

Section 7: Integrated System Description (The rest of the TPF System) Kenny Epstein

Spacecraft Description: Structures & Mechanisms, Orbits, Attitude Control, Propulsion, Thermal, Telecommunications, Power, C&DH, Software, Mass, Robustness & Reliability

Launch Segment

Ground Segment

TPF Final Architecture Review

All Major System Elements Evaluated

TPF Final Architecture Review

III - 2

Overview of the TPF Coronagraph Observatory

Major Features

Optics

- 10 x 4 Meter Monolithic Primary
- Off Axis Design very low diffraction
- Adaptive Optics Wavefront Control Orbit
- Earth Trailing Drift Away
- Stop Drift @ 0.2 AU
- Delta IV H direct insertion Other
- Articulated Sun Shield/Array
- 3 Axis Stabilized Spacecraft
- Launch Mass ~6,000 kg
- Power 2.1 KW EOL
- 5 Yr Design Life (10 yrs of Expendables)

TPF Coronagraph Observatory Science Requirements

- TPF must detect radiation from any Earth-like planets in the habitable zones surrounding ~150 solar type (spectral types F, G, and K) stars within 20pc of Earth. Meet - by 10 x 4 meter very low diffraction adaptive optics design
- TPF must characterize the orbital and physical properties of all detected planets to assess their habitability and characterize the atmospheres and search for potential biomarkers in the brightest candidates. Meet by high spectral sensitivity for Biomarkers in the 0.5 to 0.8 micron band
- 50% of Primary Mission is devoted to Astrophysics. Meet by, optimizing Planet Finding throughput efficiency, thus allowing for Astrophysics within 5 year design life

Additional Definitions:

- <u>Primary Mission</u> Design Life of 5 Years, with expendables (propellants, batteries, solar array) sized for 10 years
- <u>Detection</u> is defined as Repeatable observations with SNR of at least 5
- <u>Earth-like Planets</u> are defined as_Planets from one-half to twice the radius of Earth
- <u>Habitable Zones</u> is defined as the loci of orbits where an Earth-sized planet would be heated by its star to temperatures permitting liquid H₂O retention at 1 atmosphere pressure (which could involve some planet and atmosphere evolution)

Overview of the Spacecraft (Bus) Assembly

Major Features

- Fully Redundant Avionics
- 5 Yr Design Life
 - 10 yrs of Expendables Batteries, Solar Cells, Propellants, Thermal Shields
- Asymmetric Modular Structure
- Articulated Sun Shield/Array
 - For Thermal Gradient Control
 - For Cp to Cm Control
 - For Power
- 3 Axis Stabilized Spacecraft
 - Low Jitter Precision Pointing -Reaction Wheel on Isolators for fine control and Sun Shield for Coarse Control
 - Reaction Wheels for Coarse Re-Pointing between Stars
 - Hydrazine Thrusters for De-tumble, Safing, and for occasional momentum unloading

Design Drivers for Structures & Mechanisms (SMS)

- Packaging of 4 x 10 Meter Monolithic Primary Mirror
- Packaging and Deployment of Off Axis Secondary Mirror
- Packaging of Observatory in Existing Launch Vehicles (or those currently under development)
- Extremely Low Jitter Requirements, minimize disturbances through structural system
- Extremely Low distortion Requirements, minimize thermal gradients and associated distortions at the nanometer level.
- Mirror actuation & calibration at a nanometer level.
- Packaging of Science Instruments

- Integration Assembly and Test (IA&T)
 - Modular Assembly Approach
 - Separate Optical Telescope Assembly (Requiring Stringent Clean Room Requirements)
 - Separate Spacecraft (Bus) Assembly
- Packaging of Standard Spacecraft Services
 - Electrical Power & Distribution System (EPDS)
 - Telecommunications
 - Attitude Determination & Control Systems (ADCS)
 - Propulsion
 - Command & Data Handling (C&DH)

Implications of Microdynamic Behavior of TPF Coronagraph Structure

- Integration of the Microdynamic behavior into the Program will be key to meeting the low disturbance demands of the Coronagraph
- Develop sufficiently detailed disturbance Requirement flowdown from optics to mechanisms
- Design an integrated system
 - Integrate joint behavior into the overall observatory structure.
 - Define Load Paths that minimize Microdynamic effects.
 - Define Maneuvers and Environments that minimize Microdynamic effects
 - No Thermal Snap
 - Sufficiently Smooth Slew Maneuvers
- Develop Sufficiently detailed analytical simulations early.
 - Detail System level FEM model
 - Highly Detailed mechanism component level model
- Robust Test Plan to validate analysis and design approaches (Validate disturbance requirements)

Microdynamics during Observation Sequence - Top Ten Issue

Overview of the Optical Bench Design

Terrestrial 🔪 Planet Finder 🤇

Overview of the Secondary & Fold Mirror Deployment

Overview of the Baffle Design

TPF Final Architecture Review

III - 10

Overview of the Sun Shield Design

Solar Array Integrated with Sun Shield

Controls Thermal Gradients in the Optical System during entire Planet Observation Sequence

Balances Solar Torque (Cp to Cm offset) minimizing attitude control disturbances Many More Shapes & Articulation Approaches need to be studied

TPF Final Architecture Review

Evolves NGST Sun Shield Technology

Articulation of Sun Shield in Planet Search Mode

Articulation of Sun Shield while Maneuvering to new Stars

Overview of the Asymmetric Bus Design

TPF Final Architecture Review

III - 14

Overview of the Modular Composite Assemblies

TPF Final Architecture Review

III - 15

The Design Drivers for the TPF Coronagraph Orbit

Primary Design Metrics (Direct Benefits to Science)

- Maximize Sky Coverage
 - Minimize Earth and Moon Interference into Field of View (FOV)
- Minimize Environmental Disturbances
 - Minimize Thermal Variations over an Observation Sequence (~ 24 Hours)
 - Minimize Slew Requirements over an Observation Sequence (~ 24 Hours)
 - Minimize Contamination Influences
- Eliminate or Minimize Station Keeping Requirements (or keep at a frequency of 90 days or less)

Secondary Design Metrics (Direct Benefits to Cost Reduction)

- Minimize Launch Energy
- Maximize Launch Windows
- Minimize Telecommunications Distance
- Maximize Autonomous Servicing Capabilities

TPF Coronagraph Orbits (Short List)

