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Abstract: FIPS 140-2 does not presently have security requirements that 
cover software-hardening techniques. Software hardening is a method of 
transforming an executable and associated data into a form that does not 
easily permit reverse engineering or reconstruction, but that has the 
identical execution properties of the original software. With software 
hardening it is possible to embed secret data such as keys and other 
critical security parameters (CSPs) in a hardened executable in such a 
way that extraction of the data is computationally very difficult or 
infeasible. This suggests software hardening could potentially be used as 
a means to ensure the integrity of the cryptographic module and as a 
protection mechanism for CSPs in a cryptographic module. This paper 
examines the possibilities of software-hardening as it applies to the 
ongoing FIPS efforts. 
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1. Introduction 
In this paper we discuss some of the benefits of 
a software solution and the motivation for such a 
solution in meeting the hardening requirements 
documented within FIPS 140-2 [4] and why the 
FIPS 140-2 standard should be expanded to 
accommodate software solutions. 

The primary reason that software is preferable to 
hardware is cost.  In fact, many of the positive 
features of software can be achieved with 
hardware, but the cost to do so can be 
prohibitive.  The benefits of software are that 
these desirable features can be obtained cheaply 
[1]. 

1.1 Ease Of Deployment 

The roll out of a new software module is usually 
simpler than wide deployment of comparable 
hardware.  Software can be replicated, from a 
technical perspective, at essentially no cost, and 
can be simultaneously distributed to thousands 
of remote locations via electronic means.  

1.2 Ease of Upgrade 

The ease of software deployment translates to an 
ease of software upgrading. Software updates, 
whether due to bugs, new features, or the 
refreshing of key material, can usually be 



 

 
 

performed more easily and cheaply. In the event 
of an attempted compromise, software can 
usually be restored to a functional state much 
more quickly than hardware.  Finally, the set of 
people that can maintain software is much larger 
than the set that can maintain hardware, further 
lowering cost.  

1.3 Diversity 

Three types of diversity can be accomplished 
with software.  First, a defence in depth strategy 
can be developed, where several different 
security measures must be defeated to 
compromise the module.  The ease of upgrading 
discussed above also means that a new layer can 
be added at will.  The second type of diversity 
can occur between different modules (i.e. 
different instances of the module on different 
machines), each of which can have unique, yet 
functionally equivalent machine code.  
Similarly, custom solutions are much more 
feasible with software.  Finally, run-time 
diversity is possible, such that a given module 
executes differently every time it is run (though 
in a functionally equivalent fashion, as before). 

1.4 Generality 
Software solutions can be written for general-
purpose computers allowing them to be provided 
within interfaces that are familiar to the end-
user. This can help reduce the cost of training 
and increase the potential set of users.  Further, 
the generality of the platform also allows 
developers to leverage expertise from many 
areas.  For instance, a programmer familiar with 
a common office productivity tool can embed 
functionality quickly thereby enhancing the 
security without requiring complex user interact. 
Furthermore, performance improvements can be 
obtained without modifying the software but 
simply by purchasing a faster computer. 

1.5 Malleability 

Software, ultimately being nothing more than a 
sequence of bits, can be reshaped in myriad 
ways.  It can be distributed in pieces, and 
different parts can even be distributed at 
different times.  It can reside at many different 
locations in memory and on disk, making theft 
more difficult than for hardware.  Software can 
also much more easily be made transparent to 
the end-user, which helps with ease of use, and 
also has additional security benefits one of 
which is that it is much less likely for someone 
to attack something they do not realize is there. 
This does not, unfortunately, preclude savvy 
computer users from realizing what’s transpiring 
nor attempts to crack such systems. 

2. Barriers to Software Solutions 
Traditional software solutions lack many of the 
inherent security advantages of hardware.  In 
this section, we discuss the limitations of 
software.  Subsequently, we show how some of 
these limitations can be overcome using 
software hardening techniques.  Some of the 
issues, however, will be identified as potential 
future work. 

2.1 Environment 
A software module on a general-purpose 
computer does not exist in isolation.  Even in the 
situation where one can ensure that the only end-
user software is the cryptographic module, the 
computer must still contain an operating system 
and hardware drivers.  When evaluating 
software against FIPS 140-2, drawing the line 
between the module and the environment in 
which it runs is a difficult task. 

Of further concern is that the other software 
running in conjunction with the crypto module 
can present a security risk.  Vulnerabilities in 
other software may allow an attacker to gain 
root privileges on a machine, a useful first step 
in compromise of the module. 



