepiece spacecraft is self contained assembly housing secondary, additional optics, simple occulting spot and focal plane
- •Sugar-scoop baffle provides sunlight rejection and optics cooling

- Metrology/Navigation spacecraft provides laser metrology between secondary spacecraft and the primary
- Primary is a lightweight monolithic truss supporting subapertures
- One satellite performs formation flying and actuators position of individual mirror elements

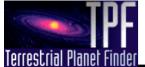
Concept Description

- ~120 4-meter subapertures sparsely filled (5-20%) 100-meter class giant telescope
 - Operation in IR
 - Excellent resolution
 - Large collecting area

Primary mirror:

- ~100-m monolithic supporting structure
- Spherical mirrors with radius of curvature control
 - Simulates elements of a large parabola
 - Passively cooled mirrors (~100K) allows operation into LWIR
- Primary spacecraft formation flies to sub-centimeter accuracy

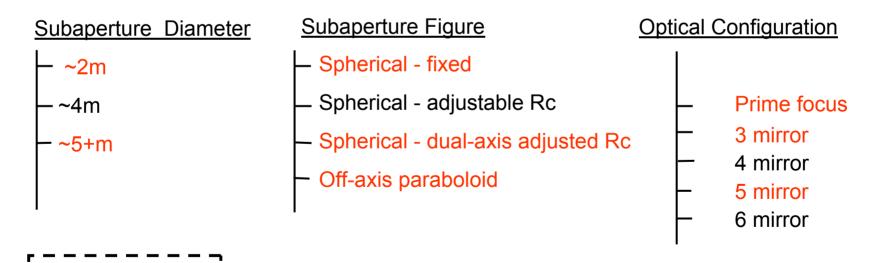
Eyepiece spacecraft directly images the exo-solar system


- 3-meter secondary, with tertiary and quaternary
- Simple occulting spot reduces starlight intensity
- Sugar-scoop' thermal baffling

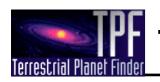
Metrology/Navigation spacecraft measures and directs spacecraft and optics into position

3-color laser metrology measures optical elements to nanometer accuracy

3


Directs spacecraft and optical elements into alignment

Sparse Aperture Trade Space Considered



Rejected Baseline

Legend

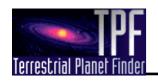
Trade Space Considerations

Orbit

- Earth orbit: Not appropriate for tight Formation Flying (FF)
- Drift-away: Good for FF; not suitable for multiple launches; cannot be replenished
- L2: Satisfactory for FF; easy replenishment

Wavelengths

- Visible: Imposes tight constraints on pointing/alignment accuracy
- 1-5 µm: Acceptable pointing requirements; poor planet-finding performance
- 5-20 µm: Good performance, easier pointing/alignment requirements


Trade Space Considerations (Cont'd)

- Primary size
 - 50 m: Good resolution at ~1 µm
 - 150 m: Acceptable resolution at ~10 μm
 - 500 m: Good resolution at 10 µm (however, poor fill factor)
 - 1000 m. Poor fill factor
- Primary structure
 - Free Flying: Allows flexibility in aperture size/spacing; significant operation complexity; significant cost for multiple spacecraft; allows PSF artifact movement and removal by displacing subapertures.
 - Monolithic Structure: Very large size requires on-orbit assembly; aperture not adjustable; low thrust upper stage to L2; allows PSF artifact movement and removal by spinning primary.

6

Number of sub-apertures

- ~50: Results in a very sparse array
- ~100: Results in a reasonable fill factor
- ~300: Too expensive

Trade Space Considerations (Cont'd)

Subaperture diameter

- ~2 m: Relatively inexpensive, but wastes LV volume
- ~4 m: Largest size fitting in typical LV
- ~5+ m: Requires a deployable design; added cost, complexity

