SNS 10000000-PL0001-R13

SNS Parameters List

A U.S. Department of Energy Multilaboratory Project

June 2005

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

SNS-10000000-PL0001-R13

SNS PARAMETERS LIST

June 2005

Prepared for the U.S. Department of Energy Office of Science

UT-BATTELLE, LLC managing Spallation Neutron Source activities at Argonne National Laboratory Thomas Jefferson National Accelerator Facility Los Alamos National Laboratory under contract DE-AC05-00OR22725 for the U.S. DEPARTMENT OF ENERGY

SNS-10000000-PL0001-R13

SNS Parameters List

June 2005

Stuart Henderson, Originator Accelerator Physics Group Leader

Date

Date

Date

Ian Anderson, Reviewer
Experimental Facilities Division Director

Norbert Holtkamp, Reviewer Accelerator Systems Division Director

Carl Strawbridge, Approver Deputy Project Director

Date

SNS-10000000-PL0001-R13

SNS PARAMETERS LIST

June 2005

CONTENTS

Page

SNS Site Overlay	1
Spallation Neutron Source Primary Parameters	2
SNS Beam Evolution Parameters	3
Beam Line Allocation	4
Front End Parameters	5
Linac Parameters	7
HEBT Parameters	15
Ring Parameters	17
RTBT Parameters	21
Target Systems Parameters	22
Instrumentation Parameters	24
Control System Parameters	25

SNS Site Overlay

Spanation Neutron Source Primary Parame	neters
---	--------

Proton beam power on target	1.4 MW
Proton beam kinetic energy on target	1.0 GeV
Average beam current on target	1.4 mA
Pulse repetition rate	60 Hz
Protons per pulse on target	1.5x10 ¹⁴ protons
Charge per pulse on target	24 C
Energy per pulse on target	24 kJ
Proton pulse length on target	695 ns
lon type (Front end, Linac, HEBT)	H minus
Average linac macropulse H- current	26 mA
Linac beam macropulse duty factor	6 %
Front end length	7.5 m
Linac length	331 m
HEBT length	170 m
Ring circumference	248 m
RTBT length	150 m
Ion type (Ring, RTBT, Target)	proton
Ring filling time	1.0 ms
Ring revolution frequency	1.058 MHz
Number of injected turns	1060
Ring filling fraction	68 %
Ring extraction beam gap	250 ns
Maximum uncontrolled beam loss	1 W/m
Target material	Hg
Number of ambient / cold moderators	1/3
Number of neutron beam shutters	18
Initial number of instruments	5

		SNS	Beam	Evolut	tion Pa	aramet	ers				
	Fron	t End		Linac				Ring			
	IS/LEBT	RFQ	MEBT	DTL	CCL	SCL (1)	SCL (2)	HEBT	Ring	RTBT	Unit
Output Energy	0.065	2.5	2.5	86.8	185.6	391.4	1000	1000	1000	1000	MeV
Relativistic factor	0.0118	0.0728	0.0728	0.4026	0.5503	0.7084	0.875	0.875	0.875	0.875	
Relativistic factor	1.00007	1.0027	1.0027	1.0924	1.1977	1.4167	2.066	2.066	2.066	2.066	
Peak current	47	38	38	38	38	38	38	38	9x10 ⁴	9x10 ⁴	шA
Minimum horizontal acceptance $^{\mathfrak{g}}$			250	38	19	57	50	26	480	480	πmm mr
Output H emittance (unnorm., rms)	17	2.9	3.7	0.75	0.59	0.41	0.23	0.26	24	24	πmm mr
Minimum vertical acceptance ^g			51	42	18	55	39	26	480	400	πmm mr
Output V emittance (unnorm., rms)	17	2.9	3.7	0.75	0.59	0.41	0.23	0.26	24	24	πmm mr
Minimum longitudinal acceptance			4.7E-05	2.4E-05	7.4E-05	7.2E-05	1.8E-04		19/		πeVs
Output longitudinal rms emittance		7.6E-07	1.0E-06	1.2E-06	1.4E-06	1.7E-06	2.3E-06		2/		πeVs
Controlled beam loss; expected	0.05 ^a	N/A	0.2 ^b	N/A	N/A	N/A	N/A	5°	62 ^d	58 ^e	kW
Uncontrolled beam loss; expected	70	100 ^f	7		. 	0.2	0.2	v	.	ř	W/m
Output H emittance (norm., rms)	0.2	0.21	0.27	0.33	0.39	0.41	0.41	0.46	44	44	πmm mr
Output V emittance (norm., rms)	0.2	0.21	0.27	0.33	0.39	0.41	0.41	0.46	44	44	πmm mr
Not	e a) corres b) corres c) beam	ponding ponding loss on th	to 27% cl to 5% ch	hopped b opped be erse and	eam am momentu	m collima	tors				
	d) includi	ng total	1% of bea	am escap	ing foil ar	nd 0.2% b	eam loss	on collima	tors		
	f) corresp	onding t	o 20% be	am loss	averaged	over RFC	length				
	g) full aco	ceptanče	without a	collimation	, _)				

BL	Position*	Moderator	Instrument
1a	TU	Hydrogen decoupled	
1b	TU	Hydrogen decoupled	Disordered Materials Diffractometer (NOMAD)
2	TU	Hydrogen decoupled	High Resolution Backscattering Spectrometer
3	TU	Hydrogen decoupled	High Pressure Diffractometer (SNAP)
4a	TD	Hydrogen coupled	Magnetism Reflectometer
4b	TD	Hydrogen coupled	Liquids Reflectometer
5	TD	Hydrogen coupled	Cold Neutron Chopper Spectrometer (CNCS)
6	TD	Hydrogen coupled	Extended Range Small Angle Diffractometer
7	BU	Water	Engineering Diffractometer (Vulcan)
8a	BU	Water	
8b	BU	Water	
9	BU	Water	
10	TU	Hydrogen decoupled	
11a	TU	Hydrogen decoupled	Powder Diffractometer
11b	TU	Hydrogen decoupled	Macromolecular Diffractometer (MaNDi)
12	TU	Hydrogen decoupled	Single Crystal Diffractometer (SCD)
13	BD	Hydrogen coupled	Fundamental Physics
14a	BD	Hydrogen coupled	
14b	BD	Hydrogen coupled	Hybrid Spectrometer (HYSPEC)
15	BD	Hydrogen coupled	Neutron Spin Echo
16a	BU	Water	
16b	BU	Water	Vibrational Spectrometer (VISION)
17	BU	Water	High Resolution Chopper Spectrometer (Sequoia)
18		Water	Wide Angular Range Chopper Spectrometer (AR(

Beam Line Allocation

* T = Top, B = Bottom, U = Upstream, D = Downstream

WBS			Parameter	Base Value	Unit	Comment
1.	0.		SPALLATION NEUTRON SOURCE			
1	0		Proton beam nower on target	1.4	N/I\A/	
1.	0.		Proton beam kinetic energy on target	1.4		
1.	0.		Average beam current on target	1.0	mΔ	
1.	0.		Pulse repetition rate	60	Hz	
1.	0.		Protons per pulse on target	1 5x10 ¹⁴	protons	
1	0.		Charge per pulse on target	1.0/10		
1.	0.		Energy per pulse on target	24	μC	
1.	0.		Proton nulso longth on target	24	ĸJ	
1.	0.		Ion type (Front and Lines, HERT)	U95	115	
1.	0.		Average linac macropulse H ₋ current	26	mA	from REQ to injection foil
1.	0.		Linac heam macropulse duty factor	20	MA %	
1.	0.		Ernat and length	5 7 5	m	
1.	0.		Linac length	331	m	including 71 m for 9 empty
1.	0.		Linde length	501		cryomudule slots
1.	0.		HEBT length	170	m	
1.	0.		Accumulator ring circumference	248	m	
1.	0.		RTBT length	150	m	
1.	0.		lon type (Ring, RTBT, Target)	proton		
1.	0.		Ring filling time	1.0	ms	
1.	0.		Ring revolution frequency	1.058	MHz	
1.	0.		Number of injected turns	1060		
1.	0.		Ring filling fraction	68	%	
1.	0.		Ring extraction beam gap	250	ns	
1.	0.		Maximum uncontrolled beam loss	1	W/m	
1.	0.		Target material	Hg		
1.	0.		Number of ambient / cold moderators	1/3		
1.	0.		Number of neutron beam shutters	18		
1.	0.		Initial number of instruments	5		
1.	3.		FRONT END			
1.	3.		Ion type	H minus		
1.	3.		Output energy	2.5	MeV	RFQ output
1.	3.		Length	7.52	m	From IS outlet flange to DTL
1.	3.		Beam-floor distance	1.270	m	50.0 in
1.	3.		Output peak current	38	mA	
1.	3.	1.	ION SOURCE AND LEBT			
1.	3.	1.	Output energy	65	keV	
1.	3.	1.	LEBT length	0.12	m	
1.	3.	1.	Output peak current	48	mA	Assuming 80% front end transmission
1. 1.	3. 3.	1. 1.	lon source type Electron suppression	RF volume production magnetic		Multicusp Cs-enhanced Interception at low energy
1.	3.	1.	LEBT focusing type	electrostatic		
1.	3.	1.	Estimated output rms norm H & V emittance	0.20	πmm-mrad	
1.	3.	1.	Ion source lifetime	3	weeks	Maintenance cycle
1.	3.	1.	Ion source replacement time	2	hours	With conditioned replacement ion source
1.	3.	1.	LEBT chopper rise time	45	ns	

