Comparison of Final Status Survey Design Using MARSSIM Approach and the Former NUREG/CR-5849 Guidance at a Power Reactor Facility

Eric W. Abelquist
ORISE
June 29, 1999

June 13, 1999

- Final status surveys using guidance in NUREG/CR-5849
- Implementing MARSSIM at power reactor facility
 - Class 2 survey unit
 - Class 1 survey unit (using RESRAD-BUILD to obtain DCGL and area factors)

Final Status Survey using NUREG/CR-5849

- Site divided into affected and unaffected survey units
- Sample size for each survey unit simply depends on survey unit classification:
 1 measurement per 1 m² for affected survey units, 30 measurements for unaffected
- Student's t test performed once survey unit data are collected - requires data normality

Final Status Survey using MARSSIM

- Null hypothesis (H₀): Residual radioactivity exceeds the release criteria
- Decision errors occur when H₀ is rejected when it is true (Type I), or when H₀ is accepted when it is false (Type II)
- Sample size depends on many variables:
 DCGL, LBGR, decision errors, variability of contaminant (σ)

Final Status Survey Design at FSV - Example Survey Units

- Level 7 Turbine Deck survey unit included floor, lower walls, and equipment surfaces
- "Suspect affected" classification similar to Class 1 in MARSSIM
- Direct measurements of surface activity were generally collected on a 1 m x 1 m grid, for a total of 573 measurements using a gas proportional detector

Final Status Survey Design at FSV - Example (cont.)

- Site-specific guideline considering radionuclide mix was 4,000 dpm/100 cm²
- Survey unit summary results:
 - $mean = 82 dpm/100 cm^2$
 - standard deviation = 238 dpm/100 cm²
 - max value = 676 dpm/100 cm²
 - upper 95% confidence level = 98 dpm/100 cm²
- Survey unit easily satisfies release criteria

Implementing MARSSIM at FSV- Class 2 Example

- Level 7 Turbine Deck survey unit would likely be Class 2:
 - some positive contamination, but no contamination exceeds DCGL_w
 - only 1 survey unit because approximate floor area (400 m²) is less than 1,000 m²
- WRS test used for gross measurements of surface activity, also may consider Sign test

Implementing MARSSIM at FSV- Class 2 Example (cont.)

■ Select decision errors:

Type
$$I = 0.05$$
; Type $II = 0.05$

■ Calculate the relative shift—ratio of Δ/σ

```
(\Delta = DCGL_W - LBGR)
```

- $-DCGL_W = 4,000 \text{ dpm}/100 \text{ cm}^2$
- LBGR is initially set at 50% of DCGL_w
- Standard deviation in this survey unit: 238 dpm/100 cm²

Implementing MARSSIM at FSV- Class 2 Example (cont.)

- Relative shift = (4,000 2,000)/238 = 8.4
 - Take advantage of big relative shift by moving
 LBGR closer to DCGL_w (set LBGR = 3,600)
 - Relative shift = (4,000 3,600)/238 = 1.68
- Table 5.3 in MARSSIM provides WRS test sample sizes: 16 direct measurements required in this Class 2 survey unit

Implementing MARSSIM at FSV- Class 1 Example

- Level 10 Reactor Building survey unit included floor, lower walls, and equipment surfaces; about 390 m² total surface area
- "Suspect affected" classification
- Direct measurements of surface activity were generally collected on a 1 m x 1 m grid, for a total of 474 measurements using a gas proportional detector

Implementing MARSSIM at FSV- Class 1 Example (cont.)

- Site specific guideline considering radionuclide mix was 4,000 dpm/100 cm²
- Survey unit summary results:
 - $\text{ mean} = 105 \text{ dpm}/100 \text{ cm}^2$
 - standard deviation = 416 dpm/100 cm²
 - $\text{ max value} = 2,422 \text{ dpm}/100 \text{ cm}^2$
 - upper 95% confidence level: 136 dpm/100 cm²
- Survey unit easily satisfies release criteria

Implementing MARSSIM at FSV- Class 1 Example (cont.)

- Level 10 Reactor Building survey unit may be Class 1:
 - significant contamination identified during characterization survey
 - only 1 survey unit because approximate floor area is less than 100 m²
- Class 1 survey units may need additional measurements due to potential for hot spots

Implementing MARSSIM at FSV-RESRAD-BUILD

- Calculate DCGL_W based on 25 mrem/y; also need area factors and scan MDC
- Source term identified at FSV:

```
- Fe-55 74.2%
```

Implementing MARSSIM at FSV- RESRAD-BUILD (cont.)

- Input source term at the fractional amounts that each radionuclide is present
- DCGL_w for mixture is 60,370 dpm/100 cm²
- This may be confirmed by entering each radionuclide separately, calculating its DCGL, and then the gross activity DCGL:

Gross Activity DCGL =
$$\frac{1}{f_1/DCGL_1 + f_2/DCGL_2 + ... + f_n/DCGL_n}$$

Implementing MARSSIM at FSV-RESRAD-BUILD (cont.)

Area factors determined from same modeling parameters used to generate DCGLs, only size of contaminated area is changed:

```
1 m<sup>2</sup> 2 m<sup>2</sup> 4 m<sup>2</sup> 10 m<sup>2</sup> 16 m<sup>2</sup> 36 m<sup>2</sup>
10.7 5.9 3.4 1.9 1.5 1
```

Implementing MARSSIM at FSV- Scan MDC

■ Gas proportional detector (126 cm²) used; determine weighted efficiency:

Nuclide	Fraction	Eff Wei	ighted Eff
Fe-55	0.742	0	0
H-3	0.109	0	0
Co-60	0.086	0.21	0.018
C-14	0.01	0.05	5E-4
	total efficiency = 0.02		

Implementing MARSSIM at FSV- Scan MDC (cont.)

- DCGL_W for mixture (60,370 dpm/100 cm²) using 2% eff is comparable to 4,000 dpm/100 cm² using 21% eff (in terms of net counts, DCGL is 1520 cpm vs. 1060 cpm)
- Determine scan MDC
 - -based on selected parameters, scan MDC is 25,900 dpm/100 cm²

Implementing MARSSIM at FSV- Sample Size

- Because the scan MDC is less than the DCGL_W, no additional samples are needed above that required by WRS test
- Standard deviation in survey unit corrected for weighted efficiency: 4,500 dpm/100 cm²
- Relative shift: (60,370 52,000)/4,500 = 1.9
- MARSSIM provides WRS test sample size: 13 direct meas for this Class 1 survey unit

Summary

- The MARSSIM survey design implemented at reactor D&D sites may greatly reduce sample sizes, however....
 - these potential savings come at the expense of increased planning and design resources
- MARSSIM surveys for alpha contamination may not exhibit same savings