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Abstract.— The reported decline in the abundance, distribution, and genetic diversity of Columbia 
River redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) has prompted 
fisheries managers to investigate their habitat requirements, identify critical habitat, and develop 
effective conservation and recovery programs. We analyzed the microhabitat, mesohabitat, and 
macrohabitat use and distribution of Columbia River redband trout by means of snorkel surveys 
in two watersheds in the Kootenai River drainage, Montana and Idaho, during the summers of 
1997 and 1998. Juvenile (36–125 mm total length, TL) and adult (�126 mm TL) fish preferred 
deep microhabitats (�0.4 m) with low to moderate velocities (�0.5 m/s) adjacent to the thalweg. 
Conversely, age-0 (�35 mm) fish selected slow water (�0.1 m/s) and shallow depths (�0.2 m) 
located in lateral areas of the channel. Age-0, juvenile, and adult fish strongly selected pool 
mesohabitats and avoided riffles; juveniles and adults generally used runs in proportion to their 
availability. At the macrohabitat scale, density of Columbia River redband trout (�35 mm) was 
positively related to the abundance of pools and negatively related to stream gradient. The pool: 
riffle ratio, gradient, and stream size combined accounted for 80% of the variation in density 
among 23 stream reaches in five streams. Our results demonstrate that low-gradient, medium-
elevation reaches with an abundance of complex pools are critical areas for the production of 
Columbia River redband trout. These data will be useful in assessing the impacts of land-use 
practices on the remaining populations and may assist with habitat restoration or enhancement 
efforts. 

The Columbia River redband trout Oncorhyn- as a sensitive species or a species of special con­
chus mykiss gairdneri (hereafter termed redband cern. Concerns increased in 1994 when a petition 
trout), a subspecies of rainbow trout O. mykiss, is to list the Kootenai River redband trout population 
native to the Fraser River and Columbia River in Montana as a threatened ‘‘species’’ under the 
drainages east of the Cascade Mountains as far as Endangered Species Act was dismissed due to lack 
the barrier falls on the Pend Oreille, Spokane, of information. Regardless of their legal classifi-
Snake, and Kootenai rivers (Allendorf et al. 1980; cation, redband trout in Montana and the upper 
Behnke 1992). Logging, mining, agriculture, graz- Columbia River basin are in immediate need of 
ing, dams, hybridization, and competition with conservation that focuses on the identification of 
nonnative fishes contributed to the decline of red- critical habitat. 
band trout abundance, distribution, and genetic di- Habitat use should be assessed at several spatial 
versity in the Columbia River basin (Williams et scales to fully understand the requirements of a 
al. 1989; Behnke 1992). Consequently, many pop- species (Rabeni and Sowa 1996) because each spa­
ulations are restricted to headwater streams that tial scale is considered to be nested within a hi-
may serve as refugia until effective conservation erarchical framework in which each scale influ­
and rehabilitation strategies are implemented. In ences the preceding one (Frissell et al. 1986). Mi-
response to the population declines, several state crohabitat has been studied to identify specific 
and federal agencies have classified redband trout habitat characteristics, such as water depth and 

focal velocity, that are selected by fish at a point 
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on resource availability, competition, ontogeneity, 
predation, and optimal foraging opportunity (Ev­
erest and Chapman 1972; Fausch 1984; Schlosser 
1987). Basinwide habitat inventories (Hankin and 
Reeves 1988) have identified habitat types (me­
sohabitats) such as pools and riffles that are im­
portant to fish and that influence the relative abun­
dance of fish throughout a watershed (Hankin and 
Reeves 1988; Roper et al. 1994; Saffel and Scar­
necchia 1995; Herger et al. 1996). Studies of 
stream reaches have related salmonid abundance 
to stream characteristics (macrohabitat) such as 
gradient (Chisholm and Hubert 1986), stream size 
(Kozel and Hubert 1989), and other geomorphic 
(Platts 1979; Fraley and Graham 1981; Lanka et 
al. 1987; Nelson et al. 1992; Kruse et al. 1997) 
and biotic (Binns and Eiserman 1979; Scarnecchia 
and Bergersen 1987) variables. Although each of 
these approaches provides valuable information, a 
single-scale approach may provide misleading and 
inadequate information on the requirements of a 
species because fish�habitat relations are complex 
and may differ depending on the scale of the anal­
ysis (Bozek and Rahel 1991). 

The habitat requirements of redband trout in the 
upper Columbia River basin are not known. The 
Kootenai River drainage redband trout population 
may be at a high risk of extinction due to habitat 
fragmentation, stream habitat degradation, and hy­
bridization with nonnative rainbow trout (Allen­
dorf et al. 1980; Muhlfeld 1999). Identification of 
the factors that limit redband trout will provide 
resource managers with the appropriate informa­
tion to develop biologically sound and effective 
conservation strategies for improving and pro­
tecting critical habitat. We evaluated the stream 
habitat use of redband trout at the microhabitat, 
mesohabitat, and macrohabitat scales in two wa­
tersheds in the Kootenai River drainage in Mon­
tana and Idaho. Our objectives were to (1) assess 
the patterns of microhabitat selection among size-
classes of redband trout in the two drainages, (2) 
assess use of pools, riffles, and runs that differ in 
depth, velocity, and substrate, and (3) relate stream 
reach characteristics to the density of redband 
trout. 