Subaperture figure

- Spherical, fixed R_C: Inexpensive to fabricate; results in large aberrations
- Spherical, adjustable R_c: Permits first-order correction to match local figure of parabola; allows subaperature placement anywhere in primary; simple mechanism
- Spherical, dual-axis adjustable R_c: Permits second-order matching of local parabolic figure; more complicated
- Off-axis parabola: Not needed because linear obscuration is only 3-4% which does not effect sparse-aperture PSF significantly

Trade Space Considerations (Cont'd)

- Optical configurations
 - Prime Focus
 - Poor fit to pixel size and PSF sampling unless system is quite long (f/30)
 - No field or Lyot stops
 - 3-mirror telescope:
 - Poor satellite/optical architecture unless a large convex secondary is used
 - Usually no field or Lyot stops
 - Poor fit to pixel size and PSF sampling
 - 4-mirror telescope:
 - Practical mechanical architecture with fewest mirrors
 - Concave secondary
 - Field and Lyot stops
 - Easy matching to pixel size and PSF sampling
 - 6-mirror telescope:
 - 3-mirror objective with 3-mirror off-axis reimaging anastigmatic
 - Concave secondary
 - Accessible intermediate field and Lyot stops for aberration correction and scattered-light control

8

System Sizing for Science

Science Driver

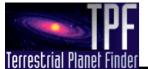
 Good imaging performance

Resolution to

from star

separate planet

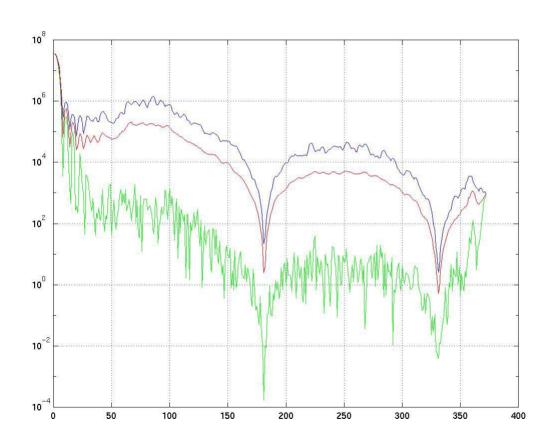
System Sizing for Science


- Fill factor for good imaging
 - >20% desired
 - <5% is poor</p>
- Random positioning of sub-apertures to reduce structure/aliasing in PSF
- Many subapertures
- Planet-finding region substantially far from central spike (~10x)
 - $-1 \mu m > 30-m primary$
 - 10 μ m >300-m primary

Engineering Constraints

< 50% for collision avoidance

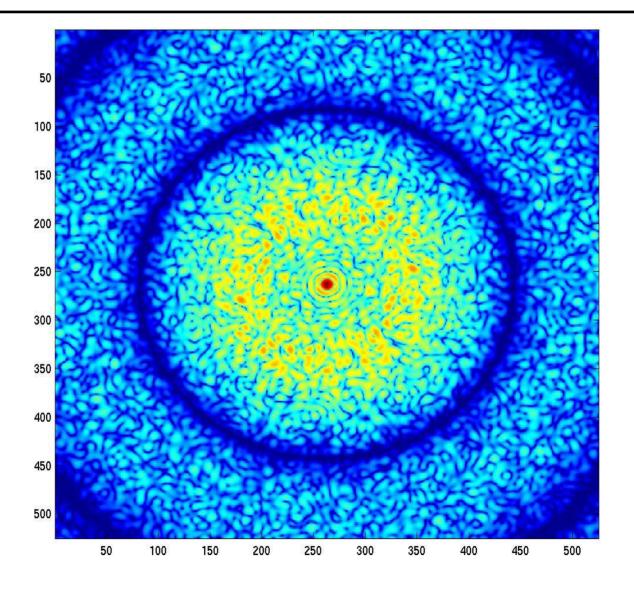
- ~ 100-150 subapertures;
 cost constrained
- _

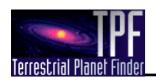

- Collision concern at < 50 m for FF option
- Poor fill factor at > 150 m

Numerical Integration Produces Sparse Aperture PSF

- Diffraction integral over complex aperture function adds subaperture Airy spots in phase with appropriate subaperture spacing
- 100 m primary mirror
- 120 x 4 m subapertures (19% fill factor)

