
1

Brent Fultz, Tim Kelley, Mike McKerns, Jiao

Lin, JaeDong Lee, Olivier Delaire, Max Kresch,

Michael Aivazis

Experimental Inelastic Neutron
Scattering

Introduction to DANSE

This book is distributed as an Acrobat pdf document, and we

recommend keeping it in this form. Many details of the software

documentation are far too extensive to include inside this document directly,

and are provided on web sites. Especially in Chapter 7, the software module

documentation is accessed through web links in the pdf document. You are

welcome to print hardcopies, but please keep the Acrobat pdf form too.

This book is dedicated to the new user – may you benefit from our mistakes.

Preface

A bright future lies ahead for neutron scattering studies of materials, molecules,
and condensed matter. The international science community and national sci-
ence agencies have invested heavily in new instruments and new sources of
neutrons that will overcome many of the historical limitations of neutron
scattering research. Higher intensities and instrument sensitivities are ma-
jor and obvious improvements. Experimental inelastic neutron scattering has
been particularly constrained by low countrates, forcing experimental com-
promises in energy resolution and intensity, for example. The ARCS inelastic
neutron spectrometer with its location at the high-power target station of the
Spallation Neutron Source and with its high detection efficiency, for example,
will provide unprecedented experimental productivity, overcoming many of
the restrictions caused by the low countrates that have accompanied inelastic
neutron scattering experiments to date.

As features in the data from inelastic scattering experiments become more
clear, and averaging processes are less necessary, more information can be
extracted from experimental measurements. Advanced software is necessary
to use this new information for sophisticated experiments. The goal of this
book is to describe the underlying scattering physics and dynamic processes
in materials, and show how modern software can be used to elevate the level
of science done with inelastic neutron spectrometers. A large body of special-
ized knowledge is required to design modern experiments for inelastic instru-
ments such as time-of-flight chopper spectrometers. This body of knowledge
will only grow as new capabilities become available. Unfortunately, the under-
lying concepts are scattered over many disciplines. For example, the books on
the theory of thermal neutron scattering by S. W. Lovesey and G. L. Squires
are superb. Similarly, excellent solid-state physics texts by J. M. Ziman, C.
Kittel, U. Rössler, and N. W. Ashcroft and N. D. Mermin are available for
understanding the principles of excitations in condensed matter. Unfortu-
nately, the concepts from neutron scattering and condensed matter physics
are not connected well by existing written texts. A more serious frustration
for an experimentalist is that there is no coherent source of explanations for
the computing methods used for the analysis of inelastic neutron scatter-
ing data. A vast chasm separates The C Programming Language by B. W.
Kernigan and D. M. Ritchie from The Theory of Neutron Scattering from
Condensed Matter by S. W. Lovesey. The intellectual challenge for us au-

VIII Preface

thors was organizing a coherent presentation of this wide body of knowledge,
connected by the needs of experimental inelastic neutron scattering.

This document did not begin as a textbook. Our original concept was a
manual of specifications for the ARCS data analysis software. Defining spec-
ifications is a major step in planning a software project and setting its scope.
Writing a manual of specifications forces a high degree of detailed planning of
classes and modules. As we struggled with these details on software structure,
it became obvious that they should parallel as closely as possible the science
and practice of experimental inelastic neutron scattering research. Besides
the challenge of organizing the higher-level intellectual concepts, practical
problems with notation became apparent almost immediately. (Should the
scattering vector be Q, κ or ∆k? What about its sign?)

This book is intended for a spectrum of readers spanning from graduate
students beginning their doctoral research in inelastic neutron scattering, re-
searchers who need to learn how to use DANSE (Distributed Data Analysis
for Neutron Scattering Experiments) for data analysis, and ourselves, the
authors, who need a reference manual explaining the purpose of the software
modules of DANSE. The focus of this text, and our our heartfelt concern,
however, was for the graduate student who enters the field of inelastic neu-
tron scattering with no experience with instruments, probably only a sketchy
understanding of the scientific principles, and perhaps limited knowledge of
modern concepts in software engineering. This text was designed to help the
reader in all three areas, and do so as efficiently.

Our philosophy is to present the minimal level of detail required to under-
stand physical concepts. There is some sacrifice of the care in development
found in The Theory of Neutron Scattering from Condensed Matter by S. W.
Lovesey and Introduction to the Theory of Inelastic Neutron Scattering by G.
L. Squires, but our goal was to provide explanations that are “best buys,” pro-
ducing the most physical insight for the amount of intellectual effort required
to understand them. Another goal was to present the field of inelastic neu-
tron scattering as a codified intellectual discipline, showing inter-relationships
between different topics. To do so, the notation from other books has been
altered in places, for example Q, defined as ki−kf was selected for the scat-
tering vector so that κ could be consistent with its usage in The Theory of
Lattice Dynamics in the Harmonic Approximation by A. A. Maradudin, et
al. (It is an unfortunate, but well-established convention that the scattering
vector in the diffraction literature is of opposite sign, ∆k ≡ kf − ki.)

Graduate students learning the concepts presented in this book are as-
sumed to have some understanding of scattering experiments – a good un-
derstanding of x-ray diffraction would be suitable preparation. The student
should have some competence with the manipulation of Patterson functions
in Fourier space to the level developed, for example, in Transmission Electron
Microscopy and Diffractometry of Materials by B. Fultz and J. W. Howe, and
should have some understanding of solid-state physics at the level of Prin-

Preface IX

ciples of the Theory of Solids by J. M. Ziman or Solid-State Physics by H.
Ibach and H. Lüth. Finally, the authors recommend a book such as Learning
Python by M. Lutz and D. Ascher.

Concepts from neutron scattering, solid-state physics, and computer pro-
gramming lay the foundation for the reader’s path through this book on
experimental inelastic neutron scattering. We hope your adventure through
energy and momentum space will be as fun for you as it has been for us.

Brent Fultz, Tim Kelley, Mike McKerns, Jiao Lin,
JaeDong Lee, Olivier Delaire, Max Kresch, Michael Aivazis

Pasadena
May, 2007

Contents

1. Introduction . 5
1.1 Overview of this Book . 5
1.2 Python and C++ . 7

1.2.1 What is Python? . 7
1.2.2 What is C++? . 8

1.3 DANSE . 9
1.3.1 What is DANSE? . 9
1.3.2 DANSE Programming Environment 9
1.3.3 Enabling Neutron Science . 10
1.3.4 Inelastic Neutron Scattering with DANSE 11
1.3.5 User Interactions with DANSE . 12

1.4 High-Level Architecture of DANSE . 14
1.4.1 UML . 14
1.4.2 Software Packges . 16
1.4.3 Use Cases . 17
1.4.4 Deployment Diagrams . 18
1.4.5 Classes and Inheritance . 19
1.4.6 Class Diagrams . 21
1.4.7 A View of a Software Component Framework 22

Further Reading . 24

2. Scattering . 27
2.1 Coherence and Incoherence . 28

2.1.1 Wavefunctions . 28
2.1.2 Coherent and Incoherent Scattering 30
2.1.3 Elastic and Inelastic Scattering . 32
2.1.4 Wave Amplitudes and Cross-Sections 33

2.2 Born Approximation . 37
2.2.1 Green’s Function . 38
2.2.2 First Born Approximation . 40
2.2.3 Higher-Order Born Approximations 41

2.3 Essence of Coherent Inelastic Scattering 42
2.3.1 Spherical Waves from Point Scatterers 42
2.3.2 Time-Varying Potentials . 43

XII Contents

2.3.3 Elastic Neutron Scattering . 44
2.3.4 Phonon Scattering . 45
2.3.5 Intensity from Wave Amplitude . 46

2.4 Correlation Function for Elastic Scattering – The Patterson
Function . 47
2.4.1 Overview . 47
2.4.2 Atom Centers at Points in Space 48
2.4.3 Definition of the Patterson Function 49
2.4.4 Properties of Patterson Functions 51
2.4.5 Perfect Crystals . 52
2.4.6 Deviations from Periodicity . 54
2.4.7 Uncorrelated Displacements . 56
2.4.8 Temperature . 58

3. Inelastic Scattering . 65
3.1 Correlation Function for Inelastic Scattering – The Van Hove

Function . 66
3.1.1 Atom Centers at Points in Space and Time 66
3.1.2 Definition of the Van Hove Function 66
3.1.3 Examples of Van Hove Functions 68
3.1.4 Autocorrelation Functions . 73

3.2 Relationships Between Intensities, Correlation Functions, Waves,
and Scattering Lengths . 77

3.3 General Formulation of Nuclear Scattering 78
3.3.1 Fermi’s Golden Rule . 78
3.3.2 Detailed Balance . 82
3.3.3 Crystalline Periodicity . 85
3.3.4 A Subtlety of Quantum Mechanics 85
3.3.5 Gaussian Thermal Averages . 87
3.3.6 Impulse Approximation . 89
3.3.7 Multiphonon Expansion . 91

3.4 Magnetic Scattering . 93
3.4.1 Magnetic Form Factor and Scattering Amplitude 93
3.4.2 Vector Orientations in Magnetic Scattering 96
3.4.3 Averaging over Neutron Polarizations 97

Further Reading . 100

4. Dynamics of Materials and Condensed Matter 101
4.1 Lattice Dynamics . 101

4.1.1 Atomic Force-Constants . 101
4.1.2 Equations of Motion . 103
4.1.3 The Eigenvalue Problem for the Polarization Vector . . 104
4.1.4 Calculation of the Phonon Density of States 104
4.1.5 Symmetry Constraints on the Force-Constant Matrices 105
4.1.6 References . 105

Contents XIII

4.2 Harmonic, Quasiharmonic and Anharmonic Phonons 105
4.2.1 Definitions . 105
4.2.2 Phonons in Thermodynamics . 106
4.2.3 Phonons and Heat Capacity . 108

4.3 Group Theory and Lattice Dynamics . 110
4.3.1 Real Space . 110
4.3.2 k-space . 111
4.3.3 Time-reversal symmetry in the dynamical matrices . . . 117
4.3.4 Implementation in DANSE . 120

4.4 Spin Dynamics in Solids . 120
4.4.1 Spin as a Source of Magnetism . 120
4.4.2 Localized Spins . 121
4.4.3 Itinerant Spins . 123
4.4.4 Localized Spins Embedded in Itinerant Spins 126
4.4.5 Strongly Correlated Electrons . 128

4.5 N/A Simulations of Lattice Dynamics . 129
4.6 Simulations of Spin Dynamics . 129

4.6.1 Monte Carlo Method . 129
4.6.2 Spin Updates in Monte Carlo Simulations 130
4.6.3 Low Temperatures . 132
4.6.4 Time Evolution of Spins . 133
4.6.5 Observables . 134
4.6.6 Comments on Quantum Monte Carlo Simulations 135

Further Reading . 136

5. Instruments . 139
5.1 Chopper Spectrometers . 139

5.1.1 Concept of a Chopper Spectrometer 139
5.1.2 Neutron Sources . 141
5.1.3 Neutron Guides . 144
5.1.4 Fermi Choppers . 151
5.1.5 Detectors . 155
5.1.6 Energy Resolution . 155
5.1.7 Q Resolution . 157
5.1.8 Optimization for ∆Q/Q in Elastic Scattering 158
5.1.9 Optimization of ∆Q/Q for Inelastic Scattering 161
5.1.10 Background . 164
5.1.11 Sample Design . 165
5.1.12 Sample Design: Worked Example of LiFePO4 170

Further Reading . 171

XIV Contents

6. Essential Data Processing . 173
6.1 Steps to Transforming Data into a Function of Energy and

Momentum . 176
6.1.1 Operations and Data Structures . 176
6.1.2 A Closer Look at Each Task . 176

6.2 Transformations and Information . 181
6.2.1 Categorization of Transformations and Information . . . 183
6.2.2 Coherent – Incoherent . 183
6.2.3 Monocrystal – Polycrystal . 185
6.2.4 Inelastic – Elastic . 185
6.2.5 All Specific Cases . 187

6.3 Absorption . 191
6.4 N/A Multiple Scattering Correction . 192
6.5 Calculation of Multiphonon Scattering . 192

6.5.1 Multiphonon Correction – Iterative 198
6.5.2 Multiphonon Correction – Fourier Log 199
6.5.3 Neutron Weighting . 201
6.5.4 N/A Coherent Case . 201
6.5.5 Simultaneous Multiphonon and Multiple Scattering

Corrections . 201
Further Reading . 203

7. Software Reference . 207
7.1 reduction . 207

7.1.1 Introduction . 207
7.1.2 Histogram . 208
7.1.3 Instrument . 209
7.1.4 Measurement . 211
7.1.5 Reduction Package . 211
7.1.6 Reduction Applications . 212
7.1.7 Package Design . 212
7.1.8 Miscellaneous Design issues . 213
7.1.9 Doxygen documentations . 213
7.1.10 Procedure to Create Reduction Application 214
7.1.11 Status . 217
7.1.12 Build/Install . 217
7.1.13 Performance . 217
7.1.14 To Do . 218

7.2 Module Documentation . 219
7.2.1 distutils adpt . 219
7.2.2 config headers . 219
7.2.3 journal . 220
7.2.4 pyre . 220
7.2.5 array kluge . 221
7.2.6 stdVector . 221

Contents XV

7.2.7 hdf5 cpp . 221
7.2.8 hdf5fs . 222
7.2.9 nx5 . 222
7.2.10 histogram . 222
7.2.11 measurement . 222
7.2.12 instrument . 223
7.2.13 reduction . 223
7.2.14 bvk . 223
7.2.15 sam . 224
7.2.16 pyIDL . 224
7.2.17 graphics . 224
7.2.18 cctbx adpt . 225
7.2.19 simulation . 225
7.2.20 mcstas . 226
7.2.21 pyIO. 227
7.2.22 Multiphonon . 227

Further Reading . 228

8. N/A Structure of Computer Programs 229
8.1 N/A Abstractions . 229

8.1.1 N/A Abstractions of Procedures . 229
8.1.2 N/A Abstractions of Data . 229

8.2 N/A Functions, Classes, Modules, and All That 229
8.3 N/A Data Flow and Streams . 229
8.4 N/A Computer Graphics . 229
Further Reading . 229

9. DANSE Architecture and Engineering . 231
9.1 Software for Inelastic Scattering . 231

9.1.1 Overview of Capabilities . 231
9.1.2 Data Reduction . 231
9.1.3 Modeling . 232
9.1.4 Direct Experiment Simulation . 233

9.2 An Architecture for Distributed Data Analysis 234
9.2.1 Overview . 234
9.2.2 Components . 235
9.2.3 Data Streams . 237
9.2.4 Implementation . 239
9.2.5 Advantages of a User-Directed, Distributed Architecture240
9.2.6 Extensibility by Scientists . 240

9.3 Extending DANSE: Writing C++ Extensions to Python 241
9.3.1 Overview . 242
9.3.2 A Little More Detail . 243
9.3.3 A Lot More Detail: Wrappers . 243
9.3.4 A Lot More Detail: Method Table 249

XVI Contents

9.3.5 A Lot More Detail: Init Function 249
9.3.6 More Detail: Compile . 250
9.3.7 More Detail: Call it from Python 251
9.3.8 More realistic example . 251

9.4 Data Stream Protocols . 254
Further Reading . 255

10 Unused References . 257

A. Appendix . 261
A.1 Convolutions and Correlations . 261

A.1.1 Convolution Theorem . 261
A.1.2 Deconvolutions . 262

A.2 Fourier Transform of Screened Coulomb Potential 263
A.3 Fundamental and Derived Constants . 266

Index . 269

Table 0.1. Symbols and Notation — ‡ denotes difference with Squires

General Notation

A magnetic vector potential

a, a† phonon annihilation and creation operators

{a1,a2,a3} primitive lattice translation vectors

‡ {a∗1,a∗2,a∗3} primitive translation vectors of the reciprocal lattice

a0 Bohr radius a0 = ~2/(mee
2)

α coefficient of linear thermal expansion

α, β Cartesian indicies {x, y, z}
b scattering length, sometimes coherent scattering lengthbb, b, b† scattering length operator, and eigenvalues for spin- 1

2
system

B bulk modulus

Bs magnetic field from electron spins in sample

BL magnetic field from electron orbital momentum

c velocity of sound or velocity of light

c, c† annihilation and creation operators for electronic excitations

Cp heat capacity at constant pressure

CV heat capacity at constant volume

δ(x) Dirac delta function

δij Kroneker delta function

∆k scattering vector ≡ kf − ki = −Q

d2σ/dΩ dE double-differential cross-section

E energy transfer E = Ei − Ef

e(k, σ, λ) phonon polarization vector

(with components for all κ in unit cell)

f form factor of the scatterer (F.T. of potential in space and time)

fσ number of eigenvectors for each

degenerate energy (1 ≤ a ≤ fσ)

G(r, t) “Van Hove” function: space-time correlation function

‡ Gs(t) “self-correlation” function: time-time correlation function

γ Grüneisen parameter

Γ (R,ω) space-energy corrrelation function

‡ g(ω) phonon density of states

‡ g arbitrary reciprocal lattice vector

‡ {h, h, l} indicies of reciprocal lattice vector

g = ha∗1 + ka∗2 + la∗3
H Hamiltonian

‡ I(Q) intensity (for diffraction)

‡ I(Q, ω) intensity for scattering (same as S(Q, ω))

I(Q, t) intermediate function

J(r − r′) exchange integral in Heisenberg Hamiltonian

‡ κ, κ′ indices of atom in basis

‡ ki incident neutron wavevector ki = 2π/λ

‡ kf scattered (final) wavevector kf = 2π/λ

Table 0.1. Symbols and Notation

General Notation (cont.)

l, l′ indices of unit cells

λ neutron wavelength

λi, λf initial and final states of scattering system

λ (or a) denotes (or index for) independent

eigenvector for each σ or ω2
σ

ML(r) magnetization of sample (electron orbital part)

Ms(r) magnetization of sample (electron spin part)

M(r) magnetization of sample M(r) = ML(r) + Ms(r)

‡ fM(k) Fourier transform of sample magnetization

‡ fM⊥(k) projected part of fM(k),

perpendicular to both Q and fM(k)×Q

Mκ mass of atom in basis

M(τ) memory function of time-time correlations

{m,n, o} indicies of real-space lattice vector

rl = ma1 + na2 + oa3

me electron mass

mn neutron mass

µB Bohr magneton µB = e~/(2mec)

µN nuclear magneton µB = e~/(2mnc)

µN magnetic dipole moment of neutron

ω angular frequency in ~ω = Ei − Ef

P (r) “Patterson function”: space-space correlation function

φ(v) velocity distribution of incident neutron flux

Φ incident neutron flux

Φαβ(lκ; l′κ′) force constant between two atoms

ψ(r, t) wavefunction of incident or scattered neutron

‡ Q scattering vector Q = ki − kf

ri position of a scattering atom or spin

‡ rl,κ atom site in a crystal

‡ rl lattice site in a crystal

‡ rκ basis vector

r number of atoms in basis

‡ re classical electron radius re = e2/(mec
2)

rp “classical proton radius” rp = e2/(mpc
2)

R position vector

Table 0.1. Symbols and Notation

General Notation (cont.)

s spin of electrons in sample

S(Q, ω) “scattering law” (scattered intensity: same as I(Q, ω))

σ cross-section

σcoh coherent cross-section

σinc incoherent cross-section

σtot total cross-section

σ (or s) denotes (or index for) a distinct value of ω2
σ

‡ 2θ = φ scattering angle

‡ θB Bragg angle

θD Debye temperature

u(t) (small) displacement of nucleus

ul,κ(t) displacement of nucleus

in unit cell l and basis point κ

U U = −iQ · u(0)

u(κ) and uα(κ), uβ(κ) atom displacement in a phonon,

and Cartesian components

v velocity of neutron

V V = iQ · u(t)

W exponent for Debye–Waller factor = e−2W

W = 1
2
〈(Q · u)2〉

ξ extinction distance

Y (Q, τ) momentum-time corrrelation function

Z partition function

Table 0.1. Symbols and Notation

Group Theory Specialized Notation

S ≡ {S |v(S) + x(m)} Seitz space group operator

h order of the group (number of elements)

S matrix of rotation or improper rotation

v(S) little displacement vector

for a screw axis operation

x(m) lattice translation vector

Γ S(k; {S |v(S) + x(m)}) 3r × 3r unitary matrix of symmetry

operator (in recip. space)

Ri ≡ {R |v(S) + x(m)} symmetry operator

for a single wavevector k

1. Introduction

1.1 Overview of this Book

Welcome to inelastic neutron scattering – theory, experiment, and data anal-
ysis. Welcome also to distributed data analysis for neutron scattering experi-
ments, DANSE, and to the software engineering that makes it possible. This
Chapter 1 begins with a short overview of the rest of the book, which spans
from the quantum mechanics of scattering to the structure of the DANSE
software.1

Chapters 2 and 3 are the most pedagogically formal chapters, written in
the style of a graduate-level physics textbook. These textbook explanations
were included for two reasons. Collecting the basic physics provides a handy
reference for new users who are less familiar with inelastic neutron scatter-
ing. Second, textbook-style derivations provide both context and a common
notational standard for DANSE. The descriptions of data processing steps
in Chapter 6, and the descriptions of the software components in Chapter 7
refer directly to the variables, equations, and physical processes described in
Chaps. 2 and 3.

Throughout Chap. 2, neutron scattering is treated as wave scattering.
The phase of the neutron wavefunction scattered from a point, the complex
exponent of ei(Q·r−ωt), is studied for its interference with waves emitted from
other points in space, and from other instants in time. The intensity is the
double Fourier transform of the Van Hove space-time correlation function:
I(Q, E) = FrFtG(r, t). This relationship is developed in proper detail for
both nuclear and magnetic scattering.

Chapters 2-4 are a subset of a course on condensed matter physics. They
covers the known dynamical processes that cause the scattering potential
to vary with time. For neutron scattering, these are the motions of nuclei,
which are analyzed as phonon dynamics, and the motions of electron spins,
which have several types of excitations. Thermodynamics aspects of these
excitations are also described, as are some fundamental issues in modern
research on correlated electron systems.
1 Additional explanation about why this book was written, and how its scope was

selected, is provided in the Preface.

6 1. Introduction

Chapter 5 explains the components of inelastic neutron spectrometers.
The focus is on the direct-geometry Fermi chopper spectrometer, which allows
measurements over wide ranges of energy and momentum transfers between
the neutron and the sample. Chopper spectrometers such as ARCS send a
burst of neutrons down an incident flight path to the sample, and then time
the arrival of neutrons at detectors. A number of arguments are presented
to explain the operational issues and the technological challenges that were
faced in the design of the ARCS instrument. When planning an experiment
with ARCS, critical decisions must be made concering the size and shape of
the sample, and the operation of the Fermi chopper. Chapter 5 helps explain
these choices.

Chapter 6 describes the reduction of data from neutron scattering exper-
iments. Large datasets, typically 0.5 GB/run, are acquired from a chopper
spectrometer with a pixelated detector spanning a wide range in angle. The
descriptions of data reduction focus on the types of data structures that
must be manipulated at each step – their dimensions, variables, and physical
meaning. Other types of data corrections are explained, including multiple
scattering (where a neutron is scattered more than once as it traverses a thick
sample), and multiphonon scattering (where a neutron generates more than
one inelastic excitation when it is scattered).

Chapter 7 is a description of the software packages in DANSE. To some
extent, this chapter follows a conventional style for software documentation
familiar to programmers and scientists. It does, however, contain embed-
ded web links so that updated, thorough developers’ information on specific
packages can be obtained promptly by clicking on the links. These web pages
include developer’s explanations, and documentation (including UML dia-
grams) generated by doxygen and epydoc. Maintaining these thousands of
pages is practical with an online format, but is not practical in LATEX docu-
ments.

Chapter 8 explains the broad principles of computer science. There are
certainly many other books on modern object-oriented programming, but this
tends to be a topic neglected by scientists working on neutron scattering. It is
hoped that Chapter 8 will reveal the beautiful correspondence that is possible
between the structure of well-designed software and the hierarchy of physical
concepts. To some extent, summarizing physical laws in software is similar
to summarizing them in a textbook. Such background on the structure of
computer programs is helpful for understanding Chapter 9.

Chapter 9 explains the software architecture of DANSE. It covers the
data analysis capabilities presently available to a scientist, but the emphasis
is on explaining the architecture. DANSE is composed of software encap-
sulations called “components” that communicate with each other through
standard types of data streams. This modularized design, together with its
control structure, makes it possible to distribute the data analysis over mul-
tiple computers, as in Grid computing.

1.2 Python and C++ 7

Another important part of Chapter 9 is its explanation of how the soft-
ware components are built. In essence, modularization was performed by
extending the open-source language Python. Python is an interpreted lan-
guage, so it is possible to restructure Python programs interactively without
recompilation. Interpreted languages have always had an an advantage for
quick rearrangement and experimentation. This programming flexibility is
inherited by DANSE because the components of DANSE are actual Python
functions. Within reason, they can be rearranged flexibly into new Python
programs that are run through the Python interpreter. Some of the actual
components are written as Python code, but this is not practical for many
components that require the high performance of a compiled language such
as C++.

Incorporating compiled code into DANSE requires some explanation. Ev-
erything that runs on a computer is a program, including the language Python
itself. Since Python is written in the C language, and its source code is openly
available, it is practical to use the C language to write new functions for
Python. A standard applications program interface (API) is provided in a
Python installation to help programmers extend Python by adding exten-
sions written in C or C++. Chapter 9 explains how to use this API to build
new Python functions from code written in C, using examples from neutron
scattering data analysis.

1.2 Python and C++

1.2.1 What is Python?

An interesting, short explanation of Python is provided by the Python open
source community. The following quotation from their website,

http://www.python.org,
also conveys some of the flavor of Python documentation and perhaps gives
some insight into the open source community itself.

python, (Gr. Myth. An enormous serpent that lurked in the cave of
Mount Parnassus and was slain by Apollo) 1. any of a genus of large,
non-poisonous snakes of Asia, Africa and Australia that suffocate
their prey to death. 2. popularly, any large snake that crushes its prey.
3. totally awesome, bitchin’ language that will someday crush the $’s
out of certain other so-called VHLL’s ;-). Python was developed by
Guido van Rossum, who named it after the classic British television
comedy series Monty Python’s Flying Circus.

Python is an interpreted, interactive, object-oriented program-
ming language. It is often compared to Tcl, Perl, Scheme or Java.

Python combines remarkable power with very clear syntax. It
has modules, classes, exceptions, very high level dynamic data types,

8 1. Introduction

and dynamic typing. There are interfaces to many system calls and
libraries, as well as to various windowing systems (X11, Motif, Tk,
Mac, MFC). New built-in modules are easily written in C or C++.
Python is also usable as an extension language for applications that
need a programmable interface.

The Python implementation is portable: it runs on many brands
of UNIX, on Windows, DOS, OS/2, Mac, Amiga... If your favorite
system isn’t listed here, it may still be supported, if there’s a C com-
piler for it. Ask around on comp.lang.python – or just try compiling
Python yourself.

Python is copyrighted but freely usable and distributable, even
for commercial use.

An excellent tutorial on Python is distributed with the software itself,
and the python.org website has links to others.

1.2.2 What is C++?

Compared to Python, C++ and C are lower-level languages. They are im-
portant when pushing computing efficiency to its limits, as is often needed
in numerical computation. In essence, C++ is the computer language C with
new extensions for object-oriented programming.

Although the language C is approximately a subset of C++, there are
some differences between these languages even for the same capabilities.
Compared to C, the C++ language provides for better error checking by
the compiler, and increased flexibility in working with variables and func-
tions. Some improvements C++ are in input/output, flexibility in naming
functions, typing and initialization of variables, and keywords.

The powerful new capability of C++ is its extension to object-oriented
programming. The old programming paradigm of functions and data is re-
placed by objects that include both. Important concepts include abstraction,
where the object interface is specified in detail, so the code for the object
may be replaced readily or written at a later stage of a software project.
The C++ language alows control over encapsulation, where the code for an
object can be hidden from other parts of a program, reducing the liklihood
of unwanted interactions. C++ provides a hierarchial structure that encour-
ages the building of larger objects from smaller ones, and for deriving new
objects from a standard base object, which inherit its characteristics. C++
also supports virtual functions, which allow a set of different objects to be
treated in a similar way.

The C++ language is powerful, but it is dangerous in that it offers many
ways to write cryptic code with very obscure bugs. This is a serious concern
for a project where programming is done in part by physical scientists, who
are more interested in results than in the elegance of software structures. In
the year 2001 when the project was started, there was no clear alternative

1.3 DANSE 9

programming language that would have been supported for more than a
decade into the future. On the other hand, there is elegance in the structure of
computer programs, and this elegance compensates in part for the discipline
required for robust C++ programming.

1.3 DANSE

1.3.1 What is DANSE?

DANSE or “Distributed Data Analysis for Neutron Scattering Experiments,”
is an integrated software system for doing neutron scattering science on
a computer. “Doing neutron scattering” means 1) performing all essential
transformations of raw data acquired with neutron instruments, plus 2) mod-
eling and simulating the structure and dynamics of the samples, and predict-
ing the neutron scattering. “Integrated” means providing a uniform environ-
ment for comparing 1 and 2. The modular structure of the proposed system
parallels the steps of data analysis performed by scientists, making it nat-
ural to use. It is extensible so that working scientists can easily transform
their computer programs into interoperating DANSE components. The dis-
tributed nature of the architecture makes it possible to use high-performance
computing resources that enable new types of science with neutron scattering
data.

A full understanding of DANSE requires the understanding of two sub-
jects. The first, summarized in Section 1.3.2, is a software framework that
permits the interoperability of modular software components. The second,
summarized in Section 1.3.3, is the set of software modules needed for data
analysis for the different subfields of neutron scattering research. A more de-
tailed description of the software architecture is presented in Section 1.4 of
this chapter, and in Chapters 7 and 9.

1.3.2 DANSE Programming Environment

Technically, DANSE is a “component-based runtime environment.” This
means that the components are pre-compiled, and interconnected by the user
at runtime. Examples of components are: readers for data files, C++ codes
for data reduction, user-interactive graphics packages, commercial data anal-
ysis environments such as Matlab, FORTRAN codes for electronic structure
calculations on Linux clusters, and Monte Carlo simulations of instruments
for neutron scattering. The user directs the interconnections of these com-
ponents, using either a graphical programming interface or a command-line
interface, depending on need or preference. In a graphical programming inter-
face, components are depicted naturally as boxes to be retrieved from library
shelves, and their interconnections are depicted as wires.

10 1. Introduction

Interconnections between components provide data flow and control. An
important design decision for the DANSE architecture was to build the com-
ponents and interconnections with a high-level programming language. Pro-
gram execution is directed by a Python interpreter [6][7], using XML [8][9]
for describing the data and control functions. Using a high-level language,
Python, for these interconnections frees developers from working with com-
pilers, low-level linkers and header files. The developers of software for neu-
tron scattering research are scientists. Many gravitate towards commercial
data analysis environments such as Matlab [10], IDL [11] or Igor [12] to es-
cape from the lower levels of computing. The challenge is to offer them both
a more powerful environment and ease of use.

Python is readily extensible to incorporate �FORTRAN programs, C++
programs, Matlab, and IDL. All components in the DANSE system are
Python objects, and in a single process space these objects interoperate
through the Python interpreter [13][14]. Interoperation in a distributed en-
vironment requires XML-based data exchange protocols, but neutron scat-
tering research requires the exchange of only three generic types of data
as explained below. A possible concern about an interpreted high-level lan-
guage such as Python is that it involves the tradeoff of computing perfor-
mance for convenience. This presents a design opportunity, however. The
most computationally-intensive tasks should be performed within the compo-
nents compiled from �FORTRAN and C++ codes, and given Python bindings.
Minimal time is lost at the level of the Python interpreter when transferring
execution threads between components. The advantage of having the inter-
connections of components at a high level is that more scientists are enabled
to contribute new components to the system.

1.3.3 Enabling Neutron Science

The DANSE system offers opportunities for the design of more efficient ex-
periments by use of use of prior simulations, or simulations that could be
performed as measurements are underway and experimental trends begin
to emerge. Some of the most exciting new experiments made possible by
the most recent high-performance neutron instruments can be executed only
with new software. Examples include single crystal analysis with chopper
spectrometers, or beam time optimization for stress tensor measurements
with an engineering diffractometer. Detailed simulations of the structure and
dynamics of materials and molecules are readily possible with the ab initio
calculations of today [15][16][17][18][19], but these simulations and neutron
scattering experiments cannot yet be compared in the same environment.
Scientists should be exploiting fully the data from neutron instruments, per-
forming sophisticated experiments with detailed input from theory, compar-
ing the experimental data to simulations, and having more creative freedom
to analyze the data in a broader scientific context than is possible with a

1.3 DANSE 11

stand alone software package running on a personal computer. Offering pow-
erful software and hardware to the user will elevate the standards for data
analysis, and elevate the level of science.

The DANSE data analysis software is being developed by scientists who
work with real data. Neutron scattering research is organized into subfields
specializing in different types of science, approximately clustered around in-
struments that perform particular types of measurements. To best accom-
modate the needs of these subfields, the development of scientific software
follows a similar decomposition into subfields:

1. Diffraction. This method has the largest user community. Experiments
includes studies of crystal structure and microstructure, both on liquids
and amorphous materials, polycrystalline materials, and single crystals.

