

Software Hardening & FIPS 140

Eugen Bacic, Gary Maxwell
{ebacic@cinnabar.ca, gmaxwell@cinnabar.ca}

Cinnabar Networks Inc.
265 Carling Avenue

Suite 200
Ottawa, Ontario, Canada

K1S 2E1

Abstract: FIPS 140-2 does not presently have security requirements that
cover software-hardening techniques. Software hardening is a method of
transforming an executable and associated data into a form that does not
easily permit reverse engineering or reconstruction, but that has the
identical execution properties of the original software. With software
hardening it is possible to embed secret data such as keys and other
critical security parameters (CSPs) in a hardened executable in such a
way that extraction of the data is computationally very difficult or
infeasible. This suggests software hardening could potentially be used as
a means to ensure the integrity of the cryptographic module and as a
protection mechanism for CSPs in a cryptographic module. This paper
examines the possibilities of software-hardening as it applies to the
ongoing FIPS efforts.

Keywords: security, cryptography, software hardening, hardening, FIPS.

1. Introduction
In this paper we discuss some of the benefits of
a software solution and the motivation for such a
solution in meeting the hardening requirements
documented within FIPS 140-2 [4] and why the
FIPS 140-2 standard should be expanded to
accommodate software solutions.

The primary reason that software is preferable to
hardware is cost. In fact, many of the positive
features of software can be achieved with
hardware, but the cost to do so can be
prohibitive. The benefits of software are that
these desirable features can be obtained cheaply
[1].

1.1 Ease Of Deployment

The roll out of a new software module is usually
simpler than wide deployment of comparable
hardware. Software can be replicated, from a
technical perspective, at essentially no cost, and
can be simultaneously distributed to thousands
of remote locations via electronic means.

1.2 Ease of Upgrade

The ease of software deployment translates to an
ease of software upgrading. Software updates,
whether due to bugs, new features, or the
refreshing of key material, can usually be

performed more easily and cheaply. In the event
of an attempted compromise, software can
usually be restored to a functional state much
more quickly than hardware. Finally, the set of
people that can maintain software is much larger
than the set that can maintain hardware, further
lowering cost.

1.3 Diversity

Three types of diversity can be accomplished
with software. First, a defence in depth strategy
can be developed, where several different
security measures must be defeated to
compromise the module. The ease of upgrading
discussed above also means that a new layer can
be added at will. The second type of diversity
can occur between different modules (i.e.
different instances of the module on different
machines), each of which can have unique, yet
functionally equivalent machine code.
Similarly, custom solutions are much more
feasible with software. Finally, run-time
diversity is possible, such that a given module
executes differently every time it is run (though
in a functionally equivalent fashion, as before).

1.4 Generality
Software solutions can be written for general-
purpose computers allowing them to be provided
within interfaces that are familiar to the end-
user. This can help reduce the cost of training
and increase the potential set of users. Further,
the generality of the platform also allows
developers to leverage expertise from many
areas. For instance, a programmer familiar with
a common office productivity tool can embed
functionality quickly thereby enhancing the
security without requiring complex user interact.
Furthermore, performance improvements can be
obtained without modifying the software but
simply by purchasing a faster computer.

1.5 Malleability

Software, ultimately being nothing more than a
sequence of bits, can be reshaped in myriad
ways. It can be distributed in pieces, and
different parts can even be distributed at
different times. It can reside at many different
locations in memory and on disk, making theft
more difficult than for hardware. Software can
also much more easily be made transparent to
the end-user, which helps with ease of use, and
also has additional security benefits one of
which is that it is much less likely for someone
to attack something they do not realize is there.
This does not, unfortunately, preclude savvy
computer users from realizing what’s transpiring
nor attempts to crack such systems.

2. Barriers to Software Solutions
Traditional software solutions lack many of the
inherent security advantages of hardware. In
this section, we discuss the limitations of
software. Subsequently, we show how some of
these limitations can be overcome using
software hardening techniques. Some of the
issues, however, will be identified as potential
future work.

