

MARSSIM Overview II

MARSSIM Technical Seminar Series September 29, 2006 Eric W. Abelquist Oak Ridge Associated Universities

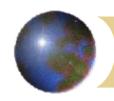
Lecture Topics


- DCGLs for Multiple Radionuclides
- MARSSIM Final Status Survey
 Instruments
- MDC Concepts
- Statistics...just enough to whet your appetite

- 1) Classify site areas; identify survey units and reference areas
- 2) Determine the DCGLs
- 3) Determine whether Scenario A or B will be used; specify statistical tests for survey design (Sign test or WRS test)
- 4) Determine whether unity rule will be used for multiple radionuclides (also gross DCGLs for surface activity)
- 5) Choose equipment and measurement protocols
- 6) Determine scan and measurement MDCs
- 7) Determine survey investigation levels
- 8) Set acceptable probability of Type I and II errors
- 9) Determine number of statistical samples
- 10) Create reference grid and sample locations



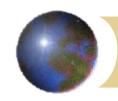
Application of DCGLs for Multiple Radionuclides


Introduction

- Pathway Scenarios
- DCGLs
- Application of DCGLs
 - Unity Rule (for soil)
 - Gross Activity DCGLs (for building surfaces)
 - Use of Surrogate Measurements (for soil)

Decommissioning Criteria

- Regulatory Agencies Establish Radiation Dose Standards for Release
 - For example, 25 mrem/y to average member of "critical group" i.e. group of individuals reasonably expected to receive greatest exposure



Pathway Scenarios

- Various pathways and scenarios are used to translate dose standard to residual radioactivity levels (measurable quantities)
 - Residential scenario
 - Building occupancy scenario
 - Building renovation scenario
 - Drinking water scenario
 - Reference: NUREG/CR-5512, vol. 1



- DCGLs refer to average levels of residual radioactivity above background levels
- Provided for surface activity (dpm/100 cm²) and soil contamination (pCi/g)
- DCGLs will be obtained from regulatory guidance based on default parameters (Appendix C of NUREG-1727); or from sitespecific pathway modeling (using RESRAD or DandD codes)

DCGLs (cont.)

- DCGLs are provided for uniform contamination and for hot spots
 - DCGL_W is the uniform residual radioactivity concentration level that corresponds to release criterion
 - DCGL_{EMC} is the concentration level for a specific areal size that corresponds to the release criterion; value becomes larger as areal size is reduced


DCGLs (cont.)

- The DCGL_{EMC} is determined by
 DCGL_{EMC} = (DCGL_W)*(Area Factor)
- The area factor represents the magnitude that the concentration in a specified area can exceed DCGL_W, while maintaining compliance with release criterion
- MARSSIM Tables 5.6 and 5.7 provide illustrative examples of area factors; RESRAD can be used to generate area factors

Application of DCGLs

- Prerequisites for application of DCGLs
 - Identity of site contaminants
 - Relative ratios among the contaminants, for multiple contaminants
 - Isotopic ratios and state of equilibrium for decay chains (U, Th)
- Generally requires alpha and gamma spectroscopy of representative samples



- Multiple Contaminants
 - Unity Rule (for soil)
 - Gross Activity DCGLs (for building surfaces)
 - Use of Surrogate Measurements (for soil)
- For some survey units, surrogates and the unity rule are used at the same time

- Gross activity DCGL (for surface activity)
 - Assumes that contaminant ratios are known and consistent (justify with HSA and characterization data)

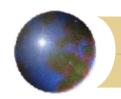
$$GrossActivityDCGL = \frac{1}{f_1/DCGL_1 + f_2/DCGL_2 + ... + f_n/DCGL_n}$$

- Example: Gross activity DCGL for C-14 and Co-60 surface contamination
 - DCGL_{C-14} = 180,000 dpm/100 cm²; DCGL_{Co-60} = 7,000 dpm/100 cm²
 - Assume fixed contaminant ratio: 25% C-14 and 75% Co-60


Example: Gross activity DCGL (cont.)