2. Engineering Diffraction. Research in this field includes measurements and
interpretations of internal strains in materials, and studies of crystalline
textures in polycrystallie materials.

3. Small-Angle Neutron Scattering (SANS). Users in this field have interests
that span from biochemistry to solid-state magnetism. SANS research in-
cludes a large activity in polymer structure, and the structural evolution
of polymers under temperature and flow.

4. Reflectometry, which measures the depth profile of neutron scattering
near a surface. The science includes structures of large molecules at sur-
faces and interfaces, and surface magnetism probed with polarized neu-
trons.

5. Inelastic scattering, which studies dynamical processes such as the ele-
mentary excitations of phonons and magnons in solids, and vibrations
and motions of molecules.

1.3.4 Inelastic Neutron Scattering with DANSE

The focus of this book is on experimental inelastic neutron scattering theory
and data analysis.2 For extracting science from inelastic neutron scattering
data, DANSE provides a set of Python language scripts, modules, and shared
objects. To some extent, DANSE can be viewed as a part of the Python lan-
guage, although of course it is not part of the standard Python distribution.

A number of working applications built from components have been tested
and documented. The flexibility of DANSE should allow for minor changes
of these data analysis procedures to accommodate experiments that differ
slightly from previous ones, or major changes to accommodate entirely new
experiments or types of data analyses. Some components of DANSE are il-
lustrated schematically in Fig. 1.1.

DANSE provides a rich set of tools for many standard operations on
neutron inelastic scattering data, such as conversion of time-of-flight data
2 It is expected that the other subfields of neutron scattering science will develop

documentation in a parallel way.

12 1. Introduction

data

I1(Ω,t)
I2(Ω,t)

In(Ω,t)

rebin
deconv
calib
bkgd

S(Q,E)

recognition
multiple excit.
multiple scatt.
 + – x /

excitations
dispersions
DOS

full
simulation

model

compare compare

tools tools physics
physical
scattering

PRL: PRL:

PRL:

NeXus
file format
converter

ISAW
Genie
Homer/Iliad

Mslice
Mscatt
Muflcor
Caltech

Tobyfit
Chop
B-v K codes

McStas

Graphics
Window

Iris Explorer
ISAW
IDL
Matlab

Fig. 1.1. Some components of DANSE, which need not necessarily be connected
simultaneously. The traditional forward analysis of data is shown in the path across
the top, with simulations and modeling accessing this path vertically. PRL denotes
a publication. This figure was developed in the year 2000 before the standardization
of UML in the DANSE project, and is shown for historical interest.

into physical distributions in momentum and energy, background corrections,
deconvolutions, corrections for multiple scattering and multiple excitations,
and data visualization. In addition to this “traditional” analysis, DANSE
offers new capabilities for working with models of structure and dynamics.
For example, a module spinwave allows the user to select a model for the
dynamics of thermal excitations on an ordered array of spins, and tune the
exchange interactions in the model for a best fit to the S(Q,ω) obtained from
a traditional forward analysis of experimental data.

DANSE offers non-traditional types of data analysis by full simulation of
time-of-flight data. Monte Carlo simulations of the instrument characteristics
have been integrated with simulations of the spin and nuclear dynamics of the
sample, allowing a direct calculation of the counts measured at the detector
bank. A set of graphics tools can be inserted at various locations of DANSE
scripts to examine the results of data operations, modeling, or simulations.
The outputs from these three types of operations can be piped simultaneously
into the visualization packages to facilitate direct comparisons between theory
and experiment, or between different types of data analysis.

1.3.5 User Interactions with DANSE

Distributed Computing. Figure 1.2 illustrates data analysis as a service
accessed through remote procedure calls to a central compute server. Com-

1.3 DANSE 13

ponents can be maintained and run centrally on well-tested platforms. A
compute server, not the user, arranges for computation on the appropriate
hardware. A user could elect for little code and no raw data to reside on his
or her local computer, while still directing the reuse and reconfiguring of the
needed Python components, including those that run on specialized hardware
such as Beowulf clusters. Our intent is to ensure that any user can utilize the
highest-performance hardware without buying and maintaining it.

Fig. 1.2. Architecture for distributed computing. The XML-RPC protocol was an
early choice that was typically run through ssh tunnels.

Nevertheless, many of the data analysis components could run locally on
the user’s computer. Bindings for proprietary scientific data analysis packages
such as IDL or Matlab are available. If a user owns one of these proprietary
packages, it can be seamlessly integrated into a DANSE analysis procedure.
Nevertheless, software running on a user’s local computer will include auto-
matic and transparent Internet access to the DANSE compute server. Such
a remote access to the DANSE system will overcome a traditional problem
with software releases for a user’s local computer, where software developers
must design for the least-capable hardware. With such access to the central
service, capabilities for large simulations on the DANSE system, for example,
would be available to the user through a familiar software client.

User interfaces. User interfaces, especially graphical user interfaces (GUIs),
can simplify access to the software system while offering access to much of its
flexibility and power. These two requirements of simplicity and flexibility are
usually in conflict, and different users will prefer different balances between
them. User interfaces are usually controversial, and some designs are fraught
with peril, as illustrated in Fig. 1.3

There are fundamental reasons why different users will always need dif-
ferent interfaces to the data analysis framework. A simple set of controls is
appropriate not only for new users, but also for advanced users who have
repetitive tasks. Such “dashboard”-style controls are also appropriate when
real time analyses are performed during data acquisition at 3:00 AM. A second

14 1. Introduction

Fig. 1.3. User interfaces. (a) Good. (b) Bad.

user interface is appropriate for rearrangements of data analysis procedures,
such as performing a different type of background correction or a fit to a dif-
ferent type of analytical model. A “wiring diagram” metaphor (see Fig. 1.4)
is an intuitive way for the user to specify these operations, where the user
can select data analysis components from both local and remote libraries,
and drag-and-drop the components onto the GUI canvas. A command line
interface allows a user to access the full capabilities of the Python language
and might be the preference of some users, especially for development work.

Graphical user interfaces are expected to change with time. Changing
the DANSE GUI should not be difficult because of a clean separation be-
tween the user’s depiction of the data analysis procedure, and the server’s
execution of the data analysis procedure. Parts of the first DANSE GUI
were adapted with major modifications from the “Visual Python Program-
ming Environment” (ViPEr) [26] developed by Michel Sanner’s group at the
Scripps Oceanographic Institute. ViPEr is based on open source software3.
This user interface is shown in Fig. 1.4. The execution engine of ViPEr has
been modified substantially to be compatible with the DANSE system, but
the interface is shown in Fig. 1.4.

1.4 High-Level Architecture of DANSE

1.4.1 UML

This section uses “UML Diagrams,” which are part of the Unified Modeling
Language 2.0 (a standard maintained by the Object Management Group, an
open consortium). UML offers a set of graphical diagrams that describe soft-
ware systems, and these diagrams are especially suited for describing object-
oriented software systems such as DANSE. There are several different types of
UML diagrams. Each type of diagram has its own scope, in which information
is presented accurately, and each type of diagram has known limitations that
bound its scope. For example, a deployment diagram shows the computers on
3 Python, Tkinter, PyXML, Python Mega Widgets, 4Suite, PyOpenGL (and sub-

package: gle), Gnuplot.py, Numeric.py

1.4 High-Level Architecture of DANSE 15

Fig. 1.4. Screen shot of the present ViPEr interface to the DANSE client software.
Boxes on upper right represent libraries of data analysis components, local or re-
mote, on five file systems. The workspace for arranging data analysis procedures is
on the lower right, with components in place for reducing a data set from the Pharos
instrument. As the cursor is placed over input or output ports, a description of data
types is presented in a dialog box. Upper left shows the Matlab window launched
by the analysis network, in which the data files were corrected and normalized. The
output from Matlab was sent into the graphical display in the lower left window for
comparison with a lattice dynamics simulation on the right of the window. (This
display was generated by ISAW, an integrated spectral analysis workbench.) Com-
ponents that ran remotely are bordered in purple, local components are bordered
in yellow.

which software components run, but has no information about the sequence
of component execution. The strength of UML diagrams is that within their
scope of information they are unambiguous, and are well documented. Two
recommended references are:

1. M. Kratochvil and B. McGibbon, “UML Xtra-Light” (Cambridge Univ.
Press, Cambridge, 2003). Very short and easy to read.

2. M. Fowler, “UML Distilled” (Addison-Wesley, Boston, 2004). Excellent
descriptions of important UML diagrams such as class diagrams, but
sketchy descriptions of others that are less important to DANSE. The
DANSE project has adopted the notation used in this book.

16 1. Introduction

1.4.2 Software Packges

A high-level UML diagram is presented in Figure 1.5. This figure is a UML
package diagram, and the boxes are many of the actual software packages in
the alpha release of the ARCS software of July, 2005 (Monte Carlo, ARCStest,
and simulation packages are not shown). The software packages are at the
scale of application or utility programs, and some of them can be used as
standalone applications. The arrows in the figure depict dependencies of the
software packages. For example, the package “stdVector” must be installed
for “reduction” to operate, but “visualization” does not need “stdVector.”
Documentation on these packages is the subject of Chapter 7, which contains
web links to more thorough and recent information. The full DANSE system
will contain many more packages, perhaps by a factor of ten. These packages
are not yet formulated, but their specific functionalities are listed in the Work
Breakdown Structure for DANSE, which to date is an NSF Construction
proposal.
http://wiki.cacr.caltech.edu/danse/index.php/Top-level doc for ARCS alpha

Fig. 1.5. Packages in the alpha release of the ARCS software for data reduction
and visualization, showing dependencies. The package “reduction” has the internal
structure shown in Fig. 1.9.

1.4 High-Level Architecture of DANSE 17

1.4.3 Use Cases

Use cases illustrate how a software system is intended to be used. An actor
(in the sense of a person starting actions of the software) follows a usage
scenario. It is unclear if a natural language description is of more value than
a graphical UML use case diagram, but we use both in the three examples
presented in Figure 1.6.

Fig. 1.6. Three use cases for DANSE (a) Reduction. (b) Modeling. (b) Simulation.

18 1. Introduction

Figure 1.6a depicts a common scenario when a neutron scattering exper-
iment is running. The actor (user) at left locates disk files containing recent
data. The user seeks the display of S(Q,E), but this user has a preferred
format for the display, perhaps preferences that were set for him by another
person some time in the past. The display requires the use of a software
package called “Reduce,” which accesses the NeXus files containing the raw
data.

Figure 1.6b depicts a typical scenario after data acquisition, perhaps per-
formed at the user’s home or office. This user has discovered a large shift
in phonon frequencies with temperature, and seeks to make a plot of the
interatomic forces in a crystal versus temperature. The software package to
graph the interatomic forces requires access to reduced data as in the first
use case, but it uses an iterative algorithm where the parameters in a Born-
von Kármán lattice dynamics model of Section 4.1 are optimized to fit the
reduced experimental data.4

Use case diagrams are interesting when multiple actors are involved. Fig-
ure 1.6c depicts a collaborative effort to measure an energy gap in a one-
dimensional quantum magnet. The goal is to test a theory of spin dynamics.
Unfortunately, the experimenter noticed an increased instrument background
associated with the applied magnetic field, and requested help from the in-
strument scientist in correcting the background used by the package Reduce.
Being a persuasive fellow, the experimentalist was also able to interest a
theoretically-inclined colleague to adapt a high-powered model for the imag-
inary part of the spin susceptibility for use in a McStas simulation of the
experimental scattering. The theorist wants to run the Path Integral Quan-
tum Monte Carlo code on her own computing cluster, for which the code was
optimized.

These use cases for DANSE are of course not a complete set. Neverthe-
less, they already show how and why users demand a wide variety of software
capabilities. These vary from the self-contained and quick analysis of Figure
1.6a to large collaborative efforts involving multiple persons at different loca-
tions. Flexibility of software functionality and adaptable usage of computing
resources is important for the analysis of neutron scattering data.

1.4.4 Deployment Diagrams

Computer hardware continues to follow the trend of Moore’s Law, where
processing performance per unit cost, P , continues to double every 1.5 years
as P ∝ 2y/1.5, where y is in years. In some scientific domains it has been found
that software algorithms follow a similar trend, although we know of no such
4 An astute reader may wonder if the fit is performed at the level of the S(Q,E)

from Figure 1.6a, or is there a further reduction to a phonon density of states
before the fit. Although the diagram could be refined further to provide this
detail, there will invariably be further questions about data formats that are
used by Fit, Reduce and BvK that are beyond the scope of a use case diagram.

1.4 High-Level Architecture of DANSE 19

assessment for neutron scattering software. Unfortunately, the complexity of
physical systems that can be simulated is not increasing with time as 2y/0.75.
Scaling of electronic structure calculations with the number of electrons, N ,
goes as N ∝ P 1/3, and the algorithms are improving slowly. Perhaps the
number of atoms for which these computations are possible is increasing
with time as N ∝ 2y/3, i.e., doubling every three years. The improvement
in computing capability is an exciting trend, but scientific computing will
be constrained by computing resources for at least the next decades. Access
to computing resources will remain a concern for scientists, and flexibility in
using these resources is a central priority for the DANSE system.

DANSE offers flexiblility in its use of computing resources, as shown by the
UML deployment diagrams of Figure 1.7. UML deployment diagrams show
how software uses various parts of hardware and other software systems. Fig-
ure 1.7a is particularly simple. It is often practical to carry data files in a
laptop computer, and some types of visualization and analysis can be per-
formed efficiently with this deployment of DANSE. Such a deployment is not
sufficient for computations that include molecular dynamics, finite element
methods, or LDA electronic structure calculations, of course. The valuable
computing resources for such computations are negotiated by science teams
at universities, companies, and national laboratories, following many differ-
ent procedures and rules of access. Because DANSE supports computing in
user-configurable networks, deployments such as in Figure 1.7b are possible.
A design philosophy of DANSE is that it requires no more, but no less, access
to computing resources than a user would receive on these various systems. In
most cases this means that distributed computing with DANSE is practical
when the user has a standard user account on a computing system.

1.4.5 Classes and Inheritance

Inheritance is a powerful concept in object-oriented programming. When a
programmer writes a new class, he or she need not include code for all the
required functionality if the new class can “inherit” this functionality from a
“superclass.”5 For example, it takes work to write a software component that
sends data across a network to a file on a different computer. Assume that
such a code is already in hand, however. A user who has a small program to
generate an important data string might seek to use this network transmission
code by including all the lines of this code in his program. His short code is
overwhelmed by the addition of this new functionality.

Inheritance is an easier way to give small components powerful capabil-
ities. For example, by inheriting attributes of the pyre framework, a sim-
ple component will be endowed with capabilities of stream communications
across a network. The author of the component can expect that the streams
5 If possible, it is easier to get rich by inheriting than by doing actual work.

20 1. Introduction

Fig. 1.7. Deployment diagrams for DANSE. (a) A minimal deployment on a laptop
computer without network access, useful on airplanes for example. (b) A distributed
analysis network, assuming authorized user access through firewalls.

from a simple component are fully separated from streams from other com-
ponents. This separation is assured because when a simple component, here
a Python class, is instantiated into an object6, it occupies a part of the com-
puter memory independent of the other components.

Consider an example of inherited functionality. First consider a standard
case where a text string is written to a file. This can be done with built-in
Python functions, but redirecting the standard i/o is another way to do this.
We make use of the module sys, and direct its output to a disk file:
import sys
sys.stdout = open(’log.txt’, ’a’)
print "This text message will go into the file <log.txt>."

Running this three-line program generates a new file, log.txt, that con-
tains the text string as above. Our simple program inherited the attributes
contained in the module sys, including its attribute stdout. This approach
could be used to write a simple code to write a file across a network. We need
to also import pyre:
import sys pyre
sys.stdout = pyre.gsl.scp.open(’btf@caltech.edu:~/log.txt’, ’a’)
print "This text message will go into the file <log.txt>."

The result is a new file, log.txt, located in the home directory of btf on
the computer caltech.edu. Here pyre.gsl provides the network services in
6 A class is part of the code. To use it, an instance is created and named. This is

an “object” in memory. Although it has the same functionality as other objects
instantiated from the same class, these multiple objects have their own states and
operate independently. Consider instantiation as a“cloning” process, for example.

1.4 High-Level Architecture of DANSE 21

a convenient and consistent way, even if the remote system is not running
DANSE. Importing this functionality is quite easy.

Classes in Python and pyre are based on namespaces. When a Python
class statement is executed, assignments create names local to the class. These
become class attributes. By instantiating a class, making it into a named
object in memory, the new object has its own local attributes. The object
inherits from superclasses, however, by searching upwards for attributes not
available locally. Each usage of features from a superclass is kept in a dis-
tinct namespace. Each can be reached by a detailed address following the
convention highobject.midobject.lowobject.attribute.

1.4.6 Class Diagrams

A class diagram shows the structure of real code. Class diagrams can be
constructed by automatic tools that scan software modules for imports and
class declarations, then graph how components are inter-related. These tools
also identify the function declarations and data structures internal to the
components.

Notation and details of class diagrams are covered by excellent books on
UML, especially the text by M. Fowler. For the purpose of the present discus-
sion of the DANSE system, however, we show the high-level class diagram of
the pyre framework in Figure 1.8. A component, perhaps written by a user
in the Python language, is shown right of center in this diagram.

Fig. 1.8. Class diagram of pyre 0.6.

Figure 1.8 shows how pyre interacts with one component. A real appli-
cation, such as for data reduction, may include a hundred components. It is

22 1. Introduction

most useful to think of pyre not as all the classes of Figure 1.8 and their
subclasses, but rather as a supporting infrastructure for the DANSE system.
Pyre manages the life cycles of components and endows them with standard
functionality. Two versions of a component diagram are shown in Figure 1.9.
For many pruposes, it is sufficient to know that components are supported by
pyre as in Fig. 1.9b so that the arrows between them operate as expected, for
example. After all, in such diagrams we draw neither the components of the
operating system, nor the components of the Python language, even though
we know that these are essential. Figure 1.9b is a standard UML 2.0 compo-
nent diagram showing how components interact on the pyre framework.

1.4.7 A View of a Software Component Framework

The value of a software component framework can be understood by analogy
to an operating system, but at a higher level of abstraction. Without an oper-
ating system, it is possible to boot a computer into the entry point in memory
for an application program. The application program would need to include
input/output services so that output could be saved to a disk file. It would
then be possible to reboot the computer to run a second application that uses
the saved results. Today nobody uses a computer this way. All users demand
a robust operating system that allows application programs to run concur-
rently, facilitates interchanges of data through memory or pointers, manages
the memory, and hides many machine-specific details of the input/output
routines beneath the application layer. An analogous set of basic services is
provided by a component framework, conceptually located in a layer above
the operating system. The framework allows a scientific programmer to focus
on scientific cores of components, with less attention to specifics of operating
systems, data structures, error handling, or even the physical location of the
computation.

Technically, pyre is a “component-based runtime environment.” This
means that the components are pre-compiled, and interconnected by the user
at runtime. The user directs the interconnections of these components, us-
ing either a menu, a graphical programming interface, or a command-line
interface, depending on need or preference. The user interface is a layer inde-
pendent of the components, and can be replaced or modified without affecting
the core functionalities of DANSE. For either distributed or local comput-
ing, the user could select a favorite interface for all neutron instruments,
shortening the learning curve for new users, and encouraging expert users to
experiment with new types of data analysis and computational science.

DANSE will be organized with the data flow paradigm as the basic ab-
straction, with a layer for execution control as shown in Fig. 1.9a. Typical
scientific analysis codes, written in languages such as Python, Fortran and
C, will be the cores of software components. A component mediates in several
ways between the core and its environment. The components inherit meth-
ods from the framework, including methods for passing data and handling

1.4 High-Level Architecture of DANSE 23

Fig. 1.9. (a) Schematic of the conversion of raw data into an energy spectrum.
The component NeXusReader is responsible for reading a file, and converting it into
a data object. After further analysis and user-supplied information, the component
Energy produces a histogram of intensity as a function of energy. Components
such as Bckgnd and Energy are themselves composed of lower-level components.
(b) Conventional UML component diagram, showing components interacting on a
framework labeled “pyre.”

24 1. Introduction

errors. The component is responsible for the initialization of its core, which
may require user-supplied information (depicted in Fig. 1.9a as information
above the component boxes). After a component is instantiated, it provides
information to the framework that could be passed to the user interface.
Components will negotiate their data exchanges with the help of XML-based
data exchange protocols when they are first connected.

The dark lines between components in Fig. 1.9a depict data streams be-
tween the input and output ports of different components. The conceptual
decoupling of components from each other through data streams facilitates
their physical decoupling. With the serialization of data streams,7 it becomes
possible to distribute the computation among multiple computers. Alterna-
tively, the user may prefer to organize a computation with multiple threads,
or as separate processes on the same computer. The control of component
execution is encapsulated in the executive layer of the framework. The execu-
tive layer manages the life cycles of components, and handles error conditions.
With the assistance of the executive layer, components will have access to a
centralized mechanism for the logging of status, errors, and for preserving a
record of the computation.

The role of the pyre framework in DANSE is analogous to the role of
Python itself. Pyre provides a set of debugged superclasses for the following
services:

• creation and destruction of components in memory on different computers
• standardized inter-component communication
• distributed computing
• user interfaces
• handling of errors
• journaling of debugging streams for networks

The component framework also offers these important advantages:

• encapsulation Users of a functionality are insulated from changes to the
underlying code in future releases of pyre

• structure Local scope minimizes name conflicts in a large system
• maintenance Even in a large system, there can be only one copy of code

to change
• consistency Components have common interfaces

Further Reading

The contents of the following are described in the Bibliography.
7 For the domain of computational neutron scattering research, the main types

of data to be exchanged between components are histograms and tables. Other
lightweight information that describes the data will be passed as metadata de-
scribed by XML.

Further Reading 25

H. A. Abelson and G. J. Sussman: Structure and Interpretation of Computer
Programs (MIT Press, Cambridge Mass, 2001).
Mark Lutz and David Ascher: Learning Python (O’Reilly & Associates, Inc.
1999).
Brent Fultz and Doug Abernathy: ARCS Spectrometer web site,
http://www.cacr.caltech.edu/projects/ARCS/

Tim Kelley, Mike McKerns, Jiao Lin, Michael Aivazis and Brent Fultz:
DANSE wiki web site,
http://wiki.cacr.caltech.edu/danse/index.php/Main Page

M. Kratochvil and B. McGibbon: UML Xtra-Light (Cambridge Univ. Press,
Cambridge, 2003).
M. Fowler: UML Distilled (Addison-Wesley, Boston, 2004).

2. Scattering

AAA
AAA
AAA

k

detector

source

∆k k

k0

–k0

This chapter on scattering assumes that the reader is reasonably knowl-
edgeable about elastic scattering as it is used in diffraction studies of atomic
structure. (After all, x-ray diffraction is common currency for chemists, ma-
terials scientists and condensed matter physicists.) The chapter builds on this
basic understanding of diffraction, although selected background concepts are
developed here. We begin with a discussion of coherence and energy, in part
because these concepts are sometimes taken for granted by persons having
extensive experience with diffraction experiments. In Sect. 2.2, elastic scatter-
ing from static potentials is developed in the Born approximation, giving the
basic Fourier transform relationship between the wave and the scattering fac-
tor distribution: ψ(Q) = Ff(r). This is followed by a brief explanation that
shows how time-varying potentials cause inelastic scattering by modulating
the frequency of the scattered wave.

More progress in understanding scattering experiments is possible by ana-
lyzing the correlation functions that are derived from the measured intensity,
rather than the neutron wavefunction (which is not measured directly). Sec-
tion 2.4 returns to elastic scattering to develop the concept of the Patterson
function, P (r). The Patterson function is the spatial correlation function
that includes all information about the diffracted intensity, as opposed to the
diffracted wave. The corresponding correlation function for inelastic scatter-

28 2. Scattering

ing is the Van Hove space-time correlation function. It is developed in Sect.
3.1 in Chapter 3 in a path that parallels the Patterson function, but is more
general. The double Fourier transform of the Van Hove function, G(r, t), pro-
vides all information about the scattered intensity (elastic and inelastic). The
Patterson function is a special case of the Van Hove function for static scat-
tering potentials. Graphical examples are used to demonstrate fundamental
features of the scattered intensity for the elastic case with the Patterson func-
tion: I(Q) = FrP (r), and for the inelastic case with the Van Hove function:
I(Q, E) = FrFtG(r, t). The two Fourier relationships between the scattered
intensity and the correlation functions are discussed in detail in this chapter
and the next:

• I(Q) = FrP (r), which relates the diffracted intensity, I(Q), to the Fourier
transform (from space to momentum) of the Patterson function, P (r).

• I(Q, E) = FrFtG(r, t), which relates the scattered intensity, I(Q, E), to
two Fourier transforms (from space to momentum, and time to energy) of
the Van Hove function, G(r, t).

2.1 Coherence and Incoherence

Diffraction requires “coherent scattering,” characterized by a precise relation-
ship between the phases of the incident and scattered waves. The scattered
wave is the sum of component waves, “wavelets” as we call them, emanat-
ing from the different atoms in the sample. In diffraction, phase differences
between these outgoing wavelets cause constructive or destructive interfer-
ences at different angles around the sample, e.g., the appearance of Bragg
diffraction peaks.

2.1.1 Wavefunctions

Phase. A wavefunction ψ(x, t) describes the structure of a wave (its crests
and troughs) along position x, at any time t. The mathematical form
ψ(kx − ωt) accounts for how the wave amplitude shifts in position with in-
creasing time, t. The argument of the wavefunction, kx − ωt, is called the
“phase” of the wave. It includes two constants: k (the wavevector), and ω (the
angular frequency). The phase kx− ωt is dimensionless, so it can be used as
the argument of a sine function or a complex exponential, for example. Our
mathematical form causes the entire structure of the wave ψ(kx − ωt) to
move to more positive x with increasing t. This is clear if we recognize that
a particular wavecrest in ψ exists at a particular value of phase, so for larger
t, the wave amplitude moves to larger x for the same value of kx− ωt.1

1 We say ψ(kx−ωt) travels to the right with a “phase velocity” of ω/k. The wave
ψ(kx+ ωt) travels to the left.

2.1 Coherence and Incoherence 29

One-Dimensional Wave. One-dimensional waves are simple because they
have no vector character. Suppose the wave is confined a region of length L.
The wavefunction and its intensity are:

ψ1D(x, t) =
1√
L

e+i(kx−ωt) , (2.1)

I1D = ψ1D(x, t) ψ∗1D(x, t) =
1√
L

e+i(kx−ωt) 1√
L

e−i(kx−ωt) , (2.2)

I1D =
1
L
. (2.3)

If ψ1D(x, t) were an electron wavefunction, the intensity, I1D, would be a
probability density. The prefactor in (2.1) ensures proper normalization in
the interval L, with a probability of 1 for finding the electron in the interval:

P =
∫ L

0

I1D dx =
∫ L

0

1
L

dx = 1 . (2.4)

Plane Wave. In three dimensions, a plane wave is:

ψ3Dpl(r, t) =
1√
V

e+i(k·r−ωt) , (2.5)

which has an intensity and a normalization analogous to those for the one-
dimensional wavefunction (at a snapshot in time). The spatial part of the
phase, k · r, is illustrated in Fig. 2.1a with k · r = 0, and 2.1b with k ‖ r
for two orientations of r. Along the direction of r in Fig. 2.1a there is no
change in the phase of the wave (here ψ3Dpl(r, t) = 1/

√
V e+i(0−ωt)), whereas

in Fig. 2.1b the phase changes most rapidly along r (here ψ3DPlan(r, t) =
1/
√
V e+i(kr−ωt)). The dot product k ·r for the phase in (2.5) gives the plane

wave its anisotropy.

Fig. 2.1. Plane wave with k ori-
ented to the right, with orientations
of r being (a) along the wave crests,
perpendicular to k, (b) parallel to k.

Spherical Wave. By placing the origin of a spherical coordinate system at
the center of the spherical wave, the spherical wave has its simplest form:

ψ3Dsph(r, t) =
1√
V

e+i(kr−ωt)

r
. (2.6)

If the center of the spherical wave is the distance r0 away from the origin of
the coordinate system:

30 2. Scattering

ψ3Dsph(r, t) =
1√
V

e+i(k|r−r0|−ωt)

|r − r0|
. (2.7)

Figure 2.2 shows a vector construction for r − r0, which can be obtained
by connecting the tail of −r0 to the arrow of r. At distances far from the
scattering center, where the curvature of the spherical wave is not important,
it is often useful to approximate the spherical wave as a plane wave with
r − r0 pointing along the direction of k.2

Fig. 2.2. Spherical wave
with k oriented away
from the center of wave
emission. (a) with co-
ordinate system for r
having its origin at cen-
ter of wave emission. (b)
with coordinate system
for r having an arbitrary
origin.

Phase Factor. A phase factor, e−i∆k·R or e−i(∆k·R+ωt), has the mathemat-
ical form of a plane wave (2.5), and is associated with a particular wavelet,
but beware. A phase factor is not a wave. A phase factor proves handy when
two or more wavelets are scattered from different points in space at {Rj},
typically separated by some atomic distances. What is important after the
long path to the detector is how the wavelets interfere with each other –
constructively or destructively – and this is accounted for by sums of phase
factors like this:

ψphf(∆k) =
∑
{Rj}

e−i∆k·Rj . (2.8)

The definition ∆k ≡ k−k0 (illustrated in the chapter title image) is repeated
a number of times in this book. This ∆k is a difference in the wavevectors of
two actual waves. Dot products like ∆k ·Rj give phase differences between
wavelets, but ∆k is not an actual wavevector. Chapter 5 develops these
concepts, but the reader is now forewarned that exponentials containing ∆k
are not waves, but phase factors.

2.1.2 Coherent and Incoherent Scattering

Coherent scattering preserves the relative phases of the wavelets, {ψrj
}, scat-

tered from different locations, {rj}, in a material. For coherent scattering,

2 This is often useful because real scatterers typically emit spherical waves, but
Fourier transforms require plane waves.

2.1 Coherence and Incoherence 31

the total scattered wave, Ψcoh, is constructed by adding the amplitudes of the
scattered wavelets:

Ψcoh =
∑
rj

ψrj
. (2.9)

The total coherent wave therefore depends on the constructive and destruc-
tive interferences of the wavelet amplitudes. Diffraction experiments measure
the total coherent intensity, Icoh:

Icoh = Ψ∗cohΨcoh =
∣∣∣∑

rj

ψrj

∣∣∣2 . (2.10)

On the other hand, “incoherent scattering” does not preserve a phase re-
lationship between the incident wave and the scattered wavelets. For incoher-
ent scattering it is incorrect to add the amplitudes of the scattered wavelets,
{ψrj

}. Incoherently-scattered wavelets do not maintain phase relationships,
so they cannot interfere constructively or destructively. The total intensity
of incoherent scattering, Iinc, is the sum of individual scattered intensities:

Iinc =
∑
rj

Irj
=
∑
rj

∣∣ψrj

∣∣2 . (2.11)

Because measurable intensities are added in incoherent scattering, the angu-
lar distribution of incoherent scattering from a group of N identical atoms
is the same as for a single atom, irrespective of how these N atoms are po-
sitioned in space. The total intensity is simply N times larger. Some types
of incoherent scattering occur with a transfer of energy from the wave to the
material, and these processes can be useful for spectroscopic analysis of the
atom species in a material.

It is important to emphasize the difference between the right-hand sides
of (2.10) and (2.11). Because the intensity of coherent scattering in (2.10)
first involves the addition of wave amplitudes, coherent scattering depends
on the relative phases of the scattered wavelets and the relative positions of
the N atoms in the group. Coherent scattering is useful for diffraction exper-
iments. Incoherent scattering is not. This chapter describes in sequence the
four types of scattering having coherent components that allow for diffraction
experiments on materials:

• x-rays, which are scattered when they cause the atomic electrons to oscillate
and re-radiate,

• electrons, which are scattered by Coulomb interactions when they pene-
trate the positively-charged atomic core,

• neutrons, which are scattered by nuclei (or unpaired electron spins), and
• γ-rays, which are scattered when they resonantly excite a nucleus, which

later re-radiates.

32 2. Scattering

2.1.3 Elastic and Inelastic Scattering

Besides being “coherent” or “incoherent,” scattering processes are “elastic”
or “inelastic” when there is, or is not, a change in energy of the wave after
scattering. We can therefore construct four word pairs:

(coherent elastic) (coherent inelastic)
(incoherent elastic) (incoherent inelastic)

Diffraction experiments need coherent elastic scattering, whereas spectro-
scopies that measure intensity versus energy often use incoherent inelastic
scattering. The case of incoherent elastic scattering is also common, and oc-
curs, for example, when phase relationships between scattered wavelets are
disrupted by disorder in the material. Incoherent elastic intensity does not
show the sharp diffractions associated with crystalline periodicities, but has
a broad angular dependence. Finally, coherent inelastic scattering is used
in neutron scattering studies of excitations in materials, such as such as
phonons (vibrational waves) or magnons (spin waves), that have precise
energy-wavevector relationships. In some phonon studies, a neutron loses en-
ergy when creating a phonon (so it is inelastic), but the scattering amplitude
depends on the phases of the atom movements in the phonon with respect to
the neutron wavevectors (so it is coherent).