2.1 Environment
A software module on a general-purpose
computer does not exist in isolation. Even in the
situation where one can ensure that the only end-
user software is the cryptographic module, the
computer must still contain an operating system
and hardware drivers. When evaluating
software against FIPS 140-2, drawing the line
between the module and the environment in
which it runs is a difficult task.

Of further concern is that the other software
running in conjunction with the crypto module
can present a security risk. Vulnerabilities in
other software may allow an attacker to gain
root privileges on a machine, a useful first step
in compromise of the module.

2.2 Culture

In the past, software solutions were never
considered for high-security environments. This
has resulted in a more immature industry in
verifying software correctness, reliability and
availability. Also, while people inherently
understand the need to be trained on new
hardware, users of software security are, on the
whole, less trained.

This mind-set has resulted in a high degree of
scepticism around the notion of software tamper
resistance, to the extent that most people are
unaware of how far the technology has
progressed.

2.3 Attacker Expertise

Today many software developers are
insufficiently “security aware” resulting in the
ability of software “crackers” to leverage this
lack of awareness to subvert application and
system software. Often this lack of awareness is
in reality a lack of customer focus on security.
This side effect of the end-user culture has
resulted in more people who are interested in
attacking software as it is straight-forward and
cost-effective relative to attacks on hardened and
protected hardware devices. As most systems
utilize commercial-off-the-shelf operating
systems most crackers have at their disposal
copies of the very systems they wish to attack.
This simply exacerbates existing security
problems, as does the Internet and the speed at
which cracking information gets passed along.

There now exists an extensive suite of publicly
(and often freely) available attack tools for
software. Hardware cracking expertise and tools
are much harder to come by.

2.4 Hardware vs. Software

In the hardware vs. software debate a number of
statements are usually made to the advantages

hardware has over software. A typical list
includes:

1. Tampering is more difficult to make
“invisible”;

2. More difficult to “turn” hardware away
from its original purpose & design;

3. Reliability;
4. Redundancy;
5. “Crackers” needs to be more

sophisticated in order to plug into a
hardware module and “see” what it’s
doing or how it’s used;

6. Independent of host applications or
systems; and,

7. Cracker opportunities require physical
access to the hardware.

Statement number 1 is exactly the case that
software cryptography is attempting to make.
Namely, that tampering with a software crypto is
just as difficult as tampering with a hardware
crypto. Statement number 2 is similar in nature
to the first statement, and can be viewed as true
in the case of the physical device being outside
the control and influence of any other software.
But this is just another form of “appliance”
argument that is currently focusing the computer
industry on placing technology within an
appliance to shield it from inappropriate use.
However, a deft attacker can still manipulate
even appliances. It provides more protection
when it’s within a specialized box, but software
crypto could be similarly protected by placing it
within an appliance – and it would still benefit
from the advantages software retains over
hardware in terms of flexibility of
upgrade/update, etc.

Statements number 3 and 6 are inherent to the
very nature of hardware. However, statement
number 6 can be affected by utilizing an
appliance within which the software crypto is
embedded, at the expense of deployment
flexibility and additional cost structures due to
the included hardware appliance. Redundancy
(statement number 4) and reliability can usually
be improved by means of distributed

computational models. This has been utilized to
great effect by software vendors such as Oracle
to ensure availability of crucial computational
resources.

Statement number 5 is only partially true as the
very nature of software crypto requires a certain
amount of sophistication on the part of any
attacker. The mathematical nature of what is
normally attempted is beyond the scope of most
people’s understanding and provides a mental
barrier to attack. It does not preclude someone
from poking at a device, but neither does
hardware. To attack the insides (or contents) of a
hardware cryptographic device does require
specialized equipment and expertise, but it is
one of the main benefits of hardware.

