

Fabrication, Assembly, and Test

Charlie Atkinson charles.atkinson@trw.com (310) 813-2953

- Driving Manufacturing technology developments
 - Moderate improvement in mold surface figure and surface roughness
 - Extrapolation to 4.5 meters at low areal density while maintaining controlled fiber angles and resin content
 - Resin selection to achieve low CTE, vacuum and space qualification, and very smooth surface
 - Implementing dimple-free actuators on back for figure control
 - Production of 36 segments (500 m²) in 45 months

TPF Assembly and Test Driving Issues

- Verification methodology is a significant potential cost driver
 - TPF's large aperture and low stiffness precludes high fidelity optical verification on the ground
 - Sunshield's 35 m x 50 m size makes verification a challenge
 - Extrapolating NGST and other TRW deployment verification techniques reduces technology challenge
 - Thermal verification will be extrapolated from NGST
 - Result is a verification process that relies on component verification and modeling to extrapolate to on-orbit performance
 - Significant reliance on model correlation and model validation with performance predictions from correlated models providing final verification
 - Great Observatories program used this to some extent for thermal performance sensitivities
 - Other programs have used this process successfully
 - NGST will make greater use of this, and validate the process for TPF
- Contamination
 - Similar to NGST, the PM and SM are scattering sources for thermal emitters
 - Experience base from Chandra (5x10⁻⁵ FAC) and NGST should provide protocols and cleaning necessary for large aperture surfaces

TPF Assembly and Test Facilities

- Facilities
 - Cryo-figuring of segments requires a 5-meter cryogenic chamber
 - 35-m RoC => chamber must be long and/or have a large window
 - Sunshield requires 70 m x 50 m x 35 m high bay
 - SIM requires cryogenic verification
 - GSFC's SES chamber upgrade for NGST may suffice
- Deployment accuracy verification through large-scale photogrammetry
- Telescope Integration requires reasonably large high bay
 - Horizontal integration of the telescope
 - 45 m long x 35 m wide x 35 m tall
- Observatory integration will occur in same location as telescope
- Launch processes use standard EELV facilities

IR

TPF Mirror Segment Testing TRW Requires Large Cryogenic Chamber

	MSFC*	SPF*	Delta*	AEDC*	Stennis	Danbury*	Kodak*
Access	Tennessee River and air	Great Lakes and air	SF Bay and air	de- commissioned runway	Gulf access and air	Road travel required	Great Lakes and air
Comment	Shroud requires significant modification	Helium refrigeration	Helium refrigeration; horizontal	Helium refrigeration	Does not currently exist - SBL plan	Chamber mods required; Helium refrigeration	Chamber mods required; Helium refrigeration

* potential NGST test facility

Fabrication, Assembly, and Test

Terrestrial Planet Finder TPF Integration and Test Flow

Launch and Commissioning

Stewart Moses

stewart.moses@trw.com

(310) 812-0075

Launch and Commissioning

Terrestrial Planet Finder

- Place of order 10,000 kg (dry mass) system into L2
 - Single vs. multiple launches
- Support Observatory deployment and check out of telescope performance
 - Can Observatory benefit from astronaut assistance in LEO?
- Avoid excessive forces (i.e., high g's at burn out of injection stage) on deployed flight system
 - Drives selection of thrust for injection stage
 - Trade whether deployment occurs before or after major Δv maneuvers
- Avoid expensive new LV developments
- Verify performance of Wavefront Sensing and Control (WFS&C) systems and science instruments

Ability to Put TPF at L2 in One Launch Depends on LV Capabilities

TPF Will Require the Most Capable LVs Available

- EELV-Heavies
- 5-m fairings available
- Up to 25,000 kg to 400 km LEO
- Up to 11,000 kg to L2 direct
- No special restrictions on P/L

- Space Transportation System
- 5-m cargo bay
- Up to 24,400 kg to 400 km LEO
- Man-rating requirements on P/L
- Astronauts available to assist operations

Direct Trajectory Has Commissioning TRW In Transit to L2 (Adapted From NGST)

