

Delaware Valley Society for Radiation Safety MARSSIM Workshop

FIELD INSTRUMENTATION AND FINAL STATUS SURVEYS

Eric W. Abelquist
Oak Ridge Institute for Science and Education
March 19, 2004

- Field Survey Instruments
- ISO-7503 Approach
- Surface Activity Assessment for Decay Series
- Hot Spot Considerations
- Scan MDC and Related Discussion

MARSSIM FSS Instrumentation

- Field survey instruments used to perform scanning in buildings and land areas, and to make surface activity measurements
- Laboratory instruments to determine radionuclide concentrations in soil – depending on radionuclides includes gamma spec, alpha spec and wet chemistry

Survey Instrumentation

- Field survey instruments described in MARSSIM Appendix H:
 - Gas proportional
 - Alpha-only (using voltage setting)
 - Beta-only (using Mylar thickness)
 - Alpha plus Beta
 - GM (measures primarily beta)
 - ZnS (alpha measurements)
 - Dual phosphor (alpha and beta, cross talk)

Gas Flow Proportional Counters

- Can distinguish alphas and betas
- P-10 gas needed
- connected or disconnected
- large windows
- very thin window
- problems with gas

Combined Alpha –Beta Scintillators

can distinguish alphas and betas

- no gas supply required
- large window areas
- beta efficiency can be relatively poor
- light leaks

Alpha Scintillators - ZnS

- only responds to alphas
- no gas supply
- large window areas
- light leaks

Windowless Gas Flow Proportional Counter

- for H-3
- needs continuous source of gas
- fixed measurements not scans
- flat surfaces
- interference from dust and static charges—very "finicky"

Pancake GM

- responds to alphas, betas and gammas
- small window
- shielded versions available
- rugged

Selection of Instrumentation

- Selection based on contaminants, their associated radiations, media surveyed and MDCs (sensitivity)
- MARSSIM Guidance: MDCs less than 10% of the DCGL_W are preferable—while MDCs up to 50% of the DCGL_W are acceptable (this does **not** apply to scan MDCs)

ISO-7503 Methodology

- ISO-7503-1 "Evaluation of Surface Contamination-Part 1: Beta Emitters and Alpha Emitters"
- Separate total efficiency into instrument and surface efficiency components:

$$A_{S} = \frac{R_{S+B} - R_{B}}{(\varepsilon_{i})(\varepsilon_{S})(W)}$$

where:

 $\epsilon_{\rm i}$ is the instrument or detector efficiency, $\epsilon_{\rm s}$ is surface or source efficiency, W is the physical probe area

ISO-7503 Methodology (cont.)

- \bullet Distinguishes between instrument efficiency (ϵ_i) and surface efficiency (ϵ_s)
- Our conventional total efficiency is simply: $(\varepsilon_i)(\varepsilon_s)$
- ϵ_i is the ratio between the net count rate and 2π surface emission rate (includes absorption in detector window, sourcedetector geometry)—maximum ϵ_i is 1.0

ISO-7503 Methodology (cont.)

- \mathfrak{e}_s is the ratio between the number of particles emerging from surface and the total number of particles released within the source—accounts for self-absorption and backscatter
- \mathfrak{e}_s is nominally 0.5 (no self-absorption, no backscatter)—backscatter increases value, self-absorption decreases value

ISO-7503 Efficiency Components

- Definition of terms for ISO-7503 approach
 - Activity of source (A): $A = q_1 + q_2 + q_3 + q_4 + q_5 + q_6$
 - Surface emission rate (q_{2B}) : $q_{2B} = q_1 + q_2 + q_3 + q_5$
 - Surface efficiency (ε_s):

$$\varepsilon_{s} = \frac{q_{1} + q_{2} + q_{3} + q_{5}}{q_{1} + q_{2} + q_{3} + q_{4} + q_{5} + q_{6}} = \frac{q_{2\pi}}{A}$$

Instrument efficiency (ε_i) :

$$\mathcal{E}_{i} = \frac{n}{q_1 + q_2 + q_3 + q_5}$$

(n is the instrument net count rate)