Similarly, statement number 7 is an
environmental, or physical security, issue. As
such it’s very much an issue for any deployment,
regardless of whether the device is hardware or
software. A threat that recurs for hardware is
physical theft, something that needs
environmental protection. A stolen
cryptographic device cannot offer its services
resulting in a totally different set of risks, while
“stolen” software implies a duplication of the
software – and all the issues that raises.

3. Strength of Function vs. FIPS

140-2 Level 3

The combination of the various requirements at
each security level in FIPS 140-2 results in a
cryptographic module with a certain overall
resistance to tampering and CSP extraction.
This resistance can be measured in terms of cost
to the attacker, with the goal being that as the
security level increases, the cost also measurably
increases.

Current requirements seem to mandate a
hardware solution. If one ties all the
requirements back to cost to the attacker,
however, it is clear that any solution resulting in

an equal or higher cost should also be granted
validation.

In the absence of explicit dollar amounts, we
attempt to glean the spirit of each requirement,
in terms of how it would make the attacker’s life
more difficult. One or more software hardening
techniques in a similar spirit can then be
proposed as an alternative way to satisfy the
requirement.

There do exist software hardening methods that
address the spirit of each of the requirements in
the level 2 to level 3 delta. Whether or not these
methods add an equivalent cost to the attacker as
the prescribed hardware requirement is a
question requiring further analysis.

In the following subsections, we describe each
of the new requirements of level 3 over level 2.
We indicate where the language of FIPS 140-2
is proscriptive against a software solution, and
detail which software hardening techniques can
be applied in the same vein as the prescribed
hardware technique.

3.1 Cryptographic Module Ports and
Interfaces

At FIPS 140-2 Level 3 and beyond, there is a
requirement that “the data ports for unprotected
critical security parameters are logically or
physically separated from other data ports” to
prohibit leakage from side-effects, including
errors or program failures. The concept of a
data port is somewhat nebulous in a software
context. One analogue is the routine responsible
for accepting these parameters from the user or
from another software process.

We note that protected CSP’s are not bound by
this requirement. White-box cryptography
allows one to pass in cryptovariable, plaintext,
ciphertext and initialization vectors in an
encoded state, offering protection to these
parameters.

For CSP’s which must be passed in unprotected,
a logical separation simply implies that the
routines responsible for obtaining these values
can serve no other purpose nor produce side-
effects that can be used to deduce information
about the unprotected values. In those instances
where the CSP must be passed to a subordinate
function, the CSP should be passed in only a
protected state to tighten the security domain.
Moreover, any data structures used to hold the
unprotected CSP’s or information derived from
the CSP’s should be local to the subroutine and
de-allocated immediately after use to avoid
memory leakage. Indeed, this should be the case
in any properly designed modular software
program.

3.2 Roles, Services and Authentication

Level 3 requires identity-based operator
authentication as opposed to role-based operator
authentication to clearly establish the identity
rather than knowledge possessed by the user.
This can be achieved using two-factor
authentication in which the operator must prove
something they know and something about
themselves such as some form of biometrics
data. There are a variety of devices available for
general-purpose computers that allow for this
biometric authentication component, such as
fingerprint readers and tablets to allow for
signature authentication, or graphical passwords.

As well as operator authentication, the module
should authenticate itself to the operating
system, and vice versa. In this way, only
authorized modules may execute and only
authorized components of the operating system
are permitted to interact with the module. Fixed-
key white-box cryptography, node locking and
code signing can all be used as elements in such
an automated authentication.

3.3 Physical Security

“Tamper detection and response for covers and
doors” is another Level 3 requirement, and
clearly one that is hardware specific. What is its
intention? An external tamper detection
mechanism represents the first line of defence
(except, perhaps, for policy). If an attacker
cannot even get access to the module, they
clearly cannot tamper with it, or extract any
information from it.

