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Section I:  Neutron Scattering and 

Neutron Reflectometry Theory
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Why Use Elastically Scattered 

Neutrons to Probe Thin Films?

Neutrons are NEUTRAL particles:
•highly penetrating

•nondestructive probe
•sample environments

Neutron WAVELENGTH ~ atomic/molecular 

dimensions:
•interference 

•reflection

•refraction

Neutrons interact with atomic NUCLEI:
•sensitive to light atoms

•can exploit isotopic substitution
•contrast matching



OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY
Performance Measures

12/21/2006

To Measure a Length:

Find the Proper Ruler

Too small

Just right
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The Wave Nature of the neutron

•Neutrons can be treated as a plane waves 

with wavevectors k, where |k|=2π/λ and λ is 

the neutron wavelength. 

•Momentum = mnv=ħk

•Energy= ħ2k2/2mn

•Because of their wave nature, much of the 

effects seen in light scattering are also seen 

in neutron-reflection, refraction, and 

interference. 
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Schrödinger Equation:
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The Wave Nature of the neutron

•Neutrons can be treated as a plane waves 

with wavevectors k, where |k|=2π/λ and λ is 

the neutron wavelength. 

•Momentum = mnv=ħk

•Energy= ħ2k2/2mn

•Because of their wave nature, much of the 

effects seen in light scattering are also seen 

in neutron-reflection, refraction, and 

interference. 
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Low angles / long wavelengths

•Don’t satisfy Bragg law  [nλ=2d sin(θ)]

•Still have coherent scattering

•Can average over the coherent scattering
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•The potential seen by the neutron is the Fermi 

pseudopotential; VF=2kF
2/2mn

•kF
2=4pb, where the scattering length density, b=SNibi, 

Ni=nuclear number density of atom i, bi=the coherent 

scattering length of atom i

•Since the potential only changes in z, this reduces to a 1-

dimensional problem

Neutron Interaction

z
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Neutrons Scatter from Nuclei

X rays Neutrons

H  C  O  Ti  Fe  Ni   U

X rays see electrons

Neutrons see nuclei

Radii of balls = b = scattering amplitude

=> Isotopic substitution
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Example 1: Calculating the scattering 

length density of quartz


i

iibNb

Quartz is SiO2. The density is ρSiO2=2.66 gm/cm3. The molecular 

weight is (MW)SiO2=60.08gm/mole.  The number of molecules (or 

nuclei) per unit volume is:

N=ρSiO2/(MW)SiO2 Aavagadro 10-24cm3/Å3= .0267 molecules/ Å3

β=ΣNibi= N (bSi+2bO)

from the tables of coherent neutron scattering lengths of the 

elements:  bSi=4.149 X 10-5 Å and bO=5.805 X 10-5 Å,

then βSi=4.21 X 10-6 Å-2.
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Example 2:Scattering from a bare 

substrate and Fresnel’s Law

Apply 1-d Schrödinger Equation:

using the trial wave functions:
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We find that since 

θ0 Region 0 (vacuum)

Region 1 (substrate)
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Example 2:Scattering from a bare substrate and Fresnel’s Law (cont.)
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Example 3: Reflection from a single layer 

on a substrate
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Example 3: Reflection from a single layer 

on a substrate (cont.)

After some algebra:
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z

1-d Reflection at Interfaces

VF(z)=  2kF
2/2mn

k2=k0
2-kF

2

kF
2=4pb(z), b(z)=SNibi
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Kinematic Approximation

•When the scattering is weak (ie k0 >kF)

•For a single layer this reduces to

•Goes as k0
-4 

•Fourier Transform of derivative of SLD
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Neutron Reflection from a single layer on a substrate
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•Incident neutron has velocity, v

•Snell’s Law, θi=θf

•Momentum transfer Q along z-axis

•Reflectivity defined as I/I0

•Interference fringes with spacing 

ΔQz=2π/d

•Interfacial roughness reduces 

reflectance

ΔQz

d
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•For complex potentials approximate by multilayers

•For each layer

Multilayers
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z

β(z)

z

Roughness
•Specular Reflectivity

•Gaussian roughness at a substrate.  In this 

case, the deviations of the surface from an 

average value are described by Gaussian 

function such that:

•If we plug this into the approximate expression 

derived above we get:

•At each interface that is rough is modified by a 

damping factor.

•Off specular

•Use a full 3 dimensional approach.  Neutrons 

scattered in directions other than the specular 

direction.  This is called diffuse scattering. 
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Goal:  To measure the density profile and constituents 

infer the structure

•packing density

•tilt 

•interpenetration

•thickness 

•roughness

b(z)

z
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Section II:  Example of neutron 

reflectivity measurement
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Example: Erbium Hydride Films

 Sample configuration

 Si <111> substrate

 Deposition

• 1000 Å Mo (to prevent formation of Er-Si 
compounds) deposited by e-beam PVD 
(preconditioned  Mo) 

• 1500 Å of Er deposited by e-beam PVD 

• Mo & Er deposition rate of 10 Å/s

• Substrate temperature held at 450oC 

Silicon

Molybdenum

Erbium

We are interested in gaining an understanding of how Er film 
architecture changes during the hydriding process

This includes surface chemistry and structure

A description of any interfacial regions

Hydride layer chemistry and layer expansion resulting from hydrogen 
incorporation into the Er film
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Lundin, C. E. (1968). "The erbium-hydrogen system." 