For Double Launch Need to Segment TRW

Commissioning Activities Continue In Transit to L2

Propulsion Stage Selection Depends TRW on Launch Scenario

Option	Cryogenic High-Energy Upper Stage	Bi-Prop Integral Propulsion Stage		
Heritage	Based on Delta III Upper Stage	Based on Chandra and SIM IPS		
lsp	450 sec	330 sec		
Dry Mass	2,000 kg	2,400 kg		
Propellant Mass	13,000 kg	18,700 kg		
Peak Acceleration	0.9 g	0.039 g		
LV	EELV only	EELV or STS		
Implementation	Direct trajectory to L2; requires re-stowing of OTA and sunshades prior to insertion burn	Use multiple burns and lunar swing-by; low g-loading avoids requirement for re- stowing		
Best Scenario	Ideal for Direct Trajectory	Ideal for Rendezvous in LEO		

Interrestrial Planet Finder OTA Commissioning Approach Will T Be Proven on NGST

- Set Primary Mirror segment piston/tip/tilt actuators to nominal (1 g) positions
- Set Secondary Mirror actuators to nominal (1 g) positions
- Commence cool down to SIM operating temperature
- Initial WFS&C commissioning
- Coarse alignment
- Coarse phasing
- Fine phasing
- Observatory first light
- After cool down to steady state, determine SIM operational readiness
- WFS&C commissioning adjustments as needed
- Re-phase optics prior to SIM evaluation and certification
- Final commissioning testing and certification of SIM and Observatory

- One instrument will be commissioned early (for example the guide camera) to support telescope commissioning
 - Power on electronics
 - Check telemetry
 - Power on FPA
 - Check telemetry and data
 - Take numerous dark frames to ensure detector is operating nominally (compare to ground data)
 - Open cover (if part of instrument) and illuminate detector
 - Check telemetry and data
 - Test all mechanisms
- After telescope is aligned
 - Calibrate guide camera once images from telescope are adequate
 - Measure PSF of known star
 - Calibrate plate scale across the field using double stars
 - Calibrate photometrically using known stars

Subsequent Instrument Commissioning TRW

- Spectroscopic instruments likely to use internal calibration sources
- Coronagraph will verify alignment capability to put star on the occulting spot
- Instruments with CVF require wavelength calibration to verify wheel position accuracy
 - Employ source with strong spectral features

- Stowing technology and lightweight optics make it possible to launch TPF in one or two launches
 - No special launch vehicle developments seem necessary
 - LEO rendezvous and docking activities can be supported by shuttle astronauts
- Commissioning procedures will be proven on NGST

Mission Operations

Suzi Casement suzanne.casement@trw.com (310) 813-8983

Mission Design Ensures Access to All Targets for Sufficient Time

All targets can be surveyed during the mission limiting characterization to the closer sources (<25 pc)

- All sky access means all targets can be surveyed during the course of the mission
- >2 month access time per year allows revisits during the mission at appropriate intervals

		Integration time needed				
	Target	Detect	Characterize			
0	"average" system	20 hours	14 days (SNR=10)			
			28 days (SNR=25)			
Oc	Earth/Sol @ 10 pc	2.4 hrs	42.3 hrs			
			265 hrs			
	150 sources	3×20×150	N/A			
	(detection mission)	=1.0 yrs				
	30 "typical" sources	3×20×30	25×14 days + 5×28			
	(characterization mission)	= 0.2 yrs	days = 1.3 yrs			
	Total Inte	2.5 years				

 \mathbf{IR}

Mission Timeline Estimation Includes TRW Dependence on Target Type

- Planet Detection allocated ~1/4 of total mission time
 - 150 sources required
 - Typical integration time = 20 hours
 - Typical target separation ~15 degrees
- Planet characterization allocated ~1/4 mission time
 - ~30 sources required
 - Typical integration time = 14 days for R=20, SNR=10 (at 10 μ m)
 - Typical integration time = 28 days for R=20, SNR=25 (O_3 , CH₄ observations)
 - Typical separation ~40 degrees
- General Astrophysics allocated ~1/2 mission time
 - Estimate 1 target per day on average
 - Estimate typical separation ~10 degrees
 - Observations interspersed with planet finding and characterization mission to minimize slew times

