text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 09-141
What Scientists Know About Jewel Beetle Shimmer

Iridescent green beetles could provide blueprint for light-reflecting materials

The structure of jewel beetle cells results in striking colors as light hits them from angles.

The structure of jewel beetle cells results in striking colors as light hits them from angles.
Credit and Larger Version

July 23, 2009

View an audio slideshow to see the secrets of the shimmer of the jewel beetle.

"Jewel beetles" are widely known for their glossy external skeletons that appear to change colors as the angle of view changes. Now they may be known for something else--providing a blueprint for materials that reflect light rather than absorbing it to produce colors.

Scientists at the Georgia Institute of Technology in Atlanta recently discovered jewel beetles change color because of the light-reflecting properties of the cells that make up their external skeletons, not because of unique, light-absorbing properties in their pigment. They say the finding could be important for industries such as car manufacturers that look to reflective light paints for automobiles.

The journal Science reports the finding in its July 24 issue. The National Science Foundation supports the research.

"The Chrysina gloriosa beetle reflects a green light," said lead researcher Mohan Srinivasarao with Georgia Tech's School of Polymer, Textile & Fiber Engineering. "This has been known for about 100 years, but we've determined the colors we see result from the beetle's physical structure rather than its biology."

When light hits a surface that's difficult to see through, the surface either scatters, absorbs or reflects the light to produce colors. In the case of the jewel beetle's external skeleton, its five, six and seven sided cells spontaneously arrange themselves to reflect light at certain wavelengths that produce green, yellow and red colors.

Srinivasarao postulates that beetle cells form similar to a certain kind of liquid crystal called a 'cholesteric' liquid crystal whose free surface has cone-like structures and that has a helical arrangement of molecules.

Research suggests the cells come from spontaneous arrangement of glucose-like particles called chitin molecules that form as cones like those in a cholesteric liquid crystal. When these cones solidify, they preserve their structures and produce colors as light hits them from different angles.

The beetle's structure also forms helices similar to a cholesteric liquid crystal in that its straight cells sit on or are used to form the curved structure of its external skeleton. Research shows that when the pitch of the helix of cholesteric liquid crystals is close to the wavelength of visible light, they reflect light with specific wavelengths, leading to brilliant metallic colors.

"It's stunning how similar the two things are," said Srinivasarao.

Miniature optical devices and photonics such as those envisioned for microlasers and implantable medical sensors could benefit from the finding. Scientists already are studying ways to commercialize and apply materials that have properties similar to jewel beetles.

In one case, researchers in New Zealand are studying beetles to produce a thin, solid mineral, magnesium oxide, which can be ground into flakes and potentially used as a currency security measure.

Car companies could use the materials to paint automobiles that change color depending on a person's angle of view. More uses could include decorative paints and use on any surface requiring light reflection without light absorption.

Srinivasarao says he doesn't completely understand all the optical properties and behavior of light as it interacts with the beetle's external skeleton. He says a lot more work needs to be done, but it is something he and his team are pursuing.

Vivek Sharma, Matija Crne and Jung Ok Park, all from Georgia Tech, were part of team that worked on this research.

-NSF-

Media Contacts
Bobbie Mixon, NSF (703) 292-8070 bmixon@nsf.gov
John Toon, Georgia Institute of Technology (404) 894-6986 john.toon@innovate.gatech.edu

Program Contacts
Linda S Sapochak, NSF (703) 292-4932 lsapocha@nsf.gov
Andrew J. Lovinger, NSF (703) 292-4933 alovinge@nsf.gov

Principal Investigators
Mohan Srinivasarao, Georgia Institute of Technology (404) 894-9348 mohan.srinivasarao@ptfe.gatech.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Photo of green jewel beetle and the words Audio Slideshow.
Watch the audio slideshow.
Credit and Larger Version

Photograph of a jewel beetle.
Jewel beetle external skeletons reflect light because of physics, not pigment.
Credit and Larger Version

Cover of the July 24, 2009, issue of Science magazine.
The researchers' findings appear in the July 24, 2009, issue of Science magazine.
Credit and Larger Version



Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
July 29, 2009
Text Only


Last Updated: July 29, 2009