In a hardened software solution, the suite of anti-
debug technologies provides this first line of
defense. The employment of multiple anti-
debug techniques will be sufficient to dissuade a
novice class of attackers, and will slow down a
more advanced class, in exactly the same
fashion as a tamper detection mechanism on a
cover or door.

Other techniques that can be considered
analogues of physical security are code
transformation and code encryption. Code
transformations seek to make the software
module so complicated that it becomes
impenetrable. Similarly, code encryption
provides a nearly unbreakable shell around a
program while in storage.

Techniques and tools for reverse engineering
code are more widely available than those for
defeating hardware protection. This implies that
software cracking has a lower “admission
standard”, and that the number of software
crackers is likely higher. It does not necessarily
imply, however, that true software experts are
any better at cracking software than true
hardware experts are at cracking hardware.

Software can easily be copied, which can make
tamper detection difficult for two reasons:

1. The software can be removed from the
original host machine, and tampered
with offline. In this case, tamper
detection on the host is irrelevant.

2. The software can be tampered with in
place, and in the event of a successful or
unsuccessful tamper, the attacker can
simply overwrite the tampered module
with the original module.

The first attack above can be mitigated with use
of node locking. The second can be made
harder via operating system protection (i.e.
making programs read-only). On the whole,
however, tamper detection mechanisms in
software are not as strong as those in hardware.

With the caveat above, it is a straightforward
matter to tie any of these techniques to a tamper
response mechanism, such as the zeroization of
CSP’s by securely overwriting areas in memory
and on disk.

Hence, it is reasonable to assume that future
FIPS standards would want to consider the
applicability of “hardware” specifications to
“software” in terms of how software
obfuscation, for example, can meet the
requirements as laid out under “Physical
Security”. Work by Chow et al [3] discuss
approaches to obfuscating the control flow in
computer software.

3.4 Operational Environment

FIPS 140-2 Level 3 requires “referenced
Protection Profiles plus a trusted path evaluated
at EAL3 plus security policy modeling.” This is
not a hardware or software specific requirement;
we merely observe that there are configurations
of commercial operating systems which have
been evaluated to EAL3.

3.5 Cryptographic Key Management

“Secret and private keys established using
manual methods shall be entered or output
encrypted or with split knowledge procedures.”
As discussed above, the key enabler for this
requirement is white-box cryptography.

3.6 EMI/EMC

While EMI and EMC issues are ultimately
hardware related, it is possible to modulate
certain types of observable emissions such as
power, processor, device or video activity by
software means. When a module must
communicate with a hardware device, this
communication should happen via the trusted
operating system, and the OS should modulate
the emissions to prohibit high-bandwidth
channels to leak information. It may still be
possible to facilitate a low-bandwidth
communication channel below the modulation
dampening of the operating system though it
should be low enough to be impractical for the
minimum length of facilitating information
available to the attacker.

Side channel attacks that are feasible for
software include timing attacks and fault
injection. White-box cryptography, which
makes use of a consistent set of lookup tables
regardless of input, is resistant to timing attacks.
There are no known fault injection attacks on the
recommended variants of white-box DES or
AES.

3.7 Design Assurance

The final new requirement at Level 3 is
“implementation in a high-level language”.
Clearly, this is an easily satisfied requirement
for a software solution.

4. Beyond FIPS 140-2
Technology progresses at an amazing rate.
Documents, such as FIPS 140-2, attempt to
capture “best-of-breed” technologies and
techniques and ensure what is learned is re-
applied correctly as time goes on. However, as
software becomes more and more prevalent and
“hardware” devices become no more than
generic boxes running powerful operating
systems performing – hopefully – a single task,
documents such as FIPS 140 must evolve.

Today routers, VPNs, Firewalls, and Web
servers appear on the surface to be hardware
devices – often called “appliances”. However,
under the cover they are no more than general-
purpose operating systems purposed to a specific
task. Even security products like Chrysalis’s
LUNA SA is no more than a Linux-based
system that includes special purpose hardware to
perform various cryptographic machinations.
And this trend will only continue as computer
scientists continue to leverage working
technology to make more and more complex
solutions viable.