WBS			Parameter	Base Value	Unit	Comment
1	. 3.	1.	Ion source/ LEBT vacuum	1.e-4	Torr	
1	. 3.	2.	RFQ ACCELERATOR			
1	. 3.	2.	Output energy	2.5	MeV	
1	. 3.	2.	Length	3.76	m	4 modules, incl. LEBT diagnostic
1	з	2	Output peak current	38	mΔ	plate
1	. 0.	2.	RE frequency	402 5	MHz	
1	. 0.	2	Nominal aperture radius	3.5	mm	
1	. 0.	2	Rms surface field during macropulse	1 85	Kilpatrick	
1	. 3.	2.	Rms macropulse structure power	630	kW	Assumes 67% of Cu Q
1	. 3.	2.	Expected output rms norm H & V	0.21	πmm-mrad	
	_	-	emittance			
1	. 3.	2.	Expected output rms L emittance	0.10	πMeV-deg 	At 402.5 MHz
1	. 3.	2.	Vacuum	1.e-6	lorr	
1	. 3.		RFQ RF SYSTEM			
1	. 3.		RF frequency	402.5	MHz	
1	. 3.		Klystron peak power	2.5	MW	
1	. 3.		Number of klystrons	1		
1	. 3.		Modulator type	IGBT		
1	. 3.		Number of klystrons per modulator	3		sharing with first 2 DTL klystrons
1	. 3.		Klystron efficiency	58	%	5
1	. 3.		Static RF amplitude error	+/-1	%	
1	. 3.		Static RF phase error	+/-1	degree	
1	. 3.		Dynamic RF amplitude error	+/-0.5	%	
1	. 3.		Dynamic RF phase error	+/-0.5	degree	
1	. 3.	3.	MEBT			
1	. 3.	3.	Output energy	2.5	MeV	
1	. 3.	3.	Length	3.64	m	
1	. 3.	3.	Output peak current	38	mA	
1	. 3.	3.	Number of quadrupoles	14		
1	. 3.	3.	Number of quadrupole PS	11		two symmetric triplets wired in series
1	. 3.	3.	Quads 1-4 and 11-14 clear bore diameter	32	mm	
1	. 3.	3.	Quads 5 - 10 clear bore diameter	42	mm	
1	. 3.	3.	Maximum integrated quad gradient	2.4/1.9	Т	Narrow/wide bore
1	. 3.	3.	Number of two-plane beam steerers	6		Quad poletip windings
1	. 3.	3.	Number of steerer PS	12		
1	. 3.	3.	Number of rebuncher cavities	4		
1	. 3.	3.	Rebuncher cavity frequency	402.5	MHz	
1	. 3.	3.	Maximum rebuncher peak voltage integral	90	kV	
1	. 3.	3.	Expected output rms norm H & V emittance with errors	0.27	π mm-mrad	
1	. 3.	3.	Expected output rms L emittance with	0.13	πMeV-deg	At 402.5 MHz
1	. 3.	3.	errors Expected max rebuncher cavity rms field	2	%	
1	. 3.	3.	error Expected max rebuncher cavity rms	1	deg	
1	. 3.	3.	Expected max quad rms gradient error	<1	%	
1	. 3.	3.	Expected max quad rms position error on	0.025	mm	
1	. 3.	3.	sub-raft Expected max sub-raft rms position error on major support	0.04	mm	

WBS			Parameter	Base Value	Unit	Comment
1.	3.	3.	Expected max quad rms roll error	0.06	mrad	
1.	3.	3.	Expected max quad rms yaw error	0.06	mrad	
1.	3.	3.	Expected max quad rms pitch error	0.6	mrad	
1.	3.	3.	Vacuum	5.00E-07	Torr	
1	3		MEBT RE SYSTEM			
1.	3		RE frequency	402 5	MHz	
1.	3		RF nower	20	kW	
1.	3		RF amplitude rms error	20	%	
1.	3		RF phase rms error	- 1	dearee	
	0.			·	degree	
1.	4.	5.	MEBT TRAVELING WAVE CHOPPERS			
1.	4.	5.	Number of choppers	1		
1.	4.	5.	Chopper length	0.35	m	Each active structure
1.	4.	5.	Full rise/fall time	10	ns	
1.	4.	5.	Beam-on duty factor	68	%	
1.	4.	5.	Gap	18	mm	
1.	4.	5.	Total deflection voltage	+/- 2350	V	18 mrad deflection
1.	4.	5.	Post chopper off/on beam-current ratio	1.0E-4		
1.	3.	3.	MEBT DIAGNOSTICS			
1.	3.	3.	Number of beam current monitor	2		
1.	3.	3.	Number of beam profile monitors	5		Wire scanners
1.	3.	3.	Number of two-plane stripline BPMs	6		Inside quads, include phase
1.	3.	3.	Number of emittance scanners	1		measurement
1.	3.	3.	Number of neutron detectors	3		
1	1					
1.	4.		LINAC			
1.	4.		Ion type	H minus		
1.	4.		Output energy	1.00	GeV	
1.	4.		Length	251.624	m	Excludes space for 9 more
1	4		Beam-floor distance	1 270	m	cryomodules 50.0 in
1.	ч. 4		Peak macropulse current		mA	56.0 m
1.	4		Average macropulse current	26	mA	For Public =550 kW
1	1			1 56	m A	
1.	4. 1			1.50		Expected value for linac
1.	4. 1		PE duty factor	7.0	0/_	HV gate duty factor
1.	4. 4		Expected output H & V rms norm	0.41	⁷⁰ #mm_mrad	The gate duty factor
1.	ч.		emittance w/ errors and wo/ jitter	0.41	hinn-mau	
1.	4.		Expected output transverse centroid jitter	+/- 0.25	mm	
1.	4.		Expected output H & V rms norm	0.45	π mm-mrad	
			emittance w/ errors and w/ jitter			
1.	4.		Expected output L rms emittance w/ errors	0.6	πMeV-deg	At 805 MHz
1.	4.		Expected output rms energy spread	0.33	MeV	
1.	4.		Maximum output energy jitter	+/- 1.5	MeV	99.99%
1.	4.		Maximum phase centroid jitter	+/- 3.7	deg	At 805 MHz; 99.99%
1.	4.		Beam halo outside 5 sigma transverse	< 1x10 ⁻⁴		
1.	4.		Beam residual inside chopper gap	< 1x10 ⁻⁴		
1.	4.		Expected max quad gradient rms	0.14	%	Limit +/- 0.25 %

WBS			Parameter	Base Value	Unit	Comment
1.	4.		Expected max quad transverse displacement rms	0.07	mm	Limit +/- 0.13 mm
1.	4.		Expected max quad roll rms	3	mrad	Limit +/- 5 mrad
1.	4.		Expected max quad tilt rms	6	mrad	Limit +/- 10 mrad
1.	4.	2.	DTL ACCELERATOR			
1.	4.	2.	Output energy	86.8	MeV	
1.	4.	2.	Length	36.569	m	Tank 1 entry plane to tank 6 exit
1.	4.	2.	RF frequency	402.5	MHz	plane
1.	4.	2.	Average synchronous phase	-37 to -26		Phase ramped
1.	4.	2.	Number of tanks	6		
1.	4.	2.	Maximum field	1.3	Kilpatrick	At tank 1
1.	4.	2.	Bore radius	12.5	mm	
1.	4.	2.	Focusing structure	FFODDO		
1.	4.	2.	Focusing period	6	beta-lambda	
1.	4.	2.	Number of guads	147		
1	4	2		permanent magnet		
1.	4	2	Integrated guad gradient	1 297	т	Average of measured values
1.	ч. Д	2.		inside DTs		Average of measured values
1.	ч. И	2.	Number of steering dipoles	24		All are individually powered
1.	ч. 1	2.	Average operating vacuum prossure	1 95 07	Torr	All are individually powered
1.	4. 1	2.	Tank 1 longth	1.00-07	m	Potwoon inside and wells
1.	4. 1	2.	Tank 1 number of collo	4.152	111	Between inside end walls
1.	4. 1	2.	Tank 1 number of post couplers	00		
1.	4.	2.		19 5 000	N4-)/	
1.	4.	2. 0	Tank 1 energy gain	5.023	Mev	
1.	4.	2.	Tank 1 stored energy	4.78	J	
1.	4.	2.	Tank 1 Synchronous phase	-45 to -28	deg	
1.	4.	2.	Tank 1 average E₀T	1.518	MV/m	
1.	4.	2.	Tank 1 design shunt impedance ZT ² (estimate)	28.22	MΩ/m	= <superfish calc<br="">+stems+endwalls, no holes, tupora_couplora>/1.2</superfish>
1.	4.	2.	Tank 1 design unloaded Q (estimate)	35,891		= <superfish calc<br="">+stems+endwalls, no holes,</superfish>
1.	4.	2.	Tank 1 design external Q (estimate)	23,554		tuners, couplers>/1.2 = <superfish calc<br="">+stems+endwalls, no holes,</superfish>
1	4	2	Tank 2 langth	6.062	m	tuners, couplers>/1.2
1. 1	ч. 1	۲. ۲	Tank 2 number of colle	0.003		Detween inside end walls
1.	4. 4	2.	Tank 2 number of cens	40		
1.	4.	2.	Tank 2 number of post couplers	23	N4-)/	
1.	4. 1	2.		10.302	Mev	
1.	4.	2.	Tank 2 Synchronous phase	-25	deg	
1.	4.	2. 0	Tank 2 stored energy	10.01	J	
1.	4.	2.	Tank 2 average E ₀ T	2.810	MV/M	
1.	4.	2.	Tank 2 design shunt impedance ZT ² (estimate)	45.25	MΩ/m	= <superfish calc<br="">+stems+endwalls, no holes, tuners, counters>/1.2</superfish>
1.	4.	2.	Tank 2 design unloaded Q (estimate)	40,074		= <superfish calc<br="">+stems+endwalls, no holes,</superfish>
1.	4.	2.	Tank 2 design external Q (estimate)	26,480		tuners, couplers>/1.2 = <superfish calc<br="">+stems+endwalls, no holes,</superfish>
1	4	2	Tank 3 length	E 304	m	tuners, couplers>/1.2 Between inside and walls
ı. 1		2. 2	Tank 3 number of cells	0.024		
ı. 1	⊿	∠. ว	Tank 3 number of post couplers	J4 16		
1.	+ .	۷.	rank o humber of post couplers	10		