Study Area 

We evaluated the stream characteristics and hab­
itat use of redband trout in two mountain water­
sheds within the Kootenai River drainage in north­
western Montana during the summers of 1997 and 
1998 (Figure 1). Callahan Creek, a fourth-order 
tributary of the Kootenai River, originates in the 

eastern slopes of the Cabinet Mountains in Idaho 
(Idaho Panhandle National Forest) and flows ap­
proximately 20.8 km east to its confluence with 
the Kootenai River in Troy, Montana. The drainage 
includes North Fork Callahan Creek, South Fork 
Callahan Creek, and the main-stem Callahan 
Creek. The entire watershed is in the Kootenai 
National Forest, with the exception of privately 
owned land in the lower 2 km of the drainage. 
Elevation ranges from 549 m at the Kootenai River 
to 1,897 m on Middle Mountain. Annual precip­
itation ranges from 63.5 to 274 cm (U.S. Forest 
Service, Three Rivers Ranger District, unpub­
lished data). The drainage has been intensively 
managed for timber production and mining. Fish 
found in Callahan Creek include native redband 
trout, bull trout Salvelinus confluentus, and moun­
tain whitefish Prosopium williamsoni. A potential 
barrier falls located 3.2 km upstream from the con­
fluence with the Kootenai River may preclude ge­
netic introgression with hybrids of coastal rainbow 
trout O. mykiss irideus and redband trout in the 
Kootenai River (Marotz and Fraley 1986). 

Basin Creek, a third-order tributary of the East 
Fork Yaak River, originates in the northern slopes 
of the Purcell Mountains and flows north approx­
imately 29.5 km to its confluence with the East 
Fork of the Yaak River approximately 45 km east 
of Yaak, Montana (Figure 1). This drainage in­
cludes the East Fork Basin Creek, the West Fork 
Basin Creek, the main-stem Basin Creek, and Por­
cupine Creek. The entire drainage is in the Ko­
otenai National Forest, with the exception of a 
privately owned 2.5-km parcel located along the 
main stem. Annual precipitation ranges from 63.5 
cm to 142 cm (U.S. Forest Service, Three Rivers 
Ranger District, unpublished data). Elevation 
ranges from 976 m at the confluence with the East 
Fork of the Yaak River to 2,095 m at the Purcell 
Divide. The Basin Creek drainage has been inten­
sively managed for timber production. Redband 
trout is the only fish species found in the drainage. 
A potential barrier identified 3.6 km upstream from 
the confluence with the North Fork Yaak River 
may prevent genetic exchange with other hybrid­
ized assemblages in the Yaak River system. 

Methods 

Microhabitat.—We observed microhabitat use

by redband trout in Basin and Callahan creeks dur­

ing the low-flow period of 1998 by means of snor­

keling and bank observation. Streams were strat­

ified into reaches based on changes in gradient,

sinuosity, valley bottom type, and the addition of
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FIGURE 1.—Locations of Callahan and Basin creeks in the Kootenai River drainage, Montana and Idaho. Boxes 
mark study areas. 

tributaries. Redband trout were randomly sampled 
in five reaches in Callahan Creek and three reaches 
in Basin Creek. Two randomly selected, 50-m sec­
tions within each study reach were examined by 
snorkeling between 1000 and 1600 hours to ensure 
optimal visibility. Each section contained pool and 
riffle habitats. The diver and bank observer entered 
the sample section from the lower boundary and 
simultaneously proceeded upstream, noting fish 
locations. A numbered, brightly colored washer 
was placed at the focal point of each fish. At each 
focal point, the species, total length (to the nearest 
cm) and elevation were recorded on a Plexiglas 
slate attached to the wrist of the diver. Total fish 
length and elevation were estimated to the nearest 
5 mm with a ruler. 

After the entire section was snorkeled, micro­
habitat use data were recorded at each location. 
The total depth of the water column was measured 
(to the nearest 5 mm) at the focal point of the fish 
with a meter stick. Mean water column velocity 
(m/s) was measured at 0.6 of total water depth, 
and focal-point velocity (m/s) was measured at the 
depth of the focal point. Velocity measurements 
were taken with a Swoffer model 2100 electronic 
flowmeter attached to a wading rod. A single pre­

dominant substrate rank was visually estimated at 
the focal point according to the following modified 
Wentworth scale: sand�silt (�0.2 cm; rank � 1), 
small gravel (0.2–0.6 cm; rank � 2), large gravel 
(0.6–7.5 cm; rank � 3), cobble (7.5–30.0 cm; rank 
� 4), small boulders (30.0–60.0 cm; rank � 5), 
large boulders (�60 cm; rank � 6), and bedrock 
(rank � 7). Dominant cover type identified within 
a 0.5-m radius of the focal point was categorized 
as (1) woody debris, (2) undercut bank, (3) over­
hanging vegetation, or (4) turbulence. 

We quantified resource availability in each of 
the two 50-m sections at 10 transects perpendicular 
to the stream, beginning with a random starting 
point and continuing at 5-m intervals throughout 
the section. The physical characteristics total 
depth, mean water column velocity, dominant sub­
strate, and cover type (within a 0.5-m radius) were 
measured at 10 equally spaced point locations 
across each transect. 

Fish were categorized into three size-classes 
based on a length frequency distribution that was 
used for all subsequent analyses (Muhlfeld 1999). 
The age composition of each size-class was esti­
mated from existing length-at-age data (Montana 
Department of Fish, Wildlife, and Parks, Libby, 
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unpublished data). Fish less than 35 mm in length 
were classified as age-0 fish, those between 36 and 
125 mm were classified as juveniles (age 1 and 
age 2), and those longer than 125 mm were clas­
sified as adults (age 3 and older). 