10


- Blue Curve: Maximum PSF
- Green Curve:
 Minimum PSF
- Red Curve: Average PSF
- Axes are shown in pixel numbers.
- First Airy Ring of
 120-m Aperture
 = 179 pixels
 = 0.0629 arcsec
 - **@ 1** μm
 - = 0.629 arcsec
 - **@ 10** μm

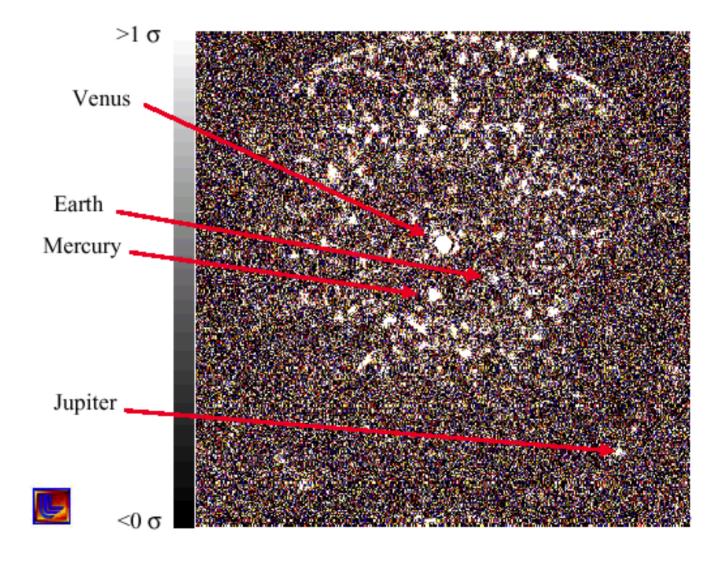


Sparse PSF

- •Axes are shown in pixel numbers.
- •First Airy Ring of 120-m
 Aperture
 = 179 pixels
 = 0.0629 arcsec
 @ 1 μm
 = 0.629 arcsec
 @ 10 μm