Locking down “software” within such
appliances is where many vendors will desire to
take their cryptographic devices. This will
require interesting and new approaches to what
has been a strictly hardware problem.
Obfuscation is one possible alternative to
examine and how it may meet a good many of
the problems that must be met in order to fully
meet FIPS 140-2 for the higher levels
governments, in particular, require.

5. Future Work

As indicated above, we feel there is sufficient
evidence that a software cryptographic module
can achieve a Level 3 designation, if the
terminology of FIPS 140-2 is expanded to
accommodate such a solution. This work could
be incorporated into efforts on FIPS 140-3.

More effort is required to determine an ideal
environment for a software solution. The
biggest concern is that of the lack of physical
security on a general-purpose computer. What
are the restrictions that must be placed on the
module, the operating system, and other
programs running on the computer, to ensure
that the barrier to the attacker is equivalent to
one where physical security is in place? A
related issue is how to define the cryptographic
boundary, in terms of exactly what portions of a
software solution and its surrounding
environment are parts of the module.

If software solutions are to be deployed in high-
security environments, the users of that software
must be educated, in the same fashion as they
would be for secure hardware. It is vitally
important to ensure that users realize that
operating procedures and the security policy are
just as important for software, contrary to the
current mind-set that software is inherently
insecure, and so no special measures are needed.
Future work would involve the construction of
training sessions to convey the appropriate
message.

A logical and practical set of software security
metrics would go a long way towards giving
potential users confidence in software
cryptographic modules. Metrics will likely be
developed using a combination of mathematical
analysis and experimentation in the form of
penetration testing.

Furthermore, it is probably prudent to pursue the
identification of recommended changes to FIPS
to incorporate software hardening techniques.
This would obviously have to discuss each of
the hardening techniques in this initial study in
more detail. This would also have to be coupled
to the development of methodologies for
reviewing and testing software hardening.

6. Circumvention Research

In 2001 both Chang & Atallah [2] and Horne et
al [5] proposed advanced self-checking
software-based tamper resistant integrity
verification techniques. One of the most
appealing aspects of their work was being able
to verify the integrity of software independently
of the environment. They also proposed that
automatic checksumming of code during
program compilation or linking would be
feasible, thereby increasing the security and
tamper-resistance of software.

Additional work [1, 2, 3, 5] has been performed
by others that include obfuscation techniques, as
mentioned earlier in this paper. These
obfuscation techniques are designed to advance
the strength of the tamper resistance.

However, during 2005 at least two [8, 11] papers
have come to light that question the resistance to
attack of the proposed systems. Although these
attacks are particular to specific hardware
platforms efforts must be expended to determine
which platforms are susceptible to such attacks
and which ones aren’t. Furthermore, it is
necessary to determine whether or not the
vulnerable platforms can be hardened to
alleviate the problems defined.

6.1 Wurster’s Generic Attack
Glenn Wurster presented within his Master’s
Thesis at Carleton University [10] a generic
attack on checksumming-based software tamper
resistance. He showed, with a few lines of code,
how to defeat checksumming on many modern
day platforms. Although Wurster’s initial work
shows a simple attack capable of defeating
software tamper-resistance techniques on the
UltraSparc, x86, and Alpha processors more
recent work by Wurster at Carleton University
has shown that the ARM, AMD64 and PowerPC
are also susceptible.

The worst aspects of Wurster’s discovery are
that:

 It is difficult to detect the attack code.
 It is feasible even where emulator-based

attacks would fail.
 The attack code is generic and not

program dependent.

The implications of Wurster’s discovery are
quite devastating. Within his thesis he describes
possible solutions, although all fall short of the
desired goals of tamper resistance. The only
solution discovered to date is one the use of
intermediate integrity checks that examine
intermediate computation results. Unfortunately
such a solution is prohibitively expensive
computationally and difficult to add to existing
solutions.