We used an aligned-rank procedure to test the 
null hypotheses that microhabitat use by size-class 
was the same as random availability (with reach 
as a blocking factor) and that microhabitat use 
based on total depth, mean velocity, focal depth, 
focal velocity, and relative depth was the same 
among size-classes (SAS Institute 1988). Linear 
contrasts were used for multiple comparisons. Ja­
cobs’ electivity index (1974) was used to portray 
microhabitat selection for total depth, mean ve­
locity, and substrate. This index ranges from �1 
to �1, where �1 indicates exclusive use of a de­
fined microhabitat category, 0 indicates habitat use 
in proportion to availability, and �1 indicates 
avoidance of that microhabitat category. All cover 
types were assigned to one of two categories, no 
cover and cover. A chi-square goodness-of-fit test 
was used to test the null hypothesis that each size-
class of redband trout used cover in proportion to 
availability. Some expected substrate categories 
(random availability) contained inadequate obser­
vations (�5), which precluded meaningful statis­
tical comparisons (Zar 1996). 

Mesohabitat.—Stream reach characteristics and 
redband trout habitat use and distribution were 
evaluated during the low-flow periods of 
July�September 1997 and August 1998 in Cal­
lahan Creek and July 1998 in Basin Creek. We 
used a modified Hankin and Reeves (1988) bas­
inwide inventory to avoid the error of extrapolat­
ing from a few small sections of stream to the 
entire system (Hankin 1984). We first counted the 
number of habitat units that spanned the entire 
channel width throughout a series of contiguous 
stream reaches (defined above) in each watershed. 
Surveyors then proceeded upstream and measured 
the width and thalweg length of each habitat unit. 
Habitat units were classified as either a pool, riffle, 
or run based on channel characteristics and stream 
flow (Bisson et al. 1982). Reach gradient was mea­
sured every 100 m with a hand-held clinometer. 

Juvenile and adult redband trout abundance 
(stratified by habitat type) was estimated by one 
or two independent divers snorkeling a random 
sample of at least 10 pools, 10 riffles, and 10 runs 
or at least 10% of the available habitat of each 
habitat type in each stream reach. Divers entered 
each habitat unit from the downstream end, then 

simultaneously proceeded upstream and indepen­
dently estimated fish numbers. 

Mean water depth, mean velocity, mean sub­
strate size, and percent cover were estimated for 
each sample habitat. Three equidistant transects 
perpendicular to the stream flow and three equi­
distant point locations along each transect were 
established in each sample unit. Mean depth, mean 
velocity (taken at 0.6 of total depth), and a single 
substrate rank were measured at each point loca­
tion. Mean depth was the sum of the nine depth 
measurements divided by 12 to account for zero 
depths at the shoreline (Platts et al. 1983). The 
proportion of the surface area covered by woody 
debris, undercut bank, turbulence, or overhanging 
vegetation was visually estimated in each habitat 
unit. 

Chi-square goodness-of-fit tests were used to 
test the null hypothesis that the habitat use of each 
size-class of redband trout was proportional to the 
availability of a particular habitat type. Expected 
values were calculated as the total proportional 
area sampled in each habitat type multiplied by 
the total counts of each size-class. Observed hab­
itat use was the total number of fish in that par­
ticular habitat type. Bonferroni confidence inter­
vals were constructed to determine whether each 
size-class of redband trout selected, avoided, or 
used habitat types as expected (Neu et al. 1974). 
Differences in mean velocity, mean depth, cover, 
and substrate among habitat types were tested us­
ing a rank-based analysis of variance (ANOVA; 
Conover and Iman 1981). Post hoc comparisons 
were conducted using the Scheffé method. Be­
cause velocity and substrate measurements were 
unavailable for 1997, comparisons of habitat char­
acteristics were restricted to 1998. 

Macrohabitat.—We described the distribution of 
redband trout from surveys conducted in 23 reach­
es of 5 streams at elevations ranging from 595 m 
to 1,576 m during the summers of 1997 and 1998. 
Mean reach gradients ranged from 0.5% to 7.5%, 
and mean stream widths ranged from 2.6 m to 11.8 
m. To identify the reach characteristics that were 
most related to the abundance and distribution of 
redband trout, four variables were measured in 
each study reach. Mean total redband trout density 
(of fish �35 mm) and mean water depth were de­
termined by means of equations for stratified ran­
dom sampling (Scheaffer et al. 1996). Mean gra­
dient was the sum of the gradient measurements 
in each reach divided by the total number of mea­
surements in each reach. Mean stream width and 
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TABLE 1.—Means (SE) of microhabitat use and availability for age-0 ( �35 mm), juvenile (36–125 mm), and adult 
(�126 mm) Columbia River redband trout in Callahan and Basin creeks during summer 1998. Values with the same 
small letters are not significantly different (P � 0.05); asterisks denote significant differences compared with random 
availability (P � 0.001). 