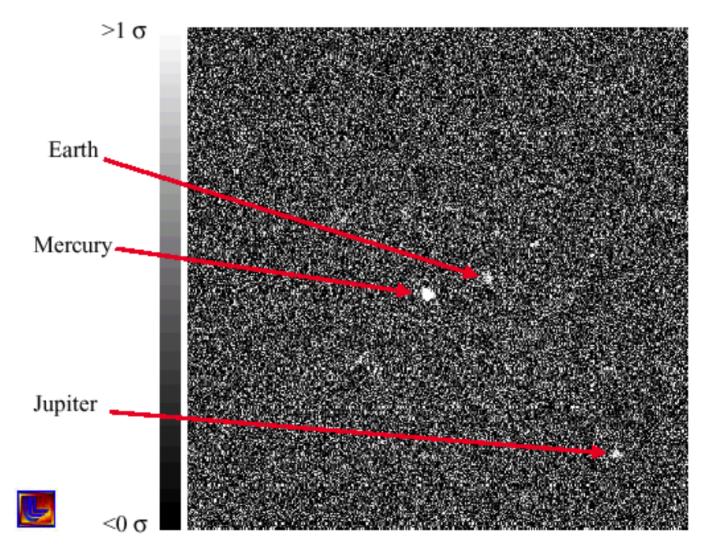


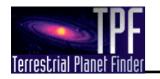
Simulated Sparse Aperture Scene



12

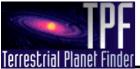
Scene With Venus




13

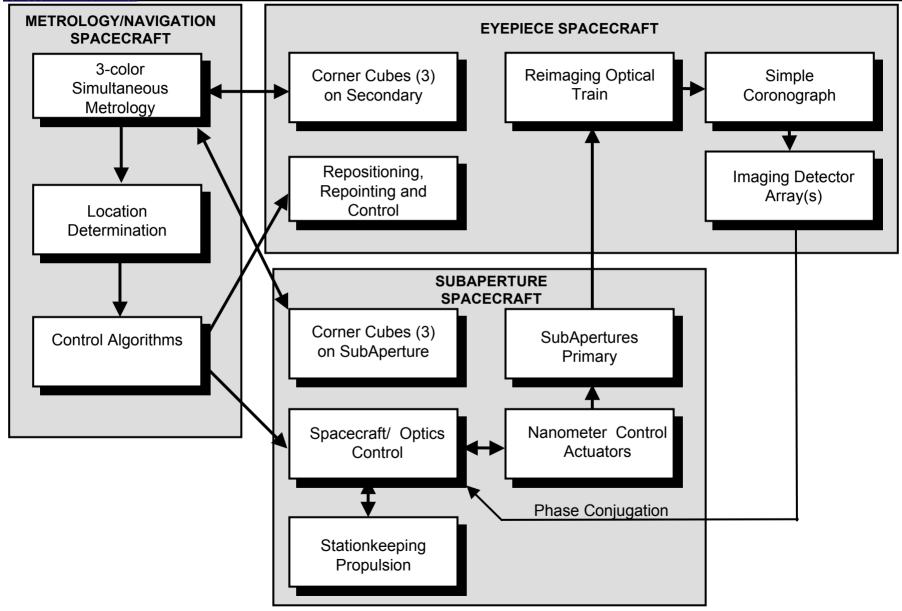
Scene Without Venus

Sparse Aperture Detection/ Characterization Times

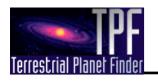


- Sun at 10 pc, Earth 0.1 arcsec from Sun; albedo = 0.38; 50% phase
- 100 m f/5 primary; 120 4-m subapertures randomly distributed
- 120K Mirror temperature

• SNR = 5		Time (hours)						
	R	0.8 μm	1.0 μm	1.5 μm	8 μm	15 μm		
	$(\lambda/\Delta\lambda)$							
	2	1396	1333	1609	_	-		
	3	2066	2000	2469	2.3*	0.4		
	10	_	-	-	7.1	1.2		
	30	_	-	-	21.2	3.6		
	100	_	-	-	70.5	12.1		
	300	_	_	_	211.5	36.2		
	1000	_	_	_	704.9	120.7		


^{*} Charlie Bennett's model calculates 0.6-2.5 hours depending on assumptions (see backup charts)

15



Sparse Aperture Functional Block Diagram

16

Key Engineering Parameters

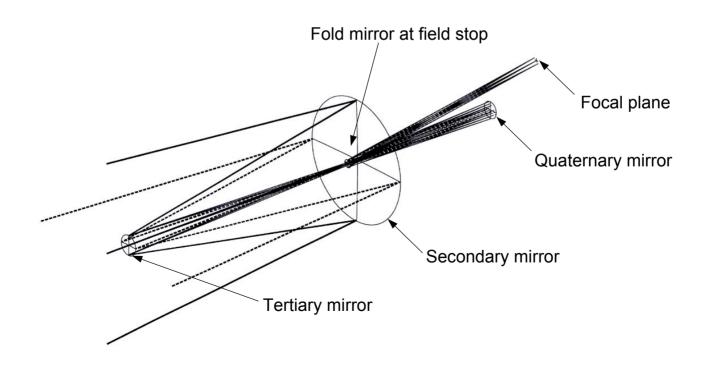
Engineering Parameter

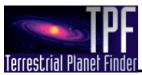
- Formation Flying subaperture option
- Monolithic supporting-structure before assembly and final orbit
- 4-m collecting subapertures
- 120 subapertures
- Spherical mirrors
- 25 nm rms subaperture piston position accuracy
- 16 nm rms subaperture tilt about center
- 1 nm metrology accuracy
- f/5 primary
- ~100 K mirror temperatures
- ~1 cm spacecraft Formation Flying (FF)
- 1 cm 1 nm actuators