Obviously advances in static and run-time
analysis of executing binaries would offer a
solution. It is unknown at what cost, however.

6.2 Hyper-Threading Vulnerability
Colin Percival [6,7,8] has discovered a similar
threat with the hyper-threading architecture of
the Pentium 4. His attack allows an unprivileged
user, on any operating system, to steal a private
key that is being used on a given machine.
Percival indicates that the only solution he is
currently aware of, as of May 2005, is to disable
hyper-threading on the Pentium 4.

7. Conclusion
The extension of FIPS into providing for pure
software-based solutions for cryptography at
Level 3 is something that should be properly
considered and addressed. Notwithstanding the
recent research that shows vulnerabilities with
various obfuscation and software-based tamper
resistance techniques, efforts should continue to
include software-based cryptography as a viable
form of cryptography up to and including Level
3. Research must be pursued that accurately

defines exactly what is necessary for a software
cryptographic device to attain Level 3 status.
The tests and other aspects of certification must
be codified and solidified in such a way as to
ensure that a software-based cryptographic
device meets the requirements of FIPS no less
stringently than does a hardware device.

The research outlined in Section 6 must be
examined in detail to understand its impact on
software-based cryptography in general and for
Level 3 cryptography in particular.

References
[1] Eugen Bacic, Phil Eisen, Gary Maxwell,

Mike Sues. Feasibility Study: Software
Hardening Techniques for Achieving FIPS
140-2 Level 3 for Cryptographic Module
Validations. Unclassified research report
presented to the Communications Security
Establishemnt . April 2004.

[2] H. Chang & M. Atallah. Protecting
Software Code by Guards. In Proc. 1st ACM
Workshop on Digital Rights Management
(DRM 2001), volume 2320 of Lecture
Notes in Computer Science, pg. 160-175.
Springer-Verlag, 2002.

[3] Stanley Chow, Yuan Gu, Harold Johnson,
Vladimir Zakharov. An Approach to the
Obfuscation of Control-Flow of Sequential
Computer Programs. In Proceedings of the
4th International Conference on Information
Security, volume 2200 of Lecture Notes in
Computer Science, pg. 144 – 155. Springer-
Verlag, 2001.

[4] FIPS 140-2: Federal Information
Processing Standard Publication 140-2:
Security Requirements for Cryptographic
Modules. http://csrc.nist.gov/cryptval/140-
2.htm.

[5] B. Horne, L. Matheson, C. Sheehan, & R.
Tarjan. Dynamic Self-Checking Techniques
for Improved Tamper Resistance. In Proc.
1st ACM Workshop on Digital Rights
Management (DRM 2001), volume 2320 of
Lecture Notes in Computer Science, pg.
141-159. Springer-Verlay, 2002.

[6] Colin Percival. FreeBsd: Hyper-Threading
Vulnerability.
http://kerneltrap.org/node/5103.

[7] Colin Percival. Hyper-Threading
Considered Harmful.
http://www.daemonology.net/hyperthreadin
g-considered-harmful/.

[8] Colin Percival. Cache Missing For Fun and
Profit.
http://www.daemonology.net/papers/htt.pdf

[9] P. van Oorschot, A. Somayaji, & G.
Wurster. Hardware-Assisted Circumvention
of Selt-Hashing Software Tamper
Resistance. In IEEE Transactions on
Dependable and Security Computing,
April-June 2005.

[10] Glenn Wurster. A Generic Attack on
Hashing-Based Software Tamper
Resistance. Master of Computer Science
Thesis, Carleton Univeristy. April 2005.
http://www.scs.carleton.ca/~gwurster/publi
cations/Thesis-2005.pdf

[11] Glenn Wurster, P. van Oorschot, & A.
Somayaji. A Generic Attack on
Checksumming-based Software Tamper
Resistance. In IEEE Symposium on Security
and Privacy, May 2005. Pg. 127-138.