A deeper and more rigorous distinction between coherent and incoher-
ent scattering involves our knowledge about the internal coordinates of the
scatterer:

• Consider a simple oscillator (a bound electron, for example) that is driven
by an incident wave and then re-radiates. There is a transfer of energy from
the incident wave to the oscillator, and then to the outgoing wave. Suppose
we know in full detail how the coordinates of the oscillator respond to the
incident wave. Since the scattering process is determined fully, the phases
of all outgoing wavelets have a precise and known relationship to the phase
of the incident wave. The scattering is coherent.

• On the other hand, suppose the coordinates of this oscillator were coupled
to another system within the material (a different electron, for example),
and furthermore suppose there is freedom in how the oscillator can interact
with this other system. (Often differing amounts of energy can be trans-
ferred from the oscillator to the other system because the transfer occurs
by a quantum mechanical process that is not deterministic.) If this energy
transfer is different for different scatterings, we cannot predict reliably the
phase of the scattered wavelet. The scattering is incoherent.

It is therefore not surprising that incoherence is often associated with inelas-
tic scattering, since inelastic scattering involves the transfer of energy from
the scatterer to another component of the material. Incoherence does not
imply inelastic scattering, however, and inelastic scattering is not necessarily
incoherent.

2.1 Coherence and Incoherence 33

2.1.4 Wave Amplitudes and Cross-Sections

Cross-Sections. X-rays, electrons, neutrons, and γ-rays are detected one-
at-a-time in scattering experiments. For example, the energy of an x-ray is
not sensed over many positions, as are ripples that spread to all edges of
a pond of water. Either the entire x-ray is detected or not within the small
volume of a detector. For x-ray scattering by an individual atomic electron as
described in the next section, the scattering may or may not occur, depending
on a probability for the x-ray–electron interaction.

An important quantity for scattering problems is the “cross-section,” σ,
which is the effective “target area” presented by each scatterer. With cross-
sections it is handy to think of a number, N , of scatterers in a sample of
area A as in Fig. 2.3. The probability of scattering is equal to the fraction
of sample area “blocked” by all N scatterers. For thin samples when the
scatterers do not overlap, the N scatterers block an area equal to Nσ. The
fraction of rays removed from the incident beam is the blocked area divided
by the total area:

N
σ

A
= N

σx

Ax
= ρ σx . (2.12)

Here the density of scatterers, ρ ≡ N/(Ax) has units [scatterers cm−3].

x
σ A

Fig. 2.3. These 7 scatterers oc-
cupy the fraction 0.2 of the sam-
ple area, A, and therefore remove
the fraction 0.2 of the rays from
the incident beam. From (2.12):
σ = (0.2/7)A. In the thin sam-
ple limit, the number of scatter-
ers and the amount of scattering
increase in proportion to thick-
ness, x, but σ remains constant.

To illustrate a salient feature of coherent scattering, consider the elastic
scattering of neutrons through the interaction of their spin with the spin po-
larization of electrons in an antiferromagnet. The total cross-section depends
on the total number of unpaired electrons in the material. As mentioned af-
ter (2.11), for incoherent scattering the picture would then be complete –
the spatial distribution of the scattered intensity is obtained by adding the
intensities from independent scattering events from different atoms.

Coherent scattering requires further consideration of the wave amplitudes
before calculating the cross-section. A hierarchy of wave interference processes
can occur between spin structures on different length scales:

• the unpaired electrons in the same atom (atomic form factor),

34 2. Scattering

• the atoms in the unit cell of the crystal (structure factor),
• the unit cells in the crystal (shape factor), and
• density variations across a material (small angle scattering).

The spatial redistribution of scattered intensity can be spectacularly large
in the case of Bragg diffractions, but the total coherent cross-section remains
constant. By rearranging the atom positions in a material, the constructive
and destructive interferences of coherent scattering are altered and the angles
of scattering are redistributed, but for the same incident flux the scattered
energy is conserved (for x-rays or γ-rays), or the total number of scattered
particles remains the same (electrons and neutrons).

The flux of scattered x-rays, electrons, neutrons, or γ-rays at the distance
r from the scatterer decreases as 1/r2 along r̂. A scattered photon carries
energy, so the radiated energy flux also decreases as 1/r2 from the scatterer.
The energy of a photon is proportional to E∗E, so the electric field, E, has
an amplitude that must decrease as 1/r from the center of scattering. For
scattered x-rays, we relate the electric field along r̂ to the incident electric
field at the scatterer, E0:

E(r) ∝ E0

r
, (2.13)

where the constant of proportionality would include any angular dependence.
The electric fields E(r) and E0 in (2.13) have the same units, of course,
so the constant of proportionality has units of length. The square of this
“scattering length” is the cross section per steradian, as we next show for
electron scattering (but the argument pertains to all waves).

Cross-Section for Wave Scattering. Here we find the cross-section for
wave scattering. Consider the total flux, Jsc(R), scattered through a unit area
of surface of a sphere at radius R around the scatterer. The incident beam
has a flux Jin over an area A. The ratio of all scattered electrons to incident
electrons, Nsc/Nin, is:

Nsc

Nin
=
Jsc(R) 4πR2

Jin A
=
v |ψsc(R)|2 4πR2

v |ψin|2 A
. (2.14)

We consider elastic scattering for which the incident and scattered electrons
have the same velocity, v, but for inelastic scattering these factors do not
cancel. We use the spherical wave (2.6) for ψsc(R) and the plane wave (2.5)
for ψin. For both waves, the exponential phase factors, multiplied by their
complex conjugates, give the factor 1. The normalization factors also cancel,
so (2.14) becomes:

Nsc

Nin
=
|fel|2 4πR2

R2 A
, (2.15)

where fel/R is the fraction of the incident electron amplitude that is scattered
into a unit area of the sphere at radius R. Figure 2.3 helps demonstrate the

2.1 Coherence and Incoherence 35

fact that the ratio of the cross-section σ to the area A of the incident beam
equals the ratio of scattered to incident electrons, Nsc/Nin:

σ

A
=
Nsc

Nin
=

4π|fel|2

A
, (2.16)

σ = 4π|fel|2 . (2.17)

The scattering of an x-ray by a single atomic electron can be treated in
the same way, but we need to account for the electric dipolar pattern of x-ray
radiation with a factor of 2/3 in the cross-section,

σx1e =
8π
3

∣∣fx1e

∣∣2 , (2.18)

where fx1e is the scattering length. This fx1e is the actual constant of pro-
portionality to convert (2.13) into an equality.

Anisotropic scattering is the rule rather than the exception, however,
so simple cross-sections like those of (2.17) are usually inadequate, even if
altered by factors like the 2/3 used in (2.18). The “differential scattering
cross-section,” written as dσ/dΩ, contains the angular detail missing from
the total cross-section, σ.
The differential scattering cross-section, dσ/dΩ, is the piece of area offered
by the scatterer, dσ, for scattering an incident x-ray (or electron or neutron)
into a particular increment in solid angle, dΩ.
The concept of dσ/dΩ is depicted Fig. 2.4. Note that dσ/dΩ relates an
increment in area (on the left) to an increment in solid angle (on the right).

σ
area

dσ1

dΩ1

dσ2
dσ3

dΩ2

dΩ3

∆ ∆sR

4π
[sR]

solid
angle

cm2

Fig. 2.4. The differential scat-
tering cross-section, dσ/dΩ, for
three paths past a scatterer. The
third path, dσ3/dΩ3, misses the
scatterer and contributes only to
the forward beam. The paths
with areas dσ1 and dσ2 make
contributions to the total cross-
section for scattering, σ, and
these contributions are included
when the intensity is integrated
over the differential solid angles
dΩ1 and dΩ2.

For the simple case of isotropic scattering,

dσ
dΩ

=
∣∣f ∣∣2 , (2.19)

which is a constant. For anisotropic scattering, (2.19) is generalized with a
scattering length, f(k0,k), that depends on the directions of the incident and
outgoing wavevectors, k0 and k, respectively:

36 2. Scattering

dσ
dΩ

=
∣∣f(k0,k)

∣∣2 . (2.20)

We expect to recover the total cross-section, σ, by integrating dσ/dΩ over
all solid angle,

σ =

4π∫
sphere

dσ
dΩ

dΩ . (2.21)

Substituting (2.19) into (2.21) and integrating gives (2.17), as expected.

Special Characteristics of Coherent Scattering. Compare the differen-
tial scattering cross-sections for coherent x-ray scattering by a single electron
at rj , dσx1e,rj

/dΩ, and an atom having Z electrons, dσatom/dΩ:

dσx1e,rj

dΩ
(k0,k) =

∣∣fx1e,rj (k0,k)
∣∣2 , (2.22)

dσatom

dΩ
(k0,k) =

∣∣fatom(k0,k)
∣∣2 . (2.23)

In coherent scattering we sum wave amplitudes (cf., (2.9)), so for coherent
scattering we sum the scattering lengths of all Z electrons to obtain the
scattering length of an atom:

fatom(k0,k) =
Z∑
rj

fx1e,rj (k0,k) . (2.24)

Note that (2.24) is a sum of the fx1e,rj
, but (2.23) is the square of this

sum. Equation (2.23) can predict that the coherent x-ray scattering from an
atom with Z electrons is Z2 times stronger than for a single electron, and this
proves to be true in the forward direction. The total cross-section for coherent
scattering must increase linearly with the number of scatterers (here the
number of electrons, Z). Consequently the coherent scattering is suppressed
in other directions if a scaling with Z2 is allowed in special directions. The
angular distribution of coherent scattering must be different for the atom
and for the single electron. That is, fx1e(k0,k) and fatom(k0,k) must have
different shapes (they must depend differently on k0 and k). The following
is an inequality for coherent scattering (although its analog for incoherent
scattering is an equality):

dσatom,coh

dΩ
(k0,k) 6=

Z∑
rj

dσx1e,rj ,coh

dΩ
(k0,k) . (2.25)

Integrating (2.25) gives an equality for coherent (and incoherent) scatter-
ing:

4π∫
sphere

dσatom,coh

dΩ
(k0,k)dΩ =

4π∫
sphere

Z∑
rj

dσx1e,rj ,coh

dΩ
(k0,k)dΩ , (2.26)

2.2 Born Approximation 37

because with (2.21) we see that (2.26) equates the individual electron cross-
sections to the total cross-section of the atom:

σatom,coh = Zσx1e,coh . (2.27)

The process of actually performing the sum in (2.24) evidently requires
delicacy in accounting for the phase relationships between the x-ray wavelets
scattered into different angles, and knowledge about the electron density of
the atom. This is the subject of atomic form factor calculations (see Chapter
3 in Fultz and Howe, for example, or (2.55)).

2.2 Born Approximation

Almost without a second thought, we treat neutron scattering as a wave
phenomenon with the neutron wavefunction satisfying the Schrödinger wave
equation. A neutron diffraction pattern, with its sharp peaks, is certainly
evidence of wave behavior. The interpretation of the neutron wavefunction
is different from that of a simple wave, however. Suppose we were to turn
on an neutron beam and watch the formation of a diffraction pattern, using
an area detector capable of displaying the impacts of individual neutrons.
When the neutron beam is turned on, bright flashes are seen at points on
the detector screen. Each individual event occurs at a particular point on the
detector, and does not appear as a continuous ring. With time, an obvious bias
appears, where the points of detection are most frequently at the positions
of the rings and spots of the diffraction pattern. This behavior motivates
the interpretation of the neutron wavefunction in terms of probabilities –
specifically, the neutron probability is the neutron wavefunction times its
complex conjugate (which gives a real number). Usually this probabilistic
interpretation can be ignored when we consider a diffraction pattern from
many neutrons, and we can consider neutron diffraction as the diffraction
of any other type of wave. When individual neutron events are considered,
however, we may have to recall the probabilistic interpretation of the neutron
wavefunction because individual neutron detections look like particles rather
than waves.

Another point to remember is that the wave behavior is a characteristic
of an individual neutron. When considering a diffraction pattern involving
multiple neutrons, we do not add the amplitudes of multiple wavefunctions.
Neutrons are fermions, and do not form coherent states as in Bose condensa-
tion, for example. At the viewing screen, we add the intensities of individual
neutrons. The interactions between different neutrons are not coherent.

Our picture of scattering begins with one neutron as a wave incident on
an atom. This wave looks like a plane wave because it comes from a distant
source. The wave interacts with the nucleus or magnetic electron cloud of the
atom, and an outgoing wave is generated. This outgoing wave is something
like a spherical wave originating at the atom, although its intensity is not

38 2. Scattering

isotropic. Figure 2.5 shows the geometry, wavevectors and position vectors
for our neutron scattering problem. Here both r and r′ are large compared
to the size of the scatterer. Our plane wave incident from the left, Ψinc, is of
the standard form:

Ψinc = ei(ki·r′−ωt) . (2.28)

In what follows we neglect the time dependence to emphasize the manipu-
lations of the spatial coordinates. We later recover the time-dependence by
multiplying our results by e−iωt. A spherical wave, Ψsc, travels outwards from
the center of scattering. The scattered wave has the form:

Ψsc = f(ki,kf)
eikf |r−r′|

|r − r′|
, (2.29)

where the scattering length f(ki,kf) of Sect. 2.1.4 varies with the orientation
of ki and kf , r′ is now used to locate the center of the scatterer, and the
difference, r − r′, is the distance from the scatterer to the detector. The
intensity of Ψsc falls off with distance as 1/r2, as we expect:

Isc = Ψ∗scΨsc =
∣∣f(ki,kf)

∣∣2 e−ikf |r−r′|

|r − r′|
eikf |r−r′|

|r − r′|
, (2.30)

Isc =
∣∣f(ki,kf)

∣∣2 1
|r − r′|2

. (2.31)

∆k

k0

r'

AAA
AAA
AAA

r

k

detector

r–r'
k

–k0

Fig. 2.5. Wavevectors
and position vectors
for neutron scattering.

2.2.1 Green’s Function

To obtain the scattering length f(ki,kf), we must solve the Schrödinger equa-
tion for the incident neutron inside the scattering atom (the mass of the
neutron is m, and its coordinates in the atom are r′):

− ~2

2m
∇2Ψ(r′) + V(r′)Ψ(r′) = E Ψ(r′) , (2.32)

~2

2m
∇2Ψ(r′) + E Ψ(r′) = V(r′)Ψ(r′) , (2.33)

2.2 Born Approximation 39

which we write as:(
∇2 + k2

i

)
Ψ(r′) = U(r′)Ψ(r′) , (2.34)

after having made the two definitions:

k2
i ≡

2mE
~2

, (2.35)

U(r′) ≡ 2mV(r′)
~2

. (2.36)

The formal approach to finding the solution of the Schrödinger equation
in this problem makes use of Green’s functions. A Green’s function, G(r, r′),
provides the response at r for a point scatterer at r′:(

∇2 + k2
i

)
G(r, r′) = δ(r′) . (2.37)

We find the Green’s function in a quick way by starting with an identity:

∇2 eikr

r
= eikr∇2 1

r
− k2 eikr

r
, (2.38)(

∇2 + k2
) eikr

r
= eikr∇2 1

r
, (2.39)

Recall that:

∇2 1
r

= −4πδ(r) , so (2.40)(
∇2 + k2

) eikr

r
= −eikr4πδ(r) . (2.41)

The right hand side simplifies because it equals zero everywhere except at
r = 0, due to the nature of the δ-function. At r = 0, however, eikr = 1. From
our identity (2.38) we therefore obtain:(

∇2 + k2
) eikr

r
= −4πδ(r) . (2.42)

We make a shift of the origin: r → r− r′ (so we can see more easily how the
outgoing wave originates at the scatterer – see Fig. 2.5). After doing so, we
can identify our Green’s function by comparing (2.37) and (2.42):

G(r, r′) = − 1
4π

eikf |r−r′|

|r − r′|
. (2.43)

With our Green’s function in hand, we construct Ψscatt(r) by integrating.
The idea is that to obtain the total wave amplitude at r, we need to add up
the spherical wavelet amplitudes emanating from all r′ (each of form (2.43)),
weighted by their strengths. This weight is the right-hand side of (2.34).
Formally, the limits of integration cover all of space, but in fact it is only
important to extend them over the r′ where U(r′) is non-zero (approximately
the volume of the atom).

40 2. Scattering

Ψsc(r) =
∫
U(r′)Ψ(r′)G(r, r′) d3r′ . (2.44)

The total wave at r, Ψ(r), has both incident and scattered components:

Ψ = Ψinc + Ψsc , (2.45)

Ψ(r) = eiki·r +
2m
~2

∫
V(r′)Ψ(r′)G(r, r′) d3r′ . (2.46)

2.2.2 First Born Approximation

Up to here our solution is exact. It is, in fact the Schrödinger equation it-
self, merely transformed from a differential equation to a integral equation
appropriate for scattering problems. The problem with this integral equation
(2.44) is that Ψ appears both inside and outside the integration, so an ap-
proximation is generally required to proceed further. The approximation that
we use is the “first Born approximation.” It amounts to using a plane wave,
the incident plane wave, for Ψ in the integral:

Ψ(r′) ' eiki·r′ . (2.47)

The first Born approximation assumes that the wave is undiminished and
scattered only once by the material. This assumption is valid when the scat-
tering is weak.

We simplify (2.43) by making the approximation that the detector is far
from the scatterer. This allows us to work with plane waves at the detec-
tor, rather than outgoing spherical waves. To do so we align the outgoing
wavevector kf along (r − r′) as shown in Fig. 2.5. The product of scalars,
kf |r − r′|, in the exponential of a spherical wave emitted from r′, is then
equal to kf · (r − r′) of a plane wave,

G(r, r′) ' − 1
4π

eikf ·(r−r′)

|r|
. (2.48)

In (2.48) we also assumed that the origin is near the scatterer, so |r| � |r′|,
simplifying the denominator of our Green’s function.3

Returning to our exact integral equation (2.46), we obtain the approxi-
mate scattered wave (the first Born approximation for the scattered wave)
by using (2.47) and (2.48) in (2.46):

Ψ(r) ' eiki·r − m

2π~2

∫
V(r′) eiki·r′ e

ikf ·(r−r′)

|r|
d3r′ , (2.49)

Ψ(r) = eiki·r − m

2π~2

eikf ·r

|r|

∫
V(r′) ei(ki−kf)·r′d3r′ . (2.50)

3 If we neglect a constant prefactor, this assumption of |r − r′| = |r| is equivalent
to assuming that the scatterer is small compared to the distance to the detector.

2.2 Born Approximation 41

If we define:4

Q ≡ ki − kf , (2.51)

Ψ(r) = eiki·r − m

2π~2

eikf ·r

|r|

∫
V(r′) eiQ·r′d3r′ . (2.52)

The scattered part of the wave is:

Ψsc(Q, r) =
eikf ·r

|r|
f(Q) , where : (2.53)

f(Q) ≡ − m

2π~2

∫
V(r′) eiQ·r′d3r′ . (2.54)

The factor f(Q) is the scattering factor of (2.29), which we have found to
depend on the incident and outgoing wavevectors only through their differ-
ence, Q ≡ ki−kf . We recognize the integral of (2.54) as the Fourier transform
of the potential seen by the incident neutron as it goes through the scatterer.
In the first Born approximation:

The scattered wave is proportional to the
Fourier transform of the scattering potential.

The factor f(Q) of (2.54) is given various names, depending on the potential
V (r) (we changed notation: r′ → r). When V (r) is the potential of a single
atom, Vat(r), we define fat(Q) as the “atomic form factor”:

fat(Q) ≡ − m

2π~2

∫
Vat(r) eiQ·rd3r . (2.55)

Alternatively, we can use the potential for the entire crystal for V(r) in (2.54)
(and develop the kinematical theory of diffraction). When V(r) refers to the
entire crystal, however, the first Born approximation of 2.52 is generally not
reliable because multiple scattering will invalidate the assumption of (2.47).
This assumption is, nevertheless, the basis for the “kinematical theory of
diffraction,” which we develop for its clarity and its qualitative successes.
It is possible to transcend formally the single scattering approximation, and
develop a “dynamical theory” of neutron diffraction by considering higher-
order Born approximations, but this has not proved a particularly fruitful
direction. Modern dynamical theories take a completely different path.

2.2.3 Higher-Order Born Approximations

Nevertheless, it is not difficult in principle to extend the Born approximation
to higher orders. Instead of using an undiminished plane wave for Ψ(r′), we
could use a Ψ(r′) that has been scattered once already. Equation (2.46) gives
the second Born approximation if we use do not use the plane wave of (2.47)
for Ψ(r′), but rather:

4 Sadly, the diffraction vector for elastic scattering is defined as−Q = ∆k ≡ kf−ki

42 2. Scattering

Ψ(r′) = eiki·r′ +
2m
~2

∫
V(r′′)Ψ(r′′)G(r′, r′′) d3r′′ , (2.56)

where we now use a plane wave for Ψ(r′′):

Ψ(r′′) ' eiki·r′′ . (2.57)

The second Born approximation involves two centers of scattering. The first
is at r′′ and the second is at r′ (as shown in Fig. 2.6). The second and higher
Born approximations are not used very frequently. If the scatterer is strong
enough to violate the condition of weak scattering used in the first Born
approximation, the scattering will also violate the assumptions of the second
Born approximation.

r

r'

r" G(r' ,r")

G(r ,r')

Fig. 2.6. Coordinates for the second Born approximation. The neutron path is
shown as the dark arrows, which are labeled by the relevant Green’s functions.

2.3 Essence of Coherent Inelastic Scattering

2.3.1 Spherical Waves from Point Scatterers

An intuitive shortcut from (2.37) to (2.44) is to regard (∇2 +k2
i) as a scatter-

ing operator that generates a scattered wavelet proportional to U(r′)Ψ(r′).
The scattered wavelet must have the properties of (2.29) for its amplitude
and phase versus distance. The scattered wavelet amplitude emitted from a
small volume, d3r′, centered about r′ is:

dΨsc(r, r′) = U(r′)Ψ(r′)
ei(kf |r−r′|−ω0t)

|r − r′|
d3r′ . (2.58)

This is an expression for a spherical wave at r originating from the small
volume d3r surrounding r′. It is isotropic – note that the exponential factor
kf |r − r′| is a product of scalars.

In using the approach from the previous section with static potentials,
|ki| = |kf |. This remains true in an average sense in the present section where
we assign a time-dependence to U(r′). Notice from (2.58) that the amplitude
of the scattered wave is modulated by U(r′). In the present section, we see

2.3 Essence of Coherent Inelastic Scattering 43

that the Fourier component of U(r′) with frequency ω gives a frequency
modulation to the scattered wave, whose frequency of ω0 is changed to ω0±ω.

We obtain the total scattered wave by integrating around all volume of
the scatterer. The incident plane wave, ∝ eiki·r′ (2.47), helps sets the phase
of the scattering at each volume interval. The phase of the outgoing wave also
depends on the orientation of the outgoing kf with respect to the position
of the scattering point, r′. The relative phase from each scattering point
depends on the change in wavevector, Q ≡ ki − kf , as eiQ·r′ .

Ψsc(Q, r) = −ei(kf ·r−ω0t)

|r|
m

2π~2

∫
V(r′) eiQ·r′d3r′ . (2.59)

In arriving at (2.58) we have repeated, in an intuitive way, the steps to (2.53)
and (2.54).

The trick now is to replace the potential, V(r), with a suitable potential for
neutron scattering. For nuclear scattering, relevant to phonon measurements,
we use the “Fermi pseudopotential,” which places all the potential at a point
nucleus:

Vnuc(r) = 4π
~2

2m
b δ(r) , (2.60)

where b is a simple constant (perhaps a complex number). For thermal neu-
trons, the δ-function is an appropriate description of the shape of a nucleus.5

We place independent Fermi pseudopotentials at the set of positions, {Rj},
of all atomic nuclei in the crystal:

V (r) = 4π
~2

2m

∑
j

bj δ(r −Rj) . (2.61)

2.3.2 Time-Varying Potentials

In the key step that leads to inelastic scattering, we allow the nuclei to move
around as the atoms vibrate. Our potential is:

V(r) = 4π
~2

2m

∑
j

bj δ(r −Rj(t)) , (2.62)

Substituting (2.62) into (2.59), we note the elegant cancellation of prefactors:

Ψsc(Q, r, t) = −ei(kf ·r−ω0t)

|r|

∫ ∑
j

bj δ(r′ −Rj(t)) eiQ·r′d3r′ . (2.63)

The integration over the δ-functions of (2.63) fixes the exponentials at the
nuclear positions {Rj(t)}:
5 For magnetic scattering, however, the δ-function should be convoluted with a

real-space form factor for the magnetic electrons. This could be done at the end
of the calculation by multiplying the k-space result with a form factor.

44 2. Scattering

Ψsc(Q, r, t) = −ei(kf ·r−ω0t)

|r|
∑
j

bj eiQ·Rj(t) . (2.64)

For isolating the phonon scattering, we separate the static and dynamic
parts of the nuclear positions. For completeness we do so for each atom in
each unit cell (unit cell indices are {l, κ} for {lattice, basis}, each requiring
its own sum):

Rj(t) = xl,κ + ul,κ(t) , (2.65)

transforming (2.64):

Ψsc(Q, r, t) = −ei(kf ·r−ω0t)

|r|
∑
l,κ

bl,κ eiQ·(xl,κ+ul,κ(t)) . (2.66)

When Q · u is small, we can expand the exponential in (2.66) to obtain:

Ψsc(Q, r, t) = −ei(kf ·r−ω0t)

|r|

×
∑
l,κ

bκ eiQ·xl,κ

(
1 + iQ · ul,κ(t)−

1
2
(Q · ul,κ(t))2 + . . .

)
.(2.67)

The terms in the large parentheses in (2.67) account for the elastic scattering,
one-phonon scattering, two-phonon scattering, ..., as we next show.

2.3.3 Elastic Neutron Scattering

First neglect the time-dependence of the scattering potential, which restricts
us to the case of elastic scattering. Without dynamics, we note that bκ de-
pends only on κ, not l, since all unit cells have identical atom arrangements.
The first term in parentheses in (2.67), the 1, gives the familiar coherent
elastic scattering, Ψ el

sc(Q, r), from the static part of the structure:

Ψ el
sc(Q, r) = −ei(kf ·r−ω0t)

|r|
∑
l,κ

bκ eiQ·xl,κ . (2.68)

By writing xl,κ as a sum of a lattice vector xl plus a basis vector xκ:

xl,κ = xl + xκ , (2.69)

and neglecting the factor for the outgoing spherical wave:

Ψ el
sc(Q, r) =

∑
xκ

bκ eiQ·xκ

∑
xl

eiQ·xl ≡ F(Q)S(Q) . (2.70)

Here we separated the sums over basis and lattice vectors into a structure
factor, F(Q), and a shape factor, S(Q). We could use (2.70) (with a Debye-
Waller factor) to calculate the neutron diffraction pattern from a crystal.
Equation (2.70) is central to neutron diffractometry of materials.

2.3 Essence of Coherent Inelastic Scattering 45

2.3.4 Phonon Scattering

The next term in parentheses in (2.67), the iQ · ul,κ(t), is new. It gives the
inelastic scattered wave, Ψ inel

sc (Q, r, t). To calculate it, we use the phonon
solution, ul,κ(ω(q), t), for a particular ω(q):

ul,κ(ω(q), t) =
Uκ(q)√
2Mκω(q)

ei(q·xl−ω(q)t) . (2.71)

The phase factor, eiq·xl , provides all the long-range spatial modulation of
ul,κ(q, t). The dependence on κ, a short-range basis vector index, is taken
out of the phase factor and placed in the complex constant Uκ(q).

This is the source of the denominator in (2.71). It is convenient for the
Uκ(q) of (2.71) to have modulus unity, as does the exponential. Nevertheless,
the ul,κ(ω(q), t) must have a maximum displacement, X , which gives the total
energy of the harmonic oscillator. Since this total energy must equal ~ω for
each additional phonon excitation:

~ω =
1
2
Mω2X 2 , (2.72)

X =

√
2~
Mω

. (2.73)

Normalizing the amplitude in (2.71) by
√
Mω ensures this consistency be-

tween amplitude and energy, while allowing Uκ(q) to have modulus unity.
Details such as the factor of 2 require a more complete quantum mechanical
development.

After substitution of (2.71), the second term in (2.67) gives an inelastically-
scattered wave:

Ψ inel
sc (Q, r, t) = − i ei(kf ·r−ω0t)

|r|

×
∑
l,κ

bκ√
2Mκω(q)

(
Q ·Uκ(q)

)
eiQ·xl ei(q·xl−ω(q)t) , (2.74)

and making a parallel decomposition into lattice plus basis vectors as in
(2.69):

Ψ inel
sc (Q, r, t) = − i eikf ·r

|r|
e−i(ω0+ω)t

×
∑
xκ

bκ√
2Mκω(q)

(
Q ·U l,κ(q)

)
ei(q+Q)·xκ

∑
xl

ei(q+Q)·xl .(2.75)

We recognize the last sum (over xl) as a sum over phase factors that generate
a diffracted wave from a simple lattice. It will produce a series of Bragg peaks
at reciprocal lattice vectors:∑

xl

ei(q+Q)·xl =
(2π)3

V0

∑
g

δ
(
(q + Q)− g

)
. (2.76)

46 2. Scattering

Note that this is the momentum conservation condition: (q + Q) · rl =
2πinteger. Momentum conservation is seen directly for coherent inelastic scat-
tering – the scattering wavevector, Q, must equal the (negative of the) phonon
vector q plus a reciprocal lattice vector g. The prefactor in (2.76) is the vol-
ume of a unit cell in the reciprocal lattice, where V0 is the volume of the unit
cell of the crystal. Substituting into (2.75):

Ψ inel
sc (Q, r, t) = − i eikf ·r

|r|
e−i(ω0+ω)t (2π)3

V0

×
∑
xκ

bκ√
2Mκω(q)

(
Q ·U l,κ(q)

)
ei(q+Q)·xκ δ

(
(q + Q)− g

)
. (2.77)

The scattered wave, Ψ inel
sc (Q, r, t), has the temporal frequency ω0 +ω, dif-

fering from the frequency ω0 of the incident wave. The inelastically-scattered
neutron therefore differs in energy by the amount ~ω from the incident neu-
tron. This energy conservation condition can also be written as a δ-function,
δ(ω − ω(q)).

In what follows, the intensity, I(Q, E), will be obtained from Ψ∗sc(Q, r, t)
×Ψsc(Q, r′, t′). The intensity depends on the four positions and times, {r′, t′,
r, t}, but not on all four independently. Instead, the intensity depends on
correlations between them. Section 3.1 shows that the Van Hove correlation
function in space and time expresses what we need to know to calculate the
inelastic intensity, I(Q, E).

2.3.5 Intensity from Wave Amplitude

The next step is to get the double-differential scattering cross-section for
coherent inelastic scattering, d2σ/dΩ dE. With reference to Fig. 2.4, this
quantity assigns an energy spectrum to each cone of beam filling the range
in solid angle dΩ (to the right of the scatterer). The intensity at each piece
of solid angles and in each energy range is the maximum information that we
could expect from experimental data. We obtain d2σ/dΩ dE by calculating
|Ψ inel

sc |2 of (2.77) by taking |Ψsc|2, and ignoring the intensity factor of r−2

(cf. (2.20), (2.31)). A question that might arise is if there could be cross-
terms between Ψ inel

sc and Ψ el
sc. If so, it might be necessary to calculate the

total scattered wave from (2.66), rather than (2.77), a greater effort since
there will be twice as many sums that will have to be reduced by taking
differences between different atom positions at different times. These cross-
terms are zero, however, and this can be understood by a physical argument.
As described after (2.77), the frequencies of the incident and scattered waves
are mismatched. Integrated over many periods of the neutron wavefunction,
these mismatched waves will not add constructively or destructively. There
is no coherent interaction between Ψ inel

sc and Ψ el
sc that requires calculation.

Incidentally, such interactions if they were to exist, would be quantum beats

2.4 Correlation Function for Elastic Scattering – The Patterson Function 47

of the wavetrains, but we ignore them in the present analysis because we do
not have sufficient time resolution at the detector to sense them.

The only subtlety in calculating |Ψ inel
sc (Q, r)|2 is handling the δ-functions.

The square of a δ-function is a δ-function, δ2(x) = δ(x). Alternatively, one
can think of δ(Q + q ± g) and δ(ω − ω(q)) as enforcing the conservation of
momentum and conservation of energy on the neutron scattering process, and
these conditions must hold for both the neutron wavefunction amplitude and
its probability distribution. To keep an appropriate density of δ-functions
in k-space requires that we keep the same factor (2π)3/2V0. For coherent
inelastic phonon scattering:

d2σ

dΩ dE
=
kf

ki

(2π)3

2V0

∑
g,q

n(q) + 1
2 ±

1
2

ω(q)

×
∣∣∣∑
κ

bκ√
Mκ

e−Wκ(Q)
[
Q ·U l,κ(q)

]
eiQ·xκ

∣∣∣2
× δ(Q + q ± g) δ(ω − ω(q)) , (2.78)

where the phonon occupancy factor, n(q), is the Bose-Einstein distribution:

n(q) =
1

e~ω(q)/kBT − 1
. (2.79)

The signs in the factor n(q) + 1
2 ±

1
2 in (2.78) are such that it is n(q) + 1

for phonon creation, and n(q) for phonon annihilation – it is always possible
to create a phonon, even at T = 0 when no phonon excitations are present.
A new factor in (2.78) is the ratio kf/ki, which expresses the effect on flux
caused by the rate at which neutrons leave the sample. Compared to an
elastically-scattered neutron, fewer neutrons per second will pass into a solid
angle if they are slowed to smaller values of kf . Another new factor is the
Debye–Waller factor, e−Wκ(Q). Finally, we note that the phonons on different
branches must be considered separately in (2.78), and it is traditional to add
a “branch index,” sometimes denoted γ, to ω(q), since more than one ωγ may
correspond to a specific q.