Sample size Columbia River redband trout size-class 
and microhabitat Resource 

variable Age-0 Juvenile Adult availability 

Callahan Creek 

Sample size 106 135 186 1,000 
Total depth (m) 0.132 � 0.006 z* 0.360 � 0.012 y* 0.449 � 0.011 x* 0.225 � 0.004 
Focal elevation (m) 0.018 � 0.001 z 0.042 � 0.003 y 0.092 � 0.006 x 
Relative depth (m) 0.804 � 0.030 z 0.875 � 0.008 z 0.802 � 0.011 z 
Focal velocity (m/s) 0.008 � 0.001 z 0.051 � 0.006 y 0.061 � 0.005 x 
Mean velocity (m/s) 0.018 � 0.003 z* 0.144 � 0.013 y* 0.126 � 0.009 y* 0.224 � 0.007 

Basin Creek 

Sample size 307 146 600 
Total depth (m) 0.433 � 0.010 z* 0.5094 � 0.03 y* 0.327 � 0.007 
Focal elevation (m) 0.041 � 0.002 z 0.1149 � 0.007 y 
Relative depth (m) 0.900 � 0.004 z 0.785 � 0.010 y 
Focal velocity (m/s) 0.111 � 0.007 z 0.132 � 0.009 y 
Mean velocity (m/s) 0.264 � 0.012 z* 0.250 � 0.013 z* 0.398 � 0.012 

pool�riffle ratio were determined from the bas­
inwide availability survey. 

Redband trout densities were related to the gra­
dient, pool�riffle ratio, mean depth, and mean 
width using simple linear regression and multiple 
regression (Norusis 1990). For each regression 
analysis, the density of redband trout was the de­
pendent variable and the four physical habitat 
characteristics were the independent variables. A 
k-means cluster analysis with three clusters was 
used to group stream reaches based on mean depth, 
mean width, gradient, and dominant and subdom­
inant substrate types. Reach 1 in Callahan Creek 
was excluded from all analyses because hybridized 

FIGURE 2.—Depth selection by age-0, juvenile, and 
adult redband trout in Callahan and Basin creeks during 
the summer of 1998. The utilization index ranges from 
�1 (exclusive selection of a particular depth) to �1 
(complete avoidance of a particular depth). Age-0 red-
band trout were not available in Basin Creek when the 
surveys were conducted. 

rainbow trout from the Kootenai River could have 
been mistaken for redband trout during snorkel 
surveys. 

Results 

Microhabitat 

We made direct observations of microhabitat use 
on 106 age-0, 135 juvenile, and 186 adult redband 
trout in Callahan Creek and on 307 juvenile and 
146 adult redband trout in Basin Creek (Table 1). 
As the emergence of age-0 redband trout in Basin 
Creek began during the latter part of July, they 
were not included in the analyses. We sampled 
1,000 random resource availability locations from 
Callahan Creek and 600 from Basin Creek for each 
variable. 

No size-classes of redband trout used water 
depth in proportion to availability. In both streams, 
juvenile and adult fish utilized significantly (P � 
0.001) deeper water than the mean, whereas age­
0 fish occupied shallower areas than the mean (Ta­
ble 1). Juvenile and adult fish selected water depths 
between 0.4 and 0.9 m and avoided depths less 
than 0.3 m; age-0 fish selected depths less than 0.2 
m along the channel margins and avoided areas 
deeper than 0.3 m (Figure 2). 

Mean depths and focal elevations increased with 
fish size (Table 1). Adults occupied the deepest 
water along the thalweg and held positions sig­
nificantly (P � 0.001) farther from the streambed 
than juvenile and age-0 fish. Juvenile redband trout 
used deeper water and higher focal elevations than 
age-0 trout. Juvenile and adult fish generally main­
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FIGURE 3.—Velocity selection by age-0, juvenile, and 
adult redband trout in Callahan and Basin creeks during 
the summer of 1998. The utilization index ranges from 
�1 (exclusive selection of a particular velocity) to �1 
(complete avoidance of a particular velocity). Age-0 red-
band trout were not available in Basin Creek when the 
surveys were conducted. 

tained deep positions relatively close to the 
streambed and occasionally left their focal points 
to ward off competitors. 

All size-classes of redband trout in both streams 
utilized areas with lower velocities than the mean 
velocity available (Table 1). Age-0 fish selected 
velocities less than 0.1 m/s and avoided velocities 
faster than that (Figure 3). In Callahan Creek, ju­
venile and adult fish selected velocities less than 
0.2 m/s and avoided velocities higher than 0.5 m/ 
s, whereas in Basin Creek, juveniles and adults 
selected all velocities less than 0.5 m/s (Figure 3). 

With a few exceptions, the use of water column 
and focal velocities increased with redband trout 
size (Table 1). In both streams, adult trout held 
their position in faster focal velocities than juve­
nile and age-0 fish; age-0 fish occupied focal ve­
locities lower than those of juvenile fish. The mean 
water column velocities used by adults and juve­
niles differed significantly (P � 0.001) from those 
used by age-0 fish but not from each other. 

Use of substrate by juvenile and adult redband 
trout did not appear to differ from what was avail­
able (Figure 4). The high preference for fine sub­
strate by juvenile and adult fish was probably an 
anomaly resulting from the small sample sizes. In 
contrast, age-0 redband trout appeared to maintain 
positions over fine, small, and large gravel sub­
strates and avoided larger substrate categories 
(Figure 4). 

