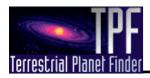

TRW Space & Electronics Group

Very Large Sparse Aperture Concept

Martin Flannery

Sparse Aperture Concept Description


• Eyepiece spacecraft is self contained assembly housing secondary, additional optics, simple occulting spot and focal plane

1RV

•Sugar scoop baffle provides sunlight rejection and optics cooling

• Metrology spacecraft provides laser metrology between secondary spacecraft and the primary

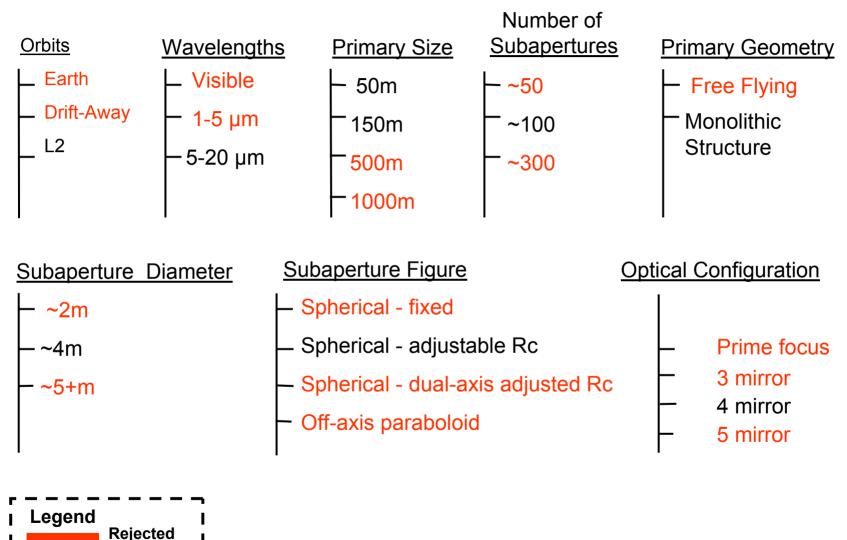
Primary is a lightweight monolithic truss supporting subapertures
One satellite performs formation flying and actuators position of individual mirror elements

Concept Description

- ~120 4 meter subapertures sparsely filled (5-20%) 100 meter class giant telescope
 - Operation on IR
 - Excellent resolution
 - Large collecting area

Primary mirror:

- ~100m monolithic structure
- Spherical mirrors with radius of curvature control
 - Simulates elements of a large parabola
 - Passively cooled mirrors (~100K) allows operation into LWIR
- Primary spacecraft formation flies to sub-centimeter accuracy


Instrument spacecraft directly images the exo-solar system

- 3 meter secondary, with territory and quaternary
- Simple occulting spot reduces starlight intensity
- 'Snow-scoop' thermal baffling

Navigation spacecraft measures and directs spacecraft and optics into position

- 3 color laser metrology measures optical elements to nanometer accuracy
- Directs spacecraft and optical elements into alignment

Terrestrial Planet Finder Considered

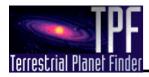
00s05516.07-spar-154A

- Orbit
 - Earth orbit: Not appropriate for tight Formation Flying (FF)
 - Drift-away: Good for FF; not suitable for multiple launches; cannot be replenished
 - L2: Satisfactory for FF; easy replenishment
- Wavelengths
 - Visible: Imposes tight constraints on pointing/alignment accuracy
 - 1-5 µm: Doable pointing requirements; poor performance
 - 5-20 μm: Good performance, easier pointing/alignment requirements

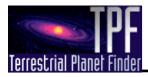
- Primary size
 - 50m: Good resolution at ~1µm
 - 150m: Acceptable resolution at ~10µm
 - 500m: Good resolution at 10µm (however, poor fill factor)
 - 1000m: Poor fill factor
- Primary structure
 - Free Flying: Allows flexibility in aperture size/spacing; significant operation complexity; significant cost for multiple spacecraft
 - Monolithic Structure: Very large size requires on-orbit assembly; aperture not adjustable; low thrust upper stage to L2
- Number of sub-apertures
 - ~50: Results in a very sparse array
 - ~100: Results in a reasonable fill factor
 - ~300: Too expensive