Orbit	Advantages	Disadvantages	
L1 or L2 Halo (SOHO & NGST Orbit)	No Eclipse Large Sky Coverage NGST Ground Compatibility NGST Ops Compatibility Low Insertion Energy C3 = -0.69 (km²/s²)	Station Keeping C3 = -0.7 (km²/s²) Direct C3 = -2.2 (km²/s²) Lunar Swingby	
Arrested Drift Away (Modified Starlight & SIRTF Type Orbit)	<u>Minimal Disturbances</u> No Eclipse Large Sky Coverage No Station Keeping	Moderate Insertion Energy C3 = 0.3 (km²/s²) + 220 m/s to arrest drift	
Distant Geocentric Orbit (Distant Retrograde Orbit)	No Eclipse Sky Coverage (TBD) No Station Keeping Closest to Earth - Autonomous Servicing	Comparable to L2 Insertion C3 = -1.85 (km²/s²) Needs More Optimization	

Trades Need to Continue to Optimize Cost versus Performance

TPF Coronagraph Orbits (Other Options)

Orbit	Advantages	Disadvantages
LEO or GEO	Lowest Insertion Energy Simplest Telecom Autonomous Servicing	Limited Sky Coverage Thermal Snap due to Eclipse Highest Disturbances
Standard Drift Away (Starlight & SIRTF Type Orbit)	No Eclipse Large Sky Coverage	Moderate Insertion Energy C3 = 0.3 (km²/s²) Telecom Requirements

2nd Tier of Options Less Attractive for a variety of Reasons

TPF Final Architecture Review

Overview of the Arrested Drift Away Orbit

Inject into a Drift away orbit similar to SIM, StarLight, & SIRTF Stop the drift at year two, Apply approximately 220 m/s delta-v This will circularize the orbit so the distance to the sun will remain very close to 1 AU The distance from the spacecraft to earth would not increase without bound Sufficiently far away from the gravitational influence of the earth and moon Earth to spacecraft distance remains near 30 to 35×10^6 km (0.2 AU) for the indefinite future Oscillations between 25 x 10° and 36 x 10° km are due to the spacecraft orbit being not in the ecliptic plane Spacecraft then is in an earth-trailing orbit Ground contacts near 6 PM (local) every day

errestria

lanet Finder

Overview of the L2 Halo Orbit

Inject into a L2 Halo orbit similar to MAP & NGST, the L2 Sun-Earth Lagrange point is 1.5 million km from Earth.

The L2 point is unstable on a time scale of approximately 23 days, which requires satellites parked at these positions to undergo regular course and attitude corrections

Direct Insertion C3 = -0.7 (km^2/s^2) or via Lunar Flyby C3 = -2.2 (km^2/s^2) (3-5 lunar phasing loops, then a ~100 day cruise to L2)

Minimizes environmental disturbances and maximize observing efficiency

L2 provides for a very stable thermal environment and near 100% observing efficiency since the Sun, Earth, and Moon are always behind the instrument's field of view.

Overview of the Distant Geocentric Orbit (Results are preliminary)

Overview of the TPF Coronagraph Launch Segment

Design Drivers

- Large Monolithic Mirror (4 × 10 Meters)
- ~ 6,000 kg Observatory Launch Mass
- Required Escape Capability of C3 > 0.3 km²/sec²

Potential Launchers

- Ariane 5 (AR5E) Evolved Version of AR5G
 7,250 kg for C3 of 0.3 km²/sec²
- Atlas V 551 1st Flight 2002
 6,300 kg for C3 of 0.3 km²/sec²
- Delta IV (4050-H19) 1st Flight 2003
 9,255 kg for C3 of 0.3 km²/sec²

Launcher Fairings

Launcher	Ø	Barrel Length (M)
Ariane	5	10
Atlas	5	7 (Too Short)
Delta	5	11

Barrel

III - 22

TPF Coronagraph Launch Segment

Major Features

- Fully Compatible with Delta IV Heavy
 - Delta IV 1st Flight 2002
 - Delta IV Heavy 1st Flight 2003
- Room For Larger Observatories
 - Layouts of Mirrors up to 4 × 13 Meters
 - Robust Launch Margins
 - Launch Mass ~6,000 kg
 - Launch Capability of 9,255 kg to C3 = 0.3 km²/sec²
 - Launch Margin of 35%
- Direct Injection to Heliocentric Earth Trailing Drift Away Orbit

•

Delta IV (4050-H19) Heavy Launch Configuration

 Several Packaging Approaches still need to be explored

- Currently not taking full advantage of Delta IV capabilities (35% Launch Margin)
- Need to work trades to maximize primary mirror with adequate launch margin (20 to 25% pre phase A margins should be acceptable)

Atlas V 551 Launch Configuration (Alternative)

- Atlas V 1st Flight 2002
 - Not Compatible with Standard Atlas V 551
 - Largest Fairing Inadequate (Need Slightly longer Fairing)
 - Add 1 Meter in length to barrel section
 - Relatively Straight forward Modification
 - However it will Reduce Performance
 - Minimal Launch Margins
 - Launch Mass ~6,000 kg
 - Launch Capability of 6,300 kg to C3 = 0.3 km²/sec²
 - Launch Margin of 5%
- Direct Injection to Earth Trailing Drift Away Orbit

Need to work trades to reduce primary mirror with adequate launch margin (20 to 25% pre phase A margins should be acceptable)

III - 25

Key ADCS Requirements for the TPF Coronagraph

Instrument LOS Pointing Stability: Spacecraft Bus Attitude Control: 1 milliarcsecond (1σ , per axis)

1 arc second (1 σ , cross-axes)

Spacecraft Bus Attitude Knowledge: 4 arc seconds (1σ , cross-axes)

LOS Pointing and Attitude Control Requirements Derived From Image Quality Requirements

Key Pointing Requirements Driven By LOS Stability & Guide Star Acquisition

Instrument LOS Pointing Stability: 1 mas (1σ , per axis)

- Allocated from wavefront error budget
- Spectral content up to 100 Hz (TBR)

Spacecraft Bus Attitude Control: 10 mas (1σ , cross-axes)

- Minimize FSM tip/tilt to satisfy wavefront & beam shear requirements
- Using Fine Guidance Sensor (FGS) and Reaction Wheel Assembly (RWA) control

Spacecraft Bus Attitude Knowledge: 4 arc seconds (1σ , cross-axes)

- Fine guidance system acquisition (place guide star in FGS FOV)
- Using spacecraft bus stellar-inertial system