Use of cover varied among streams and size-
classes of redband trout. Adult redband trout used 

FIGURE 4.—Substrate selection by age-0, juvenile, and 
adult redband trout in Callahan and Basin creeks during 
the summer of 1998. Except for bedrock, substrate cat­
egories are defined by particle diameter as follows: 
sand�silt, � 0.2 cm; small gravel � 0.2�0.6 cm; large 
gravel � 0.6�7.5 cm; cobble � 7.5�30.0 cm; small 
boulders � 30.0�60.0 cm; and large boulders, � 60.0 
cm. The utilization index ranges from �1 (exclusive 
selection of a particular substrate) to �1 (complete 
avoidance of a particular substrate). Age-0 redband trout 
were not available in Basin Creek when the surveys were 
conducted. 

cover more than expected in Callahan Creek (�2 

� 25.56; df � 1; P � 0.05) but not in Basin Creek 
(�2 � 0.071; df � 1; P � 0.05). In Callahan Creek, 
juvenile redband trout used cover in proportion to 
its availability (�2 � 1.24; df � 1; P � 0.05), 
whereas in Basin Creek, juveniles used cover more 
than expected (�2 � 49.105; df � 1; P � 0.05). 
In Callahan Creek, age-0 redband trout were found 
exclusively along stream margins without cover; 
hence, they used cover less than expected (�2 � 
8.97; df � 1; P � 0.05). 

Mesohabitat 

In 1997, we sampled 170 pools, 180 riffles, and 
171 runs (29.5% of the available habitat) in 19 
reaches of Callahan Creek. In 1998, we sampled 
38 pools, 32 riffles, and 29 runs (13.3% of the 
available habitat) in 5 reaches of Basin Creek and 
27 pools, 28 riffles, and 22 runs in 3 reaches of 
South Fork Callahan Creek (Table 2). 

Habitat types were unevenly distributed 
throughout each stream and differed in depth, ve­
locity, substrate, and cover (Figure 5). In Callahan 
Creek, riffles were the most abundant habitat type 
(81.1%), followed by runs (9.9%) and pools 
(8.9%); in Basin Creek, riffle habitat was most 
abundant (64%), followed by pools (20.5%) and 
runs (15.5%). In both streams, pools were deeper 
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TABLE 2.—Expected and observed mesohabitat use by age-0 ( �35 mm), juvenile (36–125 mm), and adult (�126 
mm) Columbia River redband trout in pools, riffles, and runs in Callahan and Basin creeks, Montana. Asterisks denote 
habitats where use was significantly (P � 0.05) different from availability. Bonferroni confidence intervals were used 
for multiple comparisons. There are three degrees of freedom for each chi-square test. 

Habitat type 

Pool Riffle Run �2 P-value 

Callahan Creek, 1997 

Expected use 19.1% 61.4% 19.5% 
Observed use 

Juveniles 33.6%* 43.4%* 23.0%* 348.16 �0.001 
Adults 41.8%* 32.0%* 26.1%* 1,530.30 �0.001 

Basin Creek, 1998 

Expected use 28.9% 43.1% 27.9% 
Observed use 

Juveniles 42.7%* 22.5%* 34.8%* 214.23 �0.001 
Adults 51.9%* 19.1%* 29.0% 200.20 �0.001 

South Fork Callahan Creek, 1998 

Expected use 16.7% 66.2% 17.2% 
Observed use 

Age-0 fish 35.2%* 37.3%* 27.5%* 162.82 �0.001 
Juveniles 37.6%* 43.2%* 19.1% 201.18 �0.001 
Adults 32.2%* 50.8%* 17.0% 66.28 �0.001 

and slower and contained more total cover (Schef­
fé post hoc comparison; P � 0.05) than runs or 
riffles; runs had intermediate depths and velocities 
(P � 0.05), and riffles were shallower with higher 
velocities (P � 0.05). Pool substrate scores were 
significantly (P � 0.05) lower than those for riffles 
in both streams. 

Redband trout of all size-classes failed to use 
habitat types in proportion to availability (Table 
2). All size-classes of redband trout were found 
significantly more often than expected in pools and 
less often than expected in riffles (Scheffé post 
hoc comparison; P � 0.05). Juvenile and adult fish 
used runs more than expected in Callahan Creek 
(P � 0.05) and as expected in South Fork Callahan 
Creek; adults in Basin Creek also used runs as 
expected. Therefore, juvenile and adult redband 
trout were observed more often than expected in 
deeper, slower habitats with more cover and small­
er substrates (e.g., pools) and less often than ex­
pected in shallower water with higher velocities 
and larger substrate (e.g., riffles). Larger redband 
trout generally used habitats with moderate veloc­
ities and depths (e.g., runs) in proportion to avail­
ability, while age-0 fish used them more than ex­
pected. 

Macrohabitat 

Densities of redband trout at least 35 mm in 
length ranged from 0.018 to 0.480 fish/m2 (Table 
3). Redband trout were present in all of the stream 

reaches sampled, although the distribution was un­
even in each watershed. No redband trout were 
observed in headwater stream reaches with gra­
dients steeper than 10% due to barriers to fish mi­
gration or inadequate habitat conditions. 

Of the four habitat characteristics measured in 
each stream reach, only the pool�riffle ratio and 
stream gradient were significantly related to the 
abundance of redband trout. The density of red-
band trout increased with an increase in the 
pool�riffle ratio (Y � 0.07 � 0.05PR, where Y 
represents density and PR the pool�riffle ratio; R2 

� 0.45; df � 22; P � 0.0001). The density of 
redband trout was negatively related to stream gra­
dient (Y � 0.22 � 0.03G, where G represents the 
gradient; R2 � 0.28; df � 22; P � 0.01). The 
densities found in moderately sloped box canyons 
and wide, boulder-dominated reaches in the main 
stem and North Fork Callahan Creek were poorly 
described by the model (i.e., outliers). These 
reaches were identified as a distinct group based 
on the results of a k-means cluster analysis with 
three clusters (Muhlfeld 1999). Removal of these 
reaches from the regression analysis substantially 
increased the amount of variability explained by 
the linear model (R2 � 0.59; df � 14; P � 0.001). 