Subaperture diameter

- ~2m: Relatively inexpensive, but wastes LV volume
- ~4m: Largest size fitting in typical LV
- ~5+m: Requires a deployable design; added cost, complexity


Subaperture figure

Spherical-fixed: Inexpensive to fabricate; results in large aberrations


– Spherical-adjustable R_c: Permits first order correction to match local figure of parabola; allows subaperature placement anywhere in primary; simple mechanism

– Spherical-dual axis adjustable R_c: Permits second order matching of local parabola figure; more complicated

 Off-axis parablola: Expensive to fabricate and each unique to one radius of the primary

- Optical configurations
 - Prime Focus
 - Poor fit to pixel size and PSF sampling unless system is quite long (f/30)
 - No field or Lyot stops
 - 3-mirror telescope:
 - Poor satellite/optical architecture unless a large convex secondary is used
 - Usually no field or Lyot stops
 - Poor fit to pixel size and PSF sampling
 - 4-mirror telescope:
 - Practical mechanical architecture with fewest mirrors
 - Concave secondary
 - Field and Lyot stops
 - Easy matching to pixel size and PSF sampling
 - 6-mirror telescope:
 - 3-mirror objective with 3-mirror off-axis reimaging anastigmatic
 - Concave secondary
 - Accessible intermediate field and Lyot stops for aberration correction and scattered-light control

Science Driver

Good imaging
 performance

System Sizing for Science

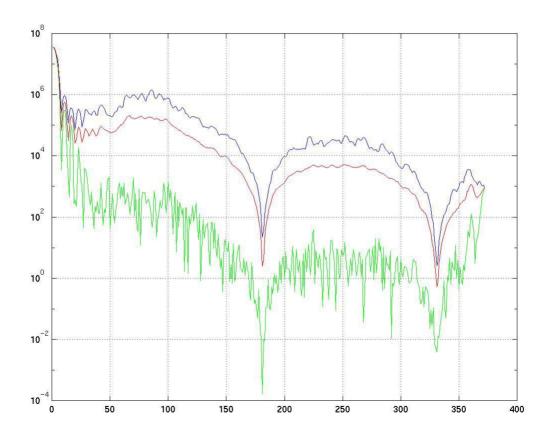
- Fill factor for good imaging
 >20% desired
 - <5% is poor
- Random positioning of sub-apertures to reduce structure/aliasing in PSF
- Many subapertures
- Resolution to separate planet from star
- Planet-finding region substantially far from central spike (~10x)
 - 1 µm >30m primary
 - 10 µm >300m primary

Engineering Constraints

• < 50% for collision avoidance

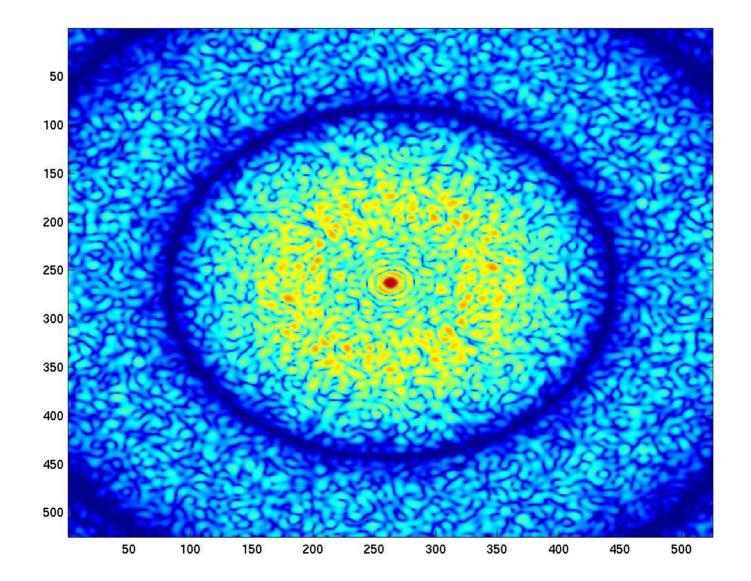
 ~ 100-150 subapertures; cost constrained