Several Approaches Available For Stabilizing LOS Motion

- Five opportunities exist to control high frequency disturbances
 - Reduce disturbance source levels with better equipment
 - Isolate the disturbance source
 - Form structural isolation links between systems
 - Isolate instrument(s) from disturbance
 - Reject LOS motion with tip/tilt mirror

lanet Finder

LOS Pointing Control Approach Tailored to Disturbance Spectral Content

Tiered ADCS Design Approach Mitigates Disturbances During Science Observations

Disturbance Source

Mitigating Factors Available

RWA Vibration (e.g., static & dynamic imbalance)	 Precision spin balance Isolation systems (passive or active) Benign RWA spin rate range selected (minimize c.pc.m. offset) Structural design minimizing mechanical vibration transmission Micro-propulsion technology (e.g., FEEP, mPPT) 	
Structural dynamic motion (e.g., flexible sun shield)	 Smooth, profiled re-targeting maneuvers minimize settling time Low bandwidth bus controller Active isolation system (e.g., fine steering mirror) Passive damping enhancement (e.g., visco-elastic coatings) 	
Secular torque accumulation (e.g., solar radiation pressure)	 Pre-position articulated sun shield to minimize c.pc.m. offset FSM counter-steers to maintain LOS pointing 	
Thermal distortion	 Sun shield provides thermal stability FSM counter-steers to maintain LOS pointing 	
Propellant slosh	 Smooth, profiled re-targeting maneuvers minimize settling time Low bandwidth bus controller Multiple, small, baffled tanks Non-liquid propellant (Xenon, Teflon, Nitrogen) 	
Thruster impulse	 No pulsing (of conventional thrusters) during science observations 	
Structural micro-dynamics	 Thermally stable design Structural design minimizing mechanical vibration transmission 	

LOS Control Trades Central to Iterative System Design Approach

Design Trade

Issues

LOS Pointing Control Architecture

S/C body pointing w/o FSM
 VS.
 FSM & S/C control off-load

FSM tip/tilt introduce wavefront & beam shear errors
FSM provides active isolation to mitigate LOS jitter

Instrument LOS Pointing Stability: 1 mas (1 σ , per axis)

TPF Final Architecture Review

Spacecraft Attitude Sensor Trades Part of Iterative System Design Approach

Design Trade

Issues

Attitude Sensor Options	
• Star tracker (ST) vs • Star tracker & IRU	 Accuracy for Fine Guidance System (FGS) acquisition (fine guidance sensor FOV) Cost of sensor suite
 ST alignment & placement 	 ST parallel to instrument LOS simplifies FGS acquisition Integration complexity
• ST redundancy (3 vs. 2)	• Attitude knowledge requirements about each axis

Spacecraft Bus Attitude Knowledge: 4 arc seconds (1σ , cross-axes)

Attitude Control Trades Part of Iterative System Design Approach

Design Trade

Issues

Bus Actuator Options	
· RWA	 Induced vibration (IV) at instrument LOS
• RWA & μ -propulsion	 IV, mass, power, optics contamination, cost
• RWA sizing & quantity	 Agility (slew & settle time reducing science observation time) Angular momentum storage during observations (c.mc.p. offset due to sun shield design) IV from more small wheels or fewer large wheels

Spacecraft Bus Attitude Control: 10 mas (1 σ , cross-axes)

TPF Final Architecture Review

III - 34

Vibration Isolation Trades Part of Iterative System Design Approach

Design Trade

Issues

RWA Spin Balance

- High precision
- Moderate

None

- Cost of high precision balance process
- Single point failure if wheel noise increases
- Acceptability of lower level spin balance

Ball

errestrial Planet Finder 🤇

Integrated ADCS & Instrument Control Provides Precision LOS Pointing & Stability

TTT - 36

TPF Final Architecture Review
Operational Mode Architecture Emphasizes Systematic Transition Into Science Imaging With Fault Detection & Space Vehicle Safing Paths

Imaging (Precision Point) Mode:

- Fine guidance sensor provides measurements for FSM-controlled LOS pointing
- Spacecraft bus controlled to minimize FSM tip/tilt angles using RWA array in narrow spin speed range

Normal (Point) Mode:

- Control vehicle to commanded inertial attitude using RWA array for slew and settle maneuvers
- Sun shield articulated to desired orientation
- Manage angular momentum with thrusters
- Stellar-inertial attitude determination

Standby Mode:

- Control vehicle in commanded attitude using RWA array
- Manage angular momentum with thrusters and articulated sun shield
- Stellar-inertial attitude determination

Safe (Sun Point) Mode:

- Point solar panels at sun using RWA array
- Manage angular momentum with thrusters
- Sun shield placed in nominal orientation
- Attitude determination via coarse sun sensors

Emergency Mode:

- Robust, power-positive, low- (or zero-) fuel consumption mode
- Attitude knowledge from coarse sun sensors sensors
- Does not require on-board processor

Sample Simulation Results: RWA Control of Solar Torque Disturbance

errestrial

Planet Finder 🤇

Overview of MATLAB/Simulink ADCS Model

ADCS Uses Standard Controller Design (PID -- Proportional, Integral, Derivative)

Simulation Provides Models of Reaction Wheels and Multiple Thruster Types

Simulation Models Spacecraft Dynamics With RWA and External Torque Inputs

TPF Final Architecture Review

Overview of The Propulsion Subsystem

Design Drivers

- De-tumble Maneuvers, Safing Maneuvers, Momentum Unloading, and Trajectory Correction Maneuver (TCM)- Requires ~ 250 m/s
- Attitude Control Trades looked at Electric Propulsion (EP) Options
 - FEEPS and PPTs for control options instead of RWA/Isolator (look at HCT's in future trades)
 - Electric Propulsion (EP) may prove advantageous if Mass becomes more of an issue (Improve Mass Margin on Lower Cost Atlas V 551)
 - Initial Simulations Show FEEP disturbance level very low however current simulations show that RWA/Isolators meet requirements
 - Currently EP not required

Design Options

- Simple Hydrazine System Chosen for initial approach
- Large Launch Margin of Delta IV does not require high Isp propulsion

Simple Heritage Hydrazine Propulsion System Meets <u>Current</u> Requirements

lanet Finder

Summary of Initial Design of Thermal Control Subsystem

ZERODUR® CTE Curve

TPF Final Architecture Review

Thermal Design Provides Accurate Control over Primary Mirror Temperature variations Spatial variations (over 24-hour cycle) Controlled to within $0.03 \,^{\circ}C$ Without full Sunshield, Primary Mirror Spatial variations Exceed 0.12 °C Active Heater Control of Optical Bench is Required -Passive Design Would Result in Primary Mirror Temperatures of -140 °C Primary Mirror Operating Temperatures of 0 °C are Favored: Simplifies Manufacturing Testing & Calibration. Also at O°C CTE (Coefficient of Thermal Expansion) of ULE, Zerodur are Minimized Active Heating Provides Precise Control over Primary Mirror Temperature Gradients - Bench Heater Power Requirement ~ 700 W