 

 
 

2.2 Culture 

In the past, software solutions were never 
considered for high-security environments.  This 
has resulted in a more immature industry in 
verifying software correctness, reliability and 
availability.  Also, while people inherently 
understand the need to be trained on new 
hardware, users of software security are, on the 
whole, less trained. 

This mind-set has resulted in a high degree of 
scepticism around the notion of software tamper 
resistance, to the extent that most people are 
unaware of how far the technology has 
progressed. 

2.3 Attacker Expertise 

Today many software developers are 
insufficiently “security aware” resulting in the 
ability of software “crackers” to leverage this 
lack of awareness to subvert application and 
system software. Often this lack of awareness is 
in reality a lack of customer focus on security. 
This side effect of the end-user culture has 
resulted in more people who are interested in 
attacking software as it is straight-forward and 
cost-effective relative to attacks on hardened and 
protected hardware devices. As most systems 
utilize commercial-off-the-shelf operating 
systems most crackers have at their disposal 
copies of the very systems they wish to attack. 
This simply exacerbates existing security 
problems, as does the Internet and the speed at 
which cracking information gets passed along. 

There now exists an extensive suite of publicly 
(and often freely) available attack tools for 
software.  Hardware cracking expertise and tools 
are much harder to come by. 

2.4 Hardware vs. Software 

In the hardware vs. software debate a number of 
statements are usually made to the advantages 

hardware has over software. A typical list 
includes: 

1. Tampering is more difficult to make 
“invisible”; 

2. More difficult to “turn” hardware away 
from its original purpose & design; 

3. Reliability; 
4. Redundancy; 
5. “Crackers” needs to be more 

sophisticated in order to plug into a 
hardware module and “see” what it’s 
doing or how it’s used; 

6. Independent of host applications or 
systems; and, 

7. Cracker opportunities require physical 
access to the hardware. 

Statement number 1 is exactly the case that 
software cryptography is attempting to make. 
Namely, that tampering with a software crypto is 
just as difficult as tampering with a hardware 
crypto. Statement number 2 is similar in nature 
to the first statement, and can be viewed as true 
in the case of the physical device being outside 
the control and influence of any other software. 
But this is just another form of “appliance” 
argument that is currently focusing the computer 
industry on placing technology within an 
appliance to shield it from inappropriate use. 
However, a deft attacker can still manipulate 
even appliances. It provides more protection 
when it’s within a specialized box, but software 
crypto could be similarly protected by placing it 
within an appliance – and it would still benefit 
from the advantages software retains over 
hardware in terms of flexibility of 
upgrade/update, etc. 

Statements number 3 and 6 are inherent to the 
very nature of hardware. However, statement 
number 6 can be affected by utilizing an 
appliance within which the software crypto is 
embedded, at the expense of deployment 
flexibility and additional cost structures due to 
the included hardware appliance. Redundancy 
(statement number 4) and reliability can usually 
be improved by means of distributed 



 

 
 

computational models. This has been utilized to 
great effect by software vendors such as Oracle 
to ensure availability of crucial computational 
resources. 

Statement number 5 is only partially true as the 
very nature of software crypto requires a certain 
amount of sophistication on the part of any 
attacker. The mathematical nature of what is 
normally attempted is beyond the scope of most 
people’s understanding and provides a mental 
barrier to attack. It does not preclude someone 
from poking at a device, but neither does 
hardware. To attack the insides (or contents) of a 
hardware cryptographic device does require 
specialized equipment and expertise, but it is 
one of the main benefits of hardware. 

Similarly, statement number 7 is an 
environmental, or physical security, issue. As 
such it’s very much an issue for any deployment, 
regardless of whether the device is hardware or 
software. A threat that recurs for hardware is 
physical theft, something that needs 
environmental protection. A stolen 
cryptographic device cannot offer its services 
resulting in a totally different set of risks, while 
“stolen” software implies a duplication of the 
software – and all the issues that raises. 
 
3. Strength of Function vs. FIPS 

140-2 Level 3 

The combination of the various requirements at 
each security level in FIPS 140-2 results in a 
cryptographic module with a certain overall 
resistance to tampering and CSP extraction.  
This resistance can be measured in terms of cost 
to the attacker, with the goal being that as the 
security level increases, the cost also measurably 
increases. 

