

Architecture Assessments

Assessment Protocol

- Science scoring team
 - -- separate scores for planet detection and astrophysics
- Technical scoring team
- For comparison of architectures:
 - -- normalize to equal total collecting area
- $\boldsymbol{\cdot}$ Results presented at team meeting for review
- Some architectures adjusted to optimize scoring
- Score revised to reflect adjustments

Technical Scoring

- Goal of technical scoring:
 - -- Define each concept sufficiently to rank them as potentially *realizable* space systems
 - -- A preliminary assessment aimed at rank-ordering based on engineering/technology attributes

• Methods

- 1. System "complexity" assessment (scored worksheet)
- 2. Engineering team assessment by JPL technical areas (scored and rank-ordered)
- 3. Risk/consequence assessment (semi-quantitative, based on technology needs)
- 4. ROM cost (OSC tools)
- 5. Schedule and Future Heritage

Complexity Assessment

- Technical metrics evaluation; weighted score using 6 design attributes • Each concept scored on relative difficulty in each area • Subset of design features where assessment could be done now -- Areas equally weighted • System complexity Total number of platforms Number of independent platform designs Baseline maintenance method Monolith/structure/free-flyer Free-flyer position accuracy if applicable • Operating temperature for optics/FPAs • I&T difficulty (qualitative estimate) • Net score in all areas used to rank concepts relative to each other
 - -- Individual scores meaningless

<u>RANK</u>: 1. ASA 2. Rotational HT Imager 3. Redundant Linear Array 4. Book Design (ff) 5. Snapshot HT Imager (Laser Trapped Mirror not evaluated)

Engineering Team Assessment

- Engineering team evaluation at OHP concept review meeting
- Weighted score by Engineering-only team members using JPL technical attributes
 - -- New technology
 - -- Risk
 - -- Reliability and Robustness
 - -- Life cycle cost
 - -- Heritage to future missions

RANK:

- 1. Apodized Square Aperture
- 2. Snapshot and Rotational Hypertelescope Imagers
- 3. Redundant Linear Array
- 4. Book Design
- Numbers 2-4 very close; ASA viewed as significantly higher
- · LTM not evaluated

Risk/Consequence Assessment

- Technology "areas of concern" (see below) identified at Engineering team review Oct '00
- Subset of this list used for semi-quantitative risk assessment
 - -- Low/moderate/high risk

On Ordit Construction/Servicing

- -- Low/moderate/high impact
- -- Each concept scored in each area
- -- Net scores normalized to [-1,1] for both risk and consequence (not all areas applied to all concepts; 8-11 items used for each concept)

Large Optics	Quiet Structures
Precision Deployable Structures	Tethers
Formation Flying	LOS Pointing
Detectors	Nulling Interferometry
Coronagraphy/Phase Masks/Apodization	NanoNewton Thrusters

Risk/Consequence for TPF Concepts

ROM Cost Assessment

- Concepts were ranked on a relative basis using a costing tool developed by OSC
 - -- Purpose is to evaluate concepts using a common tool and methodology
 - -- No importance attached to absolute numbers
- Tool details: multiple components including spacecraft size/mass, launch vehicle, ground segment and ops, RDT&E factors
- Multiple mass models
- Cost model based on USAF unmanned space vehicle cost model

Cost Model Flow

Relative Costs

ASA (3m "TPF-lite", visible)	0.3
ASA (8m visible)	0.7
Rotational HT Imager	0.8
Book Design (free-flyer)	1.0
Snapshot HT Imager	1.2
ASA (28m visible-IR)	1.5

Schedule and Future Heritage

- Qualitative schedule assessment using SIRTF, SIM, NGST, TPF (BD) nominal mileposts (at 2010, 2012)
- Relative schedule ranking: ASA(3m) ASA(10m) TPF (BD, ff) Rot HT [close to BD] ASA(28m) Snapshot HT [current form: far] LTM
- Overlap of ASA and HT designs \rightarrow significant schedule spread
- Heritage to future missions: LF and PI
 -- HT, LTM, and BD assigned highest ranking
 -- ASA relatively low

Science Performance Assessment

- All candidates must meet minimum requirements of Design Reference Program - scoring ranks relative performance for these
- Planet Score
- Astrophysics score

Planet Science Scoring

- Score = 5/(resolution in arcsec)
- + 4*(spectral resolution)
- + 6*(distance in parsecs for standard earth detection in 10 hours)
- + 50*(fractional uv coverage in one snapshot)
- + 10 (for a nuller without imaging)
- 20 (if reconfiguration required for each star searched)
- 20 (if reconfiguration required during each observation)
- + (20,10,50) for observation in (thermal, reflected, both)