Primary Mirror Temperature Gradients over 24-hour Observational Period

External Temperature Contours of the TPF Coronagraph with Sunshield

Follow-on Work is Likely to Produce even Lower Temporal Gradients

<u>Thermal Finite-Element Model - Higher Fidelity Thermal & Structural Model</u> Optimization of Nodes/Elements for Detailed Analysis of Thermal Gradients Incorporate Intelligent Software Control of Bench Heaters into Thermal Model Complete Ray-Tracing Analysis of Specular Radk's (Including NGST-Style Sunshield)</u>

Development / Testing

Development Tests of Optical Bench Active Heater Control System Hardware Testing of Conductive Paths through Actuators, Isolators, and Couplings Use of Anisotropic Composite Materials in Spacecraft Bus and Optical Bench

Future Trade Studies

Refined Baffle and Sunshield Design including Optimization of Optical Properties Additional Layers Geometry Optimization Selection of Primary Mirror Material: ULE, Zerodur, Fused-Silica Low-Temperature Primary Mirror Operation Using Unique Fused-Silica CTE Curve Enhanced Conduction through Mechanical Actuators Could Lower Bench Temperature

Temporal Thermal Gradients - Top Ten Issue for the Coronagraph

Thermal Design Minimizes Temperature Gradients on Primary Mirror and Bench

TPF Final Architecture Review

Overview of the Optical Bench Thermal Control System

Bench is Thermally Isolated from Spacecraft Bus and SMSA Struts

- Conduction Heat Transfer Minimized through Kinematic Mounts
- Multi-Layer Insulation Isolates Bench from Bus, Electronics, and Optics

Facesheet Bonded to Optical Bench Lattice Provides Multiple Benefits

- High-Emissivity Thermal Coating Enhances Radiative Heat Transfer to Primary Mirror
- High Thermal Conductivity Facesheet Assists in Isothermalization of Bench

Active Heater Control

- Active (Software) Control of Facesheet Local Temperature to within 0.10 °C
- Thin-Film Kapton Heaters Bonded to Facesheet

Optical Bench Provides a Means of Control over Primary Mirror Temperature

- Primary Mirror Must be Heated to 0 °C due to Unique CTE Curve
- Precise Control of Primary Mirror to within 0.04 °C

TPF Thermal Model Predictions for Several Sun Shield Configurations

Component Temperature Predictions for 24-hour Period, (C)							
	Full Sunshield		Partial Sunshield		No Sunshield		
	(Max.)	(Min.)	(Max.)	(Min.)	(Max.)	(Min.)	
Spacecraft Bus	-80	-191	-72	-187	7	-172	
Baffle - Exterior	37	-223	37	-221	37	-221	
Baffle - Interior	-125	-165	-124	-164	-122	-163	
Optical Bench	50	49.1	50	49.1	50	49.1	
SMSA Struts	-129	-151	-128	-149	-127	-149	
Secondary Mirror	-164	-164	-163	-163	-162	-162	
Primary Mirror	1.94	-1.75	2.02	-1.69	2.19	-1.57	
Lateral Gradient	* 0.53		* 0.60		* 0.60		
Thru Gradient	* 3.10		* 3.10		* 3.10		
Dynamic Gradient	* 0.03		* 0.04		* 0.12		
(* Denotes Temperature Gradient)							

Backup Thermal Slides

Additional Analysis...

TPF Coronagraph with Sunshield Temperature Contours

NO Sunshield, Bench Heated to 50 C: Temperature Contours

NO Sunshield, Bench Heated to 30 C: (SCT Baffle) Primary Mirror Temperatures bench-primary e*vf=0.30

Terrestrial 🔧 Planet Finder 🤇

TPF Final Architecture Review

NO Sunshield, Bench Heated to 30 C: (SCT Baffle) Primary Mirror Temperatures bench-primary e*vf=0.30

Terrestrial 🔪 Planet Finder 🤇

No Sunshield, Bench Heated to 50 C: (VDA Baffle) Primary Mirror Temperatures bench-primary e*vf=0.90

Full Sunshield, Bench Heated to 50 C: Temperature Contours

Summary of The Telecommunication Subsystem

Dual telecommunications systems Ka-Band for downlink of scientific information Maximum data rate is 8 Mbps X-Band for downlink of spacecraft engineering telemetry Estimated data rate is 5 kbps Utilize the Deep Space Network (DSN) 34m Ground Station Use current configuration of General Dynamics (Motorola) Small Deep Space Transponder (SDST) Observatory and Ground segment designed to be capable of at least 8 hours per day/7 days a week uplink and downlink communications Full redundancy in all critical hardware

Telecommunication Subsystem

- Provides interface between the spacecraft and the Deep Space Network (DSN) 34m BWG Station
 - X-Band and Ka-Band compatibility will be available
- Observatory and Ground segment shall be capable of at least 8 hours per day/ 7 days a week uplink and downlink communications
- Spacecraft is currently set for earth-trailing orbit
 - Maximum earth range is 0.2 AU (\approx 30M km)
- Mission design life is 5 years
 - Possible extension to 10 years
 - Full redundancy in all critical hardware
- Downlink science and engineering data volume approximately 232 Gbits
- Link margin is +3 dB minimum for uplink and downlink
 - Command links calculated using bit error rate (BER) of less than 10⁻⁵
 - Telemetry links calculated using BER of less than 10⁻⁶
- Can use current configuration of General Dynamics (Motorola) Small Deep Space Transponder (SDST)

Telecommunications Subsystem Downlink Description

- Dual telecommunications systems is simple and efficient design
 - Separates science data from engineering telemetry
- Ka-Band for downlink of scientific information
 - Uses 60W Ka-Band TWTAs
 - SDST-external x4 multiplier to generate Ka-Band frequency
 - Uses high gain antenna (HGA) with 42.88 dBic of gain
 - + Gain value based on parabolic dish parameters with $\eta\text{=}55\%$
 - Multiple options available
 - Maximum data rate is 8 Mbps
 - Maximum data rate capability of SDST is \approx 10Mbps
 - Estimated data volume for science data of > 230Gbits in 8 hours period
 - All components have extensive deep space heritage
 - 60W Ka-Band TWTA will have space heritage by 2006
- X-Band for downlink of spacecraft engineering telemetry
 - Uses medium gain antenna (MGA) of 16 dBic gain collocated with HGA
 - Gain value based on horn type antenna
 - Requires only 15W Solid State Power Amplifiers
 - Estimated data rate is 5 kbps
 - Allows for downlink of engineering data at any time without the need to downlink science data
 - All components have extensive deep space heritage
 - An X-Band high data rate contingency mode as a Ka-Band backup has not been considered due to the high downlink data volume

•

Telecommunications Subsystem Uplink Description

- X-Band low gain antennas (LGA) used for uplink
 - Allows simultaneous uplink during downlink
- Provides 2 areas of 2π steradian coverage
- Allows for uplink data rate of 2000bps at maximum earth range
- All components have extensive deep space heritage