Definition of Terms for ISO-7503 Approach

Determination of ε_i

- \mathfrak{e}_{i} is determined similarly to current practice, except that detector response, in cpm, is divided by the 2π surface emission rate of the calibration source (not source activity in dpm)
- \mathfrak{e}_{i} is calculated from the 2π surface emission rate of the calibration source, that is subtended by the physical probe area of the detector (q 2π ,sc): $\mathcal{E}_{i} = R_{S+B} R_{B}$

 $q_{2\pi,sc}$

Determination of ε_i (cont.)

- ε_i should be "determined by means of reference radiations provided by reference sources of known emission rate per unit area in accordance with ISO-8769"
- ISO-8769 recommends calibration source areas of at least 150 cm² (want calibration source larger than detector physical probe area)
- If you only have smaller calibration sources, then just cal with source in multiple locations

Example Certificate of Calibration

- 150 cm²,Tc-99 source on stainless steel
- Calibration source certificate:
 - $\mathbf{z} = 2\pi$ emission rate is 14,400 cpm
 - $\mathbf{u} = 4\pi$ activity is 23,100 dpm
- Backscatter provided as 25%
- The 2π emission rate provides the NIST-traceability, the dpm value is calculated (using the backscatter value)

Radionuclide Sources For Calibration

- Select calibration source based on type and radiation energy of contamination
- ϵ_i increases with increases in beta energy (data for gas proportional detector):

	ave energy	<u>8</u> i
C-14	49.4 keV	0.254
Tc-99	84.6 keV	0.364
TI-204	244 keV	0.450
SrY-90	563 keV	0.537

Determination of ε_{s}

- \mathfrak{e}_s is determined either by experimentation, or by simply selecting appropriate values based on the radiation type and energy
- Recommendations of ISO-7503:
 - ϵ_s equals 0.5 for maximum beta energies, $E_{\beta} > 0.4$ MeV (e.g., TI-204, SrY-90)
 - ϵ_s equals 0.25 for 0.15 MeV < E_{β} < 0.4 MeV and alphas (e.g. C-14, Pu-239)

Example Using the ISO-7503 Approach

- Gas proportional detector conventionally calibrated to Th-230 alpha source: total efficiency is about 0.20 c/dis
- Determine ε_i from NIST certificate for Th-230
 - 2π emission rate is 23,855 alphas/min, assume detector background is 1 cpm and the gross count on the calibration source is 11,077 cpm:

 $\varepsilon_{i} = \frac{11,077-1}{23,855} = 0.46$

*Note: This is 2π value! Multiply by ε_s is to get total efficiency (4π) of 0.115

Example Using the ISO-7503 Approach

- \bullet Determine ε_s for surface types for Th-230 alpha source:
- Scabbled concrete: $\varepsilon_s = 0.276$; $\varepsilon_{tot} = (0.46)(0.276) =$ **0.13 c/dis**
- ♦ Stainless steel: $\varepsilon_s = 0.499$; $\varepsilon_{tot} = (0.46) (0.499)$ = **0.23 c/dis**
- Untreated wood: $ε_s = 0.194$; $ε_{tot} = (0.46)(0.194)$ = **0.09 c/dis** (from Table 5.5 in NUREG-1507)

Surface Activity Assessment for Decay Series

- Decay series emit a complex scheme of alpha, beta and gamma emissions
- Calibration to a single radionuclide may not be representative of the detector's response to U or Th decay series
- One approach is to make beta measurements in place of alpha measurements, considering alpha to beta ratio, and calibrate detector to a single radionuclide (e.g. SrY-90 for Pa-234m in U series)

Surface Activity Assessment for Decay Series (cont.)

- Alternative approach using NUREG-1507 (Section 5.5): Considers detector's response to each of the alpha and beta emissions in decay series, and then weight individual efficiencies based on the isotopic ratio
- Technique requires that decay scheme be completely described in terms of radiation type, energy and abundance, as well as instrument and surface characteristics (3% enriched U example)

Surface Activity Assessment for Decay Series (cont.)