2.4 Correlation Function for Elastic Scattering – The
Patterson Function

2.4.1 Overview

In much of Chapter 2, scattering theory has been developed by calculating
the amplitude of the wave scattered from crystals with excitations or dis-
order. The amplitude of the diffracted wave, ψ, is the sum of phase factors
of wavelets emitted from individual atoms. For elastic scattering, which we
consider presently, the phase information in ψ(Q) includes details of atom

48 2. Scattering

positions, which can be obtained by inverse Fourier transformation, F−1ψ.
We then calculate the intensity I(Q) = ψ∗ψ.

This Sect. 2.4 takes a different approach of calculating directly the
diffracted intensity I(Q), rather than calculating it as ψ∗ψ. In this new ap-
proach, the real space information is obtained with the Fourier inversion
F−1I, rather than F−1ψ, but this sacrifices some information about atom
positions. Nevertheless, the intensity is the actual quantity measured in a
diffraction experiment, so this new approach offers a more rigorous under-
standing of what structural information is available from diffraction exper-
iments. Furthermore, in cases of severely disordered materials, there may
be no obvious way to obtain the atom positions needed for a calculation of
ψ(Q). For problems involving severe structural disorder, another advantage
of direct manipulations of I(Q) is that a convenient reference state proves to
be a homogeneous distribution of scatterers, or uncorrelated scatterers as in
an ideal gas. A powerful tool for calculating diffraction intensities from such
materials (and regular crystals too) is the “Patterson function,” defined in
Sect. 2.4.3 as an autocorrelation function of the scattering factor distribution.
Whereas the diffracted wave, ψ(Q), is the Fourier transform of the scattering
factor distribution, the diffracted intensity, I(Q), is the Fourier transform of
the Patterson function of the scattering factor distribution.
The Patterson function is a function in real space, with argument r. The Pat-
terson function is a convolution, so the reader should be familiar with convo-
lutions and the convolution theorem (Sect. A.1) before reading the present
chapter. The presentation here of real-space correlation functions is good
preparation for the discussion that follows on space-time correlation func-
tions. We begin by proving the emphasized statement above. The subsequent
section uses the Patterson function to explain diffraction phenomena involv-
ing displacements of atoms off of periodic positions owing to temperature.

2.4.2 Atom Centers at Points in Space

The most important results in this chapter are obtained by assuming the
scatterers are points. At each point, rj , resides the scattering strength of one
entire atom, frj

(or one unit cell). The actual shape of the atom is included
later by convolution, and does not change the main results obtained with
point atoms.

It proves convenient to consider a distribution of scatterers, f(r), with
a continuous variable, r, rather than a sum over discrete points, {rj}. We
change variables as:

ψ(Q) =
N∑
rj

frj e
−iQ·rj =

∞∫
−∞

f(r) e−iQ·rd3r . (2.80)

To equate a continuous integral to a discrete sum requires that f(r) is not
a smooth function of position. Over most of space f(r) is zero, but at atom

2.4 Correlation Function for Elastic Scattering – The Patterson Function 49

centers such as r = ri, f(ri) is a Dirac delta function times a constant, fri
:

f(ri) = fri
δ(r − ri) . (2.81)

Recall the important property of the Dirac delta function:

y(x′) =

∞∫
−∞

δ(x− x′) y(x) dx . (2.82)

Equation (2.82) requires that δ(x−x′) is zero everywhere, except at the point
x = x′. At this point the delta function is infinitely high, but of unit area, so
the integral of (2.82) picks out only the value of y(x) at x′. To extend (2.81)
to include many atom centers, we take the sum over rj :

f(r) =
N∑
rj

frjδ(r − rj) , (2.83)

so we satisfy the equality in (2.80) between points in space, {rj}, and a
continuous function of r. We include the shape of the atomic form factor,
fat(r), in Sect. 2.4.5.

2.4.3 Definition of the Patterson Function

We define the “Patterson function,” P (r):

P (r) ≡
∞∫

−∞

f∗(r′)f(r + r′) d3r′ . (2.84)

Equation (2.84) is a convolution. Since the function f(r) is not inverted in
the usual way for a convolution, we write:

P (r) = f∗(r) ∗ f(−r) , (2.85)

This is a specific type of convolution known as an “autocorrelation function,”
sometimes denoted with a special symbol:

P (r) = f(r) ~ f(r) . (2.86)

The most important feature of the Patterson function is that its Fourier
transform is the diffracted intensity in kinematical theory. To show this, we
use (2.80) to write I(Q) = ψ∗ψ as:

I(Q) =

∞∫
−∞

f∗(r′) eiQ·r′d3r′
∞∫

−∞

f(r′′) e−iQ·r′′d3r′′ . (2.87)

Since r′ and r′′ are independent variables:

I(Q) =

∞∫
−∞

(∞∫
−∞

f∗(r′)f(r′′) e−iQ·(r′′−r′)d3r′′
)

d3r′ . (2.88)

50 2. Scattering

Define r ≡ r′′−r′, and change variables r′′ → r+r′. In so doing, the limits of
integration for r are shifted by −r′, but this is not of concern for integrations
performed over all of space:

I(Q) =

∞∫
−∞

(∞∫
−∞

f∗(r′)f(r + r′) e−iQ·rd3r
)

d3r′ , (2.89)

I(Q) =

∞∫
−∞

(∞∫
−∞

f∗(r′)f(r + r′)d3r′
)
e−iQ·rd3r . (2.90)

Using the definition of (2.84), we rewrite (2.90):

I(Q) =

∞∫
−∞

P (r) e−iQ·rd3r . (2.91)

Equation (2.91) shows that the diffracted intensity is the Fourier transform
of the Patterson function:

I(Q) = FP (r) , (2.92)

and by the inverse transformation we must have:

P (r) = F−1I(Q) . (2.93)

For comparison, the diffracted wave, ψ(Q) of (2.80), is the Fourier trans-
form of the scattering factor distribution, f(r). We therefore have another
relationship between I(Q) and f(r):

I(Q) = ψ∗(Q)ψ(Q) , (2.94)

I(Q) =
(
Ff(r)

)∗
Ff(r) =

∣∣Ff(r)
∣∣2 . (2.95)

Comparing (2.92) and (2.95):

FP (r) =
∣∣Ff(r)

∣∣2 . (2.96)

Equation (2.96) is consistent with the convolution theorem of Sect. A.1 –
a convolution in real space (the Patterson function of (2.84)) corresponds
to a multiplication in Fourier space (right-hand side of (2.96)). Note how
(2.95) shows the effects of the flip and the complex conjugation of f(r) in
the convolution of (2.84):

F
[
f∗(r) ∗ f(−r)

]
=
(
Ff(r)

)∗
Ff(r) =

∣∣f(Q)
∣∣2 , (2.97)

as compared to:

F
[
f(r) ∗ f(r)

]
= Ff(r) Ff(r) =

(
f(Q)

)2
. (2.98)

2.4 Correlation Function for Elastic Scattering – The Patterson Function 51

2.4.4 Properties of Patterson Functions

It is instructive to illustrate the steps in constructing a Patterson function
(2.84). The steps in any convolution are shift, multiply, and integrate, and are
shown in Fig. 2.7. Figure 2.7a shows the overlap of a function shifted by the
distance r against the original position shown as a dashed curve. To obtain
the Patterson function in Fig. 2.7b, at each shift the function was multiplied
by its shifted counterpart, then integrated.

Fig. 2.7. (a) Shifts of a function of period, a, with respect to itself. The shift,
r = r′′ − r′, is labeled at right in units of a. (b) The Patterson function, obtained
by integrating the product of the solid and dashed curves for all shifts, r.

Note that the peaks of the Patterson function in Fig. 2.7b are broader
than the peaks in the scattering factor distribution of Fig. 2.7a. Since the
peaks in Fig. 2.7a are Gaussian functions of equal width, the peaks in the
Patterson function are broadened by a factor of

√
2. Second, the periodicity

of the Patterson function is one lattice constant, a. This is expected, since the
overlap of the peaks in the function of Fig. 2.7a is maximized each time the
shift equals an integral number of lattice constants. The intensities of these
primary maxima are proportional to A2 +B2. There are secondary maxima
that occur at shifts of ±0.3 when the large peak overlaps the small peak. The
intensities of these secondary maxima are proportional to AB. The Patterson

52 2. Scattering

function has a peak at each distance corresponding to a separation between
the peaks in Fig. 2.7a.

The Patterson function, P (r) of Fig. 2.7b, has a higher symmetry than
the f(r) of Fig. 2.7a. Identical secondary peaks occur in P (r) when the large
peak is shifted to the right by +0.3a and overlaps the small peak, or when
the small peak is shifted to the left by −0.3a and overlaps the large peak. For
this reason, even when f(r) has no center of inversion, P (r) has inversion
symmetry. The Patterson function is unchanged if the original function is
inverted.6 Equation (2.93) shows that the measured x-ray diffraction intensity
provides the Patterson function, not the scattering factor distribution. We
therefore have “Friedel’s law”:
Diffraction experiments cannot distinguish between an atom arrangement and
the atom arrangement when it is inverted.

This is sometimes called the “phase problem” in structure determination,
since the phase of the diffracted wave ψ(Q) is not measured, only its intensity,
ψ∗ψ.

2.4.5 Perfect Crystals

In working problems with Patterson functions, it is often convenient to write
the scattering factor distribution for an entire crystal, f(r), in the following
way:

f(r) = fat(r) ∗
∑
Rn

δ(r −Rn) . (2.99)

Here fat(r) is the form factor of one atom. In (2.99) the form factor of the
atom is convoluted with a sum of delta functions, each centered at a different
atom site, Rn. We evaluate (2.99) by first writing explicitly the convolution:

f(r) =

∞∫
−∞

fat(r′)
∑
Rn

δ
(
r − (r′ −Rn)

)
d3r′ . (2.100)

Rearranging the operations on independent variables:

f(r) =
∑
Rn

∞∫
−∞

fat(r′) δ
(
r − (r′ −Rn)

)
d3r′ . (2.101)

The integral of (2.101) serves to pick out the value of fat(r′) at the location of
the delta function, cf., (2.82). By shifting the delta function continuously by
r′, the shape of fat(r) is generated around the center of each delta function.
These centers are each atom site, Rn, so after the integration of (2.101):

6 You can obtain the same P (r) by taking the mirror image of the f(r) in Fig.
2.7a (with the small peak to the immediate left of the large peak), and repeating
the construction.

2.4 Correlation Function for Elastic Scattering – The Patterson Function 53

f(r) =
∑
Rn

fat(r −Rn) . (2.102)

Please compare (2.99) and (2.102).
The Patterson function of an infinite one-dimensional perfect crystal,

P0(x), is:

P0(x) = f∗(x) ∗ f(−x) , (2.103)

which we write using (2.99) for N atoms:

P0(x) =
(
f∗at(x) ∗

+∞∑
n′=−∞

δ(x− n′a)
)
∗
(
fat(−x) ∗

−∞∑
n′′=+∞

δ(n′′a− x)
)
.

(2.104)

Convolutions are commutative and associative, so we rearrange (2.104):

P0(x) =
(
f∗at(x) ∗ fat(−x)

)
∗
(+∞∑
n′=−∞

δ(x− n′a)
)

∗
(−∞∑
n′′=+∞

δ(n′′a− x)
)
. (2.105)

Recall that a convolution of two functions requires a shift, overlap, multi-
plication, and integration. Because the δ-functions are infinitesimally narrow,
there is zero overlap of the two series of δ-functions unless the shift, x, satisfies
the condition x = na, where n is an integer. Therefore:(∞∑

n′=−∞
δ(x− n′a)

)
∗
(∞∑
n′=−∞

δ(x− n′a)
)

= N ′
(∞∑
n=−∞

δ(x− na)
)
.(2.106)

Here N ′ = ∞, which is as expected for an infinite number of overlaps of an
infinite chain of atoms. For a chain of N atoms, the Patterson function is:

P0(x) = N
(
f∗at(x) ∗ fat(−x)

)
∗
(∞∑
n=−∞

δ(x− na)
)
, (2.107)

The Fourier transformation of P0(x) provides the diffracted intensity,
I(Q). By the convolution theorem of Sect. A.1, the two convolutions and
one multiplication of (2.107) become, after Fourier transformation, two mul-
tiplications and one convolution. Using (2.97):

I(Q) = N
∣∣fat(Q)

∣∣2 ∗ F[∞∑
n′=−∞

δ(x− n′a)
]
. (2.108)

The Fourier transform of the δ-function series is:

F
[∞∑
n′=−∞

δ(x− n′a)
]

=

∞∫
−∞

e−iQx
∞∑

n′=−∞
δ(x− n′a) dx . (2.109)

54 2. Scattering

The condition Qa = 2πh (where h is an integer) must be satisfied, or the
integration over an infinite range of x is zero. The k-space Fourier transform
is therefore zero except when Q = 2πh/a precisely, so:

F
[∞∑
n′=−∞

δ(x− n′a)
]

= N
∞∑

h=−∞

δ(Q− 2πh/a) = N
∑
g

δ(Q− g) . (2.110)

Here again N is the number of terms in the sum in (2.110). In a formal
problem, N becomes a mathematical infinity, but it is useful to keep the N
because it shows the proportionality to the size of the crystal. The diffraction
intensity of (2.108) is:

I(Q) = N2
∣∣fat(Q)

∣∣2[∞∑
h=−∞

δ(Q− 2πh/a)
]
. (2.111)

Equation (2.111) is a familiar result in a new form. The series of δ-
functions gives the centers of the Bragg peaks from the crystal. These peaks
are still sharp, but are attenuated at large Q by the atomic form factor in-
tensity, |fat(Q)|2.

2.4.6 Deviations from Periodicity

In many cases of interest, a scattering factor distribution, f(r), can be ex-
pressed as the sum of a perfectly periodic function, 〈f(r)〉, plus a deviation
function, ∆f(r), which provides the random or semi-random deviations from
perfect periodicity. We know that the perfectly periodic function, 〈f(r)〉, pro-
vides sharp Bragg diffractions, but how does the deviation function, ∆f(r),
affect the diffracted intensity? To find out, we calculate the Patterson func-
tion of f(r):

f(r) = 〈f(r)〉+∆f(r) , (2.112)
P (r) ≡ f∗(r) ∗ f(−r) , (2.113)
P (r) = 〈f∗(r)〉 ∗ 〈f(−r)〉+ 〈f∗(r)〉 ∗∆f(−r)

+∆f∗(r) ∗ 〈f(−r)〉+∆f∗(r) ∗∆f(−r) . (2.114)

Look at the second term in (2.114). We rewrite it with the aid of (2.96):

〈f∗(r)〉 ∗∆f(−r) =
[
〈f∗at(r)〉 ∗

∑
Rn

δ(r −Rn)
]
∗∆f(−r) . (2.115)

Convolutions are associative, so we can group the second and third factors
in (2.115), and consider the new convolution:∑

Rn

δ(r −Rn) ∗∆f(−r) =
∑
Rn

∆f(−Rn) , (2.116)

2.4 Correlation Function for Elastic Scattering – The Patterson Function 55

where we used (2.82) in the same way as for (2.101)–(2.102). We assume that
the deviation function, ∆f(−Rn), has zero mean value.7 Therefore:

x

Σδ(x–na)
n
∆f(x)

Fig. 2.8. Overlap of periodic delta functions,
P

n δ(x−na), with a random function
of zero mean, ∆f(x). Since the deviation function ∆f(r) has zero mean and is non-
periodic, the periodic delta functions overlap ∆f(−r) at as many positive values
as negative values, demonstrating (2.117).

∑
Rn

δ(r −Rn) ∗∆f(−r) = 0 . (2.117)

The second term for P (r) in (2.114) is therefore zero (see also Fig. 2.8).
Because Rn has precise periodicity over an infinite distance, (2.117) also
holds true when ∆f(r) has short-range structure. By the same argument,
the third term in (2.114) is also zero. Equation (2.114) becomes:

P (r) = 〈f∗(r)〉 ∗ 〈f(−r)〉+∆f∗(r) ∗∆f(−r) . (2.118)

The Patterson function for an alloy with disorder is reduced to two parts
defined as the two terms in (2.118): 1) a Patterson function from the average
crystal, Pavge(r), and 2) a Patterson function from the deviation crystal,
Pdevs(r):

P (r) = Pavge(r) + Pdevs(r) . (2.119)

The diffracted intensity is the Fourier transform of the Patterson function
of the alloy:

I(Q) = F
[
Pavge(r) + Pdevs(r)

]
, (2.120)

and since Fourier transforms are distributive:

I(Q) = F
[
Pavge(r)

]
+ F

[
Pdevs(r)

]
. (2.121)

Equation (2.121) shows that the diffraction patterns from the average crys-
tal, 〈f(r)〉, and the deviation crystal, ∆f(r), are additive. In terms of the
diffracted waves from these average and deviation crystals (cf., (2.96)):

I(Q) =
∣∣F 〈f(r)〉

∣∣2 +
∣∣F [∆f(r)

]∣∣2 . (2.122)

7 This does not restrict generality because any non-zero mean could have been
transferred into 〈f(r)〉 in (2.112).

56 2. Scattering

We are familiar with the first term in (2.122), |F 〈f(r)〉 |2, which gives the
sharp Bragg diffractions from the average crystal.

The second term in (2.122),
∣∣F [∆f(r)

]∣∣2, is new. It is often a broad,
diffuse intensity, as we show next. We will also show that with increasing
disorder and larger ∆f(r), the sharp Bragg diffractions become weaker, and
the diffuse intensity becomes stronger. Two important sources of ∆f(r) in
a crystalline alloy are atomic displacement disorder and chemical disorder.
Atomic displacement disorder comprises small deviations of atoms from the
sites of a perfect crystal. These displacements may be static, or dynamic
as in the case of thermal motion. Chemical disorder exists when there is
randomness in the species of atoms that occupy the sites of a crystal. We
consider these two types of disorder in sequence.

2.4.7 Uncorrelated Displacements

Atomic displacement disorder exists when atoms do not sit precisely on the
periodic sites of a crystal. Atomic size differences in an alloy cause static
displacements from lattice sites, and thermal vibrations cause dynamic dis-
placement disorder. Both cause diffuse scattering. Here we consider a simple
type of displacement disorder where each atom has a small, random shift, δ,
off its site of a periodic lattice as shown in Fig. 2.9.

x'
1a 2a 3a 4a 5a 6a 7a0–1a

δ1

Fig. 2.9. Atomic displacement
disorder in a one-dimensional
crystal.

For now we assume there are no correlations between the displacements,
δj , of neighboring atoms.8 The Patterson function, f(x)∗ f(−x), for this dis-
placement distribution is shown in Fig. 2.10a. To understand this Patterson
function, consider the overlap of the atom center distribution with itself af-
ter a shift of x = na + ξ, where a is the lattice parameter, n is an integer,
and ξ is a small distance (typically ξ < a). With no correlation between the
displacements of neighboring atoms, the probability of overlap of two atom
centers is the same for a shift of the crystal by many lattice constants, na+ξ,
as it is for a shift of one lattice constant, 1a + ξ. The important exception
occurs around x = 0, i.e., when n = 0. All the atom centers overlap perfectly
with themselves when ξ is exactly zero, but even for the smallest shift, ξ 6= 0,
there are zero overlaps of atom centers.
8 For example, we assume that if one atom is displaced to the left, its neighbor to

the right is equally likely to be displaced to the left or to the right.

2.4 Correlation Function for Elastic Scattering – The Patterson Function 57

x
–4a –3a –2a –a 0 a 2a 3a 4a

P (x)

a

x
–4a –3a –2a –a 0 a 2a 3a 4a

P avge(x)

b

x
–4a –3a –2a –a a 2a 3a 4a

P devs2 (x)
x

–4a –3a –2a –a a 2a 3a 4a

P devs(x)

x
–4a –3a –2a –a a 2a 3a 4a

P devs1(x)
c

Fig. 2.10. (a) Patterson function for the random displacements of Fig. 2.9 and
(2.119). (b) The Patterson function at top is the sum of Pavge(x) and Pdevs(x). (c)
Pdevs(x) is the sum of Pdevs1(x) and Pdevs2(x).

The best way to work with the Patterson function in Fig. 2.10a is to break
it into periodic and non-periodic parts (2.119), as shown in the two plots
in Fig. 2.10b. The diffracted intensity from our crystal with displacement
disorder is obtained from (2.121) as the sum of the Fourier transforms of these
two functions, Pavge(x) and Pdevs(x). The Fourier transform of Pavge(x) is the
well-known series of Bragg peaks. These peaks are suppressed at large values
of Q owing to the breadths of the peaks in Pavge(x) caused by displacement
disorder (see top of Fig. 2.11). This suppression of the Bragg peaks at large
Q is similar to the suppression caused by the atomic form factor, which also
broadens the scattering centers of the atoms.

The Fourier transform of Pdevs(x) is new for us. To understand its contri-
bution to the diffraction intensity, we split Pdevs(x) into two parts, Pdevs1(x)
and Pdevs2(x) (Fig. 2.10c). The first, Pdevs1(x), is a Dirac delta function,
whose Fourier transform is a constant in k-space (F

[
Pdevs1(x)

]
in Fig. 2.11).

The second part, Pdevs2(x), is a short, broadened function with negative sign.
(In Sect. 2.4.8 we will consider it to be a Gaussian function.) Its Fourier trans-
form, F

[
Pdevs2(x)

]
, is also shown in Fig. 2.11. The areas of these two parts,

Pdevs1(x) and Pdevs2(x), are equal, since both arise from the same total num-
ber of atom-atom overlaps (equal to the number of atoms, N). This has an

58 2. Scattering

k0 1/a 2/a 3/a 4/a–4/a –3/a –2/a –1/a

k0 1/a 2/a 3/a 4/a–4/a –3/a –2/a –1/a

k0 1/a 2/a 3/a 4/a–4/a –3/a –2/a –1/a

devs1FP (x)

FP (x)avge

F()+ +

devs2FP (x)

P (x)avge devs1 P (x) devs2P (x)

Fig. 2.11. The Fourier
transform of the Pat-
terson functions of Fig.
2.10. Fourier transform
of Pavge(x) (top), Fourier
transforms of the two com-
ponents of Pdevs(x) (mid-
dle). The sum of all three
components (bottom) is
the diffraction intensity
from our linear crystal with
Gaussian displacement dis-
order.

important consequence for the diffracted intensity at Q = 0:

I(Q=0) =

∞∫
−∞

Pdevs(x) e−i0x dx =

∞∫
−∞

Pdevs(x) dx , (2.123)

which is simply the area of the Patterson function, Pdevs(x). Since Pdevs1(x)
and Pdevs2(x) have equal and opposite areas, at Q = 0 there is zero diffuse
scattering from atomic displacement disorder.

The F
[
Pdevs2(x)

]
has a negative sign that decreases in magnitude with

Q. The diffuse scattering therefore increases with Q, as the flat contribution
originating from F

[
Pdevs1(x)

]
increasingly dominates over F

[
Pdevs2(x)

]
. The

function Pdevs2(x), incidentally, has the same shape as the individual peaks
in Pavge(x). In this case the Q-dependence of the rolloff of the Bragg peaks
is the same as the Q-dependence of the diffuse scattering. The effects of dis-
placement disorder increase with the characteristic size of the displacements,
δj . The larger the characteristic δ, the faster the rolloff of the Bragg peaks
with Q, and the greater the intensity of the diffuse scattering.

2.4.8 Temperature

During thermal vibrations, the distances between atoms undergo rapid
changes with time. It is useful, however, to think of each x-ray scattering
event as taking an instantaneous snapshot of the atom positions. The diffrac-
tion data are averages of many different instantaneous atom configurations.
Over a large crystal, however, each instantaneous snapshot looks approx-
imately the same. The same argument of the previous section on atomic
displacement disorder is then appropriate for understanding the diffraction

2.4 Correlation Function for Elastic Scattering – The Patterson Function 59

effects caused by thermal disorder in atom positions. This section uses a
simple model of atom vibrations to calculate two effects of temperature:

• the Debye–Waller factor that causes the Bragg peaks to lose intensity,
• the thermal diffuse scattering, which is where the “lost” intensity reap-

pears.9

A detailed analysis of thermal vibrations is not simple, because it should
be performed with knowledge of the polarizations and numbers of all phonon
modes. A complete analysis considers the contribution of each phonon to the
relative separation of each atom-atom pair in the solid. In phonons with long
wavelengths, for example, neighboring pairs of atoms tend to move together.10

In contrast, high frequency phonons affect strongly the mutual displacements
of neighboring atoms. In addition, it is important to know how the atom
motions within each phonon are oriented with respect to Q – atom motions
nearly perpendicular to Q have weak effects on the scattering. Calculating
the Patterson function from the densities of phonons with all polarizations is
a problem for computers, and is beyond the scope of this book.

Thermal vibrations broaden the Patterson function of the scattering fac-
tor distribution. To develop a simple analytical model, we assume each atom
center has a thermal spread around its crystal site that is a Gaussian function
of characteristic width, σ. (A plausibility argument for a Gaussian function is
provided in Appendix A.11.) For any nth neighbor pair of atoms, we expect
the vibrations of both atoms to affect the Patterson function. Suppose we
place a stationary atom 1 at a point in space. When an atom 2 vibrates with
respect to atom 1, there is a probability distribution for their interatomic
separation, x:

patom2(x) =
1√
π σ

e−x
2/σ2

. (2.124)

This function is shown schematically in Fig. 2.12a. Now let atom 1 vibrate.
For every interatomic separation provided by the thermal motion of the atom
2, make a thermal distribution for the position of atom 1. To obtain the dis-
tribution of separations between atoms 1 and 2, the displacement distribution
of atom 2 serves to weight the displacement distribution of atom 1. The vari-
ous weights are shown in Fig. 2.12b, and the weighted sum of the net thermal
distribution of atom 1 with respect to atom 2 is shown schematically in Fig.
2.12c as p ∗ p(x). The procedure we followed was in fact a convolution: the
distribution of atom 1 was shifted, patom1(x − x′), multiplied by patom2(x′),
and summed (integrated) over all values of x′:

9 The total coherent cross-section remains constant.
10 Another aspect of the problem is that a crystal has fewer long-wavelength than

short-wavelength vibrational modes. However, the lower energy of the long-
wavelength modes means that their occupancy is higher at all temperatures,
especially low temperatures.

60 2. Scattering

Ptherm(x) =

∞∫
−∞

patom2(x′) patom1(x− x′) dx′ . (2.125)

atom1

atom2

AA
AA
AA
AA

AA
AA
AA

AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA

AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA

AA
AA

atom1p (x-x')

p (x')

weights for the p (x–x')

p p(x)*

a

b

c

Fig. 2.12. (a) The thermal spread of centers for
atom 2. (b) Weights for the centers of the thermal
distribution of the atom 1. (c) The distribution
of all thermal separations of atom 1 with respect
to atom 2.

For nth neighbor pairs of atoms, the Patterson function of the thermal
spread, Ptherm(x), is the convolution of the Gaussian thermal spread functions
of both atoms (cf., (8.24)):

Ptherm(x) =
(1√

πσ
e−x

2/σ2
)
∗
(1√

πσ
e−x

2/σ2
)

when n 6= 0 . (2.126)

Ptherm(x) =
1√
2πσ

e−x
2/(2σ2) when n 6= 0 . (2.127)

A detailed analysis treats closer pairs of atoms differently from more distant
pairs, but here we ignore this difference except for the case of n = 0. In the
special case of n = 0, we are considering the autocorrelation function between
the positions of the individual atoms with themselves. Each atom sees itself
as being at rest, so the Patterson function for the thermal spread is:

Ptherm(x) = Nδ(x) when n = 0 . (2.128)

We now obtain the Patterson function for the entire crystal by convoluting
the thermal spread function, Ptherm(x), with the Patterson function of the
perfect crystal (2.107). The Patterson function, P (x), for the crystal with
thermal displacement disorder is the following modification of (2.107). Note
the special treatment of the n = 0 term, which provides the δ-function:

2.4 Correlation Function for Elastic Scattering – The Patterson Function 61

P (x) = N
[
f∗at(x) ∗ fat(−x)

]
∗
[
δ(x) +

(n=∞∑
n 6=0;n=−∞

δ(x− na)
)
∗
(1√

2πσ
e−x

2/(2σ2)
)]

.(2.129)

We rewrite the sum in (2.129) by adding and subtracting the n = 0 term
(the same trick used in Fig. 2.10 to give an uninterrupted infinite series for
Pavge(x)):

P (x) = N
[
f∗at(x) ∗ fat(−x)

]
∗
[
δ(x)− 1√

2πσ
e−x

2/(2σ2)

+
(n=∞∑
n=−∞

δ(x− na)
)
∗
(1√

2πσ
e−x

2/(2σ2)
)]

.(2.130)

The diffracted intensity is the Fourier transform of the Patterson func-
tion of (2.130). The transformation from (2.130) to (2.131) follows that from
(2.107) to (2.111), plus the fact that the Fourier transform of a Gaussian is
a Gaussian:

I(Q) = N
∣∣fat(Q)

∣∣2[(1− e−σ
2(Q)2/2)

+ e−σ
2(Q)2/2

∑
h

δ(Q− 2πh/a)
]
. (2.131)

The last term in the square brackets is the expected set of sharp Bragg peaks,
but attenuated at larger values of Q by the “Debye–Waller factor,” D(Q):

D(σ,Q) = e−σ
2(Q)2/2 . (2.132)

The Debye–Waller factor suppresses the intensity of Bragg peaks at high Q,
as does the size of the atom through the factor |fat(Q)|2 of Sect. 3.3.2, so the
Debye–Waller factor can be considered a “thermal fattening of the atoms.”
The intensity lost from the Bragg peaks reappears11 as the first term in
brackets in (2.131), 1− e−σ

2(Q)2/2, which is the “thermal diffuse scattering.”
The thermal diffuse scattering has no distinct peaks, but usually has gradual
modulations that increase with Q as shown in Fig. 2.11.

The Debye–Waller factor can provide quantitative information about the
mean-squared displacement,

〈
x2
〉
, during thermal motion of the atoms. The

larger is
〈
x2
〉
, the smaller the Debye–Waller factor (and the larger the sup-

pression of the Bragg diffractions). We first relate
〈
x2
〉

to the σ2 in the
thermal spread function of the individual atoms. This is the second moment
of the Gaussian function:〈

x2
〉

=

∞∫
−∞

x2 1√
π σ

e−x
2/σ2

dx =
1
2
σ2 , (2.133)

so from (2.132) and (5.20):
11 Never forget that the total cross-section for coherent scattering is constant.

62 2. Scattering

D(σ,Q) = e−〈x
2〉(Q)2 = e−〈x

2〉(4π sinθ/λ)2 . (2.134)

At modest temperatures and small Q we can often linearize the exponential
to predict a suppression of the Bragg peaks that is quadratic in Q:

D(σ,Q) ' 1−
〈
x2
〉(4π sinθ

λ

)2

. (2.135)

Physically, the Debye–Waller factor accounts for the loss of constructive inter-
ference in diffraction when the mean-squared atomic displacements become
comparable to the x-ray wavelength. The Debye–Waller factor always sup-
presses the intensity of Bragg peaks.

Equations (2.134) or (2.135) can be used to determine
〈
x2
〉

from experi-
mental data on diffraction intensities.12 Conversely, it is often important to
predict the Debye–Waller factor for a material at a known temperature. In
essence,

〈
x2
〉

is proportional to the potential energy of a harmonic oscillator,
and scales linearly with temperature, T . Although

〈
x2
〉

can be calculated
easily for the single oscillator in the Einstein model, it is more handy to
express the Debye–Waller factor in terms of a Debye temperature, θD, since
tabulations of θD are conveniently available. For the Debye model the Debye–
Waller factor has been worked out, and at temperatures comparable to the
Debye temperature or higher, the Debye–Waller factor is:

D(T,Q) ' exp
[−12h2T

mkB θ2D

(sinθ
λ

)2]
, (2.136)

D(T, θ) ' 1− 22, 800T
mθ2D

(sinθ
λ

)2

(2.137)

Here the units of mass are the atomic weight (e.g., 55.847 for Fe), T and θD
are in Kelvin, and λ is in Å. For use in (2.134) and (2.135), in the Debye
model:〈

x2
〉

= 144.38
T

mθ2D
. (2.138)

Although the Debye–Waller factor pertains to the thermal spread of dis-
tances between pairs of atoms, a Debye–Waller factor is often assigned to
the scattering from a single atom. With this approximation, the atomic form
factor, f , of each atom is replaced with f exp(−M). The Debye–Waller fac-
tor for the intensity is therefore exp(−2M). Also defined is the parameter B,
related to

〈
x2
〉
. Standard relationships are:

2M =
〈
x2
〉(4π sinθ

λ

)2

, (2.139)

M = B
(sinθ
λ

)2

. (2.140)

12 Note that
˙
x2

¸
is along the direction of Q. In an isotropic material

˙
x2

¸
would

equal 1/3 of the mean-squared atomic displacement.