Telecommunication Margin Summary

Downlink Margins using DSS-25 34m BWG Antenna							
			Link Margin (dB)				
	Data Rate	Range (AU)	LGA	MGA	HGA		
	40 bps	0.2	14.83	-	-		
Engineering	100 bps	0.2	11.93	-	-		
Data	252 bps	0.2	8.86	-	-		
(X-Band)	2.1 kbps	0.2	-	6.69	-		
	5.0 kbps	0.2	-	3.19	-		
Science Data (Ka-Band)	40kbps	0.2	-	-	26.13		
	2Mbps	0.2	-	-	9.14		
	4Mbps	0.2	-	-	6.13		
	6Mbps	0.2	-	-	4.37		
	8Mbps	0.2	-	-	3.12		
	-				-		
Uplink Margins using DSS-25 34m BWG Antenna							
			Link Margin (dB)				
	Data Rate	Range (AU)	LGA	MGA	HGA		
Command Data (X band)	7.8125	0.2	33.32	-	-		
	125	0.2	23.75	-	-		
	500	0.2	17.73	-	-		
(A-Dariu)	2000	0.2	11.71	-	-		

Terrestrial 📏 Planet Finder •

TPF Telecommunications Subsystem Block Diagram

errestrial

Planet Finder 🤇

Overview of Ground Segment Operations

- Mission Operations Centered at JPL (Mission Control)
- Science Operations Centered at Space Telescope Science Institute (STSI)
- Integrated Flight Team of JPL and BATC Personnel
- BATC Flight System and Subsystem Support
 - At JPL for High Activity events as appropriate
 - Post launch checkout, Calibration, <u>New Earth Discovery</u>
 - From Boulder Mission Support Area for low activity
- Ground Operational Capabilities (e.g., AMMOS/GDS) and Interfaces Established Early and Used Throughout I&T and KSC Pre-launch Operations
- Examine Feasibility of Improved Autonomous Operations
 - Simple Tasking of Observatories for up to 2 Weeks of Autonomous Operations
- Existing/Planned Upgrades of TMOD Deep Space Mission System Services
 - 34M Array Capabilities at Goldstone (MADRID/CANBERRA TBD)
 - Planned Ka Band Upgrades

Based on Typical JPL / Ball Deep Space Operations

TPF Coronagraph Ground Data System (GDS) Architecture

Terrestrial 🔧 Planet Finder 🕻

Overview of Command & Data Handling (C&DH)

Spacecraft Control Unit

SBC PowerPC 750

TPF Final Architecture Review

SEAKR NVM

Design Drivers

- Processor
 - Relatively High Processing Demands
 - Rad Hard Processors Available by 2010
- Data Storage
 - Compression needs?
- Reliability & Autonomy
- Modularity & Testability
- High Bandwidth between
 Spacecraft, Wavefront, and
 Science Instruments
 - Bus 1553/422 versus 1394
 - Increasing adoption of new networking technologies for S/C (i.e. IEEE-1394)

Existing Technology Sufficient However TPF will take advantage of emerging Technology

2010

Moores Law

TPF Coronagraph C&DH Block Diagram

errestrial

Summary of Flight Software (FSW) Design Drivers

Observatory Operation

- Majority of the operations will require significant processing
- Deformable mirror settings
- Fine Steering Mirror will require high throughput and ADCS integration
- Operation of the Sun Shield will require high close integration with ADCS
- Science Data Processing , Storage, and Transmission
- Attitude Determination & Control System (ADCS)
 - ADCS bandwidth requirements will place high demands on system
 - Detector data processing in conjunction with ACS processing and component commanding will require special attention

Autonomous Operations

- Increased autonomous operation and application of high-level languages will present increased processing demands over previous systems

Overview of Flight Software (FSW) Computer Software Components (CSC)

Wide-Field Camera-specific

Detector Control (configuration and readout) Science Data management Filter wheel mechanism management Focus mechanism management

Spectrometer-specific

Detector Control (configuration and readout) Science Data management Grating wheel mechanism management Target Acquisition - get the target into the slit

Coronagraph-specific

Detector Control (configuration and readout) Science Data management Pupil and Mask mechanism management Filter wheel mechanism management Target Acquisition - place a star behind the occulting spot

C++ Source Lines of Code (SLOC)Spacecraft34,447Instrument16,644Total51,091								
TPF Specific Applications	ADCS	Sun Shield Management	Mirror	Management	Thermal Control	Wave Front Processing	Instrument Processing	
Core Applications	Con Te Mai	nmand ask nager		Tel C Ma	lemetry Data anager	ault Protection Utilities		
— — — — — — —	Network Interface Manager HW interfaces (Level 0 functionality included)							
Applications								

Additional Flight Software (FSW) Computer Software Components (CSC)

ADCS (Deep Space) Redundancy management Subsystem configuration Mode management Commanding (absolute time sequences, relative time sequences, event-driven operations) Telemetry management (including autonomous health and safety monitoring) Thermal/heater management Power management (solar arrays) Propulsion and station-keeping Telecom (DSN) Mirror management (including segmented main mirror deployment and adjustment, management of secondary mirror, management of fine steering mirror (quider), and management of deformable mirror (actuator adjustment in response to wavefront control algorithms)

Star-tracker management, including guidestar acquisition and tracking Momentum wheel management, and momentum dumping Sun Shield gimbal management High Gain Antenna gimbal management Initial calibration and diagnosis of alignment of structures and optics(metrology) Wavefront sensing and wavefront control Fault Manager Task Manager Data Manager Memory Manager Network Interface Manager Instrument Command and Housekeeping Management of science data Boot-up Board Support Package

Overview of the Electrical Power and Distribution System (EPDS)

• Assumptions:

- Operation at 1 AU, no eclipse
- 10 yr design life (i.e. 1 solar cycle)
- Technology Freeze: 2010
- Fully Redundant Architecture
- 50% power margin at EOL

- Battery capable of supporting 1 hour in safe mode
- Design Overview:
 - Solar Array with 28% efficiency cells, ISS design approach
 - Three 44 A-hr Li-ion batteries
 - Redundant power electronics for charge control, array and load switching

Power Requirements Show Ample Growth Contingency and Margin

Description	Power (W)	Science Operation	Safe Mode
Instrument	230.0	230.0	50.0
Attitude Determination and Control	77.0	77.0	77.0
Electrical Power Subsystem	115.0	115.0	115.0
Command and Data Handling	58.0	58.0	58.0
Structure	0.0	0.0	0.0
Mechanisms	0.0	0.0	0.0
Thermal Control Subsystem	900.0	900.0	630.0
Telecomm	36.5	36.5	36.5
Propulsion	27.3	27.3	27.3
Total (Current Best Estimate)	1443.8	1443.8	993.8
Growth Contingency (30%)	433.1	433.1	298.1
Margin (15%)	281.5	281.5	193.8
TOTAL w/ 50% Growth Capability	2158.5	2158.5	1485.7