Transactions of the Metallurgical Society of AIME 242: 

903-907 

Erbium-Hydrogen Isotherms

Hydriding Parameters

350C at ~ 100 Torr

x
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Sample chamber for neutron reflectivity 

experiments

 Hydriding and Scattering 
Chamber:

 12” GE 214 Quartz (pyrex 
transition to SS)

 Kimball Physics Multiplexer

• Sapphire window

• Blown glass window

 Chamber evacuated ~10-8

Torr at beginning of 
experiment

 Watlow Band Heater with 
series 96/97 controllers
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ErMoA before and after hydriding

•Er/Mo film on silicon 

substrate

•Measured in-situ @ 350 C 

before and after introducing 

D2 gas

•Clear change in neutron 

reflectivity

•Measured the reflectivity at 

several times after hydriding 

to ensure no more changes 

in the curve

•Better samples than past!
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Latest samples – Molybdenum 

preconditioned

Data from ~ 2003 Data from ~ 2007

Better visibility fringes= less 

diffuse/rough interfaces

Er2O3

Mo

Er
Er-O 300Å
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5 Layer model fit- Sample A

 Five layers on silicon substrate

 Silicon oxide

 Moly

 Intermediate layer

 Er 

 Surface layer

 Roughness at each interface 10-20Å
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5 Layer model fit- Sample A

 Sample heated in vacuum 1X10-8

Torr

 100 Torr D2 introduced

 Five layer fit on silicon substrate

 Silicon oxide

 Moly

 Intermediate layer

 ErD2

 Surface layer

 Roughness increases slightly at 
each interface

 ~ 20% increase in film thickness

ErD2

Er

Moly

Layer 

number

1 2 3 4 5

β 3.4 4.6 6.28 6.44 4.7

T .2 1048 274 1697 115

Layer 

number

1 2 3 4 5

β 3.1 4.2 2.9 2.7 3.8

T 39 1022 121 1463 57

Before hydriding

After hydriding
Distance from substrate (Å)
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Summary

 Pre annealing important to remove oxygen from Mo

 Early analysis implies intermediate layer between the Mo 
and Er layers- several more samples various pressures

 After hydriding the RT film structure same as the HT 
structure

 Also need a layer on the surface (Er2O3)

 After hydriding Er layer consistent with ErD2
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Types of Interfaces Studied Using 

Neutron Reflectometry

•Solid/solid interfaces

•Solid/air interfaces

•Solid/liquid interfaces

•Liquid/air interfaces

•Magnetization density profile
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Collaborators
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Erik B Watkins, University of California (Formally LANL)

Jarek Majewski, LANL

Gillian M Bond, New Mexico Institute of Mining and Technology

Loren Espada, Sandia National Laboratories

Ryan Wixom, Sandia National Laboratories
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Structural Studies of 

Polymer-Cushioned Lipid 

Bilayers
G. S. Smith, J. Majewski, Los Alamos National 

Laboratory

J. Wong, C. K. Park, M. Seitz, and J. Israelachvili, 

University of California at Santa Barbara

Example I
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Motivation

Supported planar bilayer membrane

To create supported lipid membrane on solid substrate (mica, quartz, 

silicon, glass) which will:

(i) allow incorporation of functional transmembrane proteins,

(ii) increase lipid and protein fluidity,

(iii) allow transport of ions, water, and solutes across the membrane

works for partially inserted or

membrane surface bound proteins

not for transmembrane proteins Solid Substrate
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Gel-supported lipid bilayer

A soft, water swollen polymer gel can decouple 

the membrane from the solid substrate

outer aqueous space

lipid bilayer with trans-

membrane proteins

water-swollen polymer

gel

Solid Substrate

Polymer: PEI (polyethyleneimine)

1.8K, 100ppm

H2N-(CH2CH2N)x-(CH2CH2N)y-

CH2

CH2

N
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Approaches

Vesicle adsorption

i) immerse solid substrate in PEI solution (100 ppm, 0.5 mM KNO3) 

overnight

ii) inject SUV’s of DMPC (T = 24
o
C) 

Advantages:

Ease of preparation,

Incorporation of transmembrane

proteins possible

Disadvantages:

Control of lipid density and of surface

structure is difficult, unsure of micro-

inhomogeneity, such as defects and

multilayers

Small Unilamellar

Vesicles (SUV)

Substrate
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Liquid/Solid Interface Cell for Neutron Reflection

Quartz cleaned with acids and UV cleaner

Quartz (80mm) has 70% transmission at 16Å

Only parts touching sample are Teflon and quartz 

zoom

Model Membrane

Polymer

Quartz

Fluid

Teflon Block

Quartz Single Crystal

Steel Clamp

Steel Clamp

Fluid Fill

Incident Neutron

Beam
Reflected Neutron

Beam
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Contrary to mica surface, the unilamellar vesicles composed of DMPC 

molecules, do not totally fuse to create bilayer on the PEI polymer 

deposited on quartz.

Some of them stay attached intact at the quartz/PEI/DMPC-multilayer (?)

surface!!
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Lipid Bilayer on Quartz

Lipid Bilayer on Polymer 
           on Quartz

Vesicles composed of DMPC molecules fuse creating almost a perfect

lipid bilayer when deposited on the pure, uncoated quartz block 

(blue curves)

When PEI polymer was added only after quartz was covered by the lipid

bilayer, the PEI appeared to diffuse under the membrane (red curves)

Neutron Reflectivities
Scattering Length Density

Profiles
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Conclusions

Neutron reflectivity allows us to investigate complex biologically 

relevant structures at the solid-liquid interface.

Fusion of DMPC vesicles on the quartz substrate covered with PEI 

polymer does not work well! Vesicles form complicated 

multilayerstructures. Some of them stay attached intact.

PEI diffuses between bilayer of DMPC and the quartz 

substrateforming the desired structure.This might be the simplest way to 

prepare gel-supported lipid bilayers!


