FIXED-INCIDENT-ENERGY TRIPLE-AXIS SPECTROMETER

The Fixed-Incident-Energy (14.6 meV) Triple-Axis Spectrometer uses a double pyrolitic graphite monochromator system. The first monochromator is vertically focused, and the second can be either a vertically or doubly focused unit. Two highly oriented pyrolytic graphic filters (HOPG), one after each monochromator, are used to reduce $\lambda/2$ contamination. These filters, together with the double monochromator system, provide HB-1A with an exceptionally clean beam in terms of higher-order contamination neutrons: $I_{\lambda/2} \approx 10^{-4} \, \text{x} \, I_{\lambda}$. This spectometer also has one of the most intense beams at this

energy at the HFIR, as well as a very low γ and fast neutron background. Typical energy resolution is \sim 1 meV, but, using the beryllium analyzer, the energy resolution width can be reduced to \sim 0.5 meV.

HB-1A development and operation is a collaborative effort of the Oak Ridge National Laboratory and Ames Laboratory neutron scattering groups.

APPLICATIONS

- Excitation spectra to ~35 meV using neutron energy gain and low-lying excitations, 1–9 meV, using neutron energy loss
- Elastic studies on crystallographic and magnetic structures and transitions in a Q range of 0.2 to 4.9 Å⁻¹
- Elastic studies and excitations in thin films and other small-volume samples where high flux and very low higher-order contamination of the beam are critical

Recent experiments on this instrument include measurement of phonon dispersion curves in martensitic, shape-memory, and magnetostrictive alloys; crystallographic and magnetic structure determinations in giant magnetocaloric, magnetoresistive, and intermetallic alloys; magnetic structures and spin-density waves in thin films; magnetism in low-dimensional systems; and spin waves and magnetic structures in magnetoelectric materials.

SPECIFICATIONS

Beam spectrum	Thermal
Monochro- mator	PG(002) double crystal
Monochro- mator takeoff angle	$2\Theta_{\rm M} = 41.3^{\circ} \text{ E},$ = 14.7 meV
Analyzers	PG(002), Be(101), Be(002), Si(111), Ge(111)
Sample angle	0° to 360°
Scattering angle	-5° to 135°
Analyzer angles	-60° to 120°
Collimations (FWHM)	Premonochro- mator: 48'
	Monochroma- tor-sample: 10', 20', 30', 40'
	Sample-ana- lyzer: 10', 20', 30', 40'
	Analyzer-detector: 70', 140'
Beam size	40 × 150 mm max
Filters	Sapphire pre- monochro- mator
	2 HOPG; after M1 and M2
Flux at sample	$\sim 2 \times 10^7 \text{ n/}$ cm ² /s (est.)
Momentum range	0.2 to 4.9 Å ⁻¹ (elastic configuration)
Energy transfer	~-35 meV to ~+11 meV at q = 3 Å ⁻¹

Status: Operational

FOR MORE INFORMATION, CONTACT

Instrument Scientist: Jerel Zarestky, zarestkyjl@ornl.gov, 865.574.4951 http://neutrons.ornl.gov/hfir_instrument_systems/HB-1A.shtml