In general, low-gradient, medium-size reaches 
with abundant pools had higher densities of red-
band trout. Redband trout density was best pre­
dicted by the pool�riffle ratio, stream gradient, 
and mean stream width (W): Y � 0.435 � 
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FIGURE 5.—Box plots of the 10th, 25th, 75th, and 90th percentiles for depth, velocity, substrate, and cover by 
habitat type (pool, riffle, or run) in Callahan and Basin creeks during the summer of 1998. Different letters indicate 
significant (P � 0.05) differences in a given habitat characteristic among habitat types. 

0.027PR–0.046G� 0.029W (F � 24.94; df � 22; 
P � 0.0001). The pool�riffle ratio alone accounted 
for 45% of the variation in the density of redband 
trout among 23 stream reaches; with the addition 
of the gradient, the model accounted for 56% of 
the variation, and with the further addition of width 
it accounted for 80% of the total variation. Ex­
amination of the univariate relationship of stream 
width to density revealed that it was quadratic rath­
er than linear. However, addition of a quadratic 
term to the multiple-regression model did not sub­
stantially increase the amount of variation ex­
plained, so no such term was included in the final 
model. 

Discussion 

Microhabitat Scale 

Summer microhabitat use differed among size-
classes of redband trout in the small headwater 
streams we studied in the Kootenai River drainage. 
Age-0 fish inhabited shallow, low-velocity areas 
along the stream margins, whereas juvenile and 
adult trout occupied deeper, faster locations with 
higher focal points in the water column. Our re­
sults are consistent with those of other studies that 
reported size-specific segregation of microhabitats 
along depth and velocity gradients for other stocks 
of redband trout (Hirsch 1995), coastal rainbow 
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TABLE 3.—Characteristics of 24 reaches sampled in Callahan and Basin creeks during summer 1997 and 1998. 
Abbreviations are as follows: CB � cobble; SB � small boulders; LG � large gravel; and SG � small gravel; 
CI � 95% confidence interval. 

Reach 
Elevation 

(m) 

Reach 
length 

(m) 

Grad­
ient 
(%) 

Mean 
stream 
width 
(m) 

Mean 
depth 
(m) 

Dominant/ 
subdominant 

substrate 

Pool– 
riffle 
ratio 

Fish � 35 mm 

Number/m2 � CI 

Main-stem Callahan Creek 

1 
2 
3 
4 

595–631 
631–668 
668–716 
716–825 

1,363 
1,791 
2,091 
5,352 

2.6 
2.1 
2.3 
2.0 

7.7 
9.0 
9.9 

11.8 

0.55 
0.50 
0.44 
0.38 

CB/SB 
CB/SB 
CB/SB 
CB/LG 

0.880 
0.370 
0.064 
0.087 

0.0971 
0.0407 
0.0415 
0.0212 

0.0369 
0.0088 
0.0099 
0.0073 

North Fork Callahan Creek 

1 
2 
3 
4a 

5 
6a 

7 
8 
9 

10 

825–898 
898–930 
930–967 
967–997 
997–1,070 

1,070–1,205 
1,205–1,278 
1,278–1,294 
1,294–1,310 
1,310–1,325 

3,000 
1,695 
1,183 

465 
2,460 
4,338 
2,440 
1,324 

255 
1,976 

2.4 
2.0 
3.1 
6.5 
3.0 
3.1 
3.0 
2.5 
6.3 
4.3 

10.5 
9.8 
8.5 
6.3 
9.9 
7.3 
6.1 
4.3 
2.8 
3.0 

0.32 
0.31 
0.28 
0.62 
0.31 
0.25 
0.24 
0.18 
0.16 
0.17 

CB/SB 
CB/SB 
CB/SB 
CB/SB 
CB/SB 
CB/LG 
CB/LG 
CB/LG 
CB/SB 
CB/LG 

0.064 
0.083 
0.064 
1.090 
0.034 
0.096 
0.055 
0.144 
0.090 
0.100 

0.0296 
0.0181 
0.0282 
0.0708 
0.0449 
0.1014 
0.0860 
0.0641 
0.0348 
0.0943 

0.0090 
0.0075 
0.0071 
0.0341 
0.0105 
0.0248 
0.0234 
0.0180 
0.0117 
0.0397 

South Fork Callahan Creek 

1 
2a 

3a 

4a 

5 

825–876 
876–970 
970–1,072 

1,072–1,316 
1,316–1,383 

141 
4,085 
2,766 
5,138 
3,237 

3.6 
2.3 
3.7 
6.1 
7.5 

7.8 
7.3 
7.0 
3.6 
2.6 

0.30 
0.22 
0.23 
0.20 
0.22 

CB/SB 
CB/LG 
CB/SB 
CB/SB 
CB/SB 

0.090 
0.080 
0.030 
0.124 
0.123 

0.0756 
0.0891 
0.0441 
0.0235 
0.0200 

0.0222 
0.0197 
0.0100 
0.0098 
0.0057 

Basin Creek 

1a 

2a 

3 
4a 

1,150–1,199 
1,199–1,203 
1,203–1,207 
1,207–1,333 

2,712 
635 
784 

4,985 

1.8 
0.5 
0.5 
2.8 

5.8 
4.8 
4.1 
4.6 

0.26 
0.40 
0.27 
0.23 

CB/LG 
LG/SG 
LG/SG 
CB/LG 

0.502 
7.740 
0.970 
0.292 

0.2572 
0.4559 
0.4796 
0.2290 

0.0028 
0.6596 
0.1026 
0.0466 

East Fork Basin Creek 

1 1,333–1,576 2,961 6.9 4.1 0.17 CB/SB 0.045 0.0431 0.0044 

a Reach sampled for microhabitat analyses. 