- Collision concern at <50m for FF option
- Poor fill factor at >150m

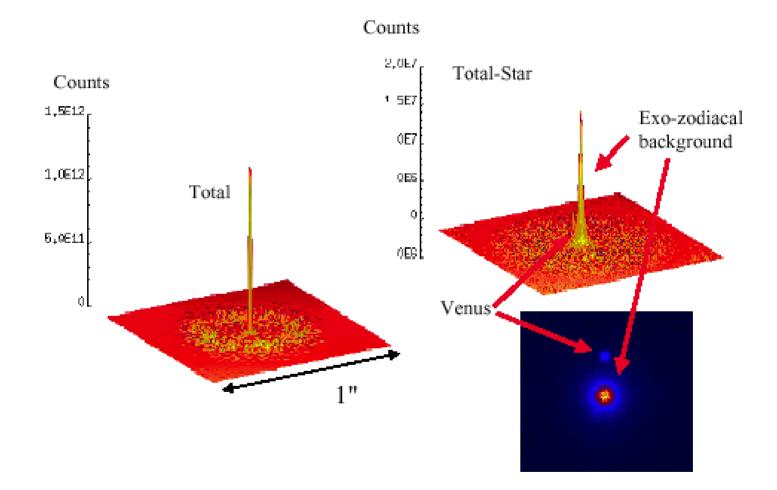

Terrestrial Planet Finder

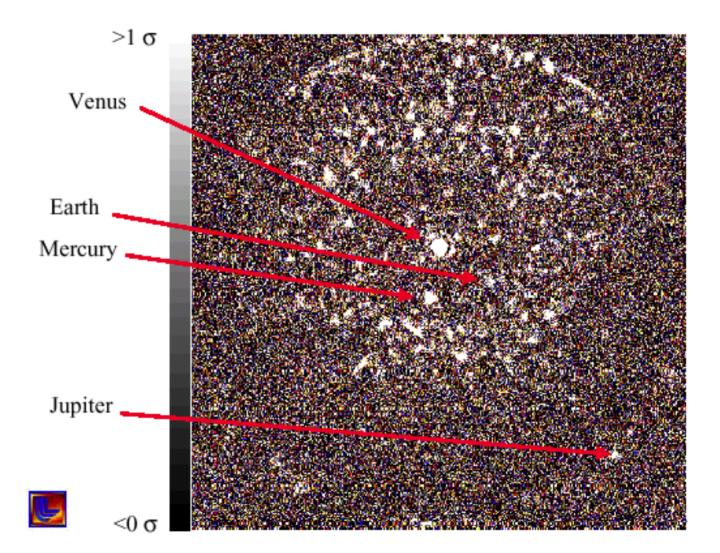
Numerical Integration Produces Sparse Aperture PSF