2.4 Correlation Function for Elastic Scattering – The Patterson Function 63

In the case of an alloy, it is typical to assign different Debye–Waller factors
for each type of atom, A or B, written as e−MA and e−MB :

ψ(Q) =
∑

r

[
e−MAfA δA(r) + e−MBfB δB(r)

]
eiQ·r . (2.141)

Here the δ-functions are Kroneker delta functions indicating the presence of
an A or B atom at r.

At temperatures below approximately half the Debye temperature, and
especially below a quarter of the Debye temperature, (2.136) is no longer reli-
able for calculating the Debye–Waller factor. Two quantum effects are impor-
tant at low temperatures. First, owing to Bose–Einstein phonon population
statistics, the higher frequency phonons are not excited in simple proportion
to the ratio kT/ε, where ε is the phonon energy. Second, at temperatures
below about half the Debye temperature, the “zero-point” vibrations of the
solid account for an increasingly large fraction of the atom displacements.
Owing to zero-point vibrations, the thermal diffuse scattering can never be
eliminated, even by cooling to arbitrarily low temperature.

The derivation of (2.131) was clean because we assumed the same Gaus-
sian thermal spread for all interatomic correlations. For long wavelength
phonons, however, adjacent atoms tend to move together in a group. In gen-
eral, the nearest-neighbor pair correlations are less broadened than the cor-
relations for more distant neighbor pairs. If atoms tend to move in groups,
as in acoustic modes, the displacement has long-range modulations, and the
thermal diffuse scattering intensity is concentrated near the reciprocal lattice
points. The detailed shape of the thermal diffuse scattering depends on the
lattice dynamics of the crystal vibrations [9.2]. With a Born–von Kármán
model of lattice dynamics, for example, it is possible to calculate the pro-
jected components of the atom movements normal to the diffracting planes,
and obtain a more accurate Ptherm(x) of (2.127). Alternatively, the phonon
spectrum of the crystal can be deduced from measurements of the thermal
diffuse scattering, at least in principle. In practice, such measurements re-
quire careful correction for other sources of diffuse intensity (such as atomic
size and displacement effects).

3. Inelastic Scattering

Elastic scattering involves momentum transfers and positions {Q, r}, which
are complementary variables in quantum mechanics: Q ↔ r. Inelastic scat-
tering is an extension into energy and time {Q, E, r, t}, which provides pairs
of complementary variables: (Q, E) ↔ (r, t). The amplitude of the scat-
tered wave, ψ, is the sum of phase factors of wavelets emitted from individ-
ual atoms, but now we allow for a time variation. The phase information
in ψ(Q, E) includes details of atom positions and their motions. Recall the
case for elastic scattering, where we obtained by inverse Fourier transfor-
mation: f(r) = F−1

Q ψ(Q). For inelastic scattering the analogous result is:
f(r, t) = F−1

Q F−1
E ψ(Q, E).

An inelastic experiment measures an intensity and not a wave amplitude.
The experimental information on {r, t} can be obtained directly from the
scattered intensity I(Q, E) by Fourier inversion F−1

Q F−1
E I(Q, E), rather than

F−1
Q F−1

E ψ(Q, E). As for the case with the Patterson function for diffraction
experiments, there is a similar loss of information about atom positions and
the phases of their motions. Nevertheless, the intensity is the actual quantity
measured in a scattering experiment and we must make do with it. Inelastic
scattering has an important analog to the Patterson function of elastic scat-
tering, the “Van Hove function,” defined in Sect. 3.1.2 as an autocorrelation
function of the scattering factor distribution in space and time.
Whereas the inelastically scattered wave, ψ(Q, E), is the double Fourier trans-
form of the moving scattering factor distribution, the scattered intensity,
I(Q, E), is the double Fourier transform of the Van Hove correlation function
of the scattering factor distribution.
We begin by proving this emphasized statement. The subsequent section
uses the Van Hove function to explain scattering phenomena involving var-
ious dynamical excitations. Then starting anew with Fermi’s Golden Rule,
inelastic scattering is calculated in a more precise and general way. The Van
Hove space-time correlation function is developed by taking careful account
of the non-commutivity of the position and momentum operators. A proper
treatment of magnetic scattering is then presented. These latter sections are
parallel to similar sections in the books by Squires and Lovesey, which are
recommended to all practitioners of inelastic neutron scattering, especially
persons inclined towards theory.

66 3. Inelastic Scattering

3.1 Correlation Function for Inelastic Scattering – The
Van Hove Function

3.1.1 Atom Centers at Points in Space and Time

As was the case for elastic scattering, most of the important results can be
obtained by assuming the scatterers are points. The point scatterer emits a
wavelet from position rj at time tk. This rj and tk provide the phase of the
wavelet from the point emitter relative to wavelets from other point emitters:
Q·rj−ωtk. The amplitude of the scattering is given by the scattering strength
of the point emitter, f(rj , tk), which is an amplitude at a point in space and
an instant in time. For a nucleus we may consider f as being at a point,
although for magnetic spin distributions the shape of electron orbitals may
be included later by convolution. For the distribution in time, we will usually
consider a Fourier series with different frequencies, or energies E = ~ω.

It proves convenient to consider a distribution of scatterers, f(r, t), with
continuous variables, r and t, rather than a sum over discrete points, {rj},
and snapshots in time tk. We change variables as:

ψ(Q, E) =
N∑
rj

∑
tk

frj ,tke−i(Q·rj−ωt) =

+∞∫∫
−∞

f(r, t) e−i(Q·r−ωt)d3r dt . (3.1)

To equate a continuous integral to a discrete sum requires that f(r, t) is not
a smooth function of position or time. Over most of space and time, f(r, t) is
zero, but when the scattering amplitude exists at r = ri and t = tk, f(ri, tk)
is a Dirac delta function times a constant, frj ,tk :

f(rj , tk) = frj ,tkδ(r − ri)δ(t− tk) . (3.2)

To extend (3.2) to include many atom centers, we take the sum over rj and
tk:

f(r, t) =
N∑
rj

∑
tk

frj ,tkδ(r − rj)δ(t− tk) , (3.3)

so we satisfy the equality in (3.1) between points in space and time, {rj , tk},
and continuous functions of r, t.

3.1.2 Definition of the Van Hove Function

We define the “Van Hove function,” G(r, t):

G(r, t) ≡
+∞∫∫
−∞

f∗(r′, t′)f(r + r′, t+ t′) d3r′dt′ . (3.4)

3.1 Correlation Function for Inelastic Scattering – The Van Hove Function 67

Equation (3.4) is a double autocorrelation function – a space-time correlation
function with limits of integration over all space and all time.

The most important feature of the Van Hove function is that its Fourier
transform is the scattered intensity in kinematical theory. To show this, we
use (3.1) to write I(Q) = ψ∗ × ψ as:

I(Q, E) =

+∞∫∫
−∞

f∗(r′) ei(Q·r′−ωt′)d3r′dt′

×
+∞∫∫
−∞

f(r′′, t′′) e−i(Q·r′′−ωt′′)d3r′′dt′′ . (3.5)

Since r′ and r′′ are independent variables, as are t′ and t′′:

I(Q, E) =

+∞∫∫
−∞

(+∞∫∫
−∞

f∗(r′, t′)f(r′′, t′′)

× e−i[Q·(r′′−r′)−ω(t′′−t′)] d3r′′dt′′
)

d3r′dt′ . (3.6)

Define r ≡ r′′ − r′ and t ≡ t′′ − t′, and change variables r′′ → r + r′ and
t′′ → t+ t′. In so doing, the limits of integration for r are shifted by −r′ and
−t′, but this is not of concern for integrations performed over all of space
and all of time:

I(Q, E) =

+∞∫∫
−∞

×
(+∞∫∫
−∞

f∗(r′, t′)f(r + r′, t+ t′) e−i(Q·r−ωt) d3r dt
)

d3r′ dt′ , (3.7)

I(Q, E) =

+∞∫∫
−∞

(+∞∫∫
−∞

f∗(r′, t′)f(r + r′, t+ t′)d3r′ dt
)

× e−i(Q·r−ωt) d3r dt . (3.8)

Using the definition of (3.4), we rewrite (3.8):

I(Q, E) =

+∞∫∫
−∞

G(r, t) e−i(Q·r−ωt) d3r dt . (3.9)

Equation (3.9) shows that the scattered intensity is the Fourier transform of
the Van Hove function:

I(Q, E) = FrFtG(r, t) , (3.10)

68 3. Inelastic Scattering

and by the inverse transformation we must have:

G(r, t) = FQFEI(Q, E) . (3.11)

For comparison, the scattered wave, ψ(Q, E) of (3.1), is the Fourier trans-
form of the scattering factor distribution, f(r, t). We therefore have another
relationship between I(Q, E) and f(r, t):

I(Q, E) = ψ∗(Q, E)ψ(Q, E) , (3.12)

I(Q, E) =
(
FrFtf(r, t)

)∗
FrFtf(r, t) =

∣∣FrFtf(r, t)
∣∣2 . (3.13)

Comparing (3.10) and (3.13):

FrFtG(r, t) =
∣∣FrFtf(r, t)

∣∣2 . (3.14)

Equation (3.14) is consistent with the convolution theorem of Sect. A.1 – a
(double) convolution in real space (the Van Hove function of (3.4)) corre-
sponds to a multiplication in Fourier space (right-hand side of (3.14)).

3.1.3 Examples of Van Hove Functions

In this section we examine the scattering from a simple form of the Van Hove
function from 3.9 with one spatial dimension:

I(Q,E) =

∞∫
−∞

∞∫
−∞

G(x, t) e−i(Qx−ωt) dxdt . (3.15)

In all our examples we assume coherent scattering so there are predictable
phase relationships between different scattering centers. Section 3.1.4 devel-
ops further the cases where incoherent averaging of the space and time cor-
relations produce a “self-correlation function” and the “Patterson function.”

We later treat the incoherent case by following the “self-correlation func-
tion” of the individual scatterers.

First consider an elementary excitation in a solid that provides a periodic
modulation of the scattering factor in space and time:

f(x, t) = ei(qx−ω0t) . (3.16)

We use (3.4) to obtain its Van Hove function:

G(x, t) =

∞∫
−∞

∞∫
−∞

e−i(qx′−ω0t
′) ei[q(x+x′)−ω0(t+t

′)] dx′dt′ , (3.17)

G(x, t) =

∞∫
−∞

eiqxdx′
∞∫

−∞

e−iω0t dt′ = eiqx

∞∫
−∞

dx′ e−iω0t

∞∫
−∞

dt′ , (3.18)

G(x, t) = ei(qx−ω0t) , (3.19)

3.1 Correlation Function for Inelastic Scattering – The Van Hove Function 69

where we have ignored the normalization, and we find that G(x, t) = f(x, t).
In this case where G(x, t) has the form of a wave (3.19), (3.15) becomes:

I(Q,E) =

∞∫
−∞

∞∫
−∞

ei(qx−ω0t) e−i(Qx−ωt) dxdt , (3.20)

I(Q,E) =

∞∫
−∞

ei(q−Q)x dx

∞∫
−∞

ei(ω−ω0)t dt , (3.21)

I(Q,E) = δ(q −Q− g) δ(ω − ω0) . (3.22)

Equation (3.22) shows that the momentum transfer must match that of the
wave, modulo a reciprocal lattice vector, g (which provides a factor of eigx = 1
in the integrand).

An elementary excitation in a solid with unique {q, ω0} provides intensity
at a single point in energy, and at a distance of Q away from each recip-
rocal lattice point. This of course assumes coherent scattering – incoherent
scattering places a restriction on ω only.

Local Excitations. It is instructive to develop the Van Hove function and
the scattered intensity with a pictorial approach, as in Fig. 3.1. The scatter-
ing factor distribution is shown in Fig. 3.1a as it undergoes a full cycle of
oscillation.1 The construction of the Van Hove function G(x, t) parallels that
of the Patterson function in Fig. 2.7. The detailed steps of shifting and inte-
grating in Fig. 2.7 are not shown here. Suffice to say that situation along the
x-dimension is quite analogous to that of Fig. 2.7. For the case where t = 0,
for example, it is necessary to average the shifting and integrating of Fig.
2.7 for all nine times shown in Fig. 3.1a. Notice that although some of the
scattering factor distributions have zero intensity at odd multiples of a, the
result for G(x, t) always has intensity at these locations (although weaker).
The time dimension of G(x, t) is obtained in a similar way. Consider the first
time interval for time differences of t1. For this case it is necessary to match
all pairs of the scattering factor distributions that differ by one in their ver-
tical stacking in Fig. 3.1a. These eight cases are then overlapped and shifted
along the x-axis as before, and their results are averaged. The other time
intervals require taking pairs separated further in time, but always it was
eight cases whose shift and overlap are evaluated for constructing Fig. 3.1b.

The final step is to obtain the I(Q,ω) of Fig. 3.1c. In this case the situation
is fairly simple. There is only one time frequency in Fig. 3.1a, equal to 2π/t8.
If we allow creation and annihilation of such an excitation, we expect intensity
at frequencies ω = ±2π/t8. The spatial periodicity of the problem includes
a superlattice periodicity, so peaks appear at intervals of ±nπ/a, where n is
either even or odd.
1 The convention is that times tk with larger subscripts are later times.

70 3. Inelastic Scattering

Fig. 3.1. (a) Variations
of a scattering function
f(x, ti) in space and
time. Nine snapshots are
shown vertically for nine
ti. (b) The Van Hove
function, G(x, t), ob-
tained by overlapping all
pairs of scattering factor
distributions in (a), and
summing the resulting
product of overlaps for
all pairs separated by the
same number of time in-
tervals. (c) The scattered
intensity, I(Q,ω). It is
assumed possible to both
create and annihilate an
excitation as shown in
(a), hence points at ±ω0.

Dispersive Excitations. The next example in Fig. 3.2a is essentially the
scattering factor distribution shown in Fig. 2.7, but set in motion to the
right. It therefore has the same inversion symmetry along x as shown in
Fig. 2.7 (which was used to demonstrate Friedel’s law). The scattering factor
distribution is assumed to move continuously to the right with increasing
time. In assessing the overlap of the scattering factor distributions, for all
cases of time zero (i.e., the overlap of the scattering factor with itself before

3.1 Correlation Function for Inelastic Scattering – The Van Hove Function 71

it has a chance to move), the largest intensity occurs at lattice translation
vectors. For larger times, t, evaluation of G(x, t), requires the overlap of
pairs of f(x, tk) in Fig. 3.2a that are separated in time. The best overlaps
of these time-shifted f(x, tk) generally do not occur at lattice translations.
The structures of f(x, tk) remain rigidly unchanged with time, however, so
the same structure exists around the best overlap. We see in Fig. 3.2b that
the shape of G(x, t) is the same at each t, but it moves to the right with
increasing time.

The scattered intensity I(Q,ω) in Fig. 3.2c shows peaks much as in Fig.
3.1c. It is evident that along the time dimension of Figs. 3.2a,b the pattern
repeats itself with a periodicity of eight time snapshots in Figs. 3.2a. The
inelastic part of the scattering therefore occurs at ±2π/t8, assuming that
excitations of the type shown in Fig. 3.2a can be both created and anni-
hilated. There is another point worth noting about the time dependence in
Fig. 3.2c. Along the time dimension we encounter sets of three δ-functions for
each fundamental periodicity of the wave. The δ-functions, and their group-
ing into threes, requires that we have higher-order Fourier components in the
frequency domain – formally, we expect a whole series of excitations over an
infinite range of energies: ±n~ω0 = ±n~2π/t8. These high energies are im-
probable in nature, so the use of sharp scattering centers (drawn as arrows in
Fig. 3.2a) may be misleading for problems of time dynamics. Delta-functions
are not a problem for the spatial coordinates, however, since diffraction exper-
iments occur with zero energy transfer. Along the time dimension, however,
we expect our excitations to have the shape of a sine wave, since additional
Fourier components are quite costly in energy.

Also shown in Fig. 3.2c, however, are other related types of excitations
(dashed vertical lines). Suppose that the velocity of the arrows in Fig. 3.2a
is a constant, but the horizontal separation of the arrows can be varied. For
example, assume it is possible to double their spatial periodicity from a in
Fig. 3.2a, to 2a. In this case it takes twice as long to repeat the pattern of
Fig. 3.2a, so the frequency is halved. As long as the velocity of the excitation
in Fig. 3.2a is the same, there will be a linear relationship between Q and ω.
This is shown for a whole dispersion of such excitations as dashed vertical
lines in Fig. 3.2c. Their arrangement in straight lines is characteristic of the
excitations all moving with the same velocity. Normally there would also be
excitations expected where the scattering factor distribution moves to the left
in Fig. 3.2a, so each reciprocal lattice point at ω = 0 would also be crossed
by a dispersion of excitations with a negative slope in the space of {Q,ω}.

Disordered Excitations. Another example is presented in Fig. 3.3. This
example is a space-time analog of displacement disorder presented in Sect.
2.4.7. Here we assume that the scattering factor distribution is initially pe-
riodic, but is set in motion. Each atom is first displaced to the right, but
each atom oscillates with a slightly different frequency. We assume that the
frequencies have a narrow spread ∆ω about a central frequency ω0. Likewise,

72 3. Inelastic Scattering

Fig. 3.2. (a) Variations
of a scattering function
in space and time. Nine
snapshots in time are
shown vertically. (b) The
Van Hove function, ob-
tained by overlapping all
pairs of scattering factor
distributions in (a), and
summing the resulting
product of overlaps for
all pairs separated by
the same number of time
intervals. It was assumed
that the scattering factor
distribution moves to the
right continuously be-
tween the time snapshots
shown in (a). (c) The
scattered intensity. It is
assumed possible to both
create and annihilate an
excitation as shown in
(a), hence points at ±ω0.

we assume that the amplitudes of the displacements are not large, so each ar-
row does not travel far from its lattice site. Eventually the oscillation damps
away, and the scatterers are back to their initial periodic configuration. It
is easiest to first analyze the situation for long times. Here the scatterers
are in periodic positions, and have stopped moving. As the time interval be-
comes long with respect to the damping time, most of the spatial correlations
will involve correlations between precisely periodic structure. For long times,
G(x, t) will exhibit a set of peaks at equal intervals of x = a.

At short time separations, the individual arrows in Fig. 3.3b have not
displaced much. At the shortest times after the neutron impact, the scatterers
and have nearly the same displacements since they move nearly in phase. It
is incorrect, however, to assume that the peaks in G(x, t) are displaced to
the right. Recall that it is an average over many different time-separated
snapshots of f(x, t) in Fig. 3.3a, many of which are moving to the left. For

3.1 Correlation Function for Inelastic Scattering – The Van Hove Function 73

small t, G(x, t) is therefore similar to that of a perfect crystal in its spatial
periodicities, with sharp peaks at each lattice translation.

At intermediate times, however, this this regularity is lost, even between
neighboring arrows in this example. Figure 3.3c shows the intensity from this
G(x, t). For ω = 0 the situation is as in Fig. 2.11, but for ω = 2π/t8 the
intensity is broadened along the ω axis, owing the spread in frequencies. It
is also expected that the disorder along the time domain will produce extra
incoherent scattering between the sharp peaks in G(x, t).

The initial coherence of the arrows is lost at intermediate times (assuming
that the dephasing time 2π/∆ω is less than the damping time). If we assume
that there are no short-range spatial correlations, we have precisely the situ-
ation considered in Sect. 2.4.7. Figures 2.10 and 2.11 show the situation for
long times, or equivalently for ω = 0 in the I(Q,ω) of Fig. 3.3.

3.1.4 Autocorrelation Functions

The Van Hove function is worthy of deep respect, because it includes all
the information available from all types of scattering: (coherent, inelastic),
(coherent, elastic), (incoherent, inelastic), (incoherent, elastic). Subsets of
this total information are often important, perhaps because the scattering is
primarily incoherent, or is primarily elastic, for example. In particular, two
important, although less general, correlation functions are:

• The Patterson function, P (r), contains the spatial information obtained
from diffraction measurements with elastic coherent scattering.

• The “self-correlation” function, Gs(t), contains the time information ob-
tained from measurements of incoherent inelastic scattering. It involves an
averaging over Q.

General Concept of Patterson and Self-Corrrelation Functions. Fig-
ure 3.4 shows the essential ideas. A “snapshot in time” is obtained by hor-
izontal sampling across the figure. In a real experiment the samplings will
be at many different times, but here we see that all such snapshots have
the same periodic structure. As we know from Sect. 2.4.3, the intensity for
this time snapshot is obtained by the Patterson function, whose periodicity
in space gives the Bragg diffractions. In this particular case of a sine wave,
however, we have Bragg peaks only at Q = 0 and Q = ±g. If we had a series
of δ-functions with the same periodicity, however, we would have a series of
Bragg peaks to arbitrarily large orders of Q = ng. To obtain the Patterson
function, the horizontal lines in Fig. 3.4a, each at a particular tk, are convo-
luted with themselves, and the results are averaged for all tk. The f(x, tk)
for dfferent tk in Fig. 3.4a do not interact with each other until after the
convolution is performed. Specifically:

P (x) =

∞∫
−∞

∞∫
−∞

f∗(x′, t′) f∗(x′ + x, t′) dx′ dt′ , (3.23)

74 3. Inelastic Scattering

Fig. 3.3. (a) Variations
of a scattering function
in space and time. Nine
snapshots in time are
shown vertically. (b) The
Van Hove function, ob-
tained by overlapping all
pairs of scattering factor
distributions in (a), and
summing the resulting
product of overlaps for
all pairs separated by the
same number of time in-
tervals. (c) The scattered
intensity. It is assumed
possible to both create
and annihilate an exci-
tation as shown in (a),
hence points at ±ω0.

3.1 Correlation Function for Inelastic Scattering – The Van Hove Function 75

where we use the same value of t′ in both arguments of the scattering factor.
The P (x) includes an averaging over time, but does not consider correlations
in time. This information is probed by elastic scattering experiments, which
do not allow for measuring the time variations and hence energy transfers.

Likewise we can take a “snapshot in space” by taking a vertical sampling
of the moving wave, at r1 for example (although the results for all other values
of rj are the same in this example). Notice how the wave in Fig. 3.4 shows
a time periodicity along a vertical line. This time periodicity of our moving
wave is, of course, ω, in the wave function: eiQx−ωt. The restriction to a single
value of Q eliminates the possibility of obtaining any spatial information on
the excitation, but the ω-dependence is as expected. We obtain the time
correlations for a specific position:

Gs(t) =

∞∫
−∞

∞∫
−∞

f∗(x′, t′) f∗(x′, t′ + t) dx′ dt′ , (3.24)

where we use the same value of x′ in both arguments of the scattering fac-
tor. The Gs(t) includes an averaging over position, but does not consider
correlations in position. This information is probed by incoherent inelastic
scattering experiments, which do not allow for measuring the Q-dependences
and hence spatial information.

More information comes by identifying correlations in both time and
space, however, as is indicated by the diagonal line in Fig. 3.4. This re-
quires the full Van Hove function, G(r, t), without summing the correlation
functions of different space or time shapshots to obtain Gs(t) or P (r). Never-
theless, it is instructive to evaluate the Patterson function and self-correlation
function for each of the three examples shown in Figs. 3.1, 3.2, 3.3.

Fig. 3.4. A simple sine wave, mov-
ing to the right with increasing time.
Three methods of sampling the in-
tensity of the wave in space and time
are shown as straight lines, as ex-
plained in the text. The relevant cor-
relation functions for each sampling
are shown for each line.

Local Excitations. Along the horizontal axis of ω = 0 in Fig. 3.1c, we
obtain a diffraction pattern with strong fundamentals at Q = ±nπ/a, where
n is an even integer, and somewhat weaker superlattice diffractions for odd
n. The same result is true for two other values of ω = ±2π/t8. This periodic

76 3. Inelastic Scattering

structure in Q is evident from the Van Hove function G(x, t) in Fig. 3.1b. The
spatial correlation function of (3.23), P (x) =

∫∫
f(x′, tk) f(x′ + x, tk)dx′dtk

has spatial periodicities that are similar at any time tk, although different
weights for the superlattice diffractions. The average over all tk is of course
what makes the final result for I(Q,ω = 0) in Fig. 3.1c.

Now look at the correlation functions along lines parallel to the time axis
for fixed x′ in G(x′, t) of Fig. 3.1b. The time periodicity of G(x′, t) in Fig.
3.1b differs in phase for even and odd n in x′ = ±na. All time periodicities
are the same, however, and include only the frequencies −2π/t8, 0,−2π/t8.2

The frequency spectrum of G(x′, t), measured along x′ = 0, is generally
the same as the inelastic scattering along any other x′ = na. If we av-
erage the intensities along these individual x′, we lose the information on
phases of scattering between the scatterers at different x′. The mixed con-
structive and destructive interference between these different scatterers re-
sults in intensities between individual atoms only. The result is a “self-
correlation” function of (3.24), or a case of incoherent inelastic scattering,
Gs(t) =

∫∫
f(xj , t′) f(xj + x, t′ + t)dxjdt′. In this particular case, the inco-

herent average of these (obtained by summing the intensities at all Q) looks
generally the same as the spectrum along a slice along any particular Q.

Dispersive Excitations. The Patterson and self-correlation functions of
Fig. 3.2 can be understood in much the same way. The largest horizontal pe-
riodicity in Fig. 3.2b is a, so this Patterson function gives diffraction peaks at
multiples of 2π/a. The self-correlation function likewise has the simple peri-
odicities of −2π/t8, 0,−2π/t8, neglecting the detailed structure in cuts along
the time axis that would give higher-order Fourier components. More interest-
ing are the dispersions of different excitations that have the same wave speed
(presented as dashed vertical lines in Fig. 3.2c). These longer-wavelength ex-
citations could be obtained by periodically deleting rows of arrows in Fig.
3.2b, for example. All these excitations would be measured in an incoher-
ent inelastic scattering experiment, since the averaging over all x′ of G(x′, t)
in Fig. 3.2b would intersect all time periodicities. An incoherent inelastic
scattering experiment would collapse all the inelastic intensity onto a single
ω-axis, and lose the relationship between ω and Q that is so evident from the
coherent inelastic scattering shown in Fig. 3.2c. For dispersive excitations,
the self-correlation function has considerably less information compared to
the full Van Hove function. On the other hand, if one is interested in obtain-
ing an accurate density of states (i.e., a total energy spectrum), irrespective
of the values of Q, the self-correlation function may be advantageous. It does
not require accurate measurements of intensities over all values of Q and ω.

Disordered Excitations. Finally we consider the Patterson function and
self-correlation function of Fig. 3.3. The scatterers oscillate about their lattice
2 Incidentally, if the arrows were to oscillate through zero in Fig. 3.1a, we would

have no value of ω = 0, and no elastic scattering. This corresponds to half the
scatterings occurring out-of-phase with the other half.

3.2 Relationships Between Intensities, Correlation Functions, Waves, and Scattering Lengths 77

sites, and the Patterson function is therefore as expected of a perfect crystal.
For the time average, there is displacement disorder in the arrangement,
however, so we expect a diffuse background, increasing with Q as shown in
Fig. 2.11. The self-correlation function for incoherent inelastic scattering is
the same for all x, since the scatterers are assumed independent in their
motions, without positional correlations that may case neighbors to move
together in phase. In this case we expect the same time structure for Gs(t)
and G(x, t), and hence inelastic incoherent scattering will have the same
energy spectrum as the coherent inelastic scattering for all Q. Both will show
a broadening in frequency of the excitation around ω0. The broadening arises
from two effects. First is the frequency spread of the oscillators, postulated to
be∆ω. The second effect is the damping of the oscillations. The damping time
of τ provides a broadening in energy of ~/τ , known as “lifetime broadening.”
In the present problem we have assumed that the broadening of the excitation
at ω0 is dominated by the frequency spread ∆ω, since the dephasing time was
assumed shorter than the damping time.

3.2 Relationships Between Intensities, Correlation
Functions, Waves, and Scattering Lengths

Much of neutron scattering science involves relationships between the neutron
wavefunction ψ(Q,ω) and physical scattering lengths f(r, t) in the sample.
Many important functional relationships are through Fourier transformation
F , autocorrelation ~, multiplication ||2, or averaging 〈〉. A map of the im-
portant physical functions and how they are transformed into one another is
presented in Fig. 3.5.

When using Fig. 3.5, reverse transformations are possible in all cases, but
information is lost by averaging over an argument of a function. For exam-
ple, I(ω) can be transformed to S(Q,ω) in the incoherent approximation,
but dispersive information about ω(Q) cannot be obtained. (Of course, if the
scattering is incoherent, there is no dispersive information and this is not a
problem.) Averaging over ω is not shown in Fig. 3.5 because a more common
manipulation in neutron scattering science is to identify the elastic scattering
from inelastic data. Finally, the functions f(r, ω) and ψ(Q, t) are not shown.
They may prove useful as intermediate steps in some calculations, but they
mix the phase information about the neutron and the scatterer. Some defi-
nitions are:

• S(Q,ω) is the “scattering law.”
• Y (Q, τ) is the (unnamed) momentum-time corrrelation function.
• Γ (R,ω) is the (unnamed) space-energy corrrelation function.
• G(R, τ) is the Van Hove space-time correlation function.
• P (R) is the Patterson function.

78 3. Inelastic Scattering

• M(τ) is the “memory function,” a time correlation function for dynamics
at a site (sometimes called Gs(τ), a self-correlation function).

• I(Q) is a diffraction pattern.
• I(ω) is an inelastic spectrum.
• f(r, t) is a scattering length density.
• ψ(Q,ω) is a neutron wavefunction.

The two unnamed correlation functions in Fig. 3.5 have special uses. The
function Γ (R,ω) is used for projections of excitations onto specific sites,
such as projected densities of states that describe the vibrational spectrum
of a particular atom. The function Y (Q, τ) is useful for studies of transient
phenomena that may occur after an impulsive perturbation.

3.3 General Formulation of Nuclear Scattering

A more general treatment of nuclear scattering is possible than was presented
in the previous Sect. 2.3.5. It starts with Fermi’s golden rule, and avoids the
explicit use of wavefunctions for the scatterer (i.e., it does not require phonon
solutions like ul,κ(q, t) of (2.71)).

3.3.1 Fermi’s Golden Rule

Fermi’s golden rule gives the transition rate from an initial state to a final
state, W , at time t′:

W (t′) =
2π
~
|〈Ψf(r, t′)|V (r, t′)|Ψi(r, t′)〉|2 . (3.25)

For nuclear scattering of a neutron, the states |Ψ〉 include coordinates for the
neutron and coordinates for the crystal. The nuclear forces of interaction are
very short range, compared to the atom motions in the crystal, so the poten-
tial in (3.25) is Vnuc(r, t′), which involves the coordinates of the neutron and
nuclei only. It includes the crystal only insofar as the positions of the nuclei
alter the location of the δ-functions of the Fermi pseudopotential of (2.60).
Moving the atoms will connect the neutron and crystal coordinates through
the conservation of momentum and energy only. The electronic interactions
between the atoms are not affected by the neutron, however, and the forces
between the nucleus and the neutron and the nucleus are not affected by the
atom positions. We can therefore separate the state |Ψi(r, t)〉 into a lattice
part |λi〉 and a neutron part |ki〉:

|Ψi(r, t)〉 = |λi(rnu, t)〉 |ki(rne, t)〉 , (3.26)

where the independent coordinates rnu and rne refer to the postions of the
nucleus and neutron. We have assumed the neutron states are plane-wave
states characterized by the wavevector kf (as in (2.28) and (2.47), but here

3.3 General Formulation of Nuclear Scattering 79

Fig. 3.5. Interrelationships between Correlation Functions, Scattering Length Den-
sities, Intensities, Wavefunctions

80 3. Inelastic Scattering

ki 6= kf). In practice, the 〈 | | 〉 in (3.25) denotes an integration over all po-
sitional coordinates at the instant t′ when W is evaluated. To get the total
probability of the transition, Pi→f , we integrate this over all times when the
two states interact in the presence of the perturbing potential V (r, t):

Pi→f =
2π
~

∫
〈λi(r, t)| 〈ki(r, t)|V ∗(r, t)|λf(r, t)〉 |kf(r, t)〉

〈λf(r, t)| 〈kf(r, t)|V (r, t)|λi(r, t)〉 |ki(r, t)〉 dt , (3.27)

where we have substituted (3.26) into (3.25), written out the | |2, and inte-
grated over all times.

Recall that the time evolution of the state of the scatterer is:

|ψ(t)〉 = e−iHt/~|ψ(t=0)〉 , (3.28)
〈ψ(t)| = 〈ψ(t=0)|e+iHt/~ , (3.29)

We assume that the states of the crystal {|λj〉} are eigenstates with specific
energies {εj}, so we can simplify (3.28) and (3.29) using εi = ~ωi as:

|λi(t)〉 = e−iωit|λi(t=0)〉 , (3.30)
〈λi(t)| = 〈λi(t=0)|e+iωit , (3.31)

The general formulation makes use of these expressions because they allow us
to work with states of the crystal at t = 0 such as |λ1(0)〉 and |λ2(0)〉, which
are constant and can be pulled out of any integration over time. Similarly for
the position evolution of plane-wave states of the neutron {|k〉}, which have
constant momentum:3

|ki(r)〉 = e−iki·r|ki(r=0)〉 , (3.32)
〈ki(r)| = 〈ki(r=0)|e+iki·r . (3.33)

Returning to the evaluation of (3.27), into it we substitute (3.30), (3.31)
and (3.32), (3.33):

Pi→f =
2π
~

∫
〈λi(0)|eiωit 〈ki(0)|eiki·r V ∗(r, t) e−ikf ·r|kf(0)〉 e−iωf t|λf(0)〉

〈λf(0)|eiωf t 〈kf(0)|eikf ·r V (r, t) e−iki·r|ki(0) 〉e−iωit|λi(0)〉 dt ,(3.34)

where the operators r refer to the neutron coordinates, and the (0) refer to t =
0 and r = 0 (although we are not concerned about the time-dependence of the
neutron wavefunction or the position-dependence of the crystal excitation).

