Local-Habitat, Landscape, and Biotic Factors Associated with the Distribution of Hybridization between Native Westslope Cutthroat Trout and Introduced Rainbow Trout in the Upper Flathead River System

> Clint C. Muhlfeld U.S. Geological Survey Northern Rocky Mountain Science Center, Glacier Field Office, Glacier National Park, West Glacier, Montana 59936 USA cmuhlfeld@usgs.gov

Thomas E. McMahon Department of Ecology, Fish and Wildlife Program, Montana State University, Bozeman, Montana 59717 USA

> Matthew C. Boyer Montana Fish, Wildlife and Parks 490 North Meridian Road Kalispell, Montana 59901 USA

New RBT introgression (8/14) Static RBT introgression (2/14) Static no RBT introgression (4/14)

Ν

2002

Hitt 2002

Invasion and Hybridization

Human-mediated introductions

Habitat degradation
Local-habitat features
Landscape factors

 Hybridization can spread despite severe fitness penalties

 Hybridization between RBT and WCT is widespread despite outbreeding depression (Allendorf and Leary 1988; Leary et al. 1995; Ellstrand and Schierenbeck 2000)

Objectives

Objectives are to:

 Examine the patterns of occurrence of hybridization in relation to local habitat, landscape and biotic characteristics using an information-theoretic approach;

- (2) Assess these factors as related to the degree of RBT introgression, and
- (3) Examine the role of fish abundance in the spread of hybridization.

Hypotheses

Ho: There is no relationship between environmental and demographic factors and

- presence/absence of hybridization
- degree of introgression
- density

Predictions:

 Hybridization will occur in small low-elevation streams in close proximity to the ultimate source of hybridization, but that cold temperatures and intact habitats in headwater streams may constrain or slow the spread of hybridization.

• RBT admixture will be related to neighborhood effects

North Fork Flathead River • Study site

121243 C 22

© 2006 William Bowen drwilliambowen@hotmail.com

Data collection

Occurrence:

- Sampled 35 sites
- 971 fish
- (mean per site = 28)
- 7 diagnostic microsatellite loci
- Presence/absence of RBT alleles

Population admixture:

• % RBT alleles among individuals

Methods

Density estimates:

- Same sites as Boyer et al. (2008)
- 150 m reaches
- July-September
- 3-pass depletion
- Fish density (fish>75mm/m²)

Methods

Independent variables:

- Local-habitat: width, gradient, elevation
- <u>Landscape</u>: road density, number of road crossings, mean summer temperature, maximum temperature
- <u>Neighborhood/Biotic</u>: fluvial distance from source, abundance

Methods- Regression Analyses

Logistic regression:

- Presence/absence
- Variable selection (Pairwise comparisons, correlations)
- 9 a-priori candidate models
- Model selection: Information-theoretic approach (AICc)

Linear regression:

%RBT and density- dependents (X)

 Habitat, landscape and biotic characteristics independent variables (X)

Results

19 of 35 sites(54%) non-hybridized

Genotypic gradient: WCT in the headwaters, Hybrids lower

Hybrids in small, low-elevation streams with warmer and more impacted by human disturbance

Logistic Regression Models

Model	Number of parameters	∆AICc	Akaike weight	% correct
Mean temperature, number of crossings, distance	3	0.00	0.4543	88.2
Mean temperature, distance	2	0.72	0.3175	88.2
Width, mean temperature, number of crossings, distance	4	2.06	0.1619	85.3
Width, mean temperature, road crossings	3	4.51	0.0477	82.4
Distance to source	1	7.41	0.0112	71.4
Width, distance	2	8.43	0.0067	68.6
Mean temperature	1	14.14	0.0004	67.6
Mean temperature, road crossings	2	15.16	0.0002	70.6

Width versus Elevation

Width versus Elevation

Distance to source versus Mean Temperature

Distance to source versus Mean Temperature

Road crossings versus Maximum Temperature

Road crossings versus Maximum Temperature

Percent Admixture versus Distance to Source

Density versus Elevation

Density versus Stream Width

• Hybridization increases in streams with warm water temperatures, high land-use disturbance and close to the primary source of hybridization.

• Managers may consider strategies for preserving nonhybridized WCT populations that attempt to eradicate populations with high levels of RBT admixture in warmer streams with high densities of hybrid fish.

Conservation implications

- There is no formal policy for treating hybrids under the ESA
- WCT denied listing under ESA
 - "natural populations conforming morphologically to the scientific taxonomic description of WCT are presumed to express the behavioral, ecological, and life-history characteristics of WCT" (USFWS 2003)
 - Hybrids = WCT
 - Headwater populations are secure

Genetic and Ecological Consequences

- Long-term persistence of WCT is uncertain
- Loss of locally adapted populations is irreversible and must be considered in management strategies

Habitat Degradation

Abbot Creek Fish Suppression

Funding and Support

Montana Fish, Wildlife & Parks, Bonneville Power Administration, Montana State University, and USGS Northern Rocky Mountain Science Center