WBS			Parameter	Base Value		Unit	Comment
1.	4.	2.	Tank 3 energy gain	16.8	80	MeV	
1.	4.	2.	Tank 3 stored energy	21.	84	J	
1.	4.	2.	Tank 3 Synchronous phase	-:	25	deg	
1.	4.	2.	Tank 3 average E_0T	2.9	66	MV/m	
1.	4.	2.	Tank 3 design shunt impedance ZT ² (estimate)	43.	54	MΩ/m	= <superfish calc<br="">+stems+endwalls, no holes, tuners_couplers>/1.2</superfish>
1.	4.	2.	Tank 3 design unloaded Q (estimate)	43,2	37		= <superfish calc<br="">+stems+endwalls, no holes, tuners_couplers>/1.2</superfish>
1.	4.	2.	Tank 3 design external Q (estimate)	29,4	68		= <superfish calc<br="">+stems+endwalls, no holes, tuners_couplers>/1.2</superfish>
1.	4.	2.	Tank 4 length	6.4	11	m	Between inside end walls
1.	4.	2.	Tank 4 number of cells	:	28		
1.	4.	2.	Tank 4 number of post couplers		27		
1.	4.	2.	Tank 4 energy gain	16.7	71	MeV	
1.	4.	2.	Tank 4 stored energy	22.1	22	J	
1.	4.	2.	Tank 4 Synchronous phase	-:	25	deg	
1.	4.	2.	Tank 4 average E₀T	2.9	07	MV/m	
1.	4.	2.	Tank 4 design shunt impedance ZT ² (estimate)	41.	91	MΩ/m	= <superfish calc<br="">+stems+endwalls, no holes,</superfish>
1.	4.	2.	Tank 4 design unloaded Q (estimate)	42,4	92		<pre>tuners, couplers>/1.2 =<superfish +stems+endwalls,="" calc="" holes,="" no="" tuners_couplers="">/1.2</superfish></pre>
1.	4.	2.	Tank 4 design external Q (estimate)	29,8	12		= <superfish calc<br="">+stems+endwalls, no holes, tuners, couplers>/1.2</superfish>
1.	4.	2.	Tank 5 length	6.2	94	m	Between inside end walls
1.	4.	2.	Tank 5 number of cells	:	24		
1.	4.	2.	Tank 5 number of post couplers	:	23		
1.	4.	2.	Tank 5 energy gain	15.9	84	MeV	
1.	4.	2.	Tank 5 stored energy	22.	05	J	
1.	4.	2.	Tank 5 Synchronous phase	-	25	deg	
1.	4.	2.	Tank 5 average E_0T	2.8	86	MV/m	
1.	4.	2.	Tank 5 design shunt impedance ZT ² (estimate)	40.	83	MΩ/m	= <superfish calc<br="">+stems+endwalls, no holes, tupers_couplers>/1.2</superfish>
1.	4.	2.	Tank 5 design unloaded Q (estimate)	43,4	29		= <superfish calc<br="">+stems+endwalls, no holes, tuners couplers>/1.2</superfish>
1.	4.	2.	Tank 5 design external Q (estimate)	29,9	81		= <superfish calc<br="">+stems+endwalls, no holes, tuners, couplers>/1.2</superfish>
1.	4.	2.	Tank 6 length	6.3	41	m	Between inside end walls
1.	4.	2.	Tank 6 number of cells	:	22		
1.	4.	2.	Tank 6 number of post couplers		21		
1.	4.	2.	Tank 6 energy gain	14.3	06	MeV	
1.	4.	2.	Tank 6 stored energy	21.	47	J	
1.	4.	2.	Tank 6 Synchronous phase	-28 to -	49	deg	
1.	4.	2.	Tank 6 average E₀T	2.7	77	MV/m	
1.	4.	2.	Tank 6 design shunt impedance ZT ² (estimate)	39.	03	MΩ/m	= <superfish calc<br="">+stems+endwalls, no holes,</superfish>
1.	4.	2.	Tank 6 design unloaded Q (estimate)	43,3	16		<pre>tuners, couplers>/1.2 =<superfish +stems+endwalls,="" calc="" couplers="" holes,="" no="" tuners="">/1.2</superfish></pre>
1.	4.	2.	Tank 6 design external Q (estimate)	30,8	63		= <superfish calc<br="">+stems+endwalls, no holes, tuners, couplers>/1.2</superfish>

WBS			Parameter	Base Value	Unit	Comment
1	4					
1.	4.			402 F		
1.	4.		Kr liequelicy	402.5		
1.	4. 1		Number of klystrone per tank	2.5		
1.	4. 1					
1.	4.		Number of klystrone per modulator	IGBT		first 2 tanks share with DEO
1.	4.		Number of Rigstrons per modulator	2		modulator
1.	4.		Klystron efficiency	58	%	
1.	4.		Static RF amplitude error	+/-1	%	
1.	4.		Static RF phase error	+/-1	degree	
1.	4.		Dynamic RF amplitude error	+/-0.5	%	
1.	4.		Dynamic RF phase error	+/-0.5	degree	
1.	4.	5.	DTL DIAGNOSTICS			
1.	4.	5.	Number of beam position and phase	10		
1.	4.	5.	Number of beam loss monitors	12		
1.	4.	5.	Number of beam current monitors	6		
1.	4.	5.	Number of wire scanners	5		
1.	4.	5.	Number of Faraday cups	5		
1.	4.	5.	Number of neutron detectors	12		
1.	4.	4.	CCL ACCELERATOR			
1.	4.	4.	Output energy	185.6	MeV	
1.	4.	4.	Lenath	55.119	m	Not including space to CCL
1.	4.	4.	RF frequency	805	MHz	5
1.	4.	4.	Number of accelerating cells per segment	8		
1.	4.	4.	Number of segments per module	12		
1	4	4	Number of RE modules	4		
1.	4.	4.	DTL to CCL physics distance	0.248	m	Mechanical space 0.197 m
1.	4.	4.	Max field	1.3	Kilpatrick	
1.	4.	4.	Bore radius	15	mm	
1	4	4	Focusing structure	FODO		
1.	4.	4.	Focusing period	13	beta-lambda	
1	4	4	Number of quadrupoles	48		1 thin guad 47 identical guads
1.	4.	4.	Quad type	EM		· ····· · ···· · · · · · · · · · · · ·
1	4	4	Quad integral gradient entry-exit	2 51 - 0 77	т	
1	4	4	Quad location	between seas	·	Outside vacuum
1.	4.	4.	Number of quadrupole PS for matching	8		4 for DTL-CCL matching, 4 for CCL-SCL matching
1.	4.	4.	Number of primary quadrupole PS with	5		each with 8 shunts powering 8
1	1	1	shunts Number of special quadrupole PS	1		quadrupoles for this guad
1.	⊿	ч. И	Number of steering dipoles	30		
1.	4. 1	4.	Number of steering dipoles	32		
1.	4. 1	4. 1		52 1 4 E 7	Torr	
1.	4.	4.	Average operating vacuum pressure	1.4 -7	1011	Dhysics longth
1.	4. 1	4. 1		11.839	0/	การของ เอายุแก
۱. ۱	4. 1	4. 1	Module 1 centro-cen couping	5.3	70 Mo\/	
1.	4.	4.	Module 1 energy gain	20.334	iviev	
1.	4.	4.	Module 1 synchronous phase	-30	ueg	
1.	4.	4.	Nodule 1 stored energy	6.63	J	
1.	4.	4.	wodule i average E01	1.983	iviv/m	Average over module length