- Slew and settle time
 - Estimate 1 hour slew + settle for a 10° motion
 - Increases marginally for larger slew distances
- Orbital maintenance is needed at L2
 - Estimate this action is required bi-monthly
 - Estimate 6 hours to complete these maneuvers
- Instrument calibration
 - Weekly to monthly to monitor changes in the FPA / electronics / optics performance
 - Requires slew to "standard" star
 - Take data in all filters of interest for all instruments that are used in previous and subsequent calibration intervals
 - Estimate ~6 hours for standard calibration sequence
 - Estimate ~12 to 24 hours for calibration sequence that includes updates to the primary mirror figure and deformable mirror settings

Target Acquisition Done in Steps to TRW Infrestrial Planet Finder Meet Stringent Pointing Requirements

Terrestrial Planet Finder

Coronagraph Architecture Provides Simple On-Orbit Operations

- Observatory operations are simple and will be validated with NGST
- Mission overhead time for this mission is estimated to be a small fraction of the overall mission (< 5% of mission time, not including commissioning or time to reach the L2 orbit)
- High accuracy pointing requirements will be met with layers of pointing control, shared between the spacecraft, the telescope, and the instruments
- Wavefront sensing and control algorithms will be validated using coronagraphic testbeds and on NGST for the primary segmented mirror
- Calibration of the instruments and data handling operations will be similar as for all previous visible and infrared astronomical telescopes in space (e.g., Hubble, SIRTF, NGST)
- A dedicated ground station for communication will simplify the data management functions and streamline the data processing pipeline
- Safehold operations only require protecting the mirror and front sunshade surfaces from the sun, reasonably simple to do in the benign L2 orbit for extended periods of time

Technology Roadmap

Charles Lillie <u>chuck.lillie@trw.com</u> (310) 814-3774

- In this section we:
 - Identify critical technology development needs
 - Identify "tall tent poles"
 - Assess difficulty of proposed technological approach
 - Identify alternative approaches
 - Show appropriate plans for developing critical technologies to the necessary readiness level
 - Provide metrics for evaluating technology development
 - Indicate other NASA programs require similar technology
 - Identify technologies that require space validation

TPF Technology Readiness Levels

Technology		Development Risk	Being Developed By:
Large, lightweight Cryo-IR Optics	3	medium-high	NGST*
Low cost mirror production	4	medium	NGST*
Precision deployable structures	4	medium	NGST*
Low temperature materials	2	medium	NGST*
Active and passive isolators for vibration control	4	medium	SIM*
Cryogenic Dampers	4	medium	
High contrast imaging (>10 ⁶)	3	medium-high	JPL-ETB
Wavefront sensing and control	4	medium	NGST*
Large format Si-As detectors	3	medium	SIRTF*
Large IR filters & broadband transmissive substrates	2	medium-high	SIRTF*
Low-vibration cryocoolers (4-6K)	4	medium	TPF, Con-X
Cryogenic opto-mechanisms	4	medium	SIRTF*
Cryogenic deformable mirrors	4	Medium	1 SBIR
Lightweight, compact, nanometer resolution actuators	4	medium	NGST*
Superconducting Electronics	3	medium	BMDO*
Light-weight deployable solar & thermal shields	4	medium	NGST*
High-torque/high capacity momentum wheels	3	medium-low	

"Tall Poles"

* Additional technology development effort required

"Evolution, not Revolution"

No technology breakthroughs are required

Technology Roadmap

Other NASA Programs Require Similar Technologies

Technology	Life- Finder	Planet Imager	Constell- ation-X	FAIR	SPIRIT	SUVO	Interstellar Probe
Large, lightweight Optics				\checkmark			
Low cost mirror production	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Precision deployable structures	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Low temperature materials	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark
Active and passive vibration isolators	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Cryogenic Dampers	\checkmark	\checkmark		\checkmark	\checkmark		
High contrast imaging (>10 ⁶)	\checkmark	\checkmark					
Wavefront sensing and control	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Large format Si-As detectors	\checkmark	\checkmark		\checkmark	\checkmark		
IR filters and substrates	\checkmark	\checkmark		\checkmark	\checkmark		
Low-vibration cryocoolers (4-6K)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Cryogenic opto-mechanisms	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Lightweight, compact actuators	\checkmark	\checkmark		\checkmark	\checkmark		
Superconducting Electronics	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Deployable solar & thermal shields	\checkmark	\checkmark			\checkmark	\checkmark	
Hi-torque/capacity momentum wheels							