Gross DCGL =
$$\frac{1}{0.25/180,000+0.75/7,000}$$
 = 9,200 dpm /100 cm²

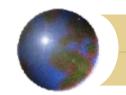
- Efficiency should be weighted consistent with contaminant mix (e.g. 0.25 ε_{C-14} + 0.75 ε_{Co-60})
- Survey data compared (using nonparametric statistics) to gross activity DCGL



- Use of Surrogate Measurements
 - Possible to measure just one contaminant and infer the concentration of others; e.g., measuring Co-60 in soil to assess level of Ni-63
 - A sufficient number of measurements are needed to establish a consistent ratio (DQOs)
 - estimate ratio conservatively if variability large
 - remediation may change contaminant ratios

- Use of Surrogate Measurements (cont.)
 - Need to modify the DCGL of the measured radionuclide (Co-60) to account for the presence of the inferred radionuclide
 - Assume C_{Ni} / C_{Co} is "fixed" ratio, then

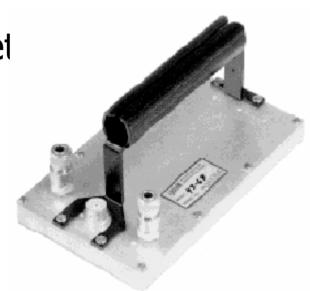
$$DCGL_{Nod, Co} = DCGL_{Co}*[\frac{DCGL_{Ni}}{((C_{Ni}/C_{Co})*DCGL_{Co})+DCGL_{Ni}}]$$



- Use of Surrogate Measurements (cont.)
 - Example: Survey unit contaminated with both Co-60 and Ni-63; Co-60 will be surrogate
 - DCGL_{Co} = 18 pCi/g; DCGL_{Ni} = 500 pCi/g
 - "Fixed" ratio of C_{Ni}/C_{Co} is 7
 - Modified DCGL for Co-60 is 14.4 pCi/g
 - This modified DCGL is used in statistical tests—both in planning and data reduction

MARSSIM FSS Instrumentation

- Field survey instruments used to perform scanning in buildings and land areas, and to make surface activity measurements
- Laboratory instruments to determine radionuclide concentrations in soil – depending on radionuclides includes gamma spec, alpha spec and wet chemistry



Survey Instrumentation

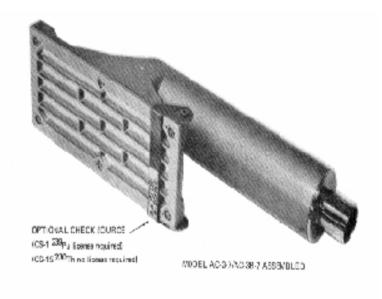
- Field survey instruments described in MARSSIM Appendix H:
 - Gas proportional
 - Alpha-only (using voltage setting)
 - Beta-only (using Mylar thickness)
 - Alpha plus Beta
 - GM (measures primarily beta)
 - ZnS (alpha measurements)
 - Dual phosphor (alpha and beta, cross talk)

Gas Flow Proportional Counters

- Can distinguish alphas and bet
- P-10 gas needed
- connected or disconnected
- large windows
- very thin window
- problems with gas

Combined Alpha –Beta Scintillators

can distinguish alphas and betas

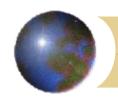

- no gas supply required
- large window areas
- beta efficiency can be relatively poor
- light leaks

Alpha Scintillators - ZnS

- only responds to alphas
- no gas supply
- large window areas
- light leaks

Windowless Gas Flow Proportional Counter

- for H-3
- needs continuous source of gas
- fixed measurements not scans
- flat surfaces
- interference from dust and static charges—very "finicky"


Pancake GM

- responds to alphas, betas and gammas
- small window
- shielded versions available
- rugged

Selection of Instrumentation

- Selection based on contaminants, their associated radiations, media surveyed and MDCs (sensitivity)
- MARSSIM Guidance: MDCs less than 10% of the DCGL_W are preferable—while MDCs up to 50% of the DCGL_W are acceptable (this does **not** apply to scan MDCs)

- most sensitive gamma detector
- easily measures background
- •cpm or μR/h
- limited size, heavy, fragile

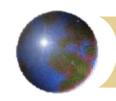
Plastic Scintillators

- easily measures background (μR/h or μrem/h)
- lighter and more rugged than NaI
- energy independent