NUREG-1507 Table 5.32

Total Weighted Efficier				1CV	0.096
²³¹ Th	Beta/0.0764	0.033	100%	0.118	3.93×10 ⁻³
235U	Alpha/4.4	0.033	100%	0.01	3.33×10 ⁻⁴
²³⁴ U	Alpha/4.7	0.799	100%	0.01	7.99×10 ⁻³
^{234m} Pa	Beta/0.819	0.167	100%	0.453	7.58×10 ⁻²
²³⁴ Th	Beta/0.0435	0.167	100%	0.038	6.36×10 ⁻³
238U	Alpha/4.2	0.167	100%	0.01	1.67×10 ⁻³
	Avg Energy Alp	<u>oha Fractic</u>	<u>n Yield</u>	Efficienc	<u>xy Weighted Efficiency</u>

Surface Activity Assessment for Decay Series (cont.)

- Detector's efficiency for each radiation emission was determined experimentally by selecting radionuclides with similar energies, or empirically
- Note that about 80% (0.0758 of 0.096) of detector's response is from Pa-234m, and not likely to be affected much by field conditions
- To evaluate this technique, 3% EU was deposited on SS and surface activity measurements made resulted in **0.09 c/dis**

Hot Spot Considerations

- Hot Spot Survey Design
 - For Class 1 areas, determine if sample size is sufficient for hot spots that may be present
 - Based on sample size (n), the average area bounded by sample points represents largest hot spot that could exist, and not be sampled
 - The average area (a') is determined by dividing the survey unit area by the sample size (n)

Hot Spot Considerations—Area Bounded By Sampling Locations

Hot Spot Considerations (cont.)

- Hot Spot Survey Design (cont.)
 - Area Factor—factor by which this area may exceed DCGL_W (area factor is based on dose modeling)
 - Determine required Scan MDC:
 - = DCGL_w * Area Factor
 - Determine actual Scan MDC

Hot Spot Considerations (cont.)

- Hot Spot Survey Design (cont.)
 - If Actual Scan MDC < Required Scan MDC then initial data point spacing sufficient
 - If Actual Scan MDC > Required Scan MDC then calculate Area Factor that corresponds to actual Scan MDC:

 $AreaFactor = \frac{Scan \, MDC(actual)}{DCGL_{w}}$

Hot Spot Considerations (cont.)

- Hot Spot Survey Design (cont.)
 - Determine hot spot area that corresponds to the calculated area factor (using actual scan MDC)
 - The new sample size, n_{EA}, is calculated by dividing the hot spot area of concern into the survey unit area

Scan Survey Instrumentation

- NaI Detectors (2"x2"; FIDLERs)
- Gas Proportional Detectors
 - Floor monitor (570 cm² probe area)
 - Hand-held detectors
- GM and ZnS Detectors
 - For scanning difficult to access locations
- New technologies—GPS-based detectors;
 SRA SCM

NaI Gamma Scintillators

- most sensitive gamma detector
- easily measures background
- cpm or μR/h
- limited size, heavy, fragile

Plastic Scintillators

- easily measures background (μR/h or μrem/h)
- lighter and more rugged than NaI
- energy independent

Low Energy Gamma Detectors

- thin (1 mm) NaI crystals
- primarily used for I-125
- light leaks

FIDLER

- large area thin NaI crystal
- primarily used for Am-241
- window settings critical
- heavy more suited to fixed measurements than scanning

Pre-MARSSIM Scan Experiences

- Don't ask/Don't tell Many D&D projects never even considered the question/issue of scan MDC
- NUREG/CR-5849 3 times background level for low count rates could be detected with scan
- Empirical evaluations Technicians asked to scan surfaces with hidden sources; scan MDCs based on activity level that some specified percentage of technicians could detect

Scan Sensitivity

- NUREG-1507 and NUREG/CR-6364 consider human factors involved with scanning
- Signal detection theory Did signal arise from "Background Alone" or "Background Plus Source"?
- Evaluated scan sensitivity for ideal observer through computer simulation tests, and performed field tests to evaluate model