TPF Coronagraph Solar Array

- Solar Array:
 - ISS heritage array: blanket array with boom deployment
 - 8.0 m² active cell area
 - 28% Triple-junction GaInP_/GaAs/Ge solar cells, 150 μm coverglass
 - JPL91 Solar Flare radiation model (one cycle), RDM=2
 - UV, contamination, micrometeoroid, manufacturing losses
 - 2380 W BOL, 2168 W at 10 yrs
 - Total array mass = 85 kg (CBE)

III - 75

Evolved Design

TPF Coronagraph Batteries

- Batteries:
 - Three 44 A-hr Li-ion batteries, 8 cells in series
 - Separate thermal control within bus to mitigate calendar fade
 - Individual cell bypass and balance circuitry; overcharge protection
 - 40% DOD for 1 hr launch phase in safe mode
 - Worst-case offpointing on station approx 15 minutes
 - 10% DOD
 - 4x margin over launch

EPDS Technologies

- Minimal new technology in EPDS design
 - Solar array has direct ISS heritage
 - 28% Solar cells currently in qualification
 - Li-ion battery qualified; ample flight heritage by 2010
 - Power electronics has direct Deep Impact heritage
- Design allows for easy technology insertion
 - Power generation easily configured for higher efficiency cells
 - Possible integration of sunshield and solar array if advantageous
 - + Thin-film cells (CIGS, α Si) currently at TRL 2-3
 - Excess area available on sunshield to populate with thin-film solar cells on Kapton substrate
 - Would require cell and substrate validation
 - Potential mass and cost savings

Summary of TPF Coronagraph Mass

	Mature Mass (kg)
Optical Telescope Assembly	1857.7
Science Instruments	1400.0
Payload Electronics	57.5
Total Payload	3315.2
Structures & Mechanisms	1392.0
Electrical Power & Distribution System	331.2
Command & Data Handling System	57.5
Telecommunications	28.5
Attitude Determination & Control System	80.6
Propulsion	81.5
Dry Bus Mass	2049.3
Total Observatory Dry Mass	5364.5
Propellants & Pressurants	609.5
Total Observatory Launch Mass	5974.0

M	/laturity	/			Nominal	Nominal	Mature	Power	Active On Orbit		Power	Power
		Grwth			Mass per unit	Total Mass	Total Mass	Peak Units Duty			Orbit Avg	Peak
Туре	Code	(%)	Item	Qty	(kg)	(kg)	(kg)	Unit (W)	Qty	Cycle (%)	Total (W)	Total (W)
		Payloa	d									
		(Optical Telescope Assy	-	1429.00	1429.00	1857.70			-	0.0	0.0
	-	20	Primary Mirror + Optical Bench +		4000.00	4000.00	4 4 9 9 7 9		4			
3	E	30	Acualors	1	1099.00	1099.00	1428.70	0.0	1	U	0.0	0.0
3	Е	30	Assy	1	200.00	200.00	260.00	0.0	1	0	0.0	0.0
3	E	30	Deformable Mirror Assy	1	30.00	30.00	39.00	0.0	1	0	0.0	0.0
3	Е	30	Deployable Baffle	1	100.00	100.00	130.00	0.0	1	0	0.0	0.0
											450.0	450.0
		<mark> </mark>	ntegrated Science Instruments		1400.00	1400.00	1400.00			1	150.0	150.0
3	S	0	Science Instruments	1	1400.00	1400.00	1400.00	150.0	1	100	150.0	150.0
			Payload Processing Electronics		40.00	50.00	57.50				80.0	80.0
9	Е	15	WPU (Wavefront Processor Unit)	2	10.00	20.00	23.00	20.0	1	100	20.0	20.0
9	Е	15	DMPCU (Deformable Mirror Power Control Unit)	1	15.00	15.00	17.25	30.0	1	100	30.0	30.0
9	Е	15	PMPCU (Primary Mirror Power Control Unit)	1	15.00	15.00	17.25	30.0	1	100	30.0	30.0
		15 %	Total Payload Mass			2879.0	3315.2				230.0	230.0

Conservative Mass & Power Estimates with Growth Estimates

ſ	Maturity	y				Nominal	Nominal	Mature	Power	Active	On Orbit	Power	Power
		Grwth				Mass per unit	Total Mass	Total Mass	Peak Units Duty		Duty	Orbit Avg	Peak
Туре	Code	(%)		ltem	Qty	(kg)	(kg)	(kg)	Unit (W)	Qty	Cycle (%)	Total (W)	Total (W)
			Stu	uctures & Mechanisms		1152.50	1160.00	1392.00				0.0	0.0
1	Е	20		Structure	1	1050.00	1050.00	1260.00	0.0	1	0	0.0	0.0
1	F	20		Articulating Sun Sheild (Doesn't Include Solar Array)	1	100.00	100.00	120.00	0.0	1	0	0.0	0.0
	_	20	Ħ				100.00	120.00	010			0.0	0.0
1	E	20		Separation Devices	4	2.50	10.00	12.00	0.0	1	0	0.0	0.0
								445.0	445.0				
				ectrical & Power Distribution		249.00	249.00	331.17				115.0	115.0
4	Е	33		PI (Power Interface)	1	50.00	50.00	66.50	70.0	1	100	70.0	70.0
4	E	33		Solar Array	1	85.00	85.00	113.05	0.0	0	0	0.0	0.0
4	Е	33		Li Ion Battery	1	44.00	44.00	58.52	20.0	1	100	20.0	20.0
4	Е	33		Electrical Cabling	1	70.00	70.00	93.10	25.0	1	100	25.0	25.0
				<u> </u>									
			Co	mmand Control & Data Handling	Handling 25.00 50.00 57.50				58.0	58.0			
9	Е	15		SCU (Spacecraft Control Unit)	2	10.00	20.00	23.00	20.0	1	100	20.0	20.0
9	Е	15		RIU (Remote Interface Unit)	2	15.00	30.00	34.50	38.0	1	100	38.0	38.0