Technology Roadmap

Telescope Technologies

Technology Roadmap

10-6

- Large, lightweight cryo-IR optics
 - 5 kg/m² areal density
 - 7 μ m diffraction limited (3 μ m goal)
 - Surface roughness < 100 Angstroms (30 Angstroms goal)
 - Mid-spatial frequency errors < 4 nm RMS
 - Lightweight, compact, nanometer resolution actuators
- Low-cost mirror fabrication
 - Thin replicated mirrors
 - Composite design
 - Mandrel production
 - Large segment production
- Low temperature materials
 - Cryo-compatible resins

Terrestrial Planet Finder Mirror Technology Advances

Composite Mirror SOA

- Outer segments produced using replication techniques
 - COI 2-m FIRST demonstrator
 - Cervit mold polished by University of Arizona
 - 0.25 μ m surface accuracy; 100 Angstroms smoothness
 - Production from 2/99-8/99
 - Good wavefront performance
 - 2.32 $\,\mu m$ RMS
 - After removing 1st 36 Zernickes, 1.00 μm RMS at room temperature
 - » 1.21 μ m RMS at 200K vs. 0.2 μ m RMS at 30K requirement
 - Design extrapolated to 3.5 m diameter at 11.4 kg/m²
 - CMA thin replicated mirrors
 - Pyrex mold
 - 15 cm spheres at 0.79 μm RMS and 1.3 kg/m²
 - 90 cm sphere at 1.7 kg/m²
 - Surface roughness <10 Angstroms has been demonstrated.
 - Mid-spatial frequency errors <3 nm RMS has been demonstrated.
- Composite mirror technology is on track to meet TPF requirements

- Resin studies
 - Currently using EX-1515, cyanate ester. 250F cure (low temperature); flight qualified
 - Investigate other resins (e.g., cyanate ciloxanes) to improve surface features and further reduce moisture effects and enhance toughness
- Composite design
 - Using resin system selected, design and demonstrate quasi-isotropic layup that will provide required CTE, CME, stiffness and strength
- Mandrel production
 - Lower cost through inexpensive metrology
 - Leverage Bauer metrology or surface profilometry
 - Segmented mandrel production and joining without discontinuity
- Large segment production
 - Demonstrate required figure and control on large segment
 - Develop production plan to achieve 36 segments in 45 months

Telescope Technology Roadmap

Activity Name	2002	2003	2004	2005
Resin studies				
 Survey current resin properties 				
Develop surface production method		Select final resin options		
Composite design				
 Design candidate layups; test coupons 				
 Layup panels to demonstrate material properties, uniformity, and surface roughness 			Select fin	al
			composit	e designs I
Mandrel production				
Metrology definition		Offramp to multiple Hindle sphere		
 Demonstrate mandrel joining techniques 		Offramp to non-segmented mandrel		
 Produce full segment mandrel 				
Large segment production				
 Actuator and reaction structure design 			1	
 Full-scale replication 				
Demonstrate mid and high spatial frequencies				
Cryogenic test				
 Large-scale production studies 			 	

Technology Roadmap

Spacecraft Technologies

Technology Roadmap

10-12

- Lower natural frequency of TPF requires more vibration suppression than SIM and NGST
- Active and passive vibration control with cryogenic damping
 - Passive isolator attenuation 40 dB at 10 Hz
 - Active augmentation additional 20 dB below 10 Hz
 - Micro-Newton force sensors to measure low frequency, low vibration levels ~10 m-N resolution
 - Cryogenic damping in the telescope >3% at 20K

Current SOA: SIM Dual-Stage Passive Vibration Isolation

TRW

Second Stage at Backpack

- The spacecraft is isolated from residual backpack vibrations by a flexible kinematic mount composed of three damped beams with transverse "V"-flexures, transmitting only bending loads
 - No offload is required in 1G testing for 5 Hz struts

First Stage at Wheel

- Spacecraft backpack houses six Teldix reaction wheels on Chandra-heritage vibration isolators at 7 Hz in rocking and 12 Hz in translation
 - SIM does not at present require damping in the optical payload
 - Low frequency vibrations are further rejected by active pathlength control at 100 Hz

Terrestrial Planet Finder Vibration Control Technology Roadmap

Technology Roadmap

- Lightweight deployable solar and thermal shields
 - 100:1 packaging efficiency
 - <0.15 kg/m² areal density
- High torque/high capacity momentum wheels
 - Torque >1 N-m
 - Momentum storage >400 N-m-s