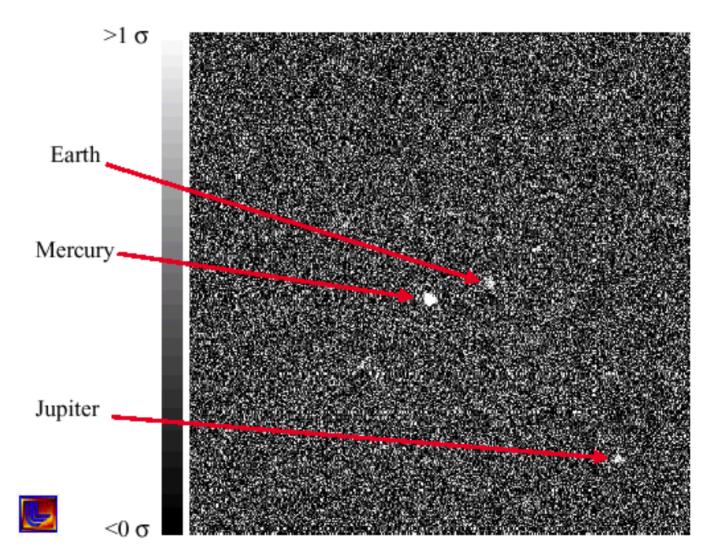
• Diffraction integral over complex aperture function adds subaperture Airy spots in phase with appropriate subaperture spacing

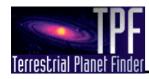

IRW

- 100 m primary mirror
- 120 x 4 m subapertures (19% fill factor)



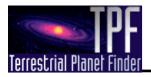



Terrestrial Planet Finder Simulated Sparse Aperture Scene



Sparse Aperture Detection/ Characterization Times

- Sun at 10 pc, Earth 100 marcsec from Sun; albedo = 0.38; 50% phase
- 100 m f5 primary; 120 4 m subapertures randomly distributed
- 120K Mirror temperature
- SNR = 5


	Time (hours)						
R	0.8 um	1.0 um	1.5 um	8 um	15 um		
$(\lambda/\Delta\lambda)$							
2	1396	1333	1609	_	-		
3	2066	2000	2469	2.3*	0.4		
10	-	-	_	7.1	1.2		
30	-	-	_	21.2	3.6		
100	-	-	_	70.5	12.1		
300	_	-	_	211.5	36.2		
1000	-	-	_	704.9	120.7		

* Charlie Bennett's model calculates 0.6-2.5 hours depending on assumptions (see backup charts)

Sparse Aperture Functional Block Diagram

TRW

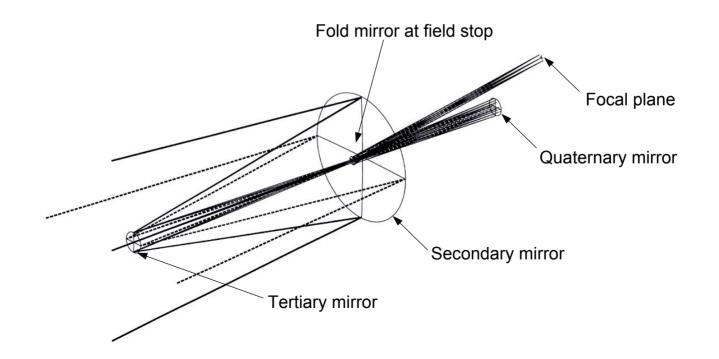
Terrestrial Planet Finder METROLOGY **INSTRUMENT SPACECRAFT SPACECRAFT** 3-color Corner Cubes (3) **Reimaging Optical** Simple Simultaneous Train on Secondary Coronograph Metrology Repositioning, **Imaging Detector** Repointing and Array(s) Control Location Determination **SUBAPERTURE SPACECRAFT** Corner Cubes (3) **SubApertures Control Algorithms** on SubAperture Primary Nanometer Control Spacecraft/ Optics Control Actuators Phase Conjugation Stationkeeping Propulsion

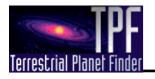
Engineering Parameter

- Formation Flying subaperture option
- Monolithic structure supporting option
- 4m collecting subapertures
- 120 subapertures
- Spherical mirrors
- 25 nm rms subaperture piston position accuracy
- 16 nm rms subaperture tilt about center
- 1nm metrology accuracy
- f5 primary
- ~100K mirror temperatures
- ~1cm spacecraft Formation Flying (FF)
- 1cm 1 nm actuators