trout (Baltz and Moyle 1984; Moyle and Baltz 
1985), cutthroat trout Oncorhynchus clarki (Heg­
genes et al. 1991), bull trout (Saffel and Scarnec­
chia 1995), and different species of salmon (Chap­
man and Bjornn 1969; Everest and Chapman 1972; 
Dolloff and Reeves 1990; Bugert et al. 1991). 
Hirsch (1995) reported that microhabitat was par­
titioned among fry and older redband trout during 
the summer in three central Oregon streams; fry 
generally used stream margins, backwaters, and 
shallow areas, whereas older fish (�1 year) oc­
cupied deeper areas of the channel. Moyle and 
Baltz (1985) found that as rainbow trout increased 
in size they preferred deeper and faster water. Baltz 
and Moyle (1984) found that age-0 and adult rain­
bow trout did not exhibit a high niche overlap in 
two California streams due to ontogenetic shifts 
in space utilization. We also found that ontogenetic 
shifts in microhabitat use were proportional to 
body size; as fish grow, they move into deeper, 

faster microhabitats, which probably reduces in­
traspecific interactions (Chapman and Bjornn 
1969; Everest and Chapman 1972) or reduces sus­
ceptibility to predation by larger fishes (Harvey 
1991). 

Our data suggest that the microhabitats used by 
different size-classes of redband trout were related 
to availability. Water depth was an important mi­
crohabitat factor for older fish in Callahan and Ba­
sin creeks, probably because these creeks are small 
headwater streams with limited availability of wa­
ter deeper than 1 m (3% of the total availability 
in Callahan Creek and 14% in Basin Creek). Sim­
ilarly, Moyle and Baltz (1985) found that age-0 
(�50 mm), juvenile (51–119 mm), and adult 
(�120 mm) rainbow trout were highly selective as 
to the microhabitats they occupied, with selection 
based primarily on depth and velocity. In different 
stream systems, factors other than resource avail­
ability, such as stream temperature, food supply, 
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and the presence of other species may also influ­
ence habitat and microhabitat use (Moyle and 
Baltz 1985). Redband trout probably occupied fo­
cal positions with low water velocities that mini­
mized energy expenditure yet were close to faster 
water that maximized access to invertebrate drift 
(Fausch 1984). 

Our results suggest that water depth may influ­
ence microhabitat selection by juvenile and adult 
redband trout more than water velocity does. This 
observation differs from those of studies that have 
identified water velocity as the most important mi­
crohabitat variable for rainbow trout (Lewis 1969; 
Gatz et al. 1987). Juvenile and adult redband trout 
selected higher-velocity microhabitat (�0.5 m/s) 
in Basin Creek than in Callahan Creek (�0.2 m/ 
s), which had lower available velocities. In both 
streams the deepest water (�0.4 m) was consis­
tently selected. In Basin Creek, however, juvenile 
and adult redband trout continued to maintain po­
sitions in deeper areas even though velocities were 
higher. Discharge was relatively higher in Basin 
Creek because we sampled there earlier in the field 
season than at Callahan Creek. This indicates that 
redband trout need deeper water and that depth 
may be a key factor affecting density. Similarly, 
in Sierra Nevada streams, Pert and Erman (1994) 
found that the focal-point and mean water veloc­
ities occupied by adult rainbow trout increased 
with increasing discharge but that the fish still oc­
cupied deep water under both flow regimes. Se­
lection of deeper water by larger redband trout may 
also be related to the greater overhead security and 
protection from avian or terrestrial predators that 
such areas offer (Everest and Chapman 1972). 

Microhabitat analyses clearly demonstrated that 
age-0 redband trout selected shallow, low-velocity 
areas along channel margins. Moore and Gregory 
(1988) found the highest abundance of cutthroat 
trout fry in lateral habitats that provided shallow, 
low-velocity areas with abundant food. Channel 
margin habitats also reduce the likelihood of dis­
placement by faster water in the main channel 
(Moore and Gregory 1988) and provide visual iso­
lation from aquatic predators (Bugert and Bjornn 
1991; Harvey 1991). In Callahan Creek, bull trout 
may preclude age-0 redband trout from maintain­
ing positions in deeper water (Shepard et al. 1984). 

Mesohabitat Scale 

Redband trout of all ages selected deep, slow 
pool habitats with relatively abundant cover and 
avoided shallow, high-velocity riffle habitats. Se­
lection of the lateral margins of pools as rearing 

habitat by age-0 redband trout is consistent with 
the behavior of other salmonid species (Bisson et 
al. 1988; Bozek and Rahel 1991). Similarly, other 
studies have demonstrated a higher abundance of 
older trout in pools (Lewis 1969; Hankin and 
Reeves 1988; Roper et al. 1994; Herger et al. 
1996). In a Montana stream, Lewis (1969) found 
that large, deep, slow pools with extensive cover 
had the most stable populations of rainbow trout. 
However, our results differ from those of studies 
that reported that rainbow trout occupy faster riffle 
and run habitat in sympatric situations (Hartman 
1965; Cunjak and Green 1984). 