- Sunshades
 - Mechanically deployed (AstroMesh) antennas have areal densities <0.25 kg/m²
 - Inflatable antennas have demonstrated areal densities < 0.35 kg/m²
 - Lower mass (and much lower inertias) is highly desirable
- Reaction Wheels
 - Teldix RDR-68 wheel on EOS, Chandra
 - Torque = 0.14 Nm, Momentum Storage = 68 N-m-s
 - Largest wheels from Honeywell, HR-16X
 - Torque = 0.2 Nm, Momentum Storage = 150 N-m-s
 - HST wheels no longer in production

Sunshade and Reaction Wheel Terrestrial Planet Finder Technology Roadmap

TRW

Instrument Technologies

High Contrast Imaging Technologies TRW

- Deformable Mirrors
 - Current state of the art is modules with 441 actuator elements on a 1 mm pitch driving a thin silicon facesheet with a stroke of ~ 0.6 microns
 - The TPF design goal is ~200 x 200 actuators on a 2.5 mm pitch a stroke of ~4 microns
- Wavefront Sensing and Control
 - Phase and wavelength diversity methods are being developed for telescopes such as Keck, NGST, and other adaptive optics systems
 - Layers of control between the primary mirror, secondary mirror, DM, and any other controlled mirrors will need to be validated
- Infrared apodized occulting spots on highly transmissive and nonscattering substrates
 - 10⁻⁸ transmission occulting spots with a gaussian taper deposited on optical substrates have been demonstrated.
 - IR substrate materials need to be validated, but similar apodization techniques should be applicable

- Large format SiAs detectors
 - Formats > 512 x 512 pixels
 - Dark current < 30 e-/second at 10K</p>
 - Readout noise < 100 e-
- Large IR filters and broadband substrates
 - 10 cm x 10 cm filters
 - 3 to 28 microns
 - ~20% bandpasses
- Other technologies
 - Cryocoolers
 - Cryogenic mechanisms for filter wheels and occulting spots
 - Low-power, cryogenic electronics for FPA signal conditioning
 - Low power drivers for filter wheels and other mechanisms
 - High speed, large format detector for guide camera

Large format Si:As detectors:

- SIRTF will fly 128² (MIPS, IRS) and 256² (IRAC) formats
- SIRTF IRAC devices demonstrate low readout noise (<50 e⁻ with CDS) and low dark currents (<5 e⁻ per second at 5K)
- 512 x 412 devices demonstrated^{*}
- Mean QE>45% demonstrated for SIRTF IRAC devices
- 1024² formats under development for NGST^{*}

High frame rate, large format detectors for guide camera:

- Up to 1024 x 1024 HgCdTe and InSb devices currently available with >8 Mpixels/second per output pixel rates with multiple ports for 30 to 60 Hz full frame operation
- Windowable devices also available
- Development needed for 2048² devices with 1-30 Hz full frame rates and ≤32 outputs

Large infrared filters and substrates:

- 1-inch filters common for mid infrared applications in ground based astronomy
- Typical materials have large scatter functions which cannot be allowed in the coronagraph
- OCLI data sheets show filters up to 15.5 µm with >80% transmission for 10% bandwidths in up to 150 mm diameters

Dispersive elements:

 Dispersive gratings for SIRTF IRS have much higher dispersion (corresponding to an R=60-120) than needed for TPF (R~20)

*Love et al., "Infrared Detectors for Ground-Based and Space-Based Astronomy Applications," 2000, Raytheon IRCoE

Instrument Technology Roadmap

MIR large substrate/filter development

Terrestrial Planet Finde

TRW

Low-Vibration Cryocoolers

- Low-vibration cryocoolers
 - Cooling power > 10 mW
 - Cold tip temperature 4-6K
 - Temperature accuracy ±0.5K, repeatability of ±0.2K
 - 50K pre-cooling
 - Cooler mass < 30 kg
 - Input power < 50 W</p>
 - Lifetime > 10 years
 - Self induced vibration level < 100 mNp (0-500 Hz)