The next step in simplifying (3.34) is to substitute the scattering potential
for V . As before, we use the sum of Fermi pseudopotentials at all crystal sites
(i.e., (2.62)). These δ-functions are most convenient in selecting the r where
the neutron sees the nuclei, because the integrations over spatial coordinates
become trivial — we delete the integral over position, and in each matrix
3 Plane waves prove their convenience here. For other states we would have to

integrate over k-space.

3.3 General Formulation of Nuclear Scattering 81

element we substitute the nuclear positions with Rj and Rk, and the times
tj and tk. We sum over all nuclei in the crystal:

Pi→f =
2π
~

∫ ∑
j

〈λi(0)|eiωitj 〈ki(0)|eiki·Rj b∗j e−ikf ·Rj |kf(0)〉 e−iωf tj |λf(0)〉

∑
k

〈λf(0)|eiωf tk 〈kf(0)|eikf ·Rk bk e−iki·Rk |ki(0)〉e−iωitk |λi(0)〉dt .(3.35)

The notation (0) refers to both t = 0 and r = 0, since we made use of
the relations (3.30)–(3.33). At t = 0), r = 0, the phase factors, ei((Q)·r−ωt),
of the plane-wave states of (2.28) and (2.47) are equal to 1. Therefore:

〈ki(0)|kf(0)〉〈kf(0)|ki(0)〉 = 1 . (3.36)

We define the difference in frequency as ω:

ωi − ωf ≡ ω . (3.37)

Substituting (3.36) and (3.37) into (3.35):

Pi→f =
2π
~

∫ ∑
j

eiωtj b∗j 〈λi(0)| eiki·Rj(tj)e−ikf ·Rj(tj)|λf(0)〉

∑
k

e−iωtkbk〈λf(0)|eikf ·Rk(tk) e−iki·Rk(tk)|λi(0)〉dt , (3.38)

The integration is over all times, so we can redefine t as a difference between
scattering times:

t ≡ tj − tk , (3.39)

and likewise we define the scattering vector Q:

Q ≡ ki − kf . (3.40)

Substituting these differences into (3.38):

Pi→f =
2π
~

∫
eiωt

∑
j

b∗j 〈λi(0)| eiQ·Rj(t)|λf(0)〉

∑
k

bk〈λf(0)|e−iQ·Rk(0)|λi(0)〉dt , (3.41)

The next step is to consider changes in the state of the crystal, the
{|λ(0)〉}. First consider the final states, {|λf(0)〉}. We do not have control
over which final state is obtained, and in prinicple all acceptable final states
will occur over the duration of a long experiment. In effect, an experiment
sums over final states, but this sum is special. Since the final states are as-
sumed to form a complete set:∑

f

|λf(0)〉〈λf(0)| = 1 , (3.42)

82 3. Inelastic Scattering

for each term in the double sum (3.41). The initial states {|λi(0)〉} can be
controlled by thermodynamics. Temperature will alter the distribution of
intial states by the appropriate thermodynamic distribution, i.e., a Bose–
Einstein distribution for phonons. Instead of writing this distribution n(ε)
directly, we define the brackets

〈〉
to mean the thermodynamic average:

Pi→f =
2π
~

∫
eiωt

∑
j

∑
k

b∗jbk

〈
eiQ·Rj(t) e−iQ·Rk(0)

〉
dt , (3.43)

Pi→f =
2π
~

∫
eiωt

∑
j

∑
k

b∗jbk

〈
eiQ·Rj(t) e−iQ·Rk(0)

〉
dt , (3.44)

We make use of the prefactors described in Sect. 2.3.5 to convert the transition
probability into a cross-section:

d2σ

dΩ dE
=
kf

ki

(2π)3

2V0

∑
j

∑
k

b∗jbk

∫
eiωt
〈
eiQ·Rj(t) e−iQ·Rk(0)

〉
dt . (3.45)

Equation (3.45) is the most general result that can be obtained from
Fermi’s Golden Rule. At its heart is a thermodynamic average of phase factors
from scattering by atoms j and k at their different positions in space and
at different snapshots in time. Note that the space coordinates for the two
atoms are generally not evaluated at the same time. If there were no time
dependence to the atom positions, the Fourier transform would yield a delta
function δ(ω − 0), indicating pure elastic scattering. If there were no spatial
periodicities, the thermodynamic average over all phase factors would not
produce any constructive or destructive interferences at different angles, so
there would be no structure of the cross section in solid angle, Ω. The topic
of this book is inelastic scattering, so we assume motion of the scatterers, and
we will be sensitive to the how the two phase factors change with time. The
upcoming approximation will address the thermal spread of atom positions
over time. Specifically we will assume this is a Gaussian function, or at least
it is small. For the spatial periodicities of the scatterers, we will assume the
translational periodicity of a crystal. This is a more restrictive assumption
about the sample, and can be misleading in cases of disordered solids. It
is therefore sometimes important to return to (3.45) for guidance on the
scattering problem, since the only assumption is that the neutron is scattered
one time.

3.3.2 Detailed Balance

The intensities of inelastic spectra depend on the ratio of energy transfer to
temperature, at least in the usual case where the sample is in thermodynamic
equilibrium before scattering. There is a detailed balance between the rates
of two scattering processes, one with the creation of an excitation, and the
other with the annihilation of the same excitation. Consider the temperature

3.3 General Formulation of Nuclear Scattering 83

dependence of the positive and negative energy transfers between the neutron
and the specimen. One extreme is when the sample is at a very low temper-
ature (in practice, where kBT is much smaller than the energy resolution of
the instrument). In this case there are no excitations present in the sample,
so no scattering can occur with the annihilation of excitations. Excitations
can be created by transfer of energy from the incident neutron, of course.
At low temperatures the inelastic spectrum will have intensity on one side
of the elastic peak, but no intensity on the other side. The other extreme
is for very high temperatures (in practice, at temperatures where kBT is
much larger than largest energy transfer measured). Because the probability
of creating or annihilating one additional excitation such as a phonon makes
little difference to the energy of the sample, we expect the quantization of
excitations to be less obvious. Scattering processes involving the creation or
annihilation of excitations occur with similar probabilities when the sample
is at high temperatures. Nevertheless, even at relatively high temperatures
there is a measurable difference in the inelastic intensity on the loss and gain
sides of the elastic peak. Each creation process has an inverse annihilation
process, and in all cases these are in the ratio of a Boltzmann factor. The
energy in this Boltzmann factor is the extra excitation energy required for the
sample to be ready for the annihilation process. Since this Boltzmann factor
ratio occurs in detail for each pair of creation and annihilation processes, this
Boltzmann factor applies to all intensities across an inelastic spectrum.

The condition of detailed balance, (3.56) below, follows from two assump-
tions:

• The probability of the initial state of the sample, the |λi〉 in (3.26), is as
expected for thermodynamic equilibrium.

• The interaction operator for the transition probability, the V (r, t′) of
(3.25), is Hermitian. (This is certainly true for the delta function (2.60)
for the Fermi pseudopotential.)

To show the essence of the derivation of the detailed balance condition, as-
sume the initial state |λ1〉 exists, and consider the probability, W ′

1→2, for a
transition to a final state |λ2〉, and the probability for the reverse transition,
W ′

2→1 from a pre-existing state |λ2〉:
W ′

1→2 = |〈λ2|V |λ1〉|2 , (3.46)
W ′

2→1 = |〈λ1|V |λ2〉|2 , (3.47)

which are both products of a number with its complex conjugate:

W ′
1→2 = 〈λ2|V |λ1〉

(
〈λ2|V |λ1〉

)∗
, (3.48)

W ′
2→1 =

(
〈λ1|V |λ2〉

)∗
〈λ1|V |λ2〉 . (3.49)

For a Hermitian operator, recall that V = (V T)∗ ≡ V †. We use the transpose
to operate on the other side of V , for which we use the complex conjugates
of the bras and kets:

84 3. Inelastic Scattering

W ′
1→2 = 〈λ2|V |λ1〉 〈λ1|V |λ2〉 , (3.50)

W ′
2→1 = 〈λ2|V |λ1〉 〈λ1|V |λ2〉 , (3.51)

so:

W ′
1→2 = W ′

2→1 ≡W ′ . (3.52)

This result (3.52) is true so long as V is Hermitian. Starting in the known
states |λ1〉 and |λ2〉, the transition probabilites between these states are equal.

Now assume that the states |λi〉 are populated in thermodynamic equi-
librium, differing by a Boltzmann factor. The measured cross sections are
proportional to W1→2 and W2→1:

W1→2 =
e−E1/kBT

Z
W ′

1→2 =
e−E1/kBT

Z
W ′ , (3.53)

W2→1 =
e−E2/kBT

Z
W ′

2→1 =
e−E2/kBT

Z
W ′ , (3.54)

where Z is the partition function. Now that we have taken into consideration
the fact that the initial states have probabilities as expected from thermo-
dynamic equilibrium, we can relate the observed intensity for the transition
1 → 2 to the observed intensity for its reverse transition 2 → 1:

W1→2 = e(E2−E1)/kBT W2→1 . (3.55)

Suppose the state |λ2〉 has an energy higher (more positive) than |λ1〉,
because the state |λ2〉 has an extra excitation in the sample. The transi-
tion 1 → 2 is uphill energetically, and requires the neutron to transfer en-
ergy to create an excitation sample. Nevertheless, this transition is more
intense experimentally because the initial state |λ1〉 is more probable ther-
modynamically. Equation (3.55) shows that the intensity W1→2 < W2→1

because E2 > E1 and the exponential is greater than 1. To clarify (3.55), we
recognize that the difference in energy, E = E2 − E1, is the energy of the ex-
citation in the solid. It is more traditional to write the condition of detailed
balance as:

S(E) = eE/kBT S(−E) . (3.56)

where E is the energy of the excition in the solid, and the argument −E corre-
sponding to W2→1 signifies that S(−E) is on the phonon annihilation side of
the elastic peak in the spectrum. Detailed balance remains valid when a single
scattering creates or annihilates multiple excitations – a detailed balance be-
tween forward and reverse processes still exists because the thermodynamic
probabilities of the required initial states are set by E.

A practical use of detailed balance is to check the quality of experimental
data. For example, in a spectrum measured at 300 K, equivalent to 25 meV,
the intensities at ±25 meV on the two sides of the elastic peak must be in
the ratio of e−1. If this were not true, we might suspect instrument artifacts,
such as differences in sensitivity or resolution. A noise background could also

3.3 General Formulation of Nuclear Scattering 85

cause measured data to violate the condition of detailed balance, and perhaps
detailed balance could be exploited to help subtract some sources of back-
ground from experimental data. We warn the reader, however, about such
simple interpretations with data from a time-of-flight chopper spectrometer.
The value of Q varies across the energy scale of data from a particular de-
tector, and the relationship is not symmetric, i.e., Q(E) 6= Q(−E). When
multiphonon scattering is strong, and the Debye–Waller factor is significant,
detailed balance will not be observed in the experimental data unless they
are rebinned for constant Q.

3.3.3 Crystalline Periodicity

The translational periodicity of crystals allows the reduction of the double
sum in (3.45) to a single sum. We separate the atom position operators,
Rj(t), into static, xl,κ, and time-varying, ul,κ(t), components:

Rj(t) = xl + xκ + ul,κ(t) , (3.57)

where the static positions were broken into lattice vectors (index l) and basis
vectors (index κ) in (3.57). The exponentials in (3.45) refer to pairs of atoms
separated by a distance xj−xk. In an infinite crystal, where all unit cells are
equivalent, these exponentials cannot depend on the absolute position of the
unit cell, but only on the lattice translation vector xl. Any one of the N unit
cells can be taken as the origin, and the terms from the lth neighbor must be
the same. This distance, xl, has no time dependence, and is a constant. It
therefore commutes through the other distance operators, and we can write:

d2σ

dΩ dE
=
kf

ki

(2π)3N |b|2

2V0

∑
l

eiQ·xl

∫
eiωt
〈
eiQ·ul(t) e−iQ·u0(0)

〉
dt . (3.58)

Here, for simplicity we have also assumed all nuclei are the same so bj =
bk ≡ b, and we have assumed a simple lattice without a basis. The result in
(3.58) accounts for the interactions of waves scattered from pairs of nuclei,
recognizing that their instantaneous displacements may differ by a phase
factor. This difference in phase factor gives a constant prefactor eiQ·xl . The
other exponentials are not constants, however, and need to be handled with
care. The temptation would be to combine the exponentials into a single
factor such as eiQ·(Rj(t)−Rj(0)). Unfortunately, this tempting step would be
incorrect, except for classical systems. The quantum argument, described
next, is subtle.

3.3.4 A Subtlety of Quantum Mechanics

Calculating the expectation value of an operator A using the left- and right-
hand sides of (3.28) and (3.29) gives:

〈ψ(t)|A|ψ(t)〉 = 〈ψ(t=0)|e+iHt/~Ae−iHt/~|ψ(t=0)〉 . (3.59)

86 3. Inelastic Scattering

Evidently the time-dependence of the matrix element can be transferred
from the state functions ψ to the operator A by replacing the operator by
e+iHt/~Ae−iHt/~. This moves us into the “Heisenberg picture” of quantum
mechanics where state functions are fixed, but the time-dependence is in the
operator. The motivation for putting the dynamics into the operators is as
follows. In passing from classical mechanics to quantum mechanics, we replace
the position vector R(t) with an operator, denoted R(t). In particular, we
will alter soon work with phase factors that are a time-dependent operators:

eiQ·R −→ eiQ·R . (3.60)

Changing R to the operator R leads to a subtlety in calculating the inten-
sity from the wave amplitude. It turns out that the operator R(0) does not
commute with the operator R(t) for the same atom at a different time. The
operators are related as:

R(t) = e+iHt/~R(0)e−iHt/~ , (3.61)
e−iHt/~R(t) = R(0)e−iHt/~ , (3.62)

and likewise for the exponentiated operators:

eiQ·R(t) = e+iHt/~eiQ·R(0)e−iHt/~ , (3.63)
e−iHt/~eiQ·R(t) = eiQ·R(0)e−iHt/~ . (3.64)

We cannot interchange the order of R and H because H includes the mo-
mentum operator.

To better understand how this works, we need a result about exponenti-
ations of non-commuting operators. Operators in exponential functions are
defined in terms of the power series expansion of the exponential. Consider
two operators A and B:

exp(A) = 1 + A− 1
2
A A + . . . , (3.65)

exp(B) = 1 + B − 1
2
B B + . . . , (3.66)

Now take the product, including all terms to the second order:

exp(A) exp(B) =
[
1 + A− 1

2
A A + . . .

][
1 + B − 1

2
B B + . . .

]
,(3.67)

exp(A) exp(B) = 1 + B − 1
2
B B

+ A − A B + O3

− 1
2
A A + O3 + O4 (3.68)

exp(A) exp(B) = 1 + A + B

− 1
2

[
A A + 2A B + B B

]
+O3 , (3.69)

where we have been fastidious about keeping the operator A to the left of
the operator B, because they may not necessarily commute.

3.3 General Formulation of Nuclear Scattering 87

Now evaluate the exponentiation of the sum A+B, again to second order
in the operators:

exp(A + B) = 1 + (A + B)− 1
2
(A + B) (A + B) +O3 , (3.70)

exp(A + B) = 1 + A + B

− 1
2

[
A A + A B + B A + B B

]
+O3 , (3.71)

Note that (3.69) and (3.71) are not equal unless A commutes with B. In
general, however:

A B 6= 1
2

[
A B + B A

]
so : (3.72)

exp(A) exp(B) 6= exp(A + B) . (3.73)

In classical physics, of course we have exp(A) exp(B) = exp
[
(A + B)

]
.

We need to re-examine the results of Sect. 2.3.5 in light of the inequality of
(3.73). Equation (3.72) shows that the difference between the two sides of
(3.73) is approximately:

A B − 1
2

[
A B + B A

]
=

1
2

[
A B −B A

]
. (3.74)

It turns out that the right side of (3.74) is the second term in a power series
expansion of exp

(
1
2

[
A B − B A

])
, a factor that equates the two sides of

(3.73). That is:

exp(A) exp(B) = exp(A + B) exp
(1

2
[
A B −B A

])
. (3.75)

Proof of (3.75) is provided in Appendix I.1 of the excellent book by Squires,
but here we have demonstrated its plausibility. An important point in the
proof is that the commmutator [A,B] is a pure number, rather than a differ-
ential operator. Fortunately this holds true when A and B are atom displace-
ments generated by phonons (obtained from the annihilation and creation
operators, a and a†).

3.3.5 Gaussian Thermal Averages

Now that we have the expression (3.75), we can use it to rearrange (3.58) into
a form that shows intensity contributions from different numbers of phonon
excitations. To clarify the next steps, it is traditional to make the definitions:

U ≡ −iQ · u0(0) , (3.76)
V ≡ iQ · ul(t) . (3.77)

Now we substitute (3.76) and (3.77) into (3.75):

exp(U) exp(V) = exp(U + V) exp
(1

2
[
U V − V U

])
. (3.78)

88 3. Inelastic Scattering

At this point we need to take a thermal average (the 〈〉 in (3.58)). In doing
so, we make the assumption that the vibrational atom displacements are
distributed with a Gaussian spread. The Gaussian distribution function can
be used to average a squared displacement, X2:

〈X2〉 =

∞∫
−∞

X2 1√
πσ2

e−X
2/σ2

dX , (3.79)

〈X2〉 =
1
2
σ2 , (3.80)

a standard result.
For comparison, we next average an exponential eX :

〈eX〉 =

∞∫
−∞

eX
1√
πσ2

e−X
2/σ2

dX , (3.81)

by completing the square:

− (X/σ − σ/2)2 = −
(
X2/σ2 −X + σ2/4

)
, (3.82)

so by adding and subtracting the last term of (3.82) in the exponential:

〈eX〉 =

∞∫
−∞

1√
πσ2

e−(X/σ−σ/2)2eσ
2/4 dX , (3.83)

〈eX〉 = eσ
2/4

∞∫
−∞

1√
πσ2

e−(X/σ−σ/2)2 dX , (3.84)

〈eX〉 = eσ
2/4 , (3.85)

where the last result was obtained by integrating the normalized Gaussian
function. By comparing (3.80) and (3.85), we obtain:

〈eX〉 = eX
2/2 . (3.86)

Using (3.86), we obtain a factor with our operators U and V :

〈exp(U + V)〉 = exp
(1

2
(
U + V

)2)
. (3.87)

We use this result to obtain the thermal average of (3.78):

〈expU expV 〉 = exp
(1

2
(
U + V

)2) exp
(1

2
〈U V − V U〉

)
, (3.88)

〈expU expV 〉 = exp
(1

2
〈U2 + V 2 + UV + V U + UV − V U〉

)
,(3.89)

〈expU expV 〉 = exp
(1

2
〈U2 + V 2〉

)
exp〈UV 〉 . (3.90)

By examining (3.76) and (3.77), we can see that:

3.3 General Formulation of Nuclear Scattering 89

〈U2〉 = 〈V 2〉 , (3.91)

because the average vibrational amplitudes do not change over time, and all
unit cells are equivalent in the crystal. This allows a final simplification of
(3.90):

〈expU expV 〉 = exp〈U2〉 exp〈UV 〉 . (3.92)

Equation (3.92) was obtained with the one assumption of a Gaussian thermal
spread of atom positions. Even if this in not quite the case, (3.92) is expected
to be valid when the atom displacements are small. By expanding both sides
of (3.86), and recognizing that the thermal average of odd powers of X are
zero, (3.86) seems a reasonable approximation.

Finally, we use (3.92) to rewrite (3.58) in a way that will later let us
identify individual phonon scatterings. Making use of the definitions (3.76)
and (3.77):

d2σ

dΩ dE
=
kf

ki

(2π)3N |b|2

2V0

∑
l

eiQ·xl

∫
eiωt exp〈U2〉 exp〈UV 〉dt . (3.93)

Taking the thermal averages has removed much of the time dependence in
our factors. The only remaining time dependence is within the 〈UV 〉 factor,
so we rewrite:

d2σ

dΩ dE
=
kf

ki

(2π)3N |b|2

2V0

∑
l

eiQ·xl exp〈U2〉
∫

eiωt exp〈UV 〉dt . (3.94)

Using (3.76), the factor exp〈U2〉 in (3.94) becomes exp(−〈[Q · ul(0)]2〉). We
recognize this as a Debye–Waller factor. To its right in (3.94) is a sum over
pairs of atoms separated by xl. There is a phase associated with the atom
separation in the pair. Suppose for the moment that there were no displace-
ments of the atoms from their lattice sites. In this case the final exponential
exp〈UV 〉 would equal e0 = 1. This is the case of elastic scattering, and the
sum of phase factors of (3.94) would reduce to to the elastic scattering result
of (2.68). It is the final factor, the Fourier transform of exp〈UV 〉, that makes
(3.94) interesting, and it is in a convenient form for further development.

3.3.6 Impulse Approximation

It is relatively easy to adapt the general result (3.45) to the case where
the energy of the incident neutron is much higher than the characteristic
excitations in the solid. We therefore ignore the interatomic interactions,
and consider the collision of the neutron with a single nucleus at R. This
approaches the problem of hitting a ball with a classical projectile, so we lose
some features of wave mechanics.4 We do have to account for momentum
4 Another viewpoint is that we expect multiple excitations to occur in the solid.

The effects of coherence are generally washed out when multiple excitations

90 3. Inelastic Scattering

and energy transfer, of course. The impulse approximation begins with the
replacement of the operator:

Rj(t) −→ Rj(0) + tvj , (3.95)

Rj(t) −→ Rj(0) +
t

Mj
p
j
, (3.96)

where we expect t to be small since the neutron is moving fast. Because
the incoherent character of the multiple excitations suppresses the phase
relationships between different scatterers, and we consider terms j = k in
(3.45). It is tempting to substitute (3.96) directly into (3.45) to obtain:

d2σ

dΩ dE
? =?

kf

ki

(2π)3

2V0

∑
j

∑
k

b∗jbkδj,k

×
∫

eiωt
〈
eiQ·(Rj(0)+t/Mjp

j
) e−iQ·Rk(0)

〉
dt , (3.97)

and with Rj(0) = Rk(0):

d2σ

dΩ dE
? =?

kf

ki

(2π)3

2V0

∑
j

|bj |2
∫

eiωt
〈
eit/MjQ·p

j

〉
dt . (3.98)

The missing piece in (3.98) is a phase factor associated with the energy gain of
the scatterer. The energy gain is kinetic, Ekin = p2

2Mj
= ~2Q2

2Mj
. Fermi’s Golden

Rule, which connects the wavefunctions before and after the scattering, is
senstitive to the phases of the initial and final states of the scatterer. The
transfer of energy causes a relative change in the phase of these two states
by the factor: exp(iEkin~−1 t). This phase relationship for the total energy
transfer leaves a minimal amount of quantum mechanics in the scattering
problem (which we expect to go away at very high incident energies):

d2σ

dΩ dE
=
kf

ki

(2π)3

2V0

∑
j

|bj |2
∫

eiωtei
“

~2Q2

2Mj

”
~−1 t

〈
eit/MjQ·p

j

〉
dt . (3.99)

In Sect. 3.3.5 we calculated the thermal average, 〈〉, when the displace-
ments of the scatterer had a Gaussian thermal spread. To apply this result
to (3.99), we use the result: 〈eiX〉 = e−X

2/2:

d2σ

dΩ dE
=
kf

ki

(2π)3

2V0

∑
j

|bj |2
∫

eiωtei
“

~2Q2

2Mj

”
~−1 te−(〈Q·p

j
〉t/Mj)

2/2 dt . (3.100)

We complete the square in the exponential, defining:

x2 ≡
(√

at− b

2
√
a

)2

= at2 − bt+
b2

4a
, (3.101)

occur. For incoherent inelastic scattering as in Sect. 3.1.4, we expect to analyze
the scattering by considering only a single nucleus at a time. We expect the
excitations to be incoherent.

3.3 General Formulation of Nuclear Scattering 91

and we obtain a result:
∞∫

−∞

e−at
2+bt dt =

∞∫
−∞

e−x
2

√
a

dx =
√
π

a
eb

2/4a . (3.102)

With the associations for a and b:

a =
1
2

(
〈Q · p

j
〉

Mj

)2

, (3.103)

b = i
(
ω +

~Q2

2Mj

)
, (3.104)

(3.100) becomes:

d2σ

dΩ dE
=
kf

ki

(2π)7/2

2V0

∑
j

|bj |2
(

Mj

〈Q · p
j
〉

)2

exp

−
(

~Q2

2Mj
+ ω

)2

2
(
〈Q·p

j
〉

Mj

)2

 . (3.105)

The differential scattering cross section in (3.105) has the shape of a
Gaussian function, centered at an energy ~ω:

~ω = −~2Q2

2Mj
. (3.106)

The center of the Gaussian is simply the energy transfer from a scattering
with a single-particle recoil. This result could be obtained by classical me-
chanics. The spread of this Gaussian is obtained from from the denoninator
in the Gaussian of (3.105). This width increases with Q and with the mean-
squared velocity of the scatterers. The ratio of shift to width grows larger with
Q, however. In the classical limit of very large Q, the width is negligible, so
the energy and momentum transfers are well-defined.

3.3.7 Multiphonon Expansion

We return to develop (3.94) with the “multiphonon expansion,” which is
obtained from the expansion of the exponential exp〈UV 〉. This is seen most
easily in the incoherent approximation, where we replace:

exp〈UV 〉 −→ exp〈U〉〈V 〉 = exp〈U〉〈U〉 . (3.107)

so that, treating U as a displacement and not an operator:

d2σ

dΩ dE
=
kf

ki

(2π)3N |b|2

2V0

∑
l

eiQ·xl exp〈U2〉

×
∫

eiωt exp (−iQ · u iQ · u) dt . (3.108)

92 3. Inelastic Scattering

Following (2.73), the harmonic oscillator energy Mω2u2
max, is assumed quan-

tized in units of ~ω. From ~ω ∝ Mω2u2
max, we replace the displacement

u =
√

~/(2Mω), for which we expect a time-dependence:

d2σ

dΩ dE
=
kf

ki

(2π)3N |b|2

2V0

∑
l

eiQ·xl exp〈U2〉

×
∫

eiωt exp
(
Q2~
2Mω

Υ (t)
)

dt , (3.109)

d2σ

dΩ dE
=
kf

ki

(2π)3N |b|2

2V0

∑
l

eiQ·xl exp〈U2〉

×
∫

eiωt

1 +
~2Q2

2M

~ω
Υ (t) +

1
2

(
~2Q2

2M

~ω
Υ (t)

)2

+ . . .

 dt .(3.110)

The terms in the expansion of (3.110) are recognized as a series in powers
of ERecoil/(~ω) — the recoil energy, p2/(2M), divided by the energy of the
phonon, ~ω. It is instructive to compare (3.110) to (2.67), which is re-written
here. Note that it did not include a Debye–Waller factor:

Ψsc(Q, r) = −ei(kf ·r−ω0t)

|r|

×
∑
l,κ

bκ eiQ·xl,κ

(
1 + iQ · ul,κ(t)−

1
2
(Q · ul,κ(t))2 + . . .

)
.(3.111)

Analyzing the two series in (3.110) and (3.111), term-by-term, we find:

• The first term, the 1, provides a Fourier transform of a constant, which
is a delta function, δ(ω). Since the excitation energy is therefore zero,
this is an elastic scattering process. Note that the sum of phase factors
eiQ·xl over lattice sites and the Debye–Waller factor e〈U

2〉 are as expected
for diffracted neutron wavefunctions. Elastic nuclear scattering has no Q
dependence, except through the Debye–Waller factor.

• The second term, involving ~2Q2

2M /(~ω), is the inelastic scattering that oc-
curs by exciting one phonon. We found in (2.78) that its Fourier transform
led to a delta function δ(ω − ω(q)) from the conservation of energy. A
conservation of momentum led to a similar delta function, δ

(
(q−Q)− g

)
.

Single phonon scattering increases with Q as Q2.

• The third term, involving
(

~2Q2

2M

~ω

)2

, is the scattering that involves the ex-

citation of two phonons. This occurs in one scattering event, not through
the creation of two phonons by two different deflections of the neutron.
(The latter is “multiple scattering.”) When the time function is squared,
such as cos2(ωt) = 1/2

(
1 + cos(2ωt)

)
, the frequency is doubled, and en-

ergy conservation provides the delta function δ(ω − 2ω(q)). Two-phonon

3.4 Magnetic Scattering 93

scattering involves twice the energy transfer as a one-phonon process. Note
how it increases rapidly with Q, going as Q4.

• Higher order terms, involving + . . . , involve the excitation of many phonons
in one scattering of the neutron. These higher-order terms approach clas-
sical behavior. Typically the scattering of a particle with a large a large
momentum transfer causes the excitation of many phonons, sometimes
better described as the creation of heat.

We note that the analysis here has assumed ignored phase relationships in
multiphonon scattering. This is typical of even more sophisticated treatments
of the problem. Multiphonon scattering is usually analyzed in the incoherent
approximation.

3.4 Magnetic Scattering

3.4.1 Magnetic Form Factor and Scattering Amplitude

Magnetic scattering originates with the interaction between the spin of the
neutron and the spins of electrons and/or the motions of electrons. Magnetic
scattering is inherently more complicated than nuclear scattering because the
potentials have vector character. The magnetic forces are also long range.

The scattering potential can be written in the general form V = −µn ·B,
where B, which originates with the electrons, has a spin component BS and
an orbital component BL:

B = BS + BL . (3.112)

These components have different mathematical forms5:

BL ∝
R̂× p

R2
, (3.113)

BS ∝ ∇×

(
s× R̂

R2

)
. (3.114)

From (2.54) we obtain the scattering amplitude in the first Born approxima-
tion as the Fourier transform of the scattering potential V = −µn ·B

fmag(Q, E) =
√
kf

ki

2m
~2

1
4π

∞∫
−∞

eiQ·r (−µn ·B) dr . (3.115)

fmag(Q, E) =
√
kf

ki
(−γre)

∞∫
−∞

eiQ·r σ ·

(
1
~

R̂× p

R2
+ ∇×

(
s× R̂

R2

))
dr ,(3.116)

5 Note that BL has the form of the Biot-Savart law for the electron current (with
electron momentum p) about the atom. The BS can be written as a curl of a
vector potential, BS = ∇×A, if A = µe ×R/R2, and µe = −e~/me = −2µBs.

94 3. Inelastic Scattering

where σ is the neutron spin, later to be the spin operator. Many constants
were combined into the “classical electron radius,” re = e2/(mec

2), and γ is
the gyromagnetic ratio of the neutron, γ = 1.913.

The evaluation of (3.116) is most expedient with two mathematical tricks:
∞∫

−∞

R̂

R2
e−iQ·R dR = −4πi

Q̂

Q
, (3.117)

∇×

(
s× R̂

R2

)
=

1
2π2

∞∫
−∞

q̂ × (s× q̂) e−iq·R dq . (3.118)

The derivation of (3.117) is not difficult – it involves transformation to spher-
ical coordinates where the R2 in the denominator is cancelled by an R2 in
the differential volume element.6 Unfortunately, (3.118) is much more work
to obtain unless one is rather clever with, or accepting of, vector identities.
A sketch of its derivation is given in Appendix B.2 of Squires’ book.

In using the tricks (3.117) and (3.118), the necessary steps are:

• With the neutron at r and the ith electron at ri, the position for the
magnetic field, R in (3.113) and (3.114), is the distance separating r and
ri: R = r − ri.

• The Fourier transform of R̂×p/R2 first involves replacing the exponential
e−iQ·R = e−iQ·r e+iQ·ri , in order to use coordinates of the neutron and the
ith electron. The second phase factor e+iQ·ri , is a constant, and is removed
from the integration over all space. The remaining spatial integration be-
comes, from (3.117), −i4π Q̂× p/Q.

• Notice that the right-hand side of (3.118) has its only dependence on R
in the exponential (which we again write as e−iq·R = e−iq·r e+iq·ri). When
is (3.118) substituted into (3.116), a double integral (over r and q) is
obtained. After the phase factor, eiq·ri , is isolated, the r-integral is of the
form

∫
ei(Q−q)·rdr. The r-integral therefore gives a three-dimensional δ-

function, (2π)3δ(Q− q).