Macrohabitat Scale 

Our results suggest that the distribution of red-
band trout was related to a combination of physical 
stream habitat variables. In general, low-gradient, 
medium-size reaches with abundant pools had 
higher densities of redband trout. Several studies 
have also related trout abundance to a combination 
of physical and biological factors in western 
streams (Binns and Eiserman 1979; Lanka et al. 
1987; Scarnecchia and Bergersen 1987; Kozel and 
Hubert 1989). Other studies indicate that the spa­
tial variation in the distribution of stream-dwelling 
salmonids may be largely attributed to the avail­
ability of spawning habitat within a drainage basin 
(Bozek and Rahel 1991; Magee et al. 1996). If 
juvenile redband trout do not disperse far from 
their natal incubation sites, this may also account 
for the observed spatial patchiness in the distri­
bution of juvenile and adult redband trout through­
out both watersheds. 

Our results indicate that gradient influences the 
distribution and abundance of redband trout; as 
gradient increased, the density of redband trout 
generally decreased. Redband trout were most 
abundant in low-gradient reaches located in allu­
viated valley bottom types with well-defined flood­
plains and meandering plan-view geometries. We 
found that densities were lowest in steep head­
water stream reaches (�4%), and no redband trout 
were observed in headwater streams with gradients 
greater than 10% (possibly because of barriers to 
fish migration or inadequate habitat conditions). 
Similarly, Kruse et al. (1997) reported that channel 
gradients greater than 10% limited the distribution 
of Yellowstone cutthroat trout O. c. bouvieri in the 
Greybull�Wood River drainage in Wyoming. In 
high-elevation streams in Wyoming, Chisholm and 
Hubert (1986) demonstrated that increased stream 
gradient had a negative influence on the abundance 
of brook trout Salvelinus fontinalis. Bozek and 
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Hubert (1992) also found that cutthroat trout did 
not occupy streams with channel slopes greater 
than 8%. In moderate-gradient reaches, our results 
revealed high variation in the abundance of red-
band trout, which suggests that factors other than 
gradient (i.e., channel entrenchment, substrate 
size, and stream width) influenced standing stocks 
of redband trout. Furthermore, the highest densi­
ties of redband trout occurred in medium-size 
streams. Platts (1979) and Lanka et al. (1987) also 
observed optimal trout habitat in the transitional 
reaches between high-gradient headwaters and 
lower-basin streams. Channel gradient and stream 
size influence stream habitat characteristics (Platts 
1979; Bowlby and Roff 1986; Chisholm and Hub­
ert 1986), which in turn influence the distribution 
(Bozek and Hubert 1992; Kruse et al. 1997) and 
abundance (Platts 1979; Chisholm and Hubert 
1986) of trout. 

Management Implications 

We found that a hierarchical assessment of hab­
itat use and distribution was useful for identifying 
the summer habitat requirements of redband trout 
in the Kootenai River drainage. At the microhab­
itat scale, depth and velocity were the most im­
portant factors associated with redband trout hab­
itat use and size-class distribution. The mesoha­
bitat analysis identified selection for pool habitats 
by all size-classes of redband trout. The macro-
habitat scale revealed that gradient, stream size, 
and the abundance of pools were important factors 
influencing redband trout densities and distribu­
tion in stream reaches within the watershed; higher 
densities of redband trout are associated with low-
gradient channels with abundant pool habitat. Fi­
nally, stream habitat inventories suggested that 
geologic barriers are important mechanisms for 
isolating genetically pure redband trout in the Ko­
otenai River drainage. No single analysis would 
provide managers with such a comprehensive view 
of the importance of physical and biological fac­
tors at different spatial scales. 

A modified basinwide inventory and microhab­
itat analysis were complementary methodologies 
for identifying fish�habitat relations. If habitat use 
had only been analyzed at the microhabitat and 
mesohabitat scales, the factors influencing the dis­
tribution of redband trout at the watershed level 
would have been missed. If abundance had only 
been estimated in one section of stream and then 
extrapolated to the basin level, estimates of den­
sities may have differed by as much as a factor of 
11 for Basin Creek and by more than a factor of 

5 for Callahan Creek. Therefore, extrapolating to 
the stream or watershed level from one represen­
tative reach may produce misleading and inade­
quate information on the ecological requirements 
and distribution of salmonids within a basin (Rop­
er et al. 1994). 

Our findings at several spatial scales suggest the 
importance of maintaining channel complexity and 
quality pool habitat for redband trout throughout 
their limited range. Land development activities 
such as road construction, logging, and grazing can 
alter substrate composition and reduce the fre­
quency and area of pools (Burns 1972; Heifetz et 
al. 1986; Hartman et al. 1996). Our results suggest 
that decreased pool habitat could have deleterious 
effects on the abundance and distribution of red-
band trout. Although supplementation efforts 
within the redband trout’s historic range may be 
desired by state and federal agencies, introductions 
of species to any aquatic habitat requires careful 
consideration because species interactions are 
complex and difficult to predict (Li and Moyle 
1981). The information gained from this study may 
be used to ascertain and predict how land-use al­
terations will affect these populations as well as 
helping to inform habitat enhancement or resto­
ration decisions. 
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