Current requirements seem to mandate a 
hardware solution.  If one ties all the 
requirements back to cost to the attacker, 
however, it is clear that any solution resulting in 

an equal or higher cost should also be granted 
validation. 

In the absence of explicit dollar amounts, we 
attempt to glean the spirit of each requirement, 
in terms of how it would make the attacker’s life 
more difficult.  One or more software hardening 
techniques in a similar spirit can then be 
proposed as an alternative way to satisfy the 
requirement. 

There do exist software hardening methods that 
address the spirit of each of the requirements in 
the level 2 to level 3 delta.  Whether or not these 
methods add an equivalent cost to the attacker as 
the prescribed hardware requirement is a 
question requiring further analysis. 

In the following subsections, we describe each 
of the new requirements of level 3 over level 2.  
We indicate where the language of FIPS 140-2 
is proscriptive against a software solution, and 
detail which software hardening techniques can 
be applied in the same vein as the prescribed 
hardware technique. 

3.1 Cryptographic Module Ports and 
Interfaces 

At FIPS 140-2 Level 3 and beyond, there is a 
requirement that “the data ports for unprotected 
critical security parameters are logically or 
physically separated from other data ports” to 
prohibit leakage from side-effects, including 
errors or program failures.  The concept of a 
data port is somewhat nebulous in a software 
context. One analogue is the routine responsible 
for accepting these parameters from the user or 
from another software process. 

We note that protected CSP’s are not bound by 
this requirement.  White-box cryptography 
allows one to pass in cryptovariable, plaintext, 
ciphertext and initialization vectors in an 
encoded state, offering protection to these 
parameters. 



 

 
 

For CSP’s which must be passed in unprotected, 
a logical separation simply implies that the 
routines responsible for obtaining these values 
can serve no other purpose nor produce side-
effects that can be used to deduce information 
about the unprotected values. In those instances 
where the CSP must be passed to a subordinate 
function, the CSP should be passed in only a 
protected state to tighten the security domain. 
Moreover, any data structures used to hold the 
unprotected CSP’s or information derived from 
the CSP’s should be local to the subroutine and 
de-allocated immediately after use to avoid 
memory leakage.  Indeed, this should be the case 
in any properly designed modular software 
program. 

3.2 Roles, Services and Authentication 

Level 3 requires identity-based operator 
authentication as opposed to role-based operator 
authentication to clearly establish the identity 
rather than knowledge possessed by the user. 
This can be achieved using two-factor 
authentication in which the operator must prove 
something they know and something about 
themselves such as some form of biometrics 
data. There are a variety of devices available for 
general-purpose computers that allow for this 
biometric authentication component, such as 
fingerprint readers and tablets to allow for 
signature authentication, or graphical passwords.   

As well as operator authentication, the module 
should authenticate itself to the operating 
system, and vice versa.  In this way, only 
authorized modules may execute and only 
authorized components of the operating system 
are permitted to interact with the module. Fixed-
key white-box cryptography, node locking and 
code signing can all be used as elements in such 
an automated authentication. 

3.3 Physical Security 

“Tamper detection and response for covers and 
doors” is another Level 3 requirement, and 
clearly one that is hardware specific.  What is its 
intention?  An external tamper detection 
mechanism represents the first line of defence 
(except, perhaps, for policy).  If an attacker 
cannot even get access to the module, they 
clearly cannot tamper with it, or extract any 
information from it. 

In a hardened software solution, the suite of anti-
debug technologies provides this first line of 
defense.  The employment of multiple anti-
debug techniques will be sufficient to dissuade a 
novice class of attackers, and will slow down a 
more advanced class, in exactly the same 
fashion as a tamper detection mechanism on a 
cover or door. 

Other techniques that can be considered 
analogues of physical security are code 
transformation and code encryption.  Code 
transformations seek to make the software 
module so complicated that it becomes 
impenetrable.  Similarly, code encryption 
provides a nearly unbreakable shell around a 
program while in storage. 

Techniques and tools for reverse engineering 
code are more widely available than those for 
defeating hardware protection.  This implies that 
software cracking has a lower “admission 
standard”, and that the number of software 
crackers is likely higher.  It does not necessarily 
imply, however, that true software experts are 
any better at cracking software than true 
hardware experts are at cracking hardware. 

Software can easily be copied, which can make 
tamper detection difficult for two reasons: 



 

 
 

1. The software can be removed from the 
original host machine, and tampered 
with offline.  In this case, tamper 
detection on the host is irrelevant. 

