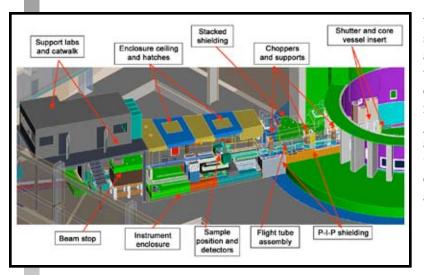
INSTRUMENT



SPALLATION NEUTRON SOURCE

BEAM LINE

SNAP - SPALLATION NEUTRONS AND PRESSURE DIFFRACTOMETER

The SNAP Diffractometer allows studies of a variety of powdered and single-crystal samples under extreme conditions of pressure and temperature. The increased neutron flux, coupled with large-volume pressuring cells using large synthetic single-crystal opposed anvils, allows significant advances in the pressure range accessible to neutron diffraction. The pressure goal is 50 to 100 GPa on an ~1-mm³ sample on a routine

basis. We are currently working with powdered samples up to 15 GPa and are developing the ultrahigh-pressure capabilities. In addition, recent advances in nextgeneration detectors will allow the incident beamfocusing optics, pressure chamber, and detector array to be highly integrated, providing a highly flexible facility for materials studies under extreme conditions

SPECIFICATIONS

Moderator	Decoupled poisoned supercritical hydrogen
Source- to-sample distance	15 m
Sample- to-detector distance	50 cm
Angular coverage	381–42° \ 981–50° horizontal ±34° vertical
Wavelength range (bandwidth)	
Frame 1	0.5–3.65 Å
Frame 2	3.7–6.5 Å
Pressure range	From ambient pressure to >50 GPa (500 kbar)
Focused beam size	From 1 cm to <100 μm

APPLICATIONS

SNAP offers new opportunities for scientific studies involving the following:

- Hydrogen under extreme conditions
- Elastic anisotropy of ε -iron at Earth core conditions
- Real-time in situ monitoring of "real rocks" as an analogue to the down-going slab in the subduction context
- Planetary ices-structure and strength of ices under pressure
- Silicate melts—glasses at high pressure and temperature and the dynamical changes occurring during heating and pressurization
- Strength and rheology of materials and the relationship to brittle and ductile failure, including stress release as a function of time
- Structural changes accompanying transitions in Fullerenes and their derivatives
- Hydrogen bonding in organic and inorganic systems as a function of pressure and temperature, including liquids

For more information, contact

Instrument Scientist: Chris Tulk, tulkca@ornl.gov, 865.576.7028 Scientific Associate: Jamie Molaison, molaisonjj@ornl.gov, 865.206.0478

http://neutrons.ornl.gov/instrument_systems/snap.shtml

Status: Operational