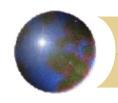
Low Energy Gamma Detectors

- thin (1 mm) NaI crystals
- primarily used for I-125
- light leaks

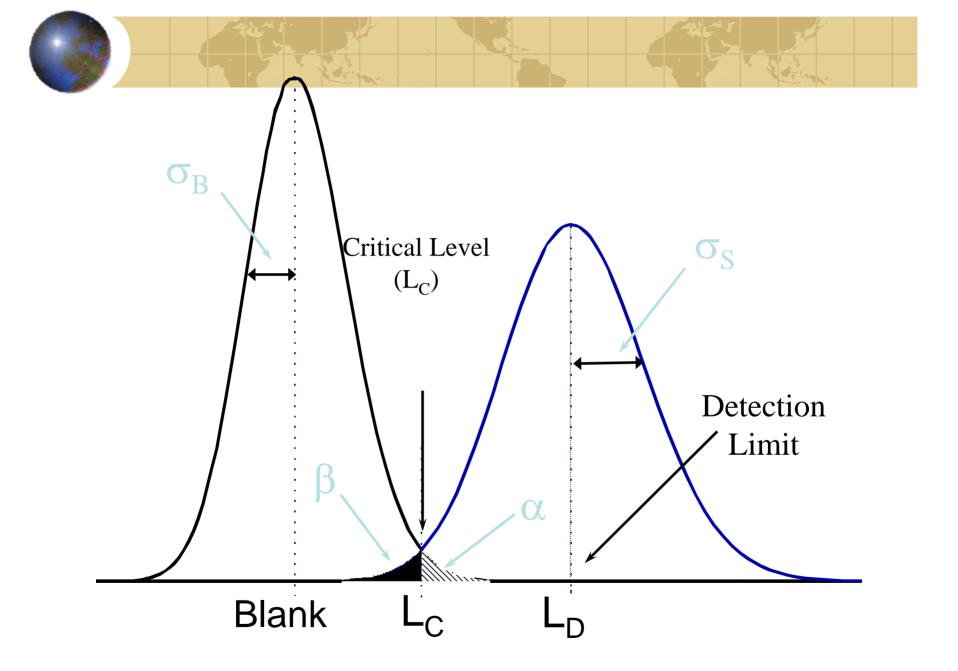
FIDLER


- large area thin NaI crystal
- primarily used for Am-241
- window settings critical
- heavy more suited to fixed measurements than scanning

Minimum Detectable Concentration


- MDC is the smallest activity level that can be detected with specific confidence (usually 95%) for a given instrument and measurement procedure.
- MDCs should be less than 50% of DCGL (from MARSSIM)
- MDC concepts are derived from hypothesis testing:
 - H₀: No net activity is present in the sample

MDC Concepts


Critical level (L_C): the net count at or above which a decision is made that activity is present in a sample

 A Type I error is made when the net count in a blank sample exceeds the L_C

MDC Concepts (cont.)

Detection limit (L_D): the smallest number of net counts that will be detected with a probability (β) of non-detection (Type II error), while accepting a Type I error of incorrectly deciding that activity is present in a sample (false positive).

STATIC MDC EXPRESSION

For equal count times of background and sample

$$MDC = \frac{3 + 4.65\sqrt{C_B}}{KT}$$
 (in dpm/100 cm²)

where:

 C_B = Background count in time T, and

K = Proportionality constant that embodies instrument efficiency, surface efficiency, and probe area

corrections

For cases when background and sample counted for different time intervals:

$$\frac{MDC = 3 + 3.29 \sqrt{R_B T_{S+B} (1 + T_{S+B} / T_B)}}{KT_{S+B}}$$

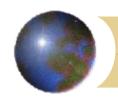
where:

 R_B = Background counting rate

 T_{S+B} = Sample count time

 T_B = Background count time

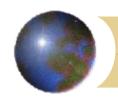
SCAN MDCs


- Considered human factors involved with scanning
- Signal detection theory Did signal arise from "Background Alone" or "Background Plus Source"?
- Evaluated scan sensitivity for ideal observer through computer simulation tests, and performed field tests to evaluate model

HUMAN FACTORS DURING SCANNING

- Bias toward "false alarms" where surveyor expects contamination—bias toward "misses" when not expected (Class 1 vs. Class 3)
- During extended periods of scanning
 - Vigilance decrement less likely to find contamination if it does exist
 - Probe is usually moved more quickly
- Reference: NUREG/CR-6364

HUMAN FACTORS DURING SCANNING (cont.)


