TPF Final Architecture Review 11-13 Dec. 2001 San Diego, CA

Boeing-SVS, Inc. 4411 The25 Way, NE Suite 350 Albuquerque, NM 87109

National Optical Astronomy Observatory

Orbi

Outline of Presentation

- Background & Executive Summary
- Introduction
- Non-Redundant Linear Array (NRLA)
- Apodized Square Aperture (ASA)
- Summary

Background & Executive Summary

Our TPF Architecture Team

Boeing - SVS TPF Team

Mike Kaplan, Program Director Director, NASA EO Payloads

Dr. Ed Friedman, Program Manager Chief Technologist, NASA EO Payloads & Boeing Tech. Fellow

Dennis Yelton, Simulation Senior Scientist

Tim Howard, Chief Engineer Senior Scientist & Boeing Assoc. Tech. Fellow

Bob Woodruff, Chief Scientist Chief Scientist, NASA EO Payloads

Senior Scientist

Picture Not Available

BOEING-SVS, Inc.

Tommy Williams, Simulation Dr. Rasti Telgarski, Simulation

Dr. Steve Griffin, Structures & Controls Dr. Ralph Pringle, Adaptive Optics Mechanical Engineer Senior Scientist & Boeing Assoc. Tech. Fellow Senior Scientist & Boeing Tech. Fellow Senior Scientist Senior Fellow

Background, Exec Sum & Intro - 5

Dan Eastman, Optical Designer

First Science Team Meeting, in JPL Annapolis, MD

BOEING-SVS, Inc.

TPF Team at Pre-PAR Review @ JPL OHP, France

BOEING-SVS, Inc.

Boeing - SVS Science Team (1 of 2) Steve Ridgway, NOAO - Principal Scientist

Abe, Lyu	O.C.A.	Deleuil, Magali	L.A.M.
Aime Claude	U. Nice	Dohlen, Kjetil	L.A.M
Arnold, Luc	O.H.P.	Faucherre, Michel	Montpellier
Backman, Dana	NASA-ARC/F&M	Fournier Jean Marc	Rowland Inst.
Barge, Pierre	L.A.M.	Gezari, Dan	NASA-GSFC
Baudoz. Pierre	IFA	Gillet, Sophie	O.H.P.
Boccaletti. Anthony	Caltech	Guyon, Olivier	I.F.A.
Danchi, William	NASA-GSFC	Han, Daesoo	NASA-GSFC
Dargent Pascal		Harwit, Martin	Cornell
		Kaiser, Robin	C.N.R.S.

Boeing - SVS Science Team (2 of 2) Steve Ridgway, NOAO - Principal Scientist

Labeyrie, Antoine	LISE	Papaliolios, Cos	SAO
Lardiere, Olivier	O.H.P.	Restaino, Sergio	Phillips Lab
Legrand, Yann	Univ. Rennes	Riaud, Pierre	OHP Meudon
Lopez Bruno	O.C.A. NASA-GSFC Royan Daniel	Roddier, Claude	IFA
		Roddier, Francois	IFA
Lyon, Richard		Rouan Daniel	D.E.S.P.A.
Malina, Roger	L.A.M.	Schneider, Jean	DARC Meudon
Melnick, Gary	Harvard SAO	Soummer, Remi	U. Nice
Mertz, Lawrence	Digiphase	Stachnik, Bob	Testex
Moseley, Harvey	NASA-GSFC	Staguhn, Johannes	Maryland
Murphy, Tim	NASA-GSFC	Townes, Charles	Berkeley
Nisenson, Peter	SAO	Vakili, Farokh	O.C.A.

Team Responsibilities

• Boeing - SVS

- Program management, modeling and simulation lead, systems engineering lead, and study integration
- Goodrich
 - Optics concept development, space systems concept definition, systems engineering, modeling & simulation
- Orbital Sciences
 - Space mission concept development, space systems life-cycle costing, spacecraft engineering, orbit selection and launch vehicle analysis
- Boeing Anaheim
 - Instrument concept development
- Foster-Miller
 - Technology road-mapping and assessment
- University of Colorado
 - Large space structures analysis and simulation
- Science Team
 - Concept formulation, architecture analysis, modeling and simulation, instrument design, science assessment & instrument concept development

Executive Summary of Final Architecture Review

Concept Overview

Parameters	NRLA	ASA
System Wavelength	IR	Visible
Size	~100 m	~ 8 m
Launch	2 Shuttle & 1 Delta IV	1 Delta IV or Shuttle
Mission life	5 years	5 years

Conclusions - Hypertelescopes

- Non Redundant Linear Array (NRLA) -- A simple version of a hypertelescope -- accomplishes all of the TPF planet detection and characterization science in the infrared
- Hypertelescopes represents an architecture scalable up to Planet Imager capabilities
- NRLA is a "hybrid interferometer/coronagraph"
 - Interferometer-like architecture to gather the light
 - Densified pupil coronagraph as its instrument
- A sub-scale version could be a precursor that demonstrates technologies key for both interferometers & coronagraphs

Conclusions: Apodized Square Apertures (ASA)

- ASA architectures are robust, with a large trade space to be exploited
- NGST-class ASA telescope can accomplish all of the TPF planet detection and characterization in the visible
 - Significant technological transfer from NGST
- The principal technology challenge for ASA is the production of precise flight qualified optics
 - A single launch on an existing launch vehicle appears feasible
- A modest size ASA system can serve as a scientific and technological precursor