WBS			Parameter	Base Value		Unit	Comment
1.	4.	4.	Module 1 design shunt impedance ZT ² (estimate)		21.89	MΩ/m	Average over module length, = <superfish calc<br="">+stems+endwalls, no holes, tuners, couplers>/1.2</superfish>
1.	4.	4.	Module 1 design unloaded Q (estimate)		16,310		= <superfish calc<br="">+stems+endwalls, no holes, tupers, couplers>/1.2</superfish>
1.	4.	4.	Module 1 design external Q (estimate)		12,309		=-Superfish calc +stems+endwalls, no holes, tupers_couplers>/1.2
1.	4.	4.	Module 2 length		12.946	m	Physics length
1.	4.	4.	Module 2 cell-to-cell coupling		5.1	%	
1.	4.	4.	Module 2 energy gain		23.979	MeV	
1.	4.	4.	Module 2 synchronous phase		-30	deg	
1.	4.	4.	Module 2 stored energy		8.23	J	
1.	4.	4.	Module 2 average E₀T		2.139	MV/m	Average over module length
1.	4.	4.	Module 2 design shunt impedance ZT ² (estimate)		24.02	MΩ/m	Average over module length, = <superfish calc<br="">+stems+endwalls, no holes, tupers, couplers>/1.2</superfish>
1.	4.	4.	Module 2 design unloaded Q (estimate)		17,418		= <superfish calc<br="">+stems+endwalls, no holes,</superfish>
1.	4.	4.	Module 2 design external Q (estimate)		13,089		+stems+endwalls, no holes,
1.	4.	4.	Module 3 length		14.001	m	Physics length
1.	4.	4.	Module 3 cell-to-cell coupling		4.8	%	
1.	4.	4.	Module 3 energy gain		26.074	MeV	
1.	4.	4.	Module 3 average synchronous phase		-29.5	deg	Phase ramped
1.	4.	4.	Module 3 stored energy		8.83	J	
1.	4.	4.	Module 3 average E ₀ T		2.14	MV/m	Average over module length
1.	4.	4.	Module 3 design shunt impedance ZT ² (estimate)		25.71	MΩ/m	Average over module length, = <superfish calc<br="">+stems+endwalls, no holes, tupers, couplers>/1.2</superfish>
1.	4.	4.	Module 3 design unloaded Q (estimate)		18,432		= <superfish calc<br="">+stems+endwalls, no holes,</superfish>
1.	4.	4.	Module 3 design external Q (estimate)		13,597		=-Superfish calc +stems+endwalls, no holes, tupers, couplers>/1.2
1.	4.	4.	Module 4 length		14.995	m	Physics length
1.	4.	4.	Module 4 cell-to-cell coupling		4.56	%	
1.	4.	4.	Module 4 energy gain		28.412	MeV	
1.	4.	4.	Module 4 average synchronous phase		-28	deg	Phase ramped
1.	4.	4.	Module 4 stored energy		9.41	J	
1.	4.	4.	Module 4 average E₀T		2.143	MV/m	Average over module length
1.	4.	4.	Module 4 design shunt impedance ZT ² (estimate)		27.29	MΩ/m	Average over module length, = <superfish calc<br="">+stems+endwalls, no holes, tuners, couplers>/1.2</superfish>
1.	4.	4.	Module 4 design unloaded Q (estimate)		19,311		= <superfish calc<br="">+stems+endwalls, no holes, tuners, couplers>/1.2</superfish>
1.	4.	4.	Module 4 design external Q (estimate)		13,975		= <superfish calc<br="">+stems+endwalls, no holes, tuners, couplers>/1.2</superfish>
1.	4.	4.	Rms tolerance for distance between end gaps of segs		0.15	mm	Limit +/- 0.25 mm
1.	4.	4.	Rms tolerance between adjacent gaps in a segment		0.03	mm	Limit +/- 0.05 mm

WBS			Parameter	Base Value	Unit	Comment
1.	4.	4.	Rms tolerance of seg. end transverse	0.3	mm	Limit +/- 0.5 mm
			displacement			
1.	4.		CCL RF SYSTEM			
1.	4.		RF frequency	805	MHz	
1.	4.		Klystron peak power	5	MW	
1.	4.		Number of klystrons per module	1		
1.	4.		Modulator type	IGBT		
1.	4.		Number of klystrons per modulator	1		
1.	4.		Klystron efficiency	55	%	
1.	4.		Static RF amplitude error	+/-1	%	
1.	4.		Static RF phase error	+/-1	degree	
1.	4.		Dynamic RF amplitude error	+/-0.5	%	
1.	4.		Dynamic RF phase error	+/-0.5	degree	
1.	4.	5.	CCL DIAGNOSTICS			
1.	4.	5.	Number of beam position and phase	10		
1.	4.	5.	Number of beam loss monitors	28		including one in DTL-CCL
4	4	_		4		transition
1.	4.	5.	Number of current monitors	1		
1.	4.	5.	Number of wire scanners	1		
1.	4.	5.	Number of Faraday cups	1		
1.	4.	5. r	Number of bunch shape monitors	3		
1.	4.	5.	Number of neutron detectors	8		
1.	4.		SUPERCONDUCTING RF LINAC			
1.	4.		Output energy	1.00	GeV	
1.	4.		Length	157.321	m	23 cryomodules + 22 warm spaces
1.	4.		RF frequency	805	MHz	
1.	4.		Transition energy between sections	387	MeV	Design value
1.	4.		Focusing structure	Doublet		warm quads between cryos
1	4		Number of quadrupolog	67		outside vacuum
1.	4.		Number of quadrupoles	07		transition
1.	4.		Number of quadrupoles with H&V dipole	67		32 Powered
1	4		windings Quad type	EM		
1.	ч. 4		Number of quadrupole PS for matching	8		2 for CCL-SCL matching 6 for
	ч.		Number of quadrapole i e for matering	0		SCL-HEBT matching
1	4		Number of quadrupole PS for doublets	29		2 with shunts for SCI 1 and SCI 2
				20		transition
1.	4.		Number of steerer PS	32		
1.	4.		Peak med beta cavity surface field	27.5	MV/ m	Uncertainty is +/- 2.5 MV/m
1.	4.		Peak high beta cavity surface field	35.0	MV/ m	Uncertainty is +2.5 / -7.5MV/m
1.	4.		Medium beta cavity geometrical beta	0.61		
1.	4.		High beta cavity geometrical beta	0.81		
1.	4.		Number of med beta cryomodules	11		
1.	4.		Number of high beta cryomodules	12		
1.	4.		Warm space between cryomodule valves	1.6	m	Between gate valves
1.	4.		Period length med beta	5.839	m	
1.	4.		Period length high beta	7.891	m	
1.	4.		Length of 186 MeV differential pumping	2.35	m	CCL to SRF distance
1.	4.		Length for nine additional high beta cryomodules	71.019	m	

WBS		Parameter	Base Value	Unit	Comment
1.	4.	Warm beam pipe vacuum	1.E-09	Torr	
1.	4. 4	SRF LINAC CAVITIES	allintiaal		
1.	4. 1	Cavity operating mode	emptical		
1.	4. 1	Cavity operating mode	pi Niobium		
1.	4. 1	Cavity material thickness	Niobium	mm	3.8 mm after processing
1.	ч. 4			ĸ	3.6 milli alter processing
1.	ч. 4	Number of cells per cavity	2.1	IX .	
1	4	Cavities per cryomodule med beta	3		
1	4	Cavities per cryomodule high beta	4		
1.	4.	Med beta coupling constant	1.61	%	
1	4	High beta coupling constant	1.61	%	
1.	ч. 4	Oo med beta	>5F+9	70	
1	4	Qo high beta	>5E+9		
4			000 440	<u></u>	Evention of boom valuation
1.	4.	r/Q med beta	220-440	Ω/m	r/Q=Rsh/Qo
1.	4.	r/Q high beta	170-570	Ω/m	Function of beam velocity,
1	4	Medium Beta Cavity external O	7 30E+05		r/Q=Rsh/Qo
1.	ч. 4	High Beta Cavity external Q	7.00E+05		
1	4	External Q variation	+/- 20	%	
1.	4.	Half band width (-3 db point), med β , high	550, 575	Hz	$f(1/2)=f_0/(2Q_{ex})$
1	4	β Cavity stiffeners	VAS		
1.	ч. 4	Piezo tupers	ycs 81		1 per medium and high beta cavitiv
1.	4	Expected frequency swing due to Lorentz	< 470	Hz	i per mediam and high beta bavily
		force with piezo compensation			
1.	4.	Microphonic amplitude limit	+/- 100	Hz	Six sigma
1.	4.	Maximum detuning range, med. Beta	2300	Hz	Most heavily loaded cavity - no
					piezo compensation, klystron
1.	4.	Maximum detuning range, high Beta	1000	Hz	power limit Most heavily loaded cavity - no piezo compensation, klystron
4	4	Available Khisters review read Date	400	1.).47	power limit
1.	4.	Available Klystron power, med. Beta	408	KVV	
1.	4.	Available Rivstron power, high Beta	522	KVV	
1.	4.	Cavity active length high hete	0.002	m	
1.	4. 1	Total cavity longth mod bota	0.900	m	
1.	ч. 4	Total cavity length high beta	1.007	m	
1.	ч. 4	E_{rack}/E_0 med beta	1.231		
1.	4.	$E_{\text{peak}} = 0$ high beta	1.53		
1.	4.	B _{peak} /E _{peak} med beta	2.10	mT//MV/m	
1	4	B /E bigh beta	2 14	mT//M\//m	
1.	ч.		2.14		
1.	4.	E ₀ med beta	13.4 - 16.4	MV/m	Factor (~ 0.70 for matched beta
1.	4.	E₀ high beta	17.9 - 24.4	MV/m	Not including the Transit Time Factor (~ 0.72 for matched beta cavity)
1.	4.	Energy gain per cavity, med. Beta	4.61 - 6.77	MeV	
1.	4.	Energy gain per cavity, high Beta	8.17 - 14.41	MeV	
1.	4.	B _{peak} med beta	52.0 - 63.5	mT	
1.	4.	B _{peak} high beta	58.9 - 80.3	mT	