 $\mathbf{I}\mathbf{R}$

TRW

- Long life, flight cryocoolers capable of operating as low as 30K are in orbit (TRL 9)
 - Pulse Tube, Stirling
- Next generation coolers to 10K and staged coolers are being developed by AFRL (TRL 4)
 - Stirling, Pulse tube
- Coolers capable of reaching 6K (TPF requirement) have been demonstrated in lab (TRL 4)
 - Hybrid Stirling -JT, Turbo Brayton
- Advanced Cryocooler Technology Development Project (ACTDP) from Code S and JPL is designed to meet TPF needs

- Development of staged low temperature coolers (e.g., 18K and 6K)
 - Regenerative coolers Pulse Tube, Stirling
 - Low temperature regenerators
 - **Joule Thomson** coolers or cooling stages
 - Long life compressors, contamination control, life demonstration
 - Turbo Brayton
 - Low temperature heat exchangers, tiny rotors, contamination control, life demonstration

Superconducting Electronics

Technology Roadmap

10-29

Superconducting Electronics (SCE): TRW Interestrial Planet Finder High Performance at Low Power

Technology Roadmap

- 10K Niobium Nitride (NbN) integrated circuits for mid-IR focal plane array readout
 - Multiplexers
 - Analog-to-digital converters
 - Line drivers
- 70 K YBCO (YBa2Cu3O7) integrated circuits for instrument data processing
 - Instrument control
 - Level conversion
 - Rate buffering
 - Frame addition and noise rejection
 - Data formatting

SCE State of the Art

- <6K Niobium medium-scale integrated circuits (TRL4)
 - 10.65 mm x 13.2 mm chip
 - Power dissipation ~ 5 mW at 4.5K
 - -70,000 junctions, 5,000 gate equivalent
 - -5 GByte/sec inter-chip data transfer
 - 40 GOPS peak computational capability (8-bits at 20-GHz clock)
- Digital HTS circuits have been demonstrated at low integration levels (TRL3)
 - Flip-flop operation at 65K
 - Circuit under test contains 11 junctions
 - Toggle flip-flop changes state every rising edge of input
- TRW HTS Space Experiment on ARGOS
 was 100% successful

Errestrial Planet FinderCryogenic IR Camera with NbN ADC TRW Produces Mid-IR Images

TRW

2001 2002 2003 2004 2005 2006 2007 2008 2009

Deployable Optics Testbed

Technology Roadmap

10-35

- Demonstrate deployment concept for optical applications
 - HARD concept selected from trade study
- Further develop the primary mirror deployable structure technology
 - Unique to the TPF mission
- Address key issues
 - Cryogenic temperature compatibility (for TPF, LifeFinder, etc.)
 - High reliability
- Validate designs and analysis
 - Test program
- Demonstrate growth capability
 - Add segments, mirrors, actuators, SMSS, ISIM, etc.

Terrestrial Planet Finder

Continued Innovation and Advancement of Deployables

12-m AstroMesh Thuraya Reflector

- TRW continues the tradition of innovation and development to meet future mission needs
 - Large apertures
 - Higher frequency
 - Lower cost
 - Lighter weight
 - Smaller packaging

9.2-m PAMS Reflector

5-m PAMS Reflector

5-m HARD Reflector

High Accuracy Reflector Development Program (HARD)

Stowed

Deploying

Deployed

- 15-ft. (4.6 m) aperture, deployable, solid surface reflector, 200 microns RMS
- Total weight 100 lb. (45.4 kg) including subreflector and boom (panel areal density ~3.33 kg/m²)
- Stows to 2 ft. (0.61 m) tall by 5 ft. (1.52 m) diameter
- 1.2 dB gain loss at 60 GHz verified in nearfield
- Structural integrity verified by test program

TRW

Terrestrial Planet Finder Reflector Deployment Sequence

TRW

Terrestrial Planet Finder Testbed Configuration

Technology Roadmap

Technology development effort culminates in Engineering Model Testbed

Technology Development Recommendations

- Optical Telescope Assembly (OTA)
 - Large, lightweight cryo-IR optics
 - Low cost mirror fabrication
 - Low temperature materials
 - Precision deployable structures
 - Deployable optics testbed
- Spacecraft
 - Active and passive vibration control with cryogenic damping
 - Lightweight deployable solar and thermal shields
 - High torque/high capacity momentum wheels