Introduction

Our Terrestrial Planet Finder Strategy

- Need an imaging system with full UV coverage
- Both visible and infrared are important for exo-planet science
 - Need albedo, temperature, broad-band coverage for radiometric budget; cloud indicators; surface reflectivity; multiple molecular bands for confirmation/temperature.
- Both visible and infrared TPF imagers similarly powerful for astrophysics
- Visible and infrared offer different technical challenges
 - Size and mass, surface quality, thermal, detectors, ...
- Our knowledge of exo-planet systems is growing at an accelerating rate
- We see advantages in meeting TPF objectives with more than a single mission
 - TPF is already a component of Navigator
 - A visible TPF may logically precede an IR TPF

- Ground-based
 - Radial velocity surveys productivity increasing
 - Cold Jupiter detections following hot Jupiter detections
 - Transit searches produce detections now, statistics soon
 - Keck outrigger interferometer will detect outer planets
- Precursor Missions
 - Kepler for terrestrial planet statistics
 - SIM for detection of intermediate and earth mass planets
- If all systems are dynamically full, as hypothesized, we will begin to pinpoint stars with likely habitable-zone rocky planets within a few years
- TPF planning will become focused on fewer, specific targets

There are advantages if TPF is a multimission project within Navigator

- Each stage is based on previous results, investment in each stage is limited, with technical and scientific inheritance at each stage
- Science precursor missions/studies
 - Statistical information e.g. Kepler, HST
 - Giant planets orbiting nearby stars SIM
 - Rocky planets orbiting nearby stars SIM
- Characterization in multiple TPF missions optimized for specific astrobiological objectives
 - Visible photometry/spectroscopy
 - Infrared photometry/spectroscopy

TPF Specimen Contract Exhibit II

- Survey 150 (F-K) stars R=3, SNR ≥ 5
- Characterize 30 planets R = 20, SNR ≥ 10
- Characterize 5 planets R = 20, SNR \geq 25
- Mission life > 5 years
- Astrophysical objectives have not driven mission design

Boeing-SVS Planet Finder Mission Concepts

- We see two main opportunities for TPF
- A dilute interferometric array, operated as a hypertelescope, with coronagraphic nulling for star suppression, obtaining images in the thermal infrared by Fourier image synthesis
- An ultra-low diffraction telescope, the ASA, forming real, visible IR images

The Apodized Square Aperture (ASA)

- Shorter wavelengths enable high angular resolution with modest aperture size
- ASA uses conventional optical techniques
- We invented the ASA combination of square aperture shape and tailored transmission
- We developed the concept through analysis, numerical modeling and lab demos

The Apodized Square Aperture (cont'd)

- The square aperture profile concentrates diffracted light in two directions, leaving the PSF dark in most of 4 quadrants
- Apodization further suppresses the diffraction
- In lab demos, high dynamic range demonstrated with simple techniques
- PSF speckle structure is stable and symmetric, extending dynamic range for planet characterization.
- A planet finder mission is already possible with today's optical surface quality (search of TPF candidate stars for Jupiter analogs)
- An ASA takes advantage of the best available surface quality, enabling reductions in aperture and integration time
- It's just a telescope

The Hypertelescope Concept Family

- A hypertelescope consists of an array of telescopes which employs pupil densification to form a direct image
 - A densified pupil is simply a rearrangement of the sub-aperture beams which yields a compact PSF
- Our hypertelescope concept family includes an array of free-flyers (eg, Boccaletti et al, Icarus 145, 628), and a 2-d connected array (Roddier et al., PASP 111, 132))
- We have studied the Non-Redundant Linear Array (NRLA) in depth
 - Fully develops 1-d and 2-d hypertelescope technology
 - Accomplishes full TPF baseline mission in the infrared

- The NRLA employs **pupil densification** to form a compact, real image of the star
- Coronagraphic nulling removes most of the stellar photons
- Pupil expansion and re-imaging provides the image Fourier components with full 1-d UV coverage along a single position angle from a single snapshot image
- Additional snapshot images during rotation by 180 degrees provides full 2-d UV coverage
- De-rotation of the snapshot images provides the high signalto-noise stellar light residual map
- Inversion of the Fourier components yields the image

TPF and Astrophysics

- Our philosophy is simple:
 - A true imaging TPF will immediately have outstanding capability for general astrophysics, including many specific programs which we have described at the PAR
 - No enhancement of the mission is required beyond the basic TPF requirements in order to make it astrophysics-capable
 - This is true for our visible and infrared concepts, and for precursors as well as full TPF implementations
 - Considering wavelength range, angular resolution, dynamic range, field of view, spectral resolution, and typical integration times

Problems to be Addressed in Astrophysics

- Extragalactic Astronomy
 - What is the nature of quasar host galaxies?
 - How are quasars and starburst galaxies related?
 - Are quasars born in mergers or through other processes?
 - Do orientation effects account for the diversity of AGNs?
 - What determines whether a quasar is radio-loud or -quiet?
 - What is the dark-matter distribution in lensing galaxies?
 - Are damped Lyman-alpha systems protospiral galaxies?
- Galactic Astronomy
 - Differentiate between brown dwarfs and giant planets
 - Determine the mass & luminosities of binary white dwarfs
 - Map the mass loss from Mira variables and AGB stars
 - Observe the changes in outflow symmetries as AGBs age
 - Image the environs of T tauri and other young stars
 - Study the mass exchange in symbiotic variables
 - Follow the outflow in cataclysmic variables