WBS			Parameter	Base Value	Unit	Comment
1.	4.		Cavity field flattness	8	%	(V _{max} - V _{min})/ V _{avg} , after welding
1.	4.		Synchronous phase med beta	20.5	deg	
1.	4.		Synchronous phase high beta	19.5	deg	
1	4		SRELINAC CRYOMODULES			
1	4		Shield static heat load med beta	170	W	
1.	4.		cryomodule Shield static heat load high beta	200	w	
1.	4.		cryomodule 2.1 K static heat load med beta	25	W	
1.	4.		cryomodule 2.1 K static heat load high beta	28	W	
1.	4.		cryomodule Cavity dynamic heat load per med beta	16	W	
1.	4.		cryomodule Cavity dynamic heat load per high beta	28	W	
1	4		cryomodule	0.0001	т	
1.	4. 1		Cavity diaplacement telerance relative to	0.0001	I mm	Movimum
1.	4.		cryomodule	+/-1	11111	Maximum
1.	4.		Cavity tilt tolerance relative to cryomodule	+/-1	mrad	Maximum
1.	4.		Cryomodule transverse alignment tolerance	+/-1	mm	Maximum
1.	4.		SRF LINAC POWER COUPLERS			
1.	4.		Power couplers per cavity	1		
1.	4.		Number of power couplers	81		
1.	4.		Maximum power of coupler	550	kW	
1.	4.		Power coupler type	KEK-B		
1.	4.		Power coupler vacuum	5.E-09	Torr	
1.	4.		SRF LINAC HOM COUPLERS			
1.	4.		HOM couplers per cavity	2		
1.	4.		Number of HOM couplers	2 x 81		
1.	4.		HOM coupler type	TTF		
1.	4.		Qext at 805 MHz	> 3x10 ¹⁰		medium beta
1.	4.		Qext at 805 MHz	> 7.5x10 ¹⁰		high beta
1.	4.		SRF LINAC TUNERS			
1.	4.		Number of tuners	81		
1.	4.		Tuner tuning rate	3000	Hz/sec	Minimum
1.	4.		Tuner tuning range	+/-100	kHz	from 805 MHz
1.	4.		SRF LINAC RF SYSTEM			
1.	4.		RF frequency	805	MHz	
1.	4.		Klystron peak power	0.55	MW	
1.	4.		Number of klystrons per cavity	1		
1.	4.		Modulator type	IGBT		
1.	4.		Number of klystrons per modulator	12, 11		total of 7 modulators
1.	4.		Klystron efficiency	68	%	
1.	4.		Dynamic RF amplitude error	+/-0.5	%	
1.	4.		Dynamic RF phase error	+/-0.5	degree	
1.	4.	12.	SRF LINAC CRYOPLANT			
1.	4.	12.	Primary circuit temperature	2.1	К	
1.	4.	12.	Primary circuit pressure	0.041	bar	

WBS			Parameter	Base Value		Unit	Comment
1.	4.	12.	Primary circuit heat removal capacity	2.4	kW		at 2.1 K
1.	4.	12.	Primary circuit margin	100	%		50 % @ 1.3GeV
1.	4.	12.	Secondary circuit temperature	5	К		
1.	4.	12.	Secondary circuit pressure	3	bar		
1.	4.	12.	Secondary circuit margin	100	%		
1.	4.	12.	Shield circuit temperature	35-55	к		
1.	4.	12.	Shield circuit pressure	4.0-3.0	bar		
1.	4.	12.	Shield circuit margin	50	%		
			-				
1.	4.	9.	SRF LINAC FOCUSING				
1	4	0	QUADRUPOLES	80	mm		
1.	4. 1	9. 0	Effective longth	0.30	m		
1.	4. 1	9. Q	Max gradient	0.59	T/m		
1.	4.	5.	Max gradient	1.2	17111		
1.	4.	5.	SRF LINAC DIAGNOSTICS				not including linac dump line
1.	4.	5.	Number of beam position and phase	34			2 in CCL-SCL transition
1	4	5	monitors	96			1 in CCL SCL transition (BCB
1.	4.	5.	Number of beam loss monitors	00			pending)
1.	4.	5.	Number of current monitors	1			1 in CCL-SCL transition
1.	4.	5.	Number of wire scanners	9			1 in CCL-SCL transition + 8 laser wire monitors pending
1.	4.	5.	Number of neutron detectors	7			
1.	5.	1.	HEBT BEAM LINE				
1.	5.	1.	Ion type	H minus			
1.	5.	1.	Output energy	1.00	GeV	,	
1.	5.	1.	Length	169.49	m		Diff pumping to injection septum
4	F	4	Deem fleer distance	1 070			center
1.	э. Б	1.	Beam-noor distance	1.270	m		50.0 m
1.	5. 5	1.	Length of additional linac dump beam line	42	m		
1.	5.	1.	section LAMS	40	111		
1.	5.	1.	Number of LAMS FODO cells	5			8.0 m per FODO cell
1.	5.	1.	Length of achromat	59	m		
1.	5.	1.	Number of achromat FODO cells	4			14.0 m per FODO cell
1.	5.	1.	Achromat total bend angle	90	deg		
1.	5.	1.	Achromat maximum dispersion	6.8	m		
1.	5.	1.	Length of achromat to ring matching	70	m		
1.	5.	1.	Number of ARMS FODO cells	7.5			8.0 m per FODO cell
1.	5.	1.	Number of Ludewig betatron collimators	2			
1.	5.	1.	Number of betatron foil scrapers	4			4 pairs
1.	5.	1.	Location of momentum scraper	achromat center			1 pair
1.	5.	1.	Maximum power on each Ludwig	2	kW		
1	F	1	collimator	0.70	Mal	,	
1.	ວ. F	۱. ۱	Energy spread at actironal center	U.72	Mo	,	
1.	ວ. F	۱. ۱		+/- 3.0	Mo	,	
1. 1	5. 5	۱. ۱	Energy total jitter after operate corrector	+/-1.5	Mal	,	
1.	Э. Б	1. 1	Total time ave energy spread at fail	±/ 40	Mol	,	
1.	Э. Б	1. 1	Number of energy sweeps per macropulae	±/- 4.0 100	NEV		
١.	5.	١.	Number of energy sweeps per macropulse	100			

WBS			Parameter	Base Value	Unit	Comment
1.	5.	1.	Expected output H&V rms norm emittance w/ errors and wo/ jitter	0.46	π mm-mrad	
1.	5.	1.	Extected output transverse centroid jitter	+/- 0.2	mm	
1.	5.	1.	Expected output H&V rms norm emittance w/ errors and w/ jitter	0.50	πmm-mrad	
1.	5.	1.	Operating vacuum pressure	5E-8 to 1E-8	Torr	From SRFL to Ring
1.	5.	1.	HEBT MAGNETS			
1.	5.	1.	Number of 11.25 deg C type dipoles	8		
1.	5.	1.	11.25 deg dipole field	0.20	т	
1.	5.	1.	11.25 deg dipole gap	80	mm	
1.	5.	1.	11.25 deg dipole length	5.43	m	Effective length
1.	5.	1.	Number of 8.75486 deg dipoles	1		
1.	5.	1.	8.75486 deg dipole field	0.21	т	
1.	5.	1.	8.75486 deg dipole gap	80	mm	
1.	5.	1.	8.75486 deg dipole length	4.134	m	
1.	5.	1.	Number of 12 cm bore quadrupoles	32		26 (HEBT) + 6 (linac dump)
1.	5.	1.	12 cm bore quad gradient	5.5	T/m	
1.	5.	1.	12 cm bore quad length	0.505	m	
1.	5.	1.	Number of 21 cm bore quadrupoles	8		Same as ring quads
1.	5.	1.	21 cm bore quad gradient	3	T/m	
1.	5.	1.	21 cm bore quad length	0.504	m	Effective length
1.	5. 5	1.	Number of 26.4 cm bore injection dump quadruples	1		
1.	5. 5	۱. ۱	Number of 24x24 am correctors	14		
1.	э. г	1.	Number of 24x24 cm correctors	4	0/	Integrated at full accentance
1.	э. г	1.	Expected dipole magnetic field errors	+/- 0.1	% 9/	
1.	э. г	1.	Expected quadrupole magnetic field errors	+/- 0.1	% 9/	
1.	5. 5	1. 1	Expected corrector magnetic field errors	+/- 1 0 1	70	
1.	5. 5	1. 1	Expected magnet onset mis	0.1	mrad	
1.	5.	1.	Magnet roll rms tolorance	1	mrad	
1.	5.	1.	Number of dipolo PS	3	mau	700 A and 40 40 150 V
1.	5.	1.	Number of quadrupole PS	5 26		200 800 A and 15 60 V
1.	5. 5.	1.	Number of corrector bipolar PS	18		20 A and 30 V
1.	4.	5.	HEBT RF CAVITIES			
1.	4.	5.	Number energy corrector cavity	1		
1.	4.	5.	Energy corrector cavity location	115	m	From the last cavity of linac
1.	4.	5.	Energy corrector frequency	805	MHz	Same as CCL
1.	4.	5.	Energy corrector phase slip	18	deg/MeV	
1.	4.	5.	Energy corrector operation voltage	3.2	MV	
1.	4.	5.	Energy corrector aperture diameter	50	mm	
1.	4.	5.	Energy corrector peak voltage gain EoTL	4	MV	
1.	4.	5.	Number energy spreader cavity	1		
1.	4.	5.	Energy spreader cavity location	174	m	From the last cavity of linac
1.	4.	5.	Energy spreader frequency	805.0 +/- 0.1	MHz	Same as CCL
1.	4.	5.	Energy spreader aperture diameter	50	mm	
1.	4.	5.	Energy spreader peak voltage gain EoTL	4	MV	
1.	4.	5.	Number of cells per cavity	6		