+ (15,20,10,10,10,12,5,5,8) for coverage of bands of (O₃, O₂, CO₂, CH₄, NH₃, H₂O, H₂, CO, Water ice)

Maximum score = 550

Desire Astrophysics Science Scoring

- Score = $30*(\lambda max/\lambda min)$
- + baseline in meters * [1 (visible) or 0.1 (infrared)]
- + FOV width in pixels / 5
- + 0.1 * (spectral resolution)
- + 6*(distance in parsecs for standard earth detection in 10 hours)
- + 10 (for a nuller without imaging)
- 20 (if reconfiguration required from planet search)
- 20 (if reconfiguration required during each observation)

Maximum score = 500

Science Scoring - Results

(Planetary sci: 75% Astrophys: 25%)

	Planetary Sci	Astrophys	Weighted total
Densified Pupil Hypertelescope	455/500	412/550	444
Laser Trapped Mirror	400/500	550/550	437
Book Design	365/500	371/550	366
Redundant Linear Array	300/500	287/550	297
ASA	300/500	340/550	310
Occulters	250/500	520/550	317

	Filled Apertures w/Square Apodization	Densified Pupil Arrays	Redundan † Linear Arrays	"Book Design "	Laser Trapped Mirrors	Occultor s
Science Performance	4	1	4	3	2	5
Technology	1	2	3	4	5	n/r
Schedule	1	4	3	2	5	n/r
ROM Cost	1	3	n/r	2	n/a	n/r
Future Heritage	3	1	n/r	2	n/a	n/r

Architecture Priority List

- 1. Apodized Square Apertures
- 2. Hypertelescope Imagers
- 3. Redundant Linear Arrays
- 4. Interferometric nullers (e.g., "Book Design")
- 5. Laser trapped mirrors
- 6. Occultors

Precursors

TPF Precursors

- Science precursors
 - -- Previously proposed
 - -- New opportunities
- Mini-TPF concepts
- TPF technical precursors

Present Precursors

Mission	Launch	Results	Status
SIRTF	2002	~2005 Large Exo-Zodis	Selected
COROT	2004	<2007 ~10 Hab.Earths	Selected
Kepler	2006?	<2009 ~400 Hab.Earths	Decision 01/01
Eddington	<2012	<2015 ~50 Hab.Earths	'Reserve'
GAIA	<2012	<2013 ~10 Hab.Earths	Selected
SIM	2009	<2010 ~10 Hab.Earths	Selected

Additional Precursors

Mission	Results
2-3 m Apodized Square Aperture	~2010 Imaging of Earths
TREASURE Transits of Nearby Earths	<2010

```
Why not:
~10 Mearth planets from intensive radial velocity
programs
RV = 2 - 3 m/s for K star
\sigma(Vr): goal 1 m/s
```


Mini-TPF Concepts

- Each architecture can be scaled to accomplish part of the TPF Design Reference Program
- For connected structure implementations, a mini version serves as a complete technology precursor
- For the free-flyer implementations, a mini version based on a connected structure can accomplish part of the DRP with reduced risk and delay
- Mini-TPF science goals:
 - -- Detect earths for nearby stars
 - -- Detect Jupiters (and solar system analogues) for all TPF program candidates

Precursor Recommendations

- It is <u>critical</u> to have an estimate of the frequency of earth-like planets, around typical neighborhood stars, in order to optimize the design of TPF
 Direct method – detect habitable candidates
 - -- Statistically significant transit survey
 - -- Radial velocity search for high-mass earths
- Indirect method detect solar system analogues (massive planets in outer system)
 - -- Enhanced radial velocity searches
 - -- New precursor TBD
 - -- Mini-TPF TBD

Phase II Plans

Phase II Plans

- $\boldsymbol{\cdot}$ Refine design realism for selected concepts
 - -- Detailed subsystem modeling and analysis (continuation of work already started for apodized square aperture and DPHT concepts)
 - -- Integrated end-to-end models
- Refine technology risk and cost risk/trades for concepts
 - -- Technology survey (TRL levels, concept-specific) already in work
 - -- Additional cost parametrics & trades
- Investigate precursor options

Conclusions and Recommendations

Conclusions and Recommendations

- Develop Apodized Square Aperture architecture on several possible scales - in visible and infrared - as potentially quickest, cheapest TPF realization
- Develop Hypertelescope Imager architectures, as most promising for eventual very high resolution TPF realizations, scalable to Life Finder and Planet Imager
- Define earth frequency through precursors
- Develop mini-TPF options as TPF alternatives
- Continue investigation of Laser Trapping as enabling technology for future ultra-large apertures