FF Technology Development Recommendations II

- Integrated Science Instrument Module (ISIM)
 - Low-vibration cryocoolers (4-6K)
 - Apodization technology for Lyot stops and occulting spots
 - Cryogenic opto-mechanics
 - Cryogenic deformable mirrors
 - Wavefront sensing and control
 - Low noise, large format SiAs detectors
 - Large IR filters and broadband transmissive substrates
 - Superconducting electronics
 - Low power, cryogenic electronics for FPA signal conditioning
 - Low power drivers for filter wheels and other mechanisms
 - High-contrast Imaging testbed

Coronagraph Technology Validation

John Trauger JPL

Technology Roadmap

10-45
The Eclipse Testbed at JPL Provides TRW Validation for Coronagraphy

- The goals of the "Eclipse Testbed" (ETB) is to validate key wavefront and scattered light control technologies to the accuracy required to achieve 109 contrast ratios or better in visible light
- Implemented as a vibration and temperature isolated vacuum testbed with reconfigurable optical setup (shown below) on a 7 x 5 foot optical bench

This program is funded by NASA/JPL, and is available to support the TPF program

ETB Has Key Goals to Validate TPF Coronagraph Technology Needs

- Scattered light reduction with active optical wavefront correction to 1 Angstrom rms or better with a high-order precision deformable mirror
 - 1400 actuator DM to be implemented in Spring 2002
 - 3200 actuator DM to be implemented by Fall 2002
- Diffracted light reduction with coronagraphic and apodizing techniques
 - Soft-edged coronagraph occulting spots
 - Range of hard- and soft-edged Lyot/pupil stops
- Precision wavefront sensing techniques available to a space telescope
 - Implemented using phase diversity algorithms with a CCD science camera moved through focus
 - Provides the information to set active wavefront correcting elements including the DM and any telescope alignment actuators
- High performance light baffling strategies
- Techniques used will validate our predictive models for a TPF coronagraph and possible precursor missions such as Eclipse

Precursor Missions to Validate Technology, Provide Science Data

- ETB will validate critical hardware and optical performance models for high contrast imaging in a space-like environment
- A precursor mission to validate the approach in a space environment would minimize risk for the TPF Coronagraph mission
 - Evaluate vibration isolation levels required to achieve desired image quality
 - Evaluate thermal control required
 - Evaluate methods of stray light control for a space based telescope
 - Validate scaling models from the testbed to a larger, operational system
 - Validate wave-front sensing and control algorithms in a space environment
- A precursor mission to do preliminary survey of target systems equally valuable
 - Determine exo-zodiacal dust/debris structures and densities to model integration time needed to defeat the zodiacal background
 - Detect presence of giant planets as signposts for stable planetary systems and safe harbors for terrestrial planets

Life Cycle Cost Estimate

C.Lillie/E.Wood 10-12 December 2001

- Ground Rules and Assumptions
- ROM Costs
- Funding Requirements

- Costs are in 2002 \$M (including fee) with a reserve of 30%
 - Excludes science team and NASA center costs
 - No fee or reserve applied to launch vehicles
- Instrument delivery no later than last quarter 2012
- Launch in last quarter 2014 on a EELV Heavy
- Initial primary mirror and sunshield development begins in Phase A/B
- Cost estimates developed using a combination of cost analogies and statistically developed estimating relationships from our cost database
 - Estimate based on the WBS and TPF schedule developed for this study

Terrestrial Planet Finder TPF Work Breakdown Structure

Activity Name	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Phase A Phase B			-								
Phase C/D Phase E (OPS)										2015-20	19
Milestones			S R R	P D R	SYST NAR CD	E M R		TRR	Launch		
Mirror Fabrication					Design Complete				12/2014		
OTE		A 0			OTE CDR	Start I&T	· · ·				
Science Instrument		Release	Award	PDR	CDR	Integrator					
Observatory I&T							Prime		-		
Launch EELV (Payload) EELV or Shuttle (Prop Mod)									•		
On Orbit Assembly Commissioning									7/2015	12/2015	
Spacecraft Flight Software				SS Fab	S/C CD	R Start I&T					
Sunshield Ground				SS Fab		Start I&T					
	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017

WBS	Description	Total 2002\$M
	TPF Total	1896
1.0	Program Management	54
2.0	System Engineering	88
3.0	Assembly, Integration & Test	342
4.0	Spacecraft	339
5.0	Optical Telescope Element	623
6.0	Science Instruments	275
7.0	Mission Ops & Data Analysis	175