WBS			Parameter	Base Value	Unit	Comment
1.	4.		HEBT RF SYSTEM			
1.	4.		RF frequency	805	MHz	
1.	4.		Klystron peak power	5	MW	
1.	4.		Number of klystrons per cavity	1		
1.	4.		Modulator type	IGBT		
1.	4.		Number of klystrons per modulator	2		
1.	4.		Klystron efficiency	55	%	
1.	4.		Static RF amplitude error	+/-1	%	
1.	4.		Static RF phase error	+/-1	degree	
1.	4.		Dynamic RF amplitude error	+/-0.5	%	
1.	4.		Dynamic RF phase error	+/-0.5	degree	
1.	5.	7.	HEBT DIAGNOSTICS			
1.	5.	7.	Number of beam position and phase	37		
			monitors			includes 6 in linac dump + 1 in Inj dump
1.	5.	7.	Number of beam loss monitors	62		damp
						Includes both fast and slow monitors, and 6 linac dump + 7 iniection dump
1.	5.	7.	Number of current monitors	5		Includes one for injection dump
1.	5.	7.	Number of profile measurments	13		Includes 1 in linac dump + 1 in inject. dump
1.	5.		ACCUMULATOR RING			
1	5		lon type	proton		
1	5			1.00	GeV	
1	5		Ring circumference	248.0	m	
1.	5.		Beam-floor distance	1.224	m	48.189 inch
1.	5.		Average beam power	1.5	MW	Average power in ring
1.	5.		Peak bunched beam current	52	А	
1.	5.		Proton magnetic rigidity	5.6575	Tm	
1.	5.		Max uncontrolled beam loss	1	W/m	
1.	5.		Unnormalized 99% total emittance ($\epsilon_x + \epsilon_y$)	240	πmm-mrad	434 π mm-mrad normalized; under study
1.	5.		Ring betatron acceptance	480	πmm-mrad	
1.	5.		Adjustable scraper acceptance	160-300	πmm-mrad	
1.	5.		Collimator acceptance	300	πmm-mrad	
1.	5.		Longitudinal rf bucket area	19	eV-sec	
1.	5.		Expected longitudinal bunch area (99%)	13	eV-sec	
1.	5.		Total Injected energy spread	+/- 4	MeV	
1.	5.		Total extracted energy spread	+/- 10	MeV	
1.	5.		RF system momentum acceptance	+/- 1.0	%	
1.	5.		Vacuum chamber full-beam momentum acceptance	+/- 2.0	%	
1.	5.		Zero betatron amplitude momentum acceptance	+/- 3.8	%	
1.	5.		Bunching factor	0.48		Dual harmonic RF
1.	5.		Expected space charge tune shift	0.15		Uniform-beam tune shift 0.1
1.	5.		Lattice superperiods	4		
1.	5.		Max dispersion in straight sections	<0.3	m	Dominated by injection chicane/bump
1.	5.			4 FODO cells		
1.	5.		Arc FODO cell length	8	m	

WB	S			Parameter	Base Value	Unit	Comment
	1.	5.		Straight section lattice	2 doublets		· · · · · · · · · · · · · · · · · · ·
	1.	5.		Short drift in long straights	2X6.85	m	
	1.	5.		Long drift in long straights	12.5	m	
	1.	5.		Phase advance per arc FODO cell	90	deg	
	1.	5.		Nominal betatron H tune	6.23		Adjustable range 6 - 7
	1.	5.		Nominal betatron V tune	6.20		Adjustable range 4 - 7
	1.	5.		Transition gamma	5.23		
	1.	5.		Frequency slip factor	-0.198		
	1.	5.		Natural H chromaticity	-7.9		Nominal tunes
	1.	5.		Natural V chromaticity	-6.9		Nominal tunes
	1.	5.		Maximum dispersion function	4.0	m	Nominal tunes
	1.	5.		Maximum H/V β function	27.9/15.7	m	Nominal tunes
	1.	5.		Ring V beamline offset wrt HEBT beamline	-46	mm	
	1.	5. -			100	mm	
	1.	5. -		Offset for injection H static bump	100	mm	
	1.	5. -		Number of injected turns	1060	turns	
	1.	5. -		Revolution period	945	ns	
	1.	5. -		Ring injection pulse length	645	ns	
	1.	5. F		Ring injection gap length	300	ns	
	1.	5. F		Ring extraction pulse length	695	ns	
	1.	5. F		Ring extraction gap length	250	ns	
	1.	5. r		Space charge longitudinal impedance 2/n	-196]	Ω	
	1.	5. 5		Expected resistive wall longitudinal impedance Z/n	(1+j)0.7 (1+i)8 5	Ω	At revolution frequency
	1.	5.		impedance Z Expected broad band longitudinal	(11))0.0 9i	Q.	Below 10 MHz
	1.	5.		impedance Z/n Expected broad band transverse	60j	 kΩm	Below 10 MHz
	1.	5.		impedance Z /n Expected extraction kicker longitudinal	0.6n+50j	Ω	
	1	5		impedance total Z/n Expected extraction kicker transverse	33+125i	kOm	Below 10 MHz
		-		impedance total, Z	001120	132111	
	1.	5.		Expected extraction kicker transverse impedance total, Z	12.5+65j	kΩm	Near 50 MHz
	1.	5.	2.	RING INJECTION SYSTEM			
	1.	5.	2.	Foil half size HxV	5.1x5.5	mm	3 open sides
	1.	5.	2.	Foil thickness	300	µg/cm²	
	1.	5.	2.	Linac beam missing foil	< 4	%	
	1.	5.	2.	Stripped electron beam dump	carbon composite		Mounted on water cooled Cu block
	1.	5.	2.	Transverse painting scheme	correlated		
	1.	5.	2.	Average foil hits per proton	5		
	1.	5.	2.	Number of dc horizontal chicane dipoles	4		
	1.	5.	2.	Number of injection dc PS (4 dipole, 2 septum, 1 quad)	7		820-4000 A and ~20 V
	1.	5.	2.	Horizontal dynamic bump amplitude	40	mm	
	1.	5.	2.	Vertical dynamic bump amplitude	46	mm	
	1.	5.	2.	Number of H and V injection kicker magnets	4 and 4		44004 0001/
	1.	5. -	2.	Number of injection kicker PS	8		1400A-800V
	1.	5. -	2.	Programmable injection kicker PS	yes	0/_	Integrated at full appendance