- Surveyor influenced by relative costs of "misses" and "false alarms"
- Two stages of scanning:
 - continuous monitoring brief "look" at potential sources
 - stationary sampling (holding probe stationary)
- Cost of deciding a signal is present:
 - For continuous monitoring, time holding probe at location
 - For stationary sampling, cost is taking direct measurements or soil samples

Ideal Poisson Observer

- Makes decision on presence/absence of contamination based on number of counts in an interval, i - based on scan rate
- Not subject to human factors, makes optimal use of available information

Provides theoretical upper bound on scan MDC

ESTIMATION OF SCAN MDC

• The minimum detectable count rate (MDCR) in the observation interval is determined: $\frac{MDCR = d'\sqrt{b_i}}{\frac{i\sqrt{D}}{i\sqrt{D}}}$

where:

b_i = Background counts in observation interval

d' = Detectability index, based on acceptable correct detection rate and false positives

p = Surveyor efficiency relative to idealobserver (based on experimentation)

Statistics

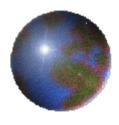
- Two broad categories of statistics
 - Descriptive statistics
 - Inferential statistics

Descriptive Statistics

- Data Collection
- Summarizing Data
- Interpreting Data
- Drawing Conclusions from Data

Inferential Statistics

- Sampling Distributions
- Central Limit Theorem
- Confidence Interval Testing
- Hypothesis Testing


Big picture

Use a random sample to learn something about a larger population.

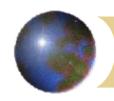
Random Sample (Unofficial Definition)

Every unit in the population has an equal probability of being included in the sample



A random sample should represent the population well, so sample statistics from a random sample should provide reasonable estimates of population parameters

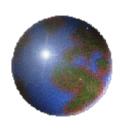
All sample statistics have some error in estimating population parameters


If repeated samples are taken from a population and the same statistic (e.g. mean) is calculated from each sample, the statistics will vary, that is, they will have a distribution

A larger sample provides more information than a smaller sample so a statistic from a large sample should have less error than a statistic from a small sample

4 Gold Nuggets

- Random sampling is necessary
- Statistics have error
- Statistics have distributions
- Larger sample size (n) is better less error


Sampling Distributions

- Different samples produce different results
- Value of a statistic, like mean or proportion, depends on the particular sample obtained
- Some values may be more likely than others
- The probability distribution of a statistic ("sampling distribution") indicates the likelihood of getting certain values

Mean and Standard Deviation of \overline{X}

mean =
$$\mu_{\overline{x}} = \mu$$
 and standard deviation = $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$

Distribution of X when sampling from a normal distribution

has a normal distribution with

$$\begin{array}{ll} \text{mean} = & \overline{X} \\ \text{and} \end{array}$$

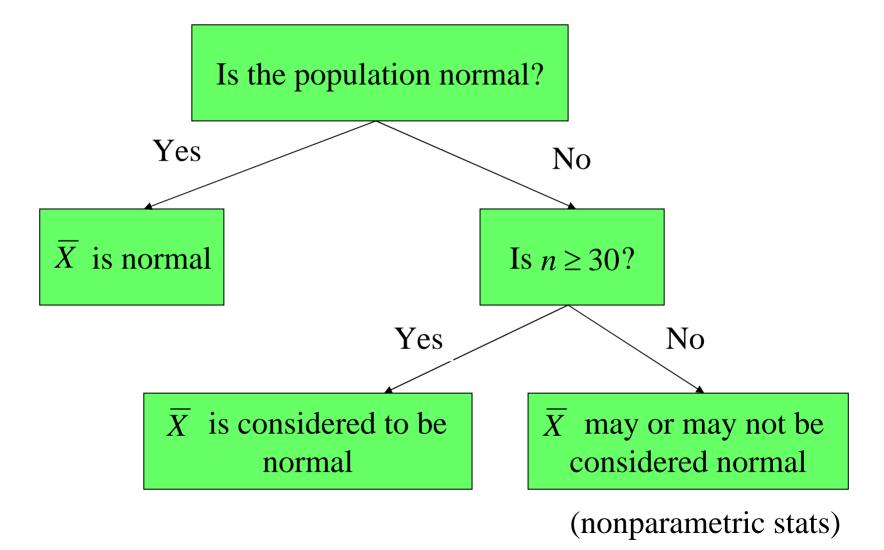
$$\mu_{\bar{x}} = \mu$$

standard deviation =

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

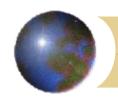
Central Limit Theorem

If the sample size (n) is large enough, \overline{X} has a normal distribution with


mean = $\mu_{\bar{x}} = \mu$ and standard deviation = $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ regardless of the population n

What is Large Enough?