Conservative Mass & Power Estimates with Growth Estimates

TPF Final Architecture Review

III - 81

ľ	Maturity	у			Nominal	Nominal	Mature	Power	Active	On Orbit	Power	Power
		Grwth			Mass per unit	Total Mass	Total Mass	Peak	Peak Units Duty		Orbit Avg	Peak
Туре	Code	(%)	Item	Qty	(kg)	(kg)	(kg)	Unit (W)	Qty	Cycle (%)	Total (W)	Total (W)
		F	Telecommunications		16.92	24.76	28.47				186.6	186.6
9	E	15	SDST w/ Ka-band	2	3.00	6.00	6.90	15.8	2	100	31.6	31.6
			HGA - 0.56 meter, 55% efficiency,									
9	E	15	Ka-band	1	0.60	0.60	0.69	0.0	0	0	0.0	0.0
9	E	15	MGA - 16 dBi, X-band	1	0.48	0.48	0.55	0.0	0	0	0.0	0.0
9	E	15	LGA -Tx	2	0.12	0.24	0.28	0.0	0	0	0.0	0.0
9	E	15	LGA -Rx	2	0.12	0.24	0.28	0.0	0	0	0.0	0.0
9	E	15	60 Watt Ka-band TWTA	2	3.10	6.20	7.13	100.0	1	100	100.0	100.0
9	E	15	15 Watt X-band SSPA	2	1.50	3.00	3.45	55.0	1	100	55.0	55.0
	_	17	Misc Components (X and Ka BPFs, X and Ka Couplers, switches, notch									
9	E	15	filters, waveguide, coax)	1	8.00	8.00	9.20	0.0	0	0	0.0	0.0
		-										
			Thermal Control		60.00	60.00	78.00				900.0	1000.0
5	E	30	Blankets, Shielding, Tapes, etc	1	40.00	40.00	52.00	0.0	0	0	0.0	0.0
5	E	30	Heaters	1	10.00	10.00	13.00	500.0	1	80	400.0	500.0
5	Е	30	Optical Bench Heaters	1	10.00	10.00	13.00	500.0	1	100	500.0	500.0

Conservative Mass & Power Estimates with Growth Estimates

Ν	Naturit	у			I	Nominal	Nominal	Mature	Power	Active	On Orbit	Power	Power
	Ī	Grwth				Mass per unit	Total Mass	Total Mass	Peak	Units	Duty	Orbit Avg	Peak
Туре	Code	(%)		Item	Qty	(kg)	(kg)	(kg)	Unit (W)	Qty	Cycle (%)	Total (W)	Total (W)
			Att	titude Determination & Control		22.31	70.12	80.64				77.0	189.0
6	E	15	Ĩ	Star Tracker	2	3.00	6.00	6.90	9.0	2	100	18.0	18.0
6	E	15		SIRU	2	6.60	13.20	15.18	31.0	1	100	31.0	31.0
6	E	15		Reaction Wheels	4	7.70	30.80	35.42	35.0	4	20	28.0	140.0
6	E	15	Ī	Reaction Wheels Isolation System	4	5.00	20.00	23.00	0.0	0	0	0.0	0.0
6	E	15		Course Sun Sensor	12	0.01	0.12	0.14	0.0	0	0	0.0	0.0
			Pro	opulsion		65.94	71.64	81.52				27.3	125.0
6	K	2		4N RCS Thruster	12	0.36	4.32	4.41	105.0	1	25	26.3	105.0
6	K	2		22N RCS Thruster	4	0.58	2.32	2.37	0.0	1	10	0.0	0.0
6	E	15		N2H4 Tank	1	40.00	40.00	46.00	0.0	0	0	0.0	0.0
6	E	15		Pressurant Tank	1	5.00	5.00	5.75	0.0	0	0	0.0	0.0
6	E	15		Manifold (Lines & Fittings)	1	15.00	15.00	17.25	0.0	0	0	0.0	0.0
6	E	15		Valves, Sensors, etc	1	5.00	5.00	5.75	20.0	1	5	1.0	20.0
	r												
		22%	То	otal Bus Dry Mass			1685.5	2049.3				1364	1674
	-												
		18%	То	otal Spacecraft Dry Mass			4564.5	5364.5				1594	1904
	-				_								
Propellants & Pressurants					510.00	530.00	609.50						
6	E	15		N2H4 (Hydrazine)	1	490.00	490.00	563.50					
6	Е	15		Pressurant (Nitrogen)	2	20.00	40.00	46.00					
		<mark>17%</mark>	То	tal Spacecraft Launch Mass			5094.5	5974.0				1594	1904

Conservative Mass & Power Estimates with Growth Estimates

Maturity					Nominal	Nominal	Mature	
		Grwth				Mass per unit	Total Mass	Total Mass
Туре	Code	(%)		ltem	Qty	(kg)	(kg)	(kg)
			At	las V (551) Performance				6300.00
				Vehicle performance to $C3 = 0.3$				
6	S	0		km2/sec2				6300.00
1	Ε	20		Special Launch Adapters		0.00	0.00	0.00
		<mark>5%</mark>	A	las V (551) Launch Margin				<mark>326.0</mark>
		<mark>5%</mark>	A	las V (551) Launch Margin				<mark>326.0</mark>
		<mark>5%</mark>	At De	las V (551) Launch Margin Ita IV (4050H-19) Performance				326.0 9255.00
		<mark>5%</mark>	At De	Ita IV (4050H-19) Performance Vehicle performance to C3 = 0.3				326.0 9255.00
6	S	5% 0	At De	Ias V (551) Launch Margin Ita IV (4050H-19) Performance Vehicle performance to C3 = 0.3 km2/sec2				326.0 9255.00 9255.00
6	SE	5% 0 20	De	Ias V (551) Launch Margin Ita IV (4050H-19) Performance Vehicle performance to C3 = 0.3 km2/sec2 Special Launch Adapters		0.00	0.00	326.0 9255.00 9255.00 0.00
6	S E	5% 0 20	De	Ita IV (4050H-19) Performance Vehicle performance to C3 = 0.3 km2/sec2 Special Launch Adapters		0.00	0.00	326.0 9255.00 9255.00 0.00

Large Launch Margin For Delta IV Heavy

TPF Coronagraph Reliability & Robustness

- Spacecraft (Bus)
 Designed for High Reliability
 - Dual String Approach
 - Geo Com Sats typically designed for 15 year life
- Optical Telescope Assembly (The hard part)
 Life (& Extended Life) Testing will be essential to validating reliability of wavefront control mechanisms
 - Deformable Mirror
 - Analysis of failed acuators in redundant arrays of acuators
 - Design failed mode of acuators for non interference with operational acuators
 - Acuators for Primary & Secondary Mirrors
 - Analysis of failed acuators in redundant arrays of acuators
 - Design failed mode of acuators for non interference with operational acuators
 - Fine Steering Mirror
 - Use High Heritage Designs