WBS			Parameter	Base Value	Unit	Comment
1.	5.	2.	Expected injection kicker field errors	+/- 1.0	%	Integrated at full acceptance
4	~	2				
1.	э. 5	ა. ვ		1006 stool		Solid coro
1.	5.	з. З	Number of H frame sector dipoles	32		33 w/ reference dipole
1.	5	3	Dipole magnetic field	0 7935	т	
1.	5	у. З	Dipole had angle	11 25	dea	Bending radius = 7 996 m
1.	5	о. З	Dipole gan	170	mm	HGEW = 230 mm
1.	5	о. З	Dipole gap	450	mm	
1.	5	о. З	Dipole magnetic nath length	400	m	
1.	5	о. З	Dipole radius of curvature	7 3374	m	
1.	5	о. З	Dipole sagitta	35 332	mm	
1.	5	о. З	Number of arc regular guadrupoles	28		
1.	5	о. З	Bore of arc regular guads	20	mm	
1.	5	о. З	Magnetic length of arc regular guads	0.50	m	
1.	5	Э. З	Magnetic rendent of arc regular quads	0.50	T/m	
1.	5	Э. З	Number of arc large quadrupoles	4.7	17111	
1.	5	Э. З	Rore of arc large quade	264	mm	
1.	5.	Э. З	Magnetic length of arc large guade	0.50	m	
1.	5. 5	ວ. ວ	Magnetic rendient of are large quade	0.50	T/m	
1.	5. 5	ວ. ວ	Number of straight applier long	4.7	1/111	
1.	э.	3.	quadrupoles	8		
1.	5.	3.	Bore of straight section long quads	300	mm	
1.	5.	3.	Magnetic length of straight section long	0.70	m	
1	5	3	quads Magnetic gradient of straight section long	13	T/m	
1.	5.	5.	quads	4.5	1/111	
1.	5.	3.	Number of straight section short	8		
1	5	3	quadrupoles Bore of straight section short quads	300	mm	
1	5	3	Magnetic length of straight section short	0.55	m	
	0.	0.	quads	0.00		
1.	5.	3.	Magnetic gradient of straight section short	4.3	T/m	
1.	5.	3.	Number of 27x27 cm dipole and multipole	28		
	_	-	correctors	_		
1.	5.	3.	Number of 36x36 cm dipole correctors	8		
1.	5.	3.	Number of 41x41 cm dipole correctors	8		
1.	5.	3.	Number of 21x21 cm sextupole & octupole	8+8		
1.	5.	3.	Expected ring dipole magnetic field errors	+/- 0.01	%	Integrated at full acceptance
1.	5.	3.	Expected ring quadrupole magnetic field	+/- 0.01	%	Integrated at full acceptance
1	5	3	errors	+/ 10	0/_	Integrated at full accontance
1.	5. 5	э. З	Expected corrector magnetic field error	+/- 1.0	70 0/_	Integrated at full acceptance
1.	5. 5	э. З	Expected corrector magnetic field errors	+/- 1.0	70 mm	integrated at full acceptance
1.	5.	э. Э	Expected magnet rms colle	0.1	mrad	
1.	5. 5	э. З	Magnet pitch & yow rms alignment	0.2	mrad	
1.	5.	5.	tolerance	0.5	mau	
1.	5.	3.	Magnet twist rms tolerance	0.5	mrad	
1.	5.	4.	RING POWER SUPPLIES			
1.	5.	4.	Number of dipole primary PS	1		4600 A. 400 V
1	5	4	Number of guad primary PS	6		900-1000 A: 300-500 V
1	5	4	Number of sextupole primary PS	о 4		
1	5	<u>т</u> . 4	Number of dipole corrector PS			20 A and 35 V includes 2 in
1.	0.	т.		04		injection dump line
1.	5.	4.	Number of quadrupole trim PS	16		

WBS			Parameter	Base Value	Unit	Comment
1.	5.	4.	Number of sextupole corrector PS	8		
1.	5.	4.	Number of skew quadrupole corrector PS	28		
1.	5.	4.	Number of skew sextupole corrector PS	8		
1.	5.	4.	Number of octupole corrector PS	8		
1.	5.	5.	RING VACUUM SYSTEM			
1.	5.	5.	Average operating vacuum pressure	1.0E-08	Torr	
1.	5.	5.	Chamber material	Stainless steel		
1.	5.	5.	Coating material	TiN		
1.	5.	5.	Coating thickness	100	nm	
1.	5.	6.	RING RF SYSTEM			
1.	5.	6.	RF system type	dual harm		
1.	5.	6.	Cavity length	1.7	m	
1.	5.	6.	Accelerating gaps per cavity	2		
1.	5.	6.	Harmonic 1 frequency	1.058	MHz	
1.	5.	6.	Number of harmonic 1 cavities	3		
1.	5.	6.	Harmonic 1 total voltage	40	kV	
1.	5.	6.	Harmonic 2 frequency	2.115	MHz	
1.	5.	6.	Number of harmonic 2 cavities	1		
1.	5.	6.	Harmonic 2 total voltage	20	kV	
1.	5.	6.	Beam loading compensation	dynamic tuning & feed forward		
1	5	6	l ow level loop bandwidth	16	kHz	
1	5	6	Harmonic 1 cavity shunt impedance	5000	0	loaded with dynamic tuning
1.	5	6	Harmonic 1 cavity quality factor	15	22	loaded
1.	5	6	Harmonic 1 cavity gality labor	100	kW//PA	with dynamic tuning
1	5	6	Harmonic 1 cavity beam loading	45		at design intensity with dynamic
1.	5.	6.	parameter Harmonic 2 cavity shunt impedance	2700	Ω	tuning loaded, with dynamic tuning
1.	5.	6.	Harmonic 2 cavity quality factor	15		loaded
1.	5.	6.	Harmonic 2 cavity peak RF power	100	kW/PA	with dynamic tuning
1.	5.	6.	Harmonic 2 cavity beam loading parameter	1.2		at design intensity with dynamic tuning
1.	5.	7.	RING DIAGNOSTICS			
1.	5.	7.	Number of beam position monitors	44		Striplines at each quad
1.	5.	7.	Number of beam loss monitors	82		Fast and slow monitors
1.	5.	7.	Number of beam current monitors	1		
1.	5.	7.	Number of wall current monitors	1		
1.	5.	7.	Number of wire scanners	2		
1.	5.	7.	Number of foil video monitors	3		
	_	_	N N N N N N			Primary and secondary stripping locations + e catcher
1.	5.	7.	Number of beam in gap monitors/cleaners	1		Kicker with PMT detectors
1.	5.	7.	Number of kicker elements	3		1.5 m long each
1.	5.	7.	Kicker strength	7	kV	0.2 mrad/kicker element
1.	5.	7.	Kicker rise time	20	nsec	
1.	5.	7.	Number of ionization profile monitors	2		Residual gas ionization monitor 1 ea H and V
1.	5.	7.	Number of tune measurement systems	3		 BIG Kicker excited and FFT analyzed Low power high frequency Quadrupole pickup/monitor

WBS			Parameter	Base Value	Unit	Comment
1.	5.	7.	Number of electron detectors	5		Argonne style
1.	5.	7.	Scrapers	2		
1.	5.	8.	RING COLLIMATION			
1.	5.	8.	Number of independent adjustable	4		
1	5	8	scrapers Scraper material	Та		
1	5	8	Number of Ludewig type collimators	3		
1.	5.	8.	Collimation efficiency	90	%	For 480 mm mrad acceptance
1.	5.	8.	Power absorption capacity per collimator	2	kW	
1.	5.	9.	RING EXTRACTION			
1.	5.	9.	Extraction type	single turn		Fast kicker and Lambertson
1.	5.	9.	Beam extraction time gap	250	ns	
1.	5.	9.	Kicker rise time	200	ns	0 to 97%
1.	5.	9.	Kicker flattop time	700	ns	
1.	5.	9.	Number of fast ferrite kicker sections	14		
1.	5.	9.	Kicker core length per section	3x350 4x455	mm	Core spacing 130 mm
				4x375 3x340		
1.	5.	9.	Vertical displacement at Lambertson	169	mm	
1.	5.	9.	Beam extracts to target with 13 of 14 kickers inoperable	yes		
1.	5.	9.	Number of PFNs	14		
1.	5.	9.	Number of PFN PS	14		
1.	5.	9.	Lambertson horizontal bend angle	16.8	deg	
1.	5.	9.	Lambertson rotation angle	2.55	deg	
1.	5.	9.	Lambertson core length	2.47	m	
1.	5.	9.	Lambertson magnetic field	0.628966	Т	for 1GeV
1.	5.	9.	Expected extraction Lambertson magnetic field errors +/-	0.1	%	Integrated at full acceptance
1.	5. E	9.	Expected extraction kicker field errors +/-	1.0	%	
١.	э.	9.	Number of Lambertson PS	I		2000 A, 20V
1.	5.	10.	RTBT BEAM LINE			
1.	5.	10.	lon type	proton		
1.	5.	10.	Output energy	1.00	GeV	
1.	5.	10.	Length	150.75	m	Lambertson center to target
1.	5.	10.	Beam-floor distance	0.996 to 1.0414	m	Start at 39.2 in and end at 41.0 in
1.	5.	10.	Output beam power	1.5	MW	Average power
1.	5.	10.	Beam spot size on target H x V	200 x 70	mm	
1.	5.	10.	Number of Ludewig betatron collimators	2		
1.	5.	10.	Number of 11.6 m FODO cells	15		
1.	5.	10.	Ring extraction dump beam line length	28	m	
1.	5.	10.	RTBT elevation wrt ring	-0.1826	m	
1.	5.	10.	Operating vacuum pressure	1E-8 to 1E-7	Torr	From ring to target
1.	5.	10.	RTBT MAGNETS			
1.	5.	10.	Number of 16.8 deg H switcher dipole	1		
1.	5.	10.	Switching dipole gap	170	mm	
1.	5.	10.	Number of 21 cm bore quads	23		
1.	5.	10.	Number of 31 cm bore quads including 2 for dump	5		