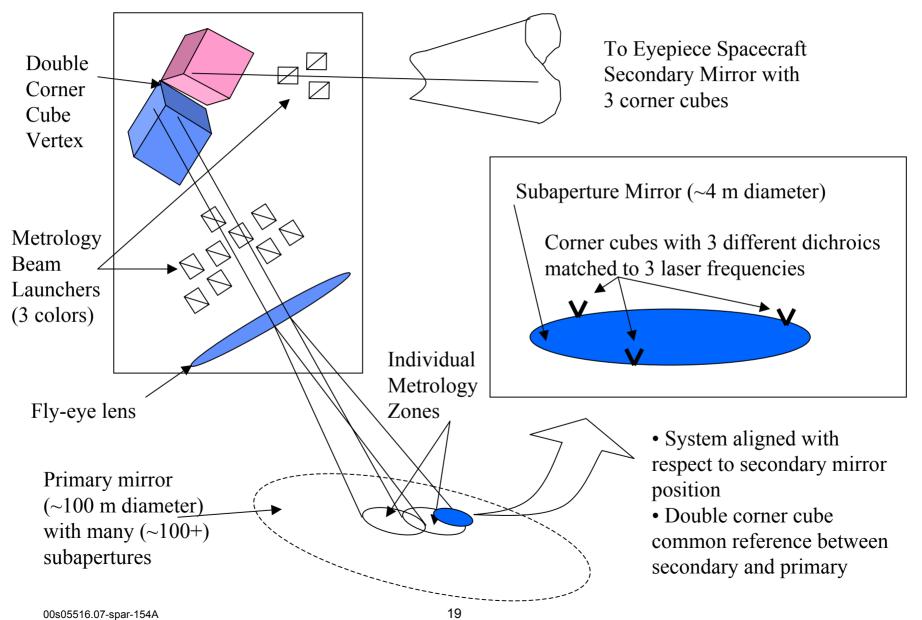
Rationale

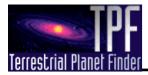
- Allows primary reconfiguration to different diameters, subaperture arrangements
- On-orbit construction required and launch subaperture into final orbit
- Fits in existing LV fairings
- Provides good PSF
- Inexpensive to make
- Can closely match appropriate parabola
- Tilt less than half the primary Airy radius
- Relieves alignment requirements
- Easily achieved via passive cooling
- Enables operation into MWIR (<10 µm)
- Capability to be verified by ST-3 accuracy
- Bridges FF and optical control capabilities


Preliminary Optical Prescription of Instrument


TRW

Optic	Diameter	Curvature Radii	Shape	Figure
Sparse Primary	< 125 m	1250 m	Concave	Parabola
Secondary	3.0155 m	22.0 m	Concave	Hyperboloid
Tertiary	0.423 m	2.11 m	Convex	Hyperboloid
Quaternary	0.300 m	4.70 m	Concave	Prolate Ellipsoid


FPA Characteristics: (5 arcsec FOV)


- 3726 x 3726 pixels, 40 μm (149 x 149 mm array)

Strawman Metrology System

Key Enabling Technology	Technology Status	
Nanometer resolution metrology	Existing technology developed on SIM program	
Nanometer metrology providing absolute distances over meter class zones	TBD	
Simultaneous multi-color metrology	New development	
Nanometer control over ~cm stroke	NGST actuators and SIM delay lines meet these requirements	
100 m sparsely filled primary	Similar to Space Station dimensions; on-orbit construction may be common by TPF timeframe	
Formation Flying Technology to <1 cm accuracy	In development on ST-3	
4 meter variable curvature spherical mirrors, lightweight, inexpensive	AMSD and Kodak technology shows this is feasible	
Passive thermal cooling of optics	Existing SIRTF technology; NGST developing similar technology	

- TRW
- Multicolor metrology capable of nanometer resolution and absolute distance measurements over 100s meters
 - SIM has developed nanometer resolution metrology
 - Development of multicolor capability and absolute measurement is challenging
- Precision control of hundreds of optical elements to nanometers