 $n \ge 30$


Does \overline{X} have a normal distribution?

Two ways to learn about a population


- Confidence intervals
- Hypothesis testing

Confidence Intervals

• Allow us to use sample data to estimate a population value, like the true mean or the true proportion.

• Example: What is the mean surface activity level in the Class 2 survey unit?

Confidence Interval Testing

- A range of reasonable guesses at a population value, a mean for instance
- Confidence level = chance that range of guesses captures the the population value
- Most common confidence level is 95%

As long as you have a "large" sample....

A confidence interval for a population mean is:

$$\overline{x} \pm Z \left(\frac{S}{\sqrt{n}} \right)$$

where the average, standard deviation, and n depend on the sample, and Z depends on the confidence level.

Confidence Levels for a Normal Distribution

Interval

$\circ \mu \pm 0.674 \sigma$

$$\bullet \mu \pm 1.00 \sigma$$

•
$$\mu \pm 1.65 \sigma$$

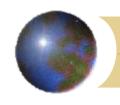
•
$$\mu \pm 1.96 \sigma$$

$$\bullet \mu \pm 2.58 \sigma$$

$$\circ \mu \pm 3.00 \sigma$$

Confidence Level

0.50


0.68

0.90

0.95

0.99

0.997

Example

Random **sample** of 59 soil samples had an average of 273.20 pCi/g. Sample standard deviation was 94.40 pCi/g.

$$273.20 \pm 1.96 \left(\frac{94.4}{\sqrt{59}}\right) = 273.20 \pm 24.09$$

We can be 95% confident that the average soil concentration in **all** soil samples was between 249.11 and 297.29 pCi/g.

What happens if you can only take a "small" sample?

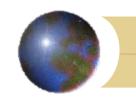
- Random sample of 15 smears had an average of 6.4 dpm alpha with standard deviation of 1 dpm alpha.
- What is the average alpha dpm from all smears?

If you have a "small" sample...

Replace the Z value with a t value to get:

$$\overline{x} \pm t \left(\frac{S}{\sqrt{n}} \right)$$

where "t" comes from Student's t distribution, and depends on the sample size through the degrees of freedom "n-1". (Must assume normal distribution is being sampled)



OK, back to our example!

Sample of **15 smears** had an average of 6.4 dpm alpha with standard deviation of 1 dpm alpha.

Need t with n-1 = 15-1 = 14 d.f. For 95% confidence, $t_{14} = 2.145$

$$\overline{x} \pm t \left(\frac{s}{\sqrt{n}}\right) = 6.4 \pm 2.145 \left(\frac{1}{\sqrt{15}}\right) = 6.4 \pm 0.55$$

That is...

We can be 95% confident that average dpm alpha on the smears is between 5.85 and 6.95

Remember: This assumes that the smear activity is normally distributed.

What happens to CI as

sample gets larger?

$$\overline{x} \pm Z \left(\frac{S}{\sqrt{n}} \right)$$

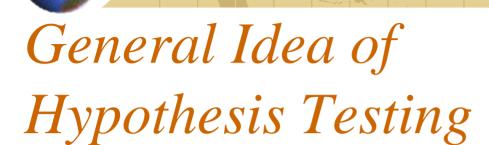
$$\overline{x} \pm t \left(\frac{S}{\sqrt{n}} \right)$$

For large samples:

Z and t values become almost identical, so CIs are almost identical.

One not-so-small problem!

- It is only OK to use the t interval for small samples if your original measurements are normally distributed.
- We'll learn how to check for normality later in this presentation.


Strategy for

deciding how to analyze

- If you have a large sample of, say, 60 or more measurements, then don't worry about normality, and use the t-interval.
- If you have a small sample and your data are normally distributed, then use the t-interval.
- If you have a small sample and your data are not normally distributed, then do not use the t-interval: ** Welcome to nonparametric statistics! **

Hypothesis Testing

- Used to make an assertion concerning one or more populations (e.g., residual radioactivity in survey unit > release level)
- Collect evidence (data) random samples
- Based on the available evidence, decide whether or not the initial assumption (hypothesis) is reasonable