Rationale

- Allows primary reconfiguration to different diameters, subaperture arrangements
- Lower cost & risk than FF; launch subapertures into final orbit efficiently into orbit injection.
- Fits in existing LV fairings
- Provides good PSF
- Inexpensive to make
- Can closely match appropriate parabola
- Tilt less than half the primary Airy radius
- •
- Relieves alignment requirements
- Easily achieved via passive cooling
- Enables operation into MWIR (<10 μm)
- Capability to be verified by ST-3 accuracy
- Bridges FF and optical control capabilities

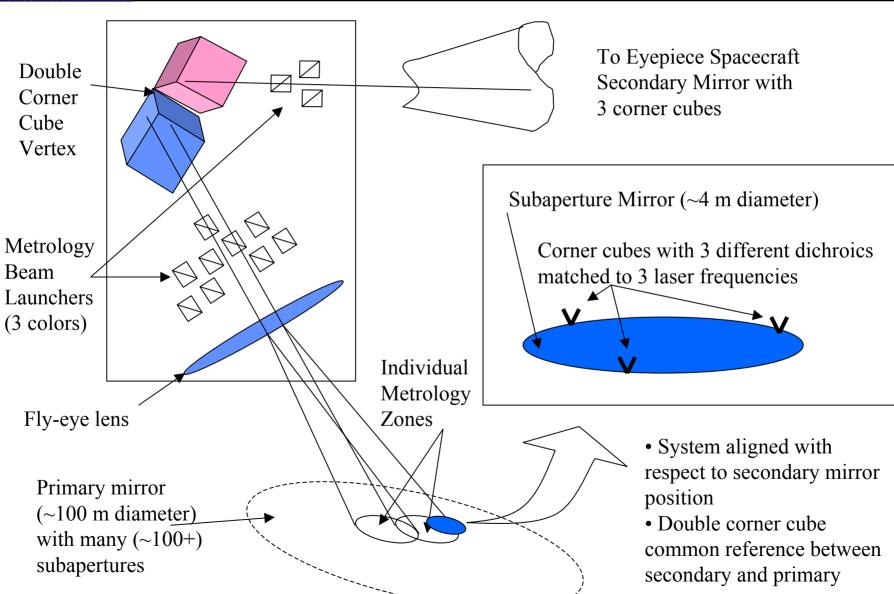
17


Preliminary Optical Prescription of Telescope



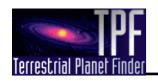
Optic	Diameter	Curvature Radii	Shape	Figure
Sparse Primary	< 125 m	1250 m	Concave	Parabola
Secondary	3.0155 m	22.0 m	Concave	Hyperboloid
Tertiary	0.423 m	2.11 m	Convex	Hyperboloid
Quaternary	0.300 m	4.70 m	Concave	Prolate Ellipsoid

FPA Characteristics: (5 arcsec FOV)


- 3726 x 3726 pixels, 40 μm (149 x 149 mm array)

Strawman Metrology System

00s05516.07-spar-154A


19

Technology Status

Key Enabling Technology	Technology Status
Nanometer resolution metrology	Existing technology developed on SIM program
Nanometer metrology providing absolute distances over meter class zones	Absolute multi-wavelength interferometry done with capture ranges of ~10 m and accuracies of 0.1 - 1.0 μm
Simultaneous multi-color metrology	New development
Nanometer control over ~cm stroke	NGST actuators and SIM delay lines meet these requirements
100 m sparsely filled primary	Similar to Space Station dimensions; on-orbit construction may be common by TPF timeframe
Formation Flying Technology to <1 cm accuracy	In development on ST-3
4 meter variable curvature spherical mirrors, lightweight, inexpensive	AMSD and Kodak technology shows this is feasible
Passive thermal cooling of optics	Existing SIRTF technology; NGST developing similar technology

Tall Tent Poles

- Multicolor metrology capable of nanometer resolution and absolute distance measurements over 100s meters
 - SIM has developed nanometer resolution metrology
 - Development of multicolor capability and absolute measurement is challenging

21

Precision control of hundreds of optical elements to nanometers