2. The software can be tampered with in 
place, and in the event of a successful or 
unsuccessful tamper, the attacker can 
simply overwrite the tampered module 
with the original module. 

The first attack above can be mitigated with use 
of node locking.  The second can be made 
harder via operating system protection (i.e. 
making programs read-only).  On the whole, 
however, tamper detection mechanisms in 
software are not as strong as those in hardware. 

With the caveat above, it is a straightforward 
matter to tie any of these techniques to a tamper 
response mechanism, such as the zeroization of 
CSP’s by securely overwriting areas in memory 
and on disk. 

Hence, it is reasonable to assume that future 
FIPS standards would want to consider the 
applicability of “hardware” specifications to 
“software” in terms of how software 
obfuscation, for example, can meet the 
requirements as laid out under “Physical 
Security”. Work by Chow et al [3] discuss 
approaches to obfuscating the control flow in 
computer software. 

3.4 Operational Environment 

FIPS 140-2 Level 3 requires “referenced 
Protection Profiles plus a trusted path evaluated 
at EAL3 plus security policy modeling.”  This is 
not a hardware or software specific requirement; 
we merely observe that there are configurations 
of commercial operating systems which have 
been evaluated to EAL3. 

3.5 Cryptographic Key Management 

“Secret and private keys established using 
manual methods shall be entered or output 
encrypted or with split knowledge procedures.”  
As discussed above, the key enabler for this 
requirement is white-box cryptography. 

3.6 EMI/EMC 

While EMI and EMC issues are ultimately 
hardware related, it is possible to modulate 
certain types of observable emissions such as 
power, processor, device or video activity by 
software means.  When a module must 
communicate with a hardware device, this 
communication should happen via the trusted 
operating system, and the OS should modulate 
the emissions to prohibit high-bandwidth 
channels to leak information. It may still be 
possible to facilitate a low-bandwidth 
communication channel below the modulation 
dampening of the operating system though it 
should be low enough to be impractical for the 
minimum length of facilitating information 
available to the attacker.  

Side channel attacks that are feasible for 
software include timing attacks and fault 
injection.  White-box cryptography, which 
makes use of a consistent set of lookup tables 
regardless of input, is resistant to timing attacks.  
There are no known fault injection attacks on the 
recommended variants of white-box DES or 
AES. 

3.7 Design Assurance 

The final new requirement at Level 3 is 
“implementation in a high-level language”.  
Clearly, this is an easily satisfied requirement 
for a software solution. 



 

 
 

4. Beyond FIPS 140-2 
Technology progresses at an amazing rate. 
Documents, such as FIPS 140-2, attempt to 
capture “best-of-breed” technologies and 
techniques and ensure what is learned is re-
applied correctly as time goes on. However, as 
software becomes more and more prevalent and 
“hardware” devices become no more than 
generic boxes running powerful operating 
systems performing – hopefully – a single task, 
documents such as FIPS 140 must evolve. 

Today routers, VPNs, Firewalls, and Web 
servers appear on the surface to be hardware 
devices – often called “appliances”. However, 
under the cover they are no more than general-
purpose operating systems purposed to a specific 
task. Even security products like Chrysalis’s 
LUNA SA is no more than a Linux-based 
system that includes special purpose hardware to 
perform various cryptographic machinations.  
And this trend will only continue as computer 
scientists continue to leverage working 
technology to make more and more complex 
solutions viable. 

Locking down “software” within such 
appliances is where many vendors will desire to 
take their cryptographic devices. This will 
require interesting and new approaches to what 
has been a strictly hardware problem. 
Obfuscation is one possible alternative to 
examine and how it may meet a good many of 
the problems that must be met in order to fully 
meet FIPS 140-2 for the higher levels 
governments, in particular, require. 

 

5. Future Work 

As indicated above, we feel there is sufficient 
evidence that a software cryptographic module 
can achieve a Level 3 designation, if the 
terminology of FIPS 140-2 is expanded to 
accommodate such a solution.  This work could 
be incorporated into efforts on FIPS 140-3. 

More effort is required to determine an ideal 
environment for a software solution.  The 
biggest concern is that of the lack of physical 
security on a general-purpose computer.  What 
are the restrictions that must be placed on the 
module, the operating system, and other 
programs running on the computer, to ensure 
that the barrier to the attacker is equivalent to 
one where physical security is in place?  A 
related issue is how to define the cryptographic 
boundary, in terms of exactly what portions of a 
software solution and its surrounding 
environment are parts of the module. 