Optical Contamination over 5 to 10 year life

Observatory flown in very benign environment

Section 8: Integration and Test

Kenny Epstein

I & T Approach and Integrated Test Approach

Integration & Test Overview

- Careful planning key to timely integrating & testing of this large system
 - Minimize time in chamber (tailor the environmental tests)
 - Reserve system-level testing for verification tests only
 - Identify optical system testing approaches early
 - Use of Robust Software & Hardware Test Benches will be essential
- Facility selection for final I&T
 - Defining optical test approach will determine test facility requirements
 - Several government facilities capable of supporting TPF final I&T needs
- Transportation is a consideration but not a major driver
 - Impacts testing methodology
 - Minimally effects I&T facility selection

Standard Test Strategies for Our Spacecraft

- We will maximize design verification through test
 - Other verification methods (analysis, simulation, etc) used for requirements not verifiable through ground test
- We verify performance at lowest possible level and then re-verify at higher assembly level
- We perform Test Design Reviews for all tests
 - Peer review of test procedures and GSE design
 - Includes inputs from systems, design, materials and processes, and contamination control engineering
- We perform a Critical Process Review (CPR) prior to each test
 - Ready-to-test meeting involving customer, management, engineering, quality, and technicians
 - Ensures test readiness and article configuration
- We follow a "Test like you fly, fly like you test" philosophy with high fidelity, realistic tests and test equipment

errestrial

Planet Finder 🤇

TPF Coronagraph Primary Mirror Test

Terrestrial 📏 Planet Finder •

AOSD Segmented Primary Mirror Test

Kodak and Ball will draw on large system test experience to provide PM test for TPF

PM test will require expanded facilities at Kodak or use of existing government facilities

TAKE PICTURES. FURTHER.

TPF Final Architecture Review

III - 90

TPF Coronagraph Assembly & Integration Overview

- Final Assembly & System Checkout in the FA-1 Clean Room
 - Class 100,000 (10,000 Tented Areas)
 - Program Heritage -NGST Optical Test Facility
- Optical Telescope Assembly & Subsystem Tests in FM Clean Room
 - Class 10,000 or 1,000 Rooms Available
 - Program Heritage Hubble Instruments (COSTAR, WFC, NICMOS, STIS)

Several Acoustic Test Facilities Are Available to Qualify TPF Stowed

GSFC Greenbelt, MD Size: - 10 m X 8.2 m X 12.8 m Door: - 4.5 m X 9.4 m Crane: - 6,800 kg Max SPL: - 150 db overall Acoustic Power: - 3-10 kW Frequency range: - 25 Hz to 10 kHz Cleanliness: - 100,000 capable

Lockheed Martin, Sunnyvale, CA •Size: - 13.4 m X 15.2 m X 26.2 m •Door: - 7.9 m X 25.6 m •Crane: - 18,144 kg Acoustic Power: - 250 kW •Low Freq Cutoff: - 20 Hz •Cleanliness: - 300,000

Boeing, Kent, WA •Size: $-7.3 \text{ m} \times 8.5 \text{ m} \times 10^{-10} \text{ m}$ 177 m •Door: - 5.8 m x 12.8 m •Crane: - 1,814 kg •Door Bridge: - 9,072 kg •Sound Level: - 155 dB OA SPL Low Freq Cutoff: - 20 Hz •Cleanliness: - 100,000

Observatory Ground Test Overview (Integrated System Test)

- Several Facilities to choose from
 - AEDC Mark I ϕ 12.8m × 25m
 - GRC SPF ϕ 30.5m x 37.2m
 - Johnson A ϕ 16.8m x 27.4m
- Test Set up Evaluated for Plum Brook Space Power Facility
 - Largest Facility
 - Very Low vibration level
 - NASA controlled facility
- Test the Entire Observatory
 - Only the Sunshield & Array Removed for Testing
 - Vertical orientation eliminates moments into primary aperture
 - Vacuum Test at on orbit thermal environment

Coronagraph Observatory Performance --Idealized Test Concept

- The most demanding test objective is to verify end-to-end system performance prior to launch; ideally this would involve:
 - Test in operational environment -- monitor structure & surface deformation
 - Design a scene generator which simulates a terrestrial planet and its star, thus having a total brightness ratio of 10¹⁰, and produces a full-aperture collimated signal beam with exozodi and proper angular separations
 - The test will require the observatory to report data convincing enough to permit a claim of detecting the "planet"
 - Ground software will be exercised to extract, identify, and characterize the planet signal
 - Tests against simulated astrophysics target signals may also be required
- The above ideal performance test probably cannot be fully implemented and may have to be partially replaced by WFE measurements & modeling

Test Equipment Challenges

- The challenges for the test equipment are two-fold:
 - The primary mirror and hence the Spacecraft are very large
 - The accuracy requirements are state of the art
 - Alignment tolerances will need to be examined
 - within Theodilites, Axyz system, Interferometer performance specs?
 - Spacecraft GSE will use existing STOC (S/C Test Operations Console) design
 - Instrument GSE will use existing ITOC (Instrument Test Operations Console) design
 - Planet detection simulator design will be significant challenge
 - leverage off GSE from Kepler ?

Additional Integration & Test Background Material

Verifications Methods Planned for TPF

- We flow down verification requirements from POS to System Specification
- Our Verification and Test Plans identify required I&T activities
- Our GTSE Specifications and Test Procedures are developed based upon plans
- We will write test reports to document test activities and report results for compliance to verification requirements
- Our integration and test processes are ISO certified

Example of Requirements Traceability

 We use DOORS to sort test requirements, link requirements to test procedures, and track requirement verifications

Ground Transportation Height Restrictions By State

Ground Transportation Height Restrictions May Vary Daily Due to Construction Projects

errestrial

Planet Finder

Transportation Method Trade

Location	Ball	Boeing	Lockheed	GSFC	JSC
	Boulder, CO	Seattle, WA	Martin	Greenbelt,	Houston, TX
			Sunnyvale, CA	MD	
Method					
Ground	4.88 m to FL	4.88 m to FL	4.88 m to FL	4.75 m to FL	4.88 m to FL
Air (C-5)	Peterson	Boeing Kent,	Lockheed	Andrews AFB	JSC
	AFB	WA	Sunnyvale, CA		
	Buckley AFB				
Barge	Transport to	Seattle, WA	Transport to	Transport to	Transport to
	Galveston,	Panama /	San Francisco,	Baltimore,	Galveston,
	TX Gulf	Cape Horn	CA	MD	ТХ
			Panama / Cape	Atlantic	Gulf
			Horn		

- Ground Transportation options limited to approximately 4.88m
 - May be increased slightly by custom low boy transport
 - Generally comes into play with all options
- Barge transportation will impact Integration decisions
- C-5, C-17, Antonov transport opens up most integration site options

errestrial 🔪 lanet Finder 🤇