The result from these manipulations with (3.117) and (3.118) is:

fmag(Q, E) =
√
kf

ki
(−γr0)

×σ ·
(∞∫
−∞

eiq·ri
1

2π2
q̂ × (s× q̂) (2π)3δ(Q− q) dq

− i4π
~

eiQ·ri
Q̂× p

Q

)
. (3.119)

6 Note that (3.117) is the inverse transformation of (A.27) in the Appendix, with
the interchange of R and Q.

3.4 Magnetic Scattering 95

Integrating over the δ-function forces q −→ Q:

fmag(Q, E) =
√
kf

ki
(−γr0) eiQ·ri

×4πσ ·

(
Q̂× (s× Q̂) − i

~
Q̂× p

Q

)
. (3.120)

With the definition of M̃⊥(Q), which involves a sum over all electrons in
the sample:

M̃⊥(Q) ≡
∑
ri

eiQ·ri

(
Q̂× (s× Q̂) − i

~
Q̂× p

Q

)
, (3.121)

fmag(Q, E) = 4π
√
kf

ki
(−γr0) σ · M̃⊥(Q̂) . (3.122)

Equation (3.122) is a general expression for the magnetic scattering from
the spin and orbital moment of the electrons. It includes a sum over the phase
factors for electrons at all {ri}. Unfortunately, the spin and orbital terms in
the large parentheses in (3.121) have different forms, and to see more cearly
the vectorial character of magnetic scattering it is convenient to make them
equivalent using the expression (proved with some effort in Squires Appendix
H.1)

M̃⊥L ≡
i

~Q
∑
ri

eiQ·ri(Q̂× p) =
1

2µB
Q̂×

(
M̃L(Q)× Q̂

)
, (3.123)

where the Fourier transform of the magnetic form factor from the spatial
distribution of electron currents is:

M̃L(Q) ≡
∫

ML(r) eiQ·ridr . (3.124)

It is natural to write (3.121) as:

M̃⊥ ≡ M̃⊥s + M̃⊥L , (3.125)

M̃⊥ =
1

2µB
Q̂×

(
M̃(Q)× Q̂

)
, (3.126)

where M̃(Q) is the Fourier transform of the spatial distribution of all mag-
netization (as in (3.124)):

M̃(Q) ≡
∫

M(r) eiQ·ridr , (3.127)

We arrive at the cleaner expression for the magnetic scattering factor

fmag(Q, E) = 4π
√
kf

ki
(−γr0)

∑
ri

eiQ·riσ ·
(
Q̂× (M̃ × Q̂)

)
, (3.128)

96 3. Inelastic Scattering

3.4.2 Vector Orientations in Magnetic Scattering

Equation (3.128) shows that the magnetic scattering is proportional to the
vector Q̂×M̃×Q̂. The maximum magnetic scattering therefore occurs when
the direction of the spin, S, or magnetization, M(r), is perpendicular to the
scattering vector, Q. This is illustrated in Fig. 3.4.2, which shows intensity
contours measured about the forward beam in a small-angle scattering exper-
iment. A magnetic field of 8 kG was applied to the specimen, perpendicular
to the direction of the incident beam. This field should was sufficient to satu-
rate the magnetic moment of the sample (a soft magnetic material), aligning
all its spins. Notice that the contours are oriented perpendicularly to the
direction of the applied magnetic field. The scattering along the direction
of the magnetic field is non-zero, however, because Ni-Fe has strong nuclear
scattering. By comparing intensities parallel and perpendicular to the applied
magnetic field, it is possible to extract individual profiles for magnetic and
nuclear scattering.

Fig. 3.6. Experimental intensity contours from small-angle neutron scattering
(SANS) from fcc Ni-Fe in the presence of an 8 kG applied magnetic field. The
forward beam was perpendicular to the plane of the paper. The intensity decreases
with angle from the forward beam, but more rapidly in the direction of the applied
magnetic field.

The relationship between the generalized magnetization, M̃ , its projec-
tion, M̃⊥, and the scattering vector, Q, is illustrated with the help of Fig.
3.4.2 and its caption. By comparing the two parts of this figure, we find

Q̂× M̃ × Q̂ = M̃ − Q̂(M̃ · Q̂) . (3.129)

The cross-section for magnetic scattering is proportional to |fmag|2. We
need to take the product of M̃⊥ with its Hermitian adjoint to obtain the
intensity

M̃
†
⊥M̃⊥ =

(
M̃

†
− Q̂(M̃

†
· Q̂)

)(
M̃ − Q̂(M̃ · Q̂)

)
. (3.130)

3.4 Magnetic Scattering 97

Fig. 3.7. Important vectors for magnetic scattering. (left) The gray plane, parallel

to the paper, is defined by the vectors fM and bQ. The vector product fM × bQ is

perpendicular to the plane of the paper and fM⊥ ≡ bQ × fM × bQ again lies in the

plane. (right) The vector of length fM · bQ along the direction bQ.

When distributing the product in (3.130), the two middle terms have the
same form but opposite sign to the fourth term, so

M̃
†
⊥M̃⊥ = M̃

†
M̃ − (M̃

†
· Q̂)(M̃ · Q̂) . (3.131)

We resolve M̃ and Q into Cartesian components

M̃
†
⊥M̃⊥ =

∑
α,β

S†αSα − S†αQ̂αSβQ̂β , (3.132)

M̃
†
⊥M̃⊥ =

∑
α,β

(
δαβ − Q̂αQ̂β

)
S†αSβ . (3.133)

3.4.3 Averaging over Neutron Polarizations

To obtain an experimental cross-section from (3.128), we need to average over
the spin orientations of the incident neutrons (orientations of σ). We expect
to write the cross-section as |fmag|2

d2σ

dΩ dE
= (γre)2

kf
ki

∣∣∣〈λf , σf |σ · M̃⊥|λi, σi〉
∣∣∣2 δ(Ef−Ei+~ω) . (3.134)

Compared to nuclear scattering, (3.134) includes additional coordinates in
the matrix element, σi and σf , to account for the change in spin of the
neutron after scattering. Again, the λi and λf refer to states of the scatterer.
For magnetic scattering, a change in λ may originate with the creation or
annihilation of an excitation of the electron spins. Further progress with these
coordinates will require a magnetic dynamics model. The total cross-section
requires that we sum over all initial and final states of the neutron:

d2σ

dΩ dE
= (γre)2

kf
ki

∑
i

∑
f

∣∣∣〈λf , σf |σ · M̃⊥|λi, σi〉
∣∣∣2 δ(Ef−Ei+~ω) .(3.135)

The coordinates σi and σf describe to the neutron spin, which we expect
to be up or down (sometimes ↑, ↓). Equation (3.134) is the cross-section for
one scattering process, but in an experiment we expect to average over the

98 3. Inelastic Scattering

spins of many neutrons. The total cross-section should include weighting func-
tions such as pσi

to account for different probabilities of initial spin up and
spin down neutrons, as for example with polarized beam experiments. The
final spin states are assumed unbiased, however, and so have no associated
weight function.

The operator in (3.135) can be resolved into its vector components:

σ · M̃⊥ = σxM̃⊥x + σyM̃⊥y + σzM̃⊥z . (3.136)

The coordinates of σα pertain to the neutrons only, and the coordinates of
M̃⊥α pertain only to the electrons. The products in (3.136) serve to group the
factors involving electrons and neutrons, but they separate as for example:

〈λf , σf |σxM̃⊥x|λi, σi〉 = 〈λf |M̃⊥x|λi〉 〈σf |σx|σi〉 . (3.137)

The cross-section of (3.135) can be separated into nine different terms by use
of (3.136) and (3.137) (note the sequencing of subscripts x and y):

d2σ

dΩ dE
= (γre)2

kf
ki

∑
i

∑
f(

〈λi|M̃⊥x|λf 〉 〈σi|σx|σf 〉〈σf |σx|σi〉〈λf |M̃⊥x|λi〉

+〈λi|M̃⊥x|λf 〉 〈σi|σx|σf 〉〈σf |σy|σi〉〈λf |M̃⊥y|λi〉

+〈λi|M̃⊥y|λf 〉 〈σi|σy|σf 〉〈σf |σx|σi〉〈λf |M̃⊥x|λi〉+ . . .

)
δ(Ef−Ei+~ω) . (3.138)

By closure,
∑
f |σf 〉〈σf | = 1, there is simplification of the spin factors

d2σ

dΩ dE
= (γre)2

kf
ki

∑
i

∑
f(

〈λi|M̃⊥x|λf 〉 〈σi|σxσx|σi〉〈λf |M̃⊥x|λi〉

+〈λi|M̃⊥x|λf 〉 〈σi|σxσy|σi〉〈λf |M̃⊥y|λi〉

+〈λi|M̃⊥y|λf 〉 〈σi|σyσx|σi〉〈λf |M̃⊥x|λi〉+ . . .

)
δ(Ef−Ei+~ω) . (3.139)

The spin operators have the properties7

σx| ↑〉 = | ↓〉 , σy| ↑〉 = +i| ↓〉 , σz| ↑〉 = +| ↑〉 ,
σx| ↓〉 = | ↑〉 , σy| ↓〉 = −i| ↓〉 , σz| ↓〉 = −| ↓〉 . (3.140)

7 These relations are obtained, for example, from explicit forms of the Pauli spin
matrices.

3.4 Magnetic Scattering 99

Equation (3.139) includes terms with the factors 〈↑ |σxσy| ↑〉 and 〈↑
|σyσx| ↓〉. Evaluating them with (3.140) gives:

〈↑ |σxσy| ↑〉 = 〈↑ |σx(+i)| ↓〉 = 〈↑ |+ i| ↑〉 = +i〈↑ | ↑〉 = +i , (3.141)
〈↑ |σyσx| ↑〉 = 〈↑ |σy| ↓〉 = 〈↑ | − i| ↑〉 = −i〈↑ | ↑〉 = −i , (3.142)

where the last result used the normalization 〈↑ | ↑〉 = 1. It is not surprising
that (3.141) and (3.142) give opposite results because the spin operators
σx and σy do not commute. The consequence is that there is a pairwise
cancellation of the six terms in (3.139) that involve the subscripts xy, yx, xz,
zx, yz, zy.

For unpolarized neutrons with | ↑〉 and | ↓〉 of equal probabilities, we
expect no bias for the three remaining terms of (3.139), which becomes

d2σ

dΩ dE
= (γre)2

kf
ki

∑
i

∑
f(

〈λi|M̃⊥x|λf 〉 〈σi|σ2
x|σi〉〈λf |M̃⊥x|λi〉

+〈λi|M̃⊥y|λf 〉 〈σi|σ2
y|σi〉〈λf |M̃⊥y|λi〉

+〈λi|M̃⊥z|λf 〉 〈σi|σ2
z |σi〉〈λf |M̃⊥z|λi〉

)
δ(Ef−Ei+~ω) . (3.143)

The three remaining terms have factors 〈σi|σ2
x|σi〉, 〈σi|σyx2|σi〉, and

〈σi|σ2
z |σi〉. These terms evaluate to 1 as for example

〈↑ |σ2
x| ↑〉 = 〈↑ |σx| ↓〉 = 〈↑ | ↑〉 = 1 . (3.144)

simplifying (3.143)

d2σ

dΩ dE
= (γre)2

kf
ki

∑
i

∑
f(

〈λi|M̃⊥x|λf 〉 〈λf |M̃⊥x|λi〉

+〈λi|M̃⊥y|λf 〉 〈λf |M̃⊥y|λi〉

+〈λi|M̃⊥z|λf 〉 〈λf |M̃⊥z|λi〉

)
δ(Ef−Ei+~ω) . (3.145)

In (3.145) we recognize that that the three terms in parentheses are the
projections onto a set of final states of the three components of the vector
M̃⊥. This can be obtained as 〈λf |M̃⊥|λf 〉〈λf |M̃⊥|λi〉. We therefore make
use of (3.133) to rewrite (3.145) as

100 3. Inelastic Scattering

d2σ

dΩ dE
= (γre)2

kf
ki

∑
α,β

(δαβ − M̃α M̃β)∑
i

∑
f

〈λi|M̃⊥α|λf 〉 〈λf |M̃⊥β |λi〉 δ(Ef−Ei+~ω) . (3.146)

Further Reading

The contents of the following are described in the Bibliography.
Leonid V. Azároff: Elements of X-Ray Crystallography, (McGraw-Hill, New
York 1968), reprinted by TechBooks, Fairfax, VA.
M. Born and K. Wang: Dynamical Theory of Crystal Lattices (Oxford Classic
series, 1988).
B. Fultz and J. M. Howe: Transmission Electron Microscopy and Diffractom-
etry of Materials, Second Edn. (Springer–Verlag, Heidelberg, 2002).
S. W. Lovesey: Theory of Neutron Scattering from Condensed Matter, Vol. 1
(Oxford,1984).
S. W. Lovesey: Theory of Neutron Scattering from Condensed Matter, Vol. 2
(Oxford,1984).
A. A. Maradudin, E. W. Montroll, G. H. Weiss and I. P. Ipatova: The Theory
of Lattice Dynamics in the Harmonic Approximation, Second Edn. (Academic
Press, New York, 1971)
V. F. Sears: Neutron Optics (Oxford, 1989).
G. L. Squires: Introduction to the Theory of Thermal Neutron Scattering
(Dover, Mineola, New York 1996).

4. Dynamics of Materials and Condensed
Matter

4.1 Lattice Dynamics

4.1.1 Atomic Force-Constants

Following the notation of Maradudin, et al. [1], we consider a crystal gener-
ated by the infinite repetition in space of a parallelepipedic unit cell defined
by three noncoplanar vectors {a1,a2,a3}. The vectors a1, a2, a3 are the
primitive lattice vectors of the crystal. We label each unit cell by a triplet l
of integers (positive, negative or zero): l = (l1, l2, l3). The equilibrium position
of the origin of the unit cell l is denoted

x(l) = l1a1 + l2a2 + l3a3 . (4.1)

If there are r > 1 atoms per unit cell, we assign an index κ = 1, 2...r to each
atom of a unit cell and write its mass Mκ. We describe the atomic equilibrium
positions with respect to the origin of a unit cell with so-called basis vectors
{x(κ), κ = 1, 2...r} so that the equilibrium position of atom κ in cell l is then
given by the sum of the lattice plus basis vectors

x(lκ) = x(l) + x(κ) . (4.2)

Thermal fluctuations induce displacements in the atomic positions; the
vector u(lκ) is the displacement of the atom (lκ) from its equilibrium po-
sition x(lκ), and the uα(lκ) (α = x, y, z) are the corresponding cartesian
components. The instantaneous position R(lκ)(t) of atom (lκ) at time t is
then

R(lκ)(t) = x(lκ) + u(lκ)(t) . (4.3)

The total potential energy Φ of the crystal is assumed to be a function of the
instantaneous positions of all the atoms in the crystal

Φ = Φ(...,R(lκ), ...R(l′κ′), ...) . (4.4)

and it can then be expanded in a Taylor series of the atomic displacements

Φ = Φ0 +
∑
lκα

Φα(lκ)uα(lκ)

+
1
2

∑
lκα

∑
l′κ′α′

Φαβ(lκ; l′κ′)uα(lκ)uβ(l′κ′) + (4.5)

102 4. Dynamics of Materials and Condensed Matter

In the harmonic approximation of lattice dynamics, we keep only the
terms of the series written explicitly in (4.5) – we neglect terms of order
three and higher in the displacements. The coefficients of the Taylor series
are the derivatives of the potential with respect to the displacements:

Φα(lκ) =
(

∂Φ

∂uα(lκ)

)
0

, (4.6)

Φαβ(lκ; l′κ′) =
(

∂2Φ

∂uα(lκ)∂uβ(l′κ′)

)
0

, (4.7)

where the subscript zero means that derivatives are evaluated in the equi-
librium configuration (all displacements equal to zero) and Φ0 is the static
potential energy of the crystal. Because the force on any atom must vanish
in the equilibrium configuration, we have [1]

Φα(lκ) = 0 ∀ α, l, κ . (4.8)

The nuclear part of the classical Hamiltonian for the whole crystal is
H = T + Φ where T =

∑
κ,l

p2
κ.l

2Mκ
is the kinetic energy of the nuclei in the

crystal. In the harmonic approximation we obtain

H =
∑
κ,l

p2
κ.l

2Mκ
+ Φ0 +

1
2

∑
lκα

∑
l′κ′α′

Φαβ(lκ; l′κ′)uα(lκ)uβ(l′κ′) . (4.9)

We can rewrite the Hamiltonian in matrix form

H =
∑
κ,l

p2
κ.l

2Mκ
+ Φ0 +

1
2

∑
lκ

∑
l′κ′

uT (lκ)Φ(lκ; l′κ′)u(l′κ′) , (4.10)

where we have defined the 3 × 3 force-constant matrix Φ for the atom pair
(lκ; l′κ′) by

Φ(lκ; l′κ′) = [Φαβ(lκ; l′κ′)] . (4.11)

If (l, κ) 6= (l′, κ′), then the components of the force-constant matrix are
given by the second-order derivatives of the potential of (4.7). On the other
hand, if (l, κ) = (l′, κ′) ,then Φ is a so-called “self-force constant”, whose
expression is derived from the requirement that there is no overall translation
of the crystal:

Φ(lκ; lκ) = −
∑

(l′,κ′) 6=(l,κ)

Φ(lκ; l′κ′) . (4.12)

Because −Φ(lκ; l′κ′)u(l′κ′) is the force acting upon atom (lκ) when atom
(l′κ′) is displaced by u(l′κ′), it follows that Φ(lκ; l′κ′) must be a real symetric
matrix:

Φ(lκ; l′κ′) =

a b cb d e
c e f

 . (4.13)

4.1 Lattice Dynamics 103

Because any crystal is invariant when translated by a lattice vector, the force-
constant matrices must also have the following property:

Φ(lκ; l′κ′) = Φ(0κ; (l′ − l)κ′) = Φ((l − l′)κ; 0κ′) (4.14)

4.1.2 Equations of Motion

From the crystal Hamiltonian, one can derive the equations of motion for all
nuclei in the crystal. In the harmonic approximation, we obtain:

mκ
··
u(lκ)2 = −

∑
l′,κ′

Φ(lκ; l′κ′)u(l′κ′) ∀ l, κ . (4.15)

Up to this point, we have considered an ideal crystal with an infinite number
of atoms and unit cells; in the previous equations, the indices l and l′ were
running over an infinite countable set. Recognizing that a real crystal can only
be of finite size, we write N cell

x (resp. N cell
y , N cell

z) for the number of unit
cells in the crystal in the x (resp. y, z) direction, and N cell = N cell

x N cell
y N cell

z

is the total number of unit cells. According to 4.15, we thus have 3 × r ×
N cell equations of motion to solve. It is then convenient to impose periodic
boundary conditions on the crystal, by requiring that:

u((lx, ly, lz)κ) = u((lx +N cell
x , ly, lz)κ) (4.16)

= u((lx, ly +N cell
y , lz)κ) (4.17)

= u((lx, ly, lz +N cell
z)κ) . (4.18)

We can seek the solutions having the form of plane waves of wavevector q,
angular frequency ωq,j , and polarization e(κ, qj):

u±(κl, qj) =
1√
Nmκ

e(κ, qj) ei(q·rl±ωq,jt) . (4.19)

The periodic boundary conditions impose the condition that the set of
possible wavevectors {q} are discrete, although the typically large number of
unit cells in the crystal translates into a very fine mesh of q-points in recip-
rocal space. The number of physically distinguishable wavevectors is equal to
N cell, and this is the number of wavevectors within the so-called first Bril-
louin zone in reciprocal space. A monoatomic crystal with one basis vector
has a total of 3×N cell

x ×N cell
y ×N cell

z vibrational modes. With r atoms in the
basis of the unit cell, the crystal has 3×r×N cell vibrational modes, in agree-
ment with its total number of mechanical degrees of freedom. Because there
is a factor of 3r more modes than wavevectors, each wavevector q is associ-
ated a-priori with 3× r vibrational modes, identified by a “branch incex”, j.
Each of the 3r different modes corresponds to a different polarization vector
e(κ, qj) and angular frequency ωq,j (1 ≤ j ≤ 3r), although degeneracies can
be induced by symmetry, as discussed in section 4.3.

104 4. Dynamics of Materials and Condensed Matter

4.1.3 The Eigenvalue Problem for the Polarization Vector

The polarization vector, e(κ, qj), a characteristic of each mode qj, contains
informatio on the excursion of each atom κ in the unit cell. The vectors
e(κ, qj) for all the atoms in the basis (1 ≤ κ ≤ r) and their associated
angular frequencies ωq,j can be calculated by diagonalizing the “dynamical
matrix” D(q). The dynamical matrix is obtained by substituting (4.19) into
(4.15). It has the dimensions (3N × 3N) and is constructed from (3 × 3)
submatrices D(κκ′, q):

D(q) =

D(11, q) . . . D(1N, q)
...

. . .
...

D(N1, q) · · · D(NN, q)

 . (4.20)

Each sub-matrix D(κκ′, q) is obtained by taking the Fourier transform of the
force-constant matrix Φ(lκ, l′κ′), considered as a function of (l′ − l):

D(κκ′, q) =
1

√
mκmκ′

∑
l′

Φ(0κ, l′κ′) eiq·(rl′−r0) , (4.21)

where we took l = 0 since the summation is over all values of l′ and the crystal
is infinite periodic (i.e., the origin cell is arbitrary). By similarly collecting
the polarization vectors into a vector of size 3× r, we can rewrite our system
of differential equations with the plane wave solutions (4.19) in the form of
an eigenvalue problem:

D(q) e(qj) = ω2
q,j e(qj) , (4.22)

where

e(qj) =

ex(1, qj)
ey(1, qj)
ez(1, qj)

...
ez(N, qj)

 . (4.23)

It can be shown that the (3r × 3r) dynamical matrix D(q) is hermitian
(for any value of q), and thus is fully diagonalizable. The 3r eigenvectors and
eigenvalues of the dynamical matrix evaluated at a particular wavevector q
then correspond to the 3r eigenmodes of vibration of the crystal for that
wavevector.

4.1.4 Calculation of the Phonon Density of States

In order to calculate the phonon density of states (DOS) of the crystal, we
need to diagonalize the dynamical matrix at a large number of points in the
first Brillouin zone of reciprocal space. The diagonalization of D(q) at each
q point returns 3r eigenvalues of angular frequency ωq,j (1 ≤ j ≤ 3r), which

4.2 Harmonic, Quasiharmonic and Anharmonic Phonons 105

are then binned into a DOS histogram. By carrying the procedure at a large
number of wavevectors in reciprocal space, we can calculate the density of
states.

Some description of procedures is needed to help connect to the actual
computer codes.

4.1.5 Symmetry Constraints on the Force-Constant Matrices

4.1.6 References

[1] A. A. Maradudin, E.W. Montroll, G. H. Weiss and I. P. Ipatova: The
Theory of Lattice Dynamics in the Harmonic Approximation, Second Edn.
(Academic Press, New-York, 1971)
[2] G. Venkataraman, L. A. Feldkamp and V. Sahni: Dynamics of Perfect
Crystals (MIT Press, Cambridge, 1975)
[3] M. Born and K. Huang: Dynamical Theory of Crystal Lattices (Oxford
Classic series, 1988)
[4] P. Brüesch: Phonons: Theory and Experiment I, Lattice Dynamics and
Models of Atomic Forces (Springer-Verlag, Berlin, 1982)
[5] D. C. Wallace: Thermodynamics of Crystals (Wiley, 1972)

4.2 Harmonic, Quasiharmonic and Anharmonic Phonons

4.2.1 Definitions

In mechanics, the words “harmonic oscillator” and “anharmonic oscillator”
are well understood. A harmonic oscillator is composed of masses connected
by generalized forces that are linear with a displacement of a generalized
coordinate. This is Hooke’s law. The word “anharmonic” describes any oscil-
lator with forces that deviate from this linear response. In thermodynamics,
the word “anharmonic” is further subdivided into “quasiharmonic” and “an-
harmonic,” which is given a more restricted meaning. Unfortunately, there is
no universal agreement on where this division occurs. Furthermore, the word
“harmonic” is itself sometimes a bit negotiable.

For thermodynamics, we will use the following choices of words to explain
how phonon frequencies change with the intensive variables temperature and
pressure:

• Harmonic phonons undergo no change in frequency with T or P . The fre-
quencies of harmonic phonons at all T and P are the same as at 0 K and
0 GPa pressure.

• Quasiharmonic phonons have frequencies that depend on volume only. At
a fixed volume, however, they behave as harmonic oscillators. These fre-
quencies can change with temperature, but only because thermal expansion

106 4. Dynamics of Materials and Condensed Matter

alters the volume of the solid. Their frequencies would not change with tem-
perature if a controlled pressure were used to maintain a constant volume
of the material.

• Anharmonic phonons change their frequencies for other reasons. For ex-
ample, the interatomic potential may change with temperature because
chemical bonding is altered owing to electronic excitations across the Fermi
surface. Thermal expansion is not necessarily linked to this process, so there
is a pure temperature dependence to the phonon frequencies, independent
of volume effects.

4.2.2 Phonons in Thermodynamics

We can relate phonon changes with V and T to thermodynamics by consid-
ering how the energy, E, and entropy, S, vary with temperature (the inde-
pendent variable). The Helmholtz free energy, F = E − TS, is expected to
vary with temperature as:

dF
dT

=
∂E

∂T

)
V

+
∂E

∂V

)
T

dV
dT

− S − T

[
∂S

∂T

)
V

+
∂S

∂V

)
T

dV
dT

]
. (4.24)

For the thermodynamics of electrons and phonons (neglecting magnetic en-
tropy, for example), the physical origins of the five terms in Eq. (4.24) are:

• ∂E/∂T
)
V

includes the temperature-dependent occupancies of phonon and
electron states.

• ∂E/∂V
)
T

dV /dT is the change in electronic energy that can be described
as the work done against the bulk modulus owing to thermal expansion,
dV /dT .

• S, evaluated at temperature T , is a large term that contains both electron
and phonon parts, Sel and Sph. It is often the only temperature-dependence
in simple harmonic models for which dF/dT ' ∂F/∂T . The big source of
this temperature dependence of S(T) is the Bose-Einstein occupancy factor
of phonon states. At high temperatures, the energy in each phonon mode
is kBT , and all phonon modes contribute equally to the heat capacity.
For harmonic solids at high temperatures, differences in the phonon DOS
will cause a difference in entropy for different phases, but this difference
in entropy does not change with temperature. (S increases with T by the
same amount for each phase.)

• ∂S/∂T
)
V

accounts for the temperature-dependence of the electron and
phonon entropy, beyond what is expected from the Bose-Einstein occu-
pancy factor. The temperature dependence of the phonon entropy involves
changes in the energies of the phonon states (an anharmonic effect). It
is commonly assumed that this term is zero (i.e., the energies of phonon
states do not change with temperature if the volume is constant), but this
assumption is often incorrect.

4.2 Harmonic, Quasiharmonic and Anharmonic Phonons 107

• ∂S/∂V
)
T

dV /dT includes both phonon and electron contributions. The
phonon part is often parameterized by a Grüneisen parameter, but the
electronic part can also be parameterized by an “electronic Grüneisen pa-
rameter.”

We define harmonic, quasiharmonic, and anharmonic entropies in the
terms of (4.24). For the phonon part of the entropy we have:

Sharm = S , (4.25)

Squasi = S +∆T

[
∂S

∂V

)
T

dV
dT

]
, (4.26)

Sanh = S +∆T

[
∂S

∂V

)
T

dV
dT

+
∂S

∂T

)
V

]
. (4.27)

One view of the Grüneisen parameter, γ, is that it relates the change in
entropy to the fractional change in volume of a solid:

S = S0

(
V

V0

)γ
, (4.28)

∂S

∂V

)
T

' γS . (4.29)

Further recognizing that dV/dT = βV , where β is the volume coefficient of
thermal expansion, we can use (4.29) to simplify (4.26) and (4.27):

Squasi = S
[
1 +∆Tγβ

]
, (4.30)

Sanh = S
[
1 +∆Tγβ

]
+
∂S

∂T

)
V

, (4.31)

where we have switched to entropy per unit volume.
When electronic entropy is included, it is possible to use an analogous

“electronic Grüneisen parameter” to express the volume dependence of the
electronic entropy

∂Sel

∂V

)
T

= γelSel . (4.32)

Equation (4.32) can be used to extend the definition of the word quasihar-
monic, but this convention has not yet been established. The temperature
dependence of the electronic contributions to S caused by Fermi-Dirac ther-
mal occupancy factors are quite conventional, and are perhaps appropriate
for a “harmonic” models. Effects of electron-phonon interactions, however,
are probably best considered as “anharmonic” effects.

108 4. Dynamics of Materials and Condensed Matter

4.2.3 Phonons and Heat Capacity

Suppose we have measured the phonon DOS at different temperatures, and
found that the DOS changes with temperature. What are the effects of this
temperature-dependence on the heat capacity of the material? We need to
know how the heat goes into the material. Energy goes into phonon creation,
but energy also goes into the expansion of a crystal against its bulk mod-
ulus, electronic excitations, magnetic excitations, and these excitations may
interact with each other. For a harmonic solid without other interactions, it
is acceptable to consider only the energy required to populate the phonon
states with increasing temperature. Although energy goes into the phonon
states, phonons also contribute to the entropy of the solid. In a general ther-
modynamic analysis, it is necessary to minimize a free energy function that
includes phonon energy, phonon entropy, and the elastic energy of thermal
expansion, for example. The latter can make a large contribution and change
the heat capacity in a qualitative way.

Consider two analyses of phonon softening:
1. First ignore thermal expansion. The heat capacity is calculated as CV for a
distribution of harmonic oscillators. We can account for how the frequencies of
these oscillators decrease with temperature, and CV is obtained by accounting
for this continuous decrease in frequency as a function of temperature. For
a particular phonon DOS, shown as the inset in Fig. 4.1, CV was computed
at each temperature with the (softened) phonon DOS appropriate to that
temperature. In this case all phonon softened by the same fraction of their
energy to maximum of 6.5 % at 300 K. This fraction was assumed linear with
temperature. At each temperature T , each mode of energy ε was assumed to
contribute to the heat capacity the amount

CV,mode(T) = kB

(
ε

kBT

)2 exp(ε/kBT)
(exp(ε/kBT)− 1)2

. (4.33)

This expression can be obtained by differentiating the Planck distribution,
[exp(ε/kBT)− 1]−1, and weighting by the energy of the mode, ε.

Notice in Fig. 4.1 that the total heat capacity curve differs little from
the pure harmonic case with no phonon softening. The rise in heat capac-
ity occurs at temperatures that are a bit lower, but the effect is essentially
negligible. Additionally, there is no increase in the heat capacity above the
Dulong-Petit limit of 3R at high temperature. In the high-temperature limit,
with phonon occupancies of kBT/ε per mode, the softening of the modes
gives an increase in occupancy proportional to 1/ε, but a decrease in energy
proportional to ε. The product of these two factors produces a heat capacity
CV at high temperatures that is unaffected by mode softening. Even with
phonon softening, CV at high temperatures remains 3R.
2. Now allow for thermal expansion. We have to consider a minimization of
free energy where the phonon entropy compensates the elastic energy of ex-

4.2 Harmonic, Quasiharmonic and Anharmonic Phonons 109

pansion.1 Here we first need to assess the entropy of the harmonic oscillators
as a function of temperature

Sosc(T) =
ε/T

exp(ε/kBT)− 1
− kB ln[1− exp(−ε/kBT)] . (4.34)

This expression can be obtained from the partition function of a harmonic
oscillator, Z =

∑
n exp(−nε/kBT) = [1 − exp(−ε/kBT)]−1. Obtain the free

energy from this partition function as F = −kBT lnZ, and differentiate to
obtain (4.34) as S = −∂F/∂T . Without thermal expansion, (4.34) is consis-
tent with (4.33) if we integrate:

SV,osc(T) =

T∫
0

CV,mode(T ′)
T ′

dT ′ , (4.35)

(an expression which can be remembered from T dSV,osc(T) = CV,mode(T) dT).
The 6.5% shift of ε from 27 to 300 K was taken into account by making ε
a linear function of T in the same way as in example 1. With the total en-
tropy of the solid (assumed to be entirely phonon entropy), we can calculate
the amount of heat going into the solid at constant pressure by using the
definition of Cp

Cp,mode(T) = T
dS

dT

)
p

. (4.36)

The result is also shown in Fig. 4.1.

1.0

0.8

0.6

0.4

0.2

0.0

H
ea

t C
ap

ac
ity

 [3
R

]

300250200150100500

Temperature [K]

harmonic

softens with expansion

softens 7%, no expansion

difference: (no exp – harmonic)

difference: (expansion – harmonic)

5

4

3

2

1

0

D
O
S

[
1
/
m
e
V
]

1412108642

Energy [meV]

Fig. 4.1. Heat capacity
versus temperature for two
assumed physical models
(examples 1 and 2 in text).
Inset is the phonon DOS
at 0 K – all modes were
assumed to soften by 6.5
% at 300 K. A simple har-
monic heat capacity with
a phonon DOS unchanged
with temperature is also
shown.

1 In general, other sources of entropy may compensate for this expansion, or other
types of excitation can occur with temperature.

110 4. Dynamics of Materials and Condensed Matter

At high temperatures, Cp,mode(T) can be shown to approach 3R if there
is no thermal expansion. With thermal expansion, however, the difference
between Cp and CV is the famous classical result: 9Bvα2T , where B, α, and v
are bulk modulus, coefficient of linear thermal expansion, and specific volume.
This exceeds 3R at elevated temperature, as shown in Fig. 4.1. The energy
going into thermal expansion makes a big difference in the heat capacity. The
phonon softening itself provides an entropy to allow this to occur, but the
phonon contribution to the heat capacity from softening alone is not so large
as the energy of the expanded solid.