If software solutions are to be deployed in high-
security environments, the users of that software 
must be educated, in the same fashion as they 
would be for secure hardware.  It is vitally 
important to ensure that users realize that 
operating procedures and the security policy are 
just as important for software, contrary to the 
current mind-set that software is inherently 
insecure, and so no special measures are needed.  
Future work would involve the construction of 
training sessions to convey the appropriate 
message. 

A logical and practical set of software security 
metrics would go a long way towards giving 
potential users confidence in software 
cryptographic modules.  Metrics will likely be 
developed using a combination of mathematical 
analysis and experimentation in the form of 
penetration testing. 

Furthermore, it is probably prudent to pursue the 
identification of recommended changes to FIPS 
to incorporate software hardening techniques. 
This would obviously have to discuss each of 
the hardening techniques in this initial study in 
more detail. This would also have to be coupled 
to the development of methodologies for 
reviewing and testing software hardening. 

 



 

 
 

6. Circumvention Research 

In 2001 both Chang & Atallah [2] and Horne et 
al [5] proposed advanced self-checking 
software-based tamper resistant integrity 
verification techniques. One of the most 
appealing aspects of their work was being able 
to verify the integrity of software independently 
of the environment. They also proposed that 
automatic checksumming of code during 
program compilation or linking would be 
feasible, thereby increasing the security and 
tamper-resistance of software. 

Additional work [1, 2, 3, 5] has been performed 
by others that include obfuscation techniques, as 
mentioned earlier in this paper. These 
obfuscation techniques are designed to advance 
the strength of the tamper resistance. 

However, during 2005 at least two [8, 11] papers 
have come to light that question the resistance to 
attack of the proposed systems. Although these 
attacks are particular to specific hardware 
platforms efforts must be expended to determine 
which platforms are susceptible to such attacks 
and which ones aren’t. Furthermore, it is 
necessary to determine whether or not the 
vulnerable platforms can be hardened to 
alleviate the problems defined. 

6.1 Wurster’s Generic Attack 
Glenn Wurster presented within his Master’s 
Thesis at Carleton University [10] a generic 
attack on checksumming-based software tamper 
resistance. He showed, with a few lines of code, 
how to defeat checksumming on many modern 
day platforms. Although Wurster’s initial work 
shows a simple attack capable of defeating 
software tamper-resistance techniques on the 
UltraSparc, x86, and Alpha processors more 
recent work by Wurster at Carleton University 
has shown that the ARM, AMD64 and PowerPC 
are also susceptible.  

The worst aspects of Wurster’s discovery are 
that: 

 It is difficult to detect the attack code. 
 It is feasible even where emulator-based 

attacks would fail. 
 The attack code is generic and not 

program dependent.  

The implications of Wurster’s discovery are 
quite devastating. Within his thesis he describes 
possible solutions, although all fall short of the 
desired goals of tamper resistance. The only 
solution discovered to date is one the use of 
intermediate integrity checks that examine 
intermediate computation results. Unfortunately 
such a solution is prohibitively expensive 
computationally and difficult to add to existing 
solutions. 

Obviously advances in static and run-time 
analysis of executing binaries would offer a 
solution. It is unknown at what cost, however. 

6.2 Hyper-Threading Vulnerability 
Colin Percival [6,7,8] has discovered a similar 
threat with the hyper-threading architecture of 
the Pentium 4. His attack allows an unprivileged 
user, on any operating system, to steal a private 
key that is being used on a given machine. 
Percival indicates that the only solution he is 
currently aware of, as of May 2005, is to disable 
hyper-threading on the Pentium 4.  

7. Conclusion 
The extension of FIPS into providing for pure 
software-based solutions for cryptography at 
Level 3 is something that should be properly 
considered and addressed. Notwithstanding the 
recent research that shows vulnerabilities with 
various obfuscation and software-based tamper 
resistance techniques, efforts should continue to 
include software-based cryptography as a viable 
form of cryptography up to and including Level 
3.  Research must be pursued that accurately 



 

 
 

defines exactly what is necessary for a software 
cryptographic device to attain Level 3 status. 
The tests and other aspects of certification must 
be codified and solidified in such a way as to 
ensure that a software-based cryptographic 
device meets the requirements of FIPS no less 
stringently than does a hardware device. 

The research outlined in Section 6 must be 
examined in detail to understand its impact on 
software-based cryptography in general and for 
Level 3 cryptography in particular.  
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