Estimation of Scan MDC

The minimum detectable count rate (MDCR) in observation interval is determined:

$$MDCR_{i} = \frac{d'\sqrt{b_{i}}}{i\sqrt{p}}$$

where:

 b_i = Background counts in observation interval

d' = Detectability index, based on acceptable correct detection rate and false positives

p = Surveyor efficiency relative to ideal observer (based on experimentation)

Scan MDC for Structures

- Determine scan MDC for 10 cm x 10 cm hot spot of Tc-99 with gas proportional detector, scan rate is 5 cm/s (observation interval, i, is 2 sec)
- Detector parameters: Bkg = 300 cpm, ϵ_i = 0.36 and ϵ_s = 0.54

Scan MDC for Structures

d' = 2.48 for 95% true detection and 20% false positives, and surveyor efficiency (p) is 0.5:

$$MDCR = 2.48\sqrt{10} = 5.5c/s \text{ or } 330 \text{ cpm}$$

 $\sqrt{0.5}(2 \text{ sec})$

and

Scan MDC =
$$\frac{MDCR}{\varepsilon_i \varepsilon_s} = \frac{330 \text{ cpm}}{(0.36)(0.54)} = 1,700 \text{ dpm} / 100 \text{ cm}^2$$

- Minimum detectable count rate (as before)
- Relate NaI cpm to exposure rate, using modeling code (e.g., MicroShield)
 - Radionuclide
 - Concentration
 - Hot spot dimensions (0.5 m x 0.5 m)
- Scan MDC as a function of parameters; consider value of empirical validation
- Scan MDCs are compared to DCGL_{EMC} to assess need for additional samples

Example scan MDCs for 1.25"x1.5" NaI Detector

Radionuclide	Scan MDC (pCi/g)
Cs-137	10
Th-230	3,000
Th-232	3
Natural Thorium (daughters)	30
Processed Uranium	120
Enriched Uranium (3%)	140
Enriched Uranium (20%)	150

Empirical Assessment of Scan MDCs

- A priori experimentation of scan MDC
 - 305 net cpm detected in 50 cpm bkg, 310 cpm in 250 cpm bkg, and 450 cpm in 500 cpm bkg, for detection frequencies of 67% (Goles et al.)
 - 392 to 913 alpha dpm detectable 50% with Zns (Olsher)
 - Source levels of 700 cpm detectable in 482 cpm background 90% of time (Thelin)
- A posteriori assessment of scan MDC
 - Keep track of soil samples and surface activity measurements collected as a result of scans

A Posteriori Scan MDCs (validation of calculational approach)

Co-60 site; NaI used to scan (bkg ~ 2 to 3 kcpm)

NaI reading Co-60 concentration (pCi/g)

2.8 kcpm 0.1 (false positive)

25 kcpm 25.5

7 kcpm 9.2

18 kcpm 20.8

2.8 kcpm 2.1 (close to calculated value)

Actual field conditions may differ from model

If Scan MDC Is NOT Sufficient – Reduce Scan MDC By:

- Slowing scan speed to increase observation interval; however, practical limit of several seconds on observation interval (can't keep on scanning slower)
- Use more sensitive instrument (increase efficiency)
- Accept more false positives, which requires training technicians to pause and flag spots more frequently

If Scan MDC Is NOT Sufficient — Collect More Samples

- Simply collect the additional samples required
- If sample analyses not that expensive (e.g. direct measurements), perhaps the poor scan MDC not that burdensome

No Scan Capability At All

- Radionuclides include pure alpha and beta emitters (H-3, Ni-63, C-14, etc.) and low energy gamma and x-ray emitters (e.g., Fe-55)
- Perform systematic sampling in survey unit and analyze samples, and assess with posting plot
- Perform second stage sampling based on results of first sampling stage
 - at locations where samples exceed DCGL_w
 - results of posting plot that indicates potential locations for contamination