4.3 Group Theory and Lattice Dynamics

4.3.1 Real Space

The paper by A. A. Maradudin and S. H. Vosko “Symmetry Properties of
the Normal Modes of a Crystal”, Reviews of Modern Physics 40, 1-37 (1968),
shows how group theory can be used to understand the normal modes of
crystal vibrations. The focus of their substantial manuscript is on using the
symmetry of the reciprocal lattice to find the eigenvectors of the dynamical
matrix and classify them. The degeneracies of the different normal modes
are addressed rigorously, and their association with the symmetry elements
of the crystal are useful in labeling them. Projection operator methods offer
the possibility of finding eigenvectors and eigenvalues without diagonalizing
the dynamical matrix.

The paper by J. L. Warren “Further Considerations on the Symmetry
Properties of the Normal Modes of a Crystal”, Reviews of Modern Physics
40, 38-76 (1968), also describes the point group of the bond. The bond means
the interactions between an atom and its neighbors. The group of the bond
refers to the real space symmetries of the interatomic interactions, i.e., how
the force constants transform under the point group operations at a central
atom.

Consider the space group operator in Seitz notation:

S ≡ {S |v(S) + x(m)} , (4.37)

where S is a rotation operation, x(m) is a lattice translation, and v(S) is an
additional displacement that is required for non-symmorphic crystals (i.e.,
crystals with screw axes or glide planes).2 Apply this operator to a displace-
ment vector u (the displacement of an atom off its site during a vibration):

u′α(L,K) =
∑
β

Sαβuβ(l, κ) , (4.38)

where the operation serves to mix the Cartesian components (denoted sub-
script α) of the displacement vector for the atom at l, κ, and translates the
2 Note that this vector v(S) mixes the rotation and translation operations.

4.3 Group Theory and Lattice Dynamics 111

vector to the atom at L,K. The potential energy of the crystal depends
quadratically on the uα, times a force constant matrix involving the spatial
derivatives of the potential along the Cartesian axes of the uα. The potential
energy of the crystal is invariant under symmetry operations of (4.37). This
leads to the equality:

Φµν(LK,L′K ′) =
∑
αβ

SµαSνβΦαβ(lκ, l′κ′) . (4.39)

The matrix equation (4.39) must be true for all valid force constant matri-
ces Φαβ(lκ, l′κ′). It is instructive to set S = I, the identity, so there is no
rotation, and only translations are imposed. This can be used to show that
force constants can depend only on relative separations between atoms, not
absolute positions.

A number of other tests of force constants can be performed with (4.39).
Imposing rotations that mix the Cartesian axes can be used to demonstrate
that some force constants are equal. Force constants that must equal their
negative are found – this result means that the force constant is zero. Equa-
tion (4.39) could be handy for determining allowed force constants if a set of
space group matricies, S, are available.

4.3.2 k-space

Quantum Mechanics. In quantum mechanics, group theory addresses the
symmetry of the hamiltonian, H. If an operator, R, commutes with H,

RH = HR , (4.40)∑
j

RijHjk =
∑
j

HijRjk , (4.41)

it is convenient to select basis functions for which R is diagonal, so the single
remaining terms in the sums are:

RiiHik = HikRkk , (4.42)
(Rii −Rkk)Hik = 0 . (4.43)

Equation (4.43) shows that when i 6= k, then the off-diagonal elements Hik =
0. The basis functions for which R is diagonal are the same for which H is
diagonal.

For example, consider the rotational symmetry of a hydrogen atom about
the ẑ-axis. The Abelian group of rotations has 1-dimensional representations
in terms of functions eimφ. Done. Obtaining the φ-dependence this way was
much easier than solving the Schrödinger equation in spherical coordinates.

Lattice Dynamics. The analogous question for lattice dynamics is, “Can
we use symmetry to get the eigenvectors of the dynamical matrix without
solving the eigenvalue problem in detail?” The dynamical matrix is:

112 4. Dynamics of Materials and Condensed Matter

Dαβ(κκ′|k) =
1√

MκMκ′

∑
l′

Φαβ(lκ; l′κ′) exp[−ik · (x(l)− x(l′))] ,(4.44)

and the relevant eigenvalue equation is:∑
βκ′

Dαβ(κκ′|k)uβ(κ′) = ω2uα(κ) . (4.45)

All functions in (4.45) live in reciprocal space. The entire paper of Maradudin
and Vosko is in reciprocal space, or k-space.

Table 4.1. Elementary Variables Used by Maradudin and Vosko

l, l′ indices of unit cells

κ, κ′ indices of atom in basis

r number of atoms in basis

xl,κ atom site in a crystal

xl lattice site in a crystal

xκ basis vector

Mκ mass of atom in basis

α, β Cartesian indicies {x, y, z}
u(κ) and uα(κ), uβ(κ) atom displacement in a phonon,

and Cartesian components

Φαβ(lκ; l′κ′) force constant between two atoms

e(k, σ, λ) phonon polarization vector

(with components for all κ in unit cell)

σ (or s) denotes (or index for) a distinct value of ω2
j

λ (or a) denotes (or index for) independent

eigenvector for each σ or ω2
j

fσ number of eigenvectors for each

degenerate energy (1 ≤ a ≤ fσ)

S ≡ {S |v(S) + x(m)} Seitz space group operator

h order of the group (number of elements)

S matrix of rotation or improper rotation

v(S) little displacement vector

for a screw axis operation

x(m) lattice translation vector

Γ S(k; {S |v(S) + x(m)}) 3r × 3r unitary matrix of symmetry

operator (in recip. space)

Ri ≡ {R |v(S) + x(m)} symmetry operator

for a single wavevector k

Consider the matrix Γ S(k) that performs symmetry operations S on the
dynamical matrix. Doing two such operations is tricky, since the k used in
constructing the matrix for the second operation depends on the result of the

4.3 Group Theory and Lattice Dynamics 113

first operation. Maradudin and Vosko choose instead to work with the space
group of a single wavevector k, and designate the symmetry operations by
Ri = {R |v(S)+x(m)}. These symmetry operations on k produce equivalent
wavevectors. In particular, the rotational part of Ri therefore must generate
a k that differs only by a reciprocal lattice vector g:

Rk = k − g . (4.46)

This is quite restrictive, and means that g is zero for most vectors k. The situ-
ation is much like the allowed k-vectors for ordered structures in the Landau-
Khachaturyan formalism of second-order phase transitions. The operations
of (4.46) eliminate the equivalent vectors from the star of k. Inequivalent k
can exist only at special points such as the boundaries of Brillouin zones.

So although:

D(Sk) = Γ−1
S (k)D(k)Γ S(k) , (4.47)

and therefore in general:

D(k) 6= Γ−1
S (k)D(k)Γ S(k) , (4.48)

with the restriction to the group of the wavevector k, the unitary matricies
Γ Ri

commute with D:

D(k) = Γ−1
Ri

(k)D(k)Γ Ri(k) . (4.49)

These {Γ Ri
(k)} actually form a 3r-dimensional unitary representation of

the space group of the wavevector, k. They could be used to develop the
symmetry properties of the eigenvectors of the dynamical matrix, but this is
not the approach of Maradudin and Vosko.

Multiplier Representation. Maradudin and Vosko define a new matrix
T(k;Ri), which differs from the Γ Ri

(k) by an exponential phase factor of
modulus unity:

T(k; {Ri |v(S) + x(m)}) = exp[ik · (v(S) + x(m))]
×Γ Ri(k; {R |v(S) + x(m)}) , (4.50)

This choice of T(k;Ri) is somewhat unusual because these matricies do not
form a group in the usual sense – the product of two of them is not an element
of the group:

T(k;Ri)T(k;Rj) = exp[ig · v(Rj)]T(k;RiRj) . (4.51)

(where the product of exponentials of two cases of (4.50) were simplified by
noting the restrictive condition (4.46) on the allowed R, giving the condition
g · x(m) = 2πm, and exponential phase factors of +1). The phase factor
exp[ig ·v(S)] can differ from +1, although it differs from +1 only for crystals
with screw axes AND special k-points.3

3 Is it important to study phonons (or magnons) at special k-points in crystals
with screw axes (non-symmorphic crystals)?

114 4. Dynamics of Materials and Condensed Matter

Matrices {T(k;Ri} that obey a multiplication rule of (4.51) are said to
form a “multiplier representation” of the group of {Ri}. The phase factor is
the “multiplier.” For most crystals this is +1, and we are back to ordinary
group representations. Even if the multiplier is complex, however, if we can
get the eigenvectors of these T, we can get the eigenvectors of the dynamical
matrix, D.

We rewrite (4.45):

D(k)e(kσλ) = ω2
σe(kσλ) , λ = 1, 2, 3 . . . fσ , (4.52)

noting that:

D(k)[T(k;Ri)e(kσλ)] = ω2
σ[T(k;Ri)e(kσλ)] . (4.53)

The {T} mix the degenerate e(kσλ) (i.e., they mix those λ that go with the
same σ). Showing this more clearly, we write:

T(k;Ri)e(kσλ) =
fσ∑
λ′

τ
(σ)
λ′λ(k;Ri)e(kσλ′) , (4.54)

for every Ri in the group of the wavevector k. The fσ functions transform
among themselves under T(k;Ri). Furthermore, from (4.49) we can show
that T(k;Ri) commutes with D. These conditions are sufficient to show that
the {τ (σ)(k;Ri)} provide an fσ-dimensional irreducible multiplier represen-
tation of the point group of the wavevector k.

Now make a vector of all eigenvectors:

e(k) =
[
e(kσ1λ1), e(kσ1λ2), . . . e(kσ2λ1), e(kσ2λ2), . . .

]
, (4.55)

which transforms as:

T(k;Ri)e(k) = e(k)∆(k;Ri) , (4.56)

and the 3r × 3r dimensional matrix ∆(k;Ri) has the block-diagonal form:

∆(k;Ri) =

τ (1)(k;Ri) 0 0 . . .

τ (2)(k;Ri) 0 . . .

0 0 τ (3)(k;Ri) . . .

.

 . (4.57)

The unitary matrices τ (σ)(k;Ri) are known for all 230 space groups. In a
formal sense, the problem is solved.

Projection Operators. In a practical sense, we can generate the eigenfunc-
tions by projection operator machinery. Maradudin and Vosko show that:

P(s)
λλ′(k) = fs/h

h∑
Ri

τ
(s)
λ′λ(k;Ri)∗ T(k;Ri) (4.58)

4.3 Group Theory and Lattice Dynamics 115

is a projection operator.
The projection operator method is considered standard practice, and is

not developed further by Maradudin and Vosko. Perhaps it is useful to review
it in the context of group theory in quantum mechanics.

Suppose a set of {φ(j)
λ } are partner functions in the representation (j),

and transform among themselves under operation of the symmetry operator
PRi

. Explicitly:

PRi
φ(j)
κ =

lj∑
λ=1

φ
(j)
λ Γ

(j)
λκ(Ri) . (4.59)

Multiply by the complex conjugates of all representation matrices and sum
over all elements in the group:

h∑
Ri

Γ
(i)
λ′k′(Ri)∗PRi

φ(j)
κ =

h∑
Ri

lj∑
λ=1

Γ
(i)
λ′k′(Ri)∗Γ

(j)
λk (Ri)φ(j)

κ , (4.60)

h∑
Ri

Γ
(i)
λ′k′(Ri)∗PRi

φ(j)
κ = δijδκκ′φ

(j)
λ′ , (4.61)

where the last line was obtained through the Great Orthogonality Theorem
of group representation theory. Equation (4.61) shows how a projection op-
erator, P(j)

λk :

P(j)
λk = lj/h

∑
Ri

Γ
(i)
λ′κ′(Ri)∗PRi

, (4.62)

pulls out the function φ(j)
λ′ .

For the eigenvectors of the dynamical matrix for a particular k, the pro-
jection operator of (4.58) does the same thing. Since the matricies τ (σ)(k;Ri)
are available, one could use projection operator techniques to operate on an
arbitrary vector and generate all eigenfunctions of the dynamical matrix. La-
bels can be assigned to various phonons based on group theory designations.
Another step could be to substitute the e(kσλ) into (4.52) and obtain ω2

σ by
matrix multiplication rather than by matrix inversion. Is this useful, or just
elegant? Projection operator methods will reveal all degeneracies of normal
modes for a particular k. In such cases where a set of partner eigenvectors is
found, it is not possible to obtain them directly. This requires diagonalizing
the dynamical matrix to solve for the eigenvectors, or more accurately a block
diagonal form of the dynamical matrix as in (4.57).

Compatibility Relations. The paper by J. L. Warren “Further Consid-
erations on the Symmetry Properties of the Normal Modes of a Crystal”,
Reviews of Modern Physics 40, 38-76 (1968), adds to the discussion of
Maradudin and Vosko. Compatibility relationships are described in more de-
tail in Warren’s paper. Compatibility relationships refer to the new degen-
eracies that appear when special high symmetry directions in the Brillouin

116 4. Dynamics of Materials and Condensed Matter

zone come together at special points, such as at the point Γ at the center of
the zone, or at the points {X, W, K, L} on the surface of the zone.

For example, when moving along a line in k-space along the (100) direc-
tion, an abrupt change in symmetry occurs when the edge of the zone (X)
or center of the zone (Γ) is reached. The source of this new symmetry is
the fact that at these special points, translational vectors of the reciprocal
lattice cause the points to become equivalent (identical) to other points in
the reciprocal lattice.4 For example, at an arbitrary position along the (100)
direction, the symmetry elements are {E, C2

4 , 2C4, 2σv, 2σd}. This fourfold
axis obviously does not have threefold symmetry elements, but the situation
changes at the origin, point Γ . The (111) direction, which includes a three-
fold axis, also converges at Γ . Some representations along the (100) axis are
expected to be compatible with some representations along the (111) axis
when the two axes meet at the origin. The larger symmetry group at the
orgin, point Γ , contains the elements of the threefold and fourfold axes as
subgroups. Some representations of the groups from the threefold and four-
fold axes are compatible at Γ , while some are not. Those that are compatible
at Γ must have eigenvalues that are degenerate in energy. Their associated
phonon branches rigorously converge in energy at Γ .

The way to test for compatibility is to inspect the characters, χ(Ri) =
Tr[Γ (Ri)], of the representations of the three groups. This can be done with
the decomposition formula of group representation theory in exactly the same
way as is done for analyzing the degeneracies in crystal field theory. (After
all, we are considering only the point group of the wavevector.) The decom-
position formula for the characters is:

ai =
1
h

∑
Ri

χ(Ri)∗χ(R) , (4.63)

where ai is the number of times that a particular representation of the sub-
group (e.g., of the threefold axis) appears in the group representation of the
special point (e.g., Γ).

Equation (4.63) is most easily used by inspection of character tables.5 For
example, if all characters of a representation along the fourfold axis match
the characters of a representation at Γ , these representations are compatible.
In a more complicated situation where there is only one ai = 1, the sum of
the characters from the representations along the fourfold axis must equal the
character of a representation at Γ . For the simplest example, the characters
of all symmetry elements in the ∆1 representation of the group of the fourfold
axis are +1. The same symmetry elements have characters +1 for the Γ point
for the representation Γ1. The threefold axis has a different set of symmetry
4 These k-vectors are not identical when they are just slightly displaced off these

special points, and related eigenvectors have to be considered independently.
5 These are found in the classic paper by L. P. Bouckaert, R. Smoluchowski, and

E. P. Wigner, Phys. Rev. 50, 58 (1936), and an excellent description is provided
in Chapter 8 of M. Tinkham’s book on Group Theory and Quantum Mechanics.

4.3 Group Theory and Lattice Dynamics 117

elements than the fourfold axis, but these elements are also +1 for the Γ1

representation, and are +1 only for the Λ1 representation. We deduce that the
∆1 representation of the (100) fourfold axis and the Λ1 representation of the
(111) threefold are compatible at the point Γ . These two representations have
the same basis functions as Γ1, but the symmetry operators at Γ interchange
these basis functions because they are degenerate in energy. The significance
that the basis functions of the ∆1 and Λ1 representations must have exactly
the same energy at the point Γ in k-space. They are not degenerate just away
from the Γ point (unless accidentally, or in the case of no crystal potential),
but group theory says that they are rigorously degenerate at Γ . This is a
result of potential use in the analysis of phonon data. We can determine the
required conditions for the merging of dispersion curves at special point in
k-space. (Incidentally, s-type functions are suitable basis functions for the
symmetric representations in this simple example.)

4.3.3 Time-reversal symmetry in the dynamical matrices

Time reversal symmetry must be considered in magnetic systems. Consider
the spin as a rotation in a particular direction. The spin is flipped upon time
reversal. Time reversal symmetry must also be considered in certain cases for
non-magnetic systems, and results in additional degeneracies. In most cases
time-reversal symmetry does not result in additional degeneracies, however.
(Perhaps we could consider additional degeneracies as “accidental,” but get
the software to flag them so we can inspect for this later.)

When the Hamiltonian is invariant by the time-reversal operation (the
direction of momentum, or spin is inverted), the system is said to have the
time-reversal symmetry. The system without the external magnetic field has
generally the time-reversal symmetry. The time-reversal symmetry often gives
the nontrivial physical significance like the additional degeneracy of the sys-
tem. One of most well-known examples is the Kramers degeneracy, i.e. a
system of an odd number of electrons has the extra degeneracy, but an even
number does not. Of course, the present ionic lattice system has such sym-
metry, too. Therefore, it needs to be checked if there occur additional degen-
eracies or not due to the symmetry, which can be done by investigating the
symmetry of the dynamical matrices.

Maradudin and Vosko begins the discussion by considering the additional
rotational element S k = −k in the point group of the crystal. In the same
way as R (in the the point group G0), with each element S R (in the coset
S G0) we associate a new matrix operator T (k;S R), which is defined anti-
unitary as it should be. The analysis for T (k;R) in section 4.4.3 can be ex-
tended straightforwardly to include the anti-unitary matrix operator T (k;A)
(the element S R will be denoted by A hereafter). It is highly desirable to
derive the condition for the existence of extra degeneracies due to the time-
reversal symmetry, by looking into the linear dependence of the eigenvectors

118 4. Dynamics of Materials and Condensed Matter

e(ksaλ) and T (k;A)e(ksaλ) (it is clear both should be eigenvectors because
the system has the time-reversal symmetry). We define

ē(ksaλ) = T (k;A)e(ksaλ) (4.64)

and consider and compare the transformation properties of e(ksaλ) and
ē(ksaλ) under T (k;R)

T (k;R)e(ksaλ) =
fs∑
λ′

τ
(s)
λ′λ(k;R)e(ksaλ′) , (4.65)

T (k;R)ē(ksaλ) =
fs∑
λ′

τ̄
(s)
λ′λ(k;R)ē(ksaλ′) , (4.66)

where it is found that the irreducible multiplier representations {τ̄ (s)(k;R)}
and {τ (s)(k;R)} belong to the same factor system. They can be either equiv-
alent or inequivalent. In particular, they can be separated into three types
depending on the relationship between two irreducible multiplier representa-
tions.

First, we think of a case the irreducible multiplier representations τ̄ (s) and
τ (s) are inequivalent, which will be referred to as of the third type. In this
case, the eigenvectors e(ksaλ) and ē(ksaλ) are orthogonal and the fs-fold
degeneracy in the dynamical matrix is doubled by 2fs by the time-reversal
symmetry.

On the other hand, it is a bit complicated for an alternative situation
τ̄ (s) and τ (s) are equivalent. In the case, two representations are related by a
similarity transformation, τ̄ (s)(k;R) = β−1τ (s)(k;R)β, where β is a unitary
matrix. Thanks to the irreducibility of the matrices {τ (s)(k;R)}, the unique-
ness up to a phase factor is followed for the matrix β. By Schur’s Lemmas, the
matrix ββ∗τ (s)(k;A−2

0) commuting with all the matrices {τ (s)(k;R)} of an
irreducible multiplier representation of the point group must be proportional
to the unit matrix. This results in two cases;

ββ∗ = φ(k;A0;A0)τ (s)(k;A2
0) , (4.67)

ββ∗ = −φ(k;A0;A0)τ (s)(k;A2
0) , (4.68)

where φ(k;A0;A0) is a ”multiplier”. Further, as is often the case, ββ∗ = ±1
for a suitable element A0 in S G0. Now we can turn our attention to the
problem of liner independence of e(ksaλ) and ē(ksaλ). For the purpose, it
would be easy to investigate the scalar product of two eigenvectors. For the
necessary algebra, it is important to note the scalar products of a unitary
and an anti-unitary transformation on vectors are distinguished as

〈T (k;R)ϕ, T (k;R)ψ〉 = 〈ϕ,ψ〉 ,

〈T (k;A0)ϕ, T (k;A0)ψ〉 = 〈ψ,ϕ〉 ,

4.3 Group Theory and Lattice Dynamics 119

and also the properties for the successive transformations under T (k;R) and
T (k;A0) on the eigenvectors e(ksaλ) and ē(ksaλ). After a little algebra, it
is finally found that, adopting ββ∗ = ±1,

〈ē(ksaλ′), e(ksaλ)〉 = ±〈ē(ksaλ′), e(ksaλ)〉 , (4.69)

where the upper plus sign is corresponding to a case in Eq.(4) and the lower
minus sign to a case in Eq.(5), respectively. Clearly, if ββ∗ satisfies Eq.(5),
then

〈ē(ksaλ′), e(ksaλ)〉 = 0 .

This means that two eigenvectors are linearly independent and the minimum
dimension of the subspace that is invariant under {T (k;R)} is 2fs. In the
case, the set of eigenvectors transforms according to an irreducible multiplier
representation of the second type under the symmetry operations. The other
case where ββ∗ satisfies Eq.(4) cannot say anything about the linear indepen-
dence of two eigenvectors. If they are linearly dependent, they can differ by
at most an arbitrary phase factor and there occurs no additional degeneracy.
On the other hand, if they are linearly independent, this can be referred to
as an accidental degeneracy. This is a case under the irreducible multiplier
representations called the first type.

The above discusses the criteria for establishing the type of represen-
tation by dealing with the relation between {τ̄ (s)(k;R)} and {τ (s)(k;R)}.
Before closing this section, it may be heuristic to introduce the analogous
criterion for irreducible multiplier representations. Starting from the orthog-
onality theorem,∑

R

τ̄
(s)
µµ′(k;R)∗τ (s)

νν′(k;R) = (h/fs)β−1
µν

∗
β∗ν′µ′ , first or second type,

= 0 , third type,

where h is the order of the group G0. Using the relation between τ̄ (s)
µµ′(k;R)

and τ
(s)
µµ′(k;A−1

0 RA0) and Eqs.(4) and (5), we arrive at another interesting
criterion∑

R

φ(k;A0R,A0R)τ (s)
λλ′(k;A0RA0R) = +(h/fs)δλλ′ , first type,

= −(h/fs)δλλ′ , second type,
= 0 , third type.

It is often customary to express the criterion in terms of the characters χs,
i.e. χs(k;R) = Trτ s(k;R),∑

R

φ(k;A0R,A0R)χ(s)(k;A0RA0R) = +h , first type,

= −h , second type,
= 0 , third type.

120 4. Dynamics of Materials and Condensed Matter

The criterion can be also expressed as a sum over the elements A0 of the
coset S G0 instead of R of the point group G0∑

A0

φ(k;A0,A0)χs(k;A2
0) = +h , first type,

= −h , second type,
= 0 , third type.

4.3.4 Implementation in DANSE

Some results from group theory seem both useful and practical to implement
in software. Others are not such good value:

• The point group of the bond can be used to fill out the force constant
matrix, to check for inconsistencies of the force constants, and to help
in generating them. This should, in principle, be facilitated by the ma-
trix operations that are available as Pythonized routines in Computational
Crystallographic Toolbox from the Lawrence Berkeley National Lab [?].

• The group of the wavevector can be assesed. If the Brillouin zone has been
assessed previously by group theory, we can use the compatibility relation-
ships to determine which dispersions are degenerate in energy at special
points. This is important information when assessing the behavior of fuzzy
data. Knowing that a convergence of curves is expected puts constraints on
data, and allows a larger number of counts to be analyzed simultaneously,
improving reliability.

• Time reversal symmetry might be useful to consider in magnetic systems.
It seems plausible that one could assess the merging of magnon dispersions
at special points, but we need to see how well this has been worked out by
theorists. It would probably be too much to actually calculate character
decompositions on the computer for individual cases.

• I think that actually reducing the dynamical matrix by symmetry is too
much to do. The procedure may be elegant to implement, but the net gain
does not seem large enough when compared to brute force diagonalization,
which works rather well so far.

4.4 Spin Dynamics in Solids

4.4.1 Spin as a Source of Magnetism

Electrons are the source of magnetism in materials. Although the atomic
nuclei also have spins and magnetic moments, nuclear moments are smaller
by a factor of 1,000. The electron contributes to magnetism in two separate
ways. One is from orbital motion – the classical origin of magnetism. The
Hamiltonian for electron motion in an electromagnetic field is

4.4 Spin Dynamics in Solids 121

H =
1

2m

[
p +

e

c
A(r)

]2
. (4.70)

Here we assume that the magnetic field H is uniform and take the Coulomb
gauge of ∇ ·A = 0, consistent with A(r) = 1

2 (H × r):
The first order term with respect to A(r) gives

H(1) =
e

2mc
H · (r × p) (4.71)

= µBH ·L , (4.72)

where L = r × p (orbital angular momentum) and µB = e~/2mc (Bohr
magneton). Incidentally, the second order term in (4.70) is:

H(2) =
e2

8mc2
(r ×H)2 , (4.73)

which is simply the magnetic induction, i.e. Lenz’s law. The first order term
(4.72) gives the paramagnetism leading to the magnetization parallel to the
magnetic field, while the second order term (4.73) gives the diamagnetism
leading to the magnetization antiparallel to the magnetic field. For atoms
with closed shells (i.e. L = 0) or superconducting metals, diamagnetism
plays the dominant role. Except for such cases, however, paramagnetism is
usually more important than diamagnetism.

There is another important contribution to magnetism from the electron
besides its orbital motion. Electron spin angular momentum is the essen-
tial ingredient of magnetism in most systems having interesting magnetic
properties. In metallic systems where the electron wavefunction is well ap-
proximated as a plane wave, it can be shown easily that L = 0. The angular
momentum also vanishes in insulators when the force the electron feels in a
solid deviates much from the spherical symmetry the electron would feel in
an isolated atom. In these cases, an orbital motion of the electron cannot
contribute to the magnetism.

Electron spins can be localized or itinerant, and these two cases provide
different types of magnetism. Usually, localized spins are found at ions in
magnetic insulators and itinerant spins are on conduction electrons in metal-
lic systems, although there are other important magnetic systems with both
itinerant and localized spins that show unusual properties. The following sec-
tions describe the characteristic magnetic properties of localized spins, itiner-
ant spins, localized spins immersed in itinerant spins, and strongly correlated
electrons.

4.4.2 Localized Spins

Consider a system of localized spins, where the spins are arranged periodically
on a crystal, and interact with each other through an exchange interaction. To
understand effects of the spin-spin exchange interaction in the system, several

122 4. Dynamics of Materials and Condensed Matter

kinds of spin models are available. These textbook models have a long history.
Depending on the spin dimensionality, there are the Heisenberg model, the
XY model, and the Ising model or n-state Potts model. The commonly-
used Heisenberg model treats three-dimensional spins, the XY model treats
two-dimensional spins, and the Ising model or n-state Potts model treats
one-dimensional spins. This section discusses magnetic properties of localized
spins within the ferromagnetic Heisenberg model.

For an external magnetic field hẑ, we have the spin interaction Hamilto-
nian (J > 0) on the square lattice6

H = −J
∑
i 6=j

Si · Sj − gµB
∑
i

hSzi , (4.74)

where the first term gives the spin-spin interaction intrinsic to the Heisenberg
model. Now introduce the “mean field” (or “molecular field”) approximation.
Details of interactions between neighboring spins are ignored, and the Hamil-
tonian H is replaced by:

H = −J
∑
i 6=j

Si · 〈Sj〉 − gµBh
∑
i

Szi . (4.75)

The magnetization 〈Mz〉 = −gµB
∑
i〈Siz〉 = −gµBN〈Sz〉 can then be ob-

tained through 〈Sz〉 =
∑
Sze−βH/Z, where Z =

∑
e−βH. The evaluation of

〈Sz〉 is simple because H now includes only scalar quantities. Following the
definition of the susceptibility χ = limh→0〈Mz〉/h,

χ =
C

T − TC
, (4.76)

where TC and C are called the Curie temperature and the Curie constant,
respectively. The temperature-dependence of χ in (4.76) is characteristic of
a localized spin system.

For understanding dynamical properties of a magnetic system, a starting
point is its elementary excitations. For the case of three-dimensional spins in
the Heisenberg model, the elementary excitation is known as a spin wave (or
magnon). We consider the operator Oq that creates a specific excitation in
the system,

[H,Oq] = ωqOq , (4.77)

where ωq is the energy of the excitation. The operator Oq raises the spin wave
and provides the spin wave energy. Introducing the Fourier transformation
of spin operators, we reexpress the Heisenberg Hamiltonian as:

H = −
∑

q

J(q)S(q) · S(−q) (4.78)

= −
∑

q

J(q)
[
Sz(q)Sz(−q) +

1
2

(
S+(q)S−(−q) + S−(q)S+(−q)

)]
, (4.79)

6 For geometrical reasons, on some lattices the spins cannot have long-range order.

4.4 Spin Dynamics in Solids 123

where we introduce S(q) =
∑
i Sieiq·Ri and S±(q) =

∑
i S

i
±eiq·Ri (Si± =

Six±iSiy). Assuming the ground state is ferromagnetic, the low energy excited
states should correspond to states with spins slightly deviated from perfect
alignment. S−(q) is an operator that performs this role – it creates the spin
wave excitation (magnon). The excitation energy of magnon is determined
from (4.77):

[H, S−(q)] = ωqS−(q) , (4.80)

which is not, however, exactly solvable and requires an approximation. The
most immediate approach is the mean field approximation forH, which yields:

ωq = 2〈Sz〉[J(0)− J(q)] (4.81)
≈ 2(J/N)〈Sz〉a2q2 , (4.82)

where for the three-dimensional cubic lattice:

J(q) = 2(J/N)[cos(qxa) + cos(qya) + cos(qza)] . (4.83)

At low temperatures, 〈Sz〉 ≈ NS and the magnon energy is

ωq = 2JSa2q2. (4.84)

The magnon energy spectrum is gapless, i.e., ωq → 0 as q → 0. The zero tem-
perature magnetization (M0) then decreases with increasing T as magnons
are created. At small T :

M(T) = M0 − gµB
∑

q

nq , (4.85)

where nq is the Bose distribution function for magnons. A very famous result
is the decrease of magnetization at low T is:

M(T)
M0 − 1

∝ T 3/2 , (4.86)

which is obtained by a simple integration of (4.85).

4.4.3 Itinerant Spins

Both itinerant electrons in metals and localized spins in insulators exhibit
interesting magnetism. The magnetization of the system, 〈Mz〉, in an external
magnetic field h is:

〈Mz〉 = −µB
∑

k

[
〈c†k↑ck↑〉 − 〈c

†
k↓ck↓〉

]
, (4.87)

where c†k↑ (ck↑) is an electron creation (annihilation) operator with a mo-
mentum k and spin up. In the noninteracting electron gas, the magnetic
susceptibility (called the Pauli susceptibility χP) is:

124 4. Dynamics of Materials and Condensed Matter

χP = 2µ2
BN(εF)[1 +O(T/εF)2] , (4.88)

where N(εF) is the electron density of states at the Fermi level and εF is
the Fermi energy. χP is almost constant at low temperatures and has a very
weak temperature dependence.

Now consider a ferromagnetic metal. In ferromagnetic metals, the ex-
change interaction between electrons can raise the ferromagnetic order by
overcoming the competition between kinetic energy and exchange energy. The
susceptibility, χS , depends on the electron exchange interaction V̄ , called the
Stoner susceptibility. It can be obtained by extension of χP as:

χS =
χP

1− 1
2µ2

B
V̄ χP

. (4.89)

Noting that χP ≈ 2µ2
BN(εF) at low temperatures, χS becomes:

χS = 2µ2
B

N(εF)
1− V̄ N(εF)

. (4.90)

From (4.90), 1 − V̄ N(εF) ≥ 0 is a ferromagnetic instability condition at
T = 0, called the “Stoner condition.” For transition metals, the d-band is
narrow and N(εF) can be large, so the Stoner condition is often satisfied (as
for Fe, Co, Ni).

The temperature dependence of χS is very weak at room temperature,
especially compared to the Curie–Weiss susceptibility. This can be easily
understood because only electrons near the Fermi level can participate in
thermally-driven magnetic excitations. Nevertheless, the temperature depen-
dence of the Stoner susceptibility provides context for a longstanding puzzle
of the ferromagnetism observed in Fe (TC =1044 K), Ni (627 K), and Co (1388
K). Putting χP = 2µ2

BN(εF)[1 − aT 2], and χS(TC) = ∞ at the transition
temperature TC, we obtain for χS(T):

χS =
2µ2

B/V̄ a

T 2 − T 2
C

=
2µ2

B/V̄ a

(T + TC)(T − TC)
, (4.91)

and, in particular, near TC:

χS ≈
µ2
B/V̄ aTC

T − TC
. (4.92)

The Stoner susceptibility therefore shows a Curie–Weiss behavior near TC.
However, it is well known that ferromagnetic metals like Fe, Ni, and Co show
Curie–Weiss behavior over much wider temperature ranges. The observed
Curie–Weiss behavior has been one of the most important sources of contro-
versy over whether spins in ferromagnetic transition metals are itinerant or
localized. Improving the Stoner spin susceptibility within a picture of