WBS			Parameter	Base Value	Unit	Comment
1.	5.	10.	Number of 36 cm bore spreading	4		
1.	5.	10.	Number of 24 x 24 cm dipole correctors	15		
1.	5.	10.	Number of 36x36 cm spreading correctors	4		
1.	5.	10.	Expected RTBT dipole magnetic field	0.1	%	Integrated at full acceptance
1.	5.	10.	Expected RTBT quadrupole magnetic field	0.1	%	Integrated at full acceptance
1.	5.	10.	Expected RTBT corrector magnetic field	1.0	%	Integrated at full acceptance
1.	5.	10.	Magnet offset rms alignment tolerance	0.1	mm	
1.	5.	10.	Magnet pitch and yaw rms alignment tolerance	1	mrad	
1.	5.	10.	Magnet roll rms alignment tolerance	1	mrad	Extraction and RTBT
1.	5.	10.	Number of dipole PS	1		2000A-50V and 900A-80V
1.	5.	10.	Number of quadrupole PS	21		700A-50V to 800A-120V
1.	5.	10.	Number of corrector bipolar PS	19		20 A and 30 V
1.	5.	7.	RTBT DIAGNOSTICS			
1.	5.	7.	Number of beam position monitors	17		
1.	5.	7.	Number of beam loss monitors	43		Fast and slow monitors, includes extraction dump
1.	5.	7.	Number of beam current monitors	5		
1.	5.	7.	Number of profile measurements	8		includes extraction dump
1.	6.		TARGET SYSTEMS			
1.	6.		Number of target stations	1		
1.	6.		Number of neutron beam shutters	18		
1.	6.		Number of neutron beam lines	24		
1.	6.		Beam-to-floor distance	1.981	m	78 in
1.	6.		Design power level on target	2 MW		1st Target module designed for 1 MW
1.	6.	1.	TARGET ASSEMBLIES			
1.	6.	1.	Front cross section of target VxH	104x 399	mm	
1.	6.	1.	Beam spot size on target VxH	70x200	mm	
1.	6.	1.	Tolerance on beam centroid H&V	+/- 2	mm	
1.	6.	1.	Normal peak current density	0.25	A/m ²	for 2 MW beam power
1.	6.	1.	Normal time ave power within beam spot	90	%	
1.	6.	1.	Time ave current density over beam spot	0.143	A/m ²	(2MW beam power)
1.	6.	1.	Normal single pulse peak density	2.6x10 ¹⁶	protons/m ²	
1.	6.	1.	Off normal single pulse density	3.2x10 ¹⁶	protons/m ²	For 2 pulses max
1.	6.	1.	Unscheduled beam off > 5s	50	per day	
1.	6.	1.	Unscheduled beam off >300 s	10	per day	
1.	6.	1.	Target material	Hg		Hg inventory < 2.0 cubic m
1.	6.	1.	Hg nominal operating temperature	60 - 90	deg C	(2MW beam power)
1.	6.	1.	Hg target nominal operating pressure	0.3	MPa	
1.	6.	1.	Hg power loading	1.2	MW	(2MW beam power)
1.	6.	1.	Shell material	316 SS LN		
1.	6.	1.	Shell temperature	<200	deg C	
1.	6.	1.	Shroud material	316 SS LN		
1.	6.	1.	Shroud cooling	light water		
1.	6.	1.	Target plug material	Fe-alloy, water, SS		

WBS			Parameter	Base Value	Unit	Comment
1.	6.	2.	AMBIENT MODERATORS			
1.	6.	2.	Number of moderators	1		
1.	6.	2.	Moderator material	light water		
1.	6.	2.	Position	below target		Upstream
1.	6.	2.	CRYOGENIC MODERATORS			
1.	6.	2.	Number	3		
1.	6.	2.	Moderator material	supercritical H		
1.	6.	2.	Position	2 above target and 1		
1.	6.	2.	Viewed face	120 x 100	mm	
1.	6.	2.	Pre moderator	light water		
1.	6.	2.	Non grooved surfaces	yes		
1.	6.	2.	Poison upstream top only	Al clad Gd		
1.	6.	2.	Decoupler upstream top only	Cd		
1.	6.	3.	REFLECTOR ASSEMBLIES	_		
1.	6.	3.	Reflector material	Ве		
1.	6.	3.	Configuration	nested cylinders		
1.	6.	3.	Coolant	heavy water		
1.	6.	3.	Outer diameter of Be	0.64	m	
1.	6.	4.	CORE VESSEL			
1.	6.	4.	Material	316 SS		
1.	6.	4.	Atmosphere	He		At < 0.1 MPa
1.	6.	4.	Proton beam window material	Inconel 718		
1.	6.	4.	Proton beam window coolant	light water		
1	6	5	TARGET SYSTEM SHIELDING			
1.	6.	5.	Number of single channel shutters	12		
1.	6.	5.	Number of multi channel shutters	6		
1.	6.	5.	Shutter configuration	ISIS type		
1.	6.	5.	Neutron HxV channel within single shutter	200 x 220	mm	
1.	6.	9.	BEAM DUMPS			
1.	6.	9.	Number of beam dumps	3		
1.	6.	9.	I olerance on beam center	+/- 50	mm	
1.	6. C	9.	Atmosphere	Не		At 0.1 Mpa (under evaluation)
1.	6.	9.	Reentrant	yes		
1.	6.	9.				
1.	6.	9.	Beam stop material	steel		
1.	6.	9.	Shielding material	Fe alloy		
1.	6.	9.	Cooling mechanism	passive		
1.	6.	9.	Maximum power	<u><</u> 7.5	kW	
1.	6.	9.	Operational hours per year	500	h	
1.	6.	9.	Beam size	60	mm	FWHM
1.	6.	9.	Pulse peak density at 60 Hz	2.3x10 ¹⁴	ppp/m ²	
1.	6.	9.	Pulse peak density at 1 Hz	1.4x10 ¹⁶	ppp/m ²	

WBS			Parameter	Base Value	Unit	Comment
1.	6.	9.	RING INJECTION DUMP			
1.	6.	9.	Beam stop material	Cu		
1.	6.	9.	Shielding material	Fe alloy		
1.	6.	9.	Cooling mechanism	forced light water		
1.	6.	9.	Maximum power	150	kW	
1.	6.	9.	Operational hours per year	5000	h	
1.	6.	9.	Beam size	100	mm	>90% beam particles within this
1.	6.	9.	Pulse peak density	5.0x10 ¹⁵	ppp/m ²	
1.	6.	9.	RING EXTRACTION DUMP			
1.	6.	9.	Beam stop material	steel		
1.	6.	9.	Shielding material	Fe alloy		
1.	6.	9.	Cooling mechanism	passive		
1.	6.	9.	Maximum power	<u><</u> 7.5	kW	
1.	6.	9.	Operational hours per year	500	h	
1.	6.	9.	Beam size	100	mm	FWHM
1.	6.	9.	Pulse peak density at 60 Hz	3.8x10 ¹³	ppp/m ²	
1.	6.	9.	Pulse peak density at 1 Hz	2.3x10 ¹⁵	ppp/m ²	
1.	7.		NEUTRON INSTRUMENTATION			
4	7	4	High Resolution Backscattering			
1.	7.	4.	Spectrometer	2		
1.	7.	4.	Beam Line	2 tan unbaar		
1.	7.	4.	Moderator location	top-uppeam		
1.	7.	4.				
ı. 1.	7. 7.	4. 4.	Moderator-sample distance	84	m	
1	7	5	Magnetism Reflectometer			
1	7	5	Beam Line	4a		
1	7	5	Moderator location	top downbeam		
1	7	5	Moderator material	liquid H2		
1	7	5	Moderator coupling	coupled		
1	7	5	Moderator-sample distance	17	m	
1.	7.	5.	Sample-detector distance	2	m	
1.	7.	6.	Liquids Reflectometer			
1.	7.	6.	Beam Line	4b		
1.	7.	6.	Moderator location	top downbeam		
1.	7.	6.	Moderator material	liquid H2		
1.	7.	6.	Moderator coupling	coupled		
1.	7.	6.	Moderator-sample distance	13	m	
1.	7.	6.	Sample-detector distance	1.5	m	
1.	7.	8	Small Angle Scattering Spectrometer			
1.	7.	8	Beam Line	6		
1.	7.	8	Moderator location	top downbeam		
1.	7.	8	Moderator material	liquid H2		
1.	7.	8	Moderator coupling	coupled		
1.	7.	8	Moderator-sample distance	14	m	

WBS			Parameter	Base Value		Unit	Comment
1.	7.	8	Sample-detector distance	1-4	m		
1.	7.	10	Powder Diffractometer				
1.	7.	10	Beam Line	11a			
1.	7.	10	Moderator location	top upbeam			
1.	7.	10	Moderator material	liquid H2			
1.	7.	10	Moderator coupling	decoupled			
1.	7.	10	Moderator-sample distance	60	m		
1.	7.	10	Sample-detector distance	2-5	m		
1	Q						
1.	5.		CONTROLS				
1.	9.		Macropulse rate	subharm of 60	Hz		
1.	9.		Single macropulse capability	yes			
1.	9.		Macropulse variable length	0.1 ms to 1 ms			
1.	9.		Linac beam ramp up	variable			
1.	9.		Chopper variable beam pulse length	645 to 100	ns		
1.	9.		Chopper variable gap length	100 to 930	ns		
1.	9.		Single mini (or turn) pulse capability	yes			