- TPF total costs exclude:
 - Annual science operations costs
 - Support from NASA centers
- Delta cost for on-orbit assembly and test operations (including shuttle) of 250 \$M not included in TPF total

	2007	2008	2009	2010	2011	2012	2013	2014	2015
Total Cost/Year	31.5	39.3	193.3	352.2	379.4	384.9	272.4	146.9	8.6

Costs constant at 10\$M/Year for years 2015 through 2024

Summary

Charles Lillie chuck.lillie@trw.com (310) 8143774

IR Coronagraph Design Concept

- 28-meter filled aperture telescope
 - Three-mirror anastigmat
 - 36 segments, 4-meter flat-flat
 - Composite replica optics
 - Gold mirror coatings
- Multi-layer sunshade
 - Passive cooling to ~30K
- IR Coronagraph for planetary detection/characterization
 - 107 contrast at 100 mas
- IR camera and spectrograph for general imaging/spectroscopy
 - 2 x 2 arcmin FOV
- Launched with EELV heavy to L2
 - On-orbit assembly option

Advantages of Direct Imaging and Coronagraphy

- Direct Imagers have more science utility than synthetic aperture imagers, since they:
 - Are less subject to confusion
 - Handle extended objects better
 - Readily support spectroscopy
 - Have the flexibility to respond to the unexpected
- Direct imaging is less complex to implement, and does not require:
 - Beam transport over long distances
 - Array rotation or chopping
 - Precision pathlength control
- Direct imaging and IR coronagraphy requires less technology development, thanks to:
 - Heritage from SIRTF, SIM and NGST
 - Coronagraph technology being developed at JPL with the Eclipse testbed
- Direct imagers can be scaled directly to the LifeFinder and Planet Imager missions

Summary

- Mission is technically feasible, provided enabling technologies are developed in the 2002-2009 period
 - No "breakthroughs" required
 - Extension of current state-of-the-art
 - Many missions enabled by TPF technology development
- TPF can be launched in late 2014 if recommended schedule is adopted
 - PDR in late-2010, CDR in late-2011
- Mission can be accomplished for LCC of ~\$1,900M in FY02 dollars
 - Science team and NASA Center costs not included
- IR Coronagraph can achieve TPF mission objectives, and more
 - Powerful tool for imaging and spectroscopy of other astrophysical objects

A Powerful Tool for Planet Detection TRW and Other Astrophysics

The Earth at 10pc is detected at S/N = 5 at 10 μ with a 2.4-hour integration

A three-color Hubble Deep Field image can be obtained in 5 minutes

	Industry	Industry			
Name	Company/Role	Name	Company/Role		
Charlie Atkinson	TRW Optics, I&T	Bob Robitaille	TRW Pricing		
Suzi Casement	TRW Science Instrument	Ken Sitarski	TRW Subcontracts		
Sherry Erdman	TRW Secretary	Maraia Tanner	TRW Mechanical Design		
Marty Flannery	TRW Optical Design	Frank Tung	TRW Attitude Control		
Paul Glenn	Bauer Performance Model	Ed Wood	West Winds Cost Analysis		
John Kinney	TRW Data System	Science Team			
Keith Kroening	TRW Spacecraft, MDI	Name	Organization		
Chuck Lillie	TRW Program Manager	Alan Dressler	Carnegie-Mellon University		
Ray Manning	TRW Dynamics	James Larkin	UCLA		
Gary Matthews	Kodak Optics Support	Doug Lin	Lick Observatory		
Leo Matuszak	TRW Launch Vehicles	Richard Simon	NAAO		
Stewart Moses	TRW System Engineer	Glenn Starkman	Case Western Reserve Univ.		
Tammy Ortiz	TRW Contracts	John Trauger	JPL		
Annette Palazuelos	TRW Business	Dan Weedman	Self		
John Pohner	TRW Thermal Analysis	Ned Wright	UCLA		

Team Member	Role				
 Science Team 	Phenomenology, concepts, astrophysics, concept assessments				
• TRW	Prime, system engineering, spacecraft				
• Bauer	System performance modeling				
 Kodak 	Optical technology				
• ITT	Modeling, instrument technology				
• LLNL	Modeling, instrument technology				
• SEE	Orbit analysis				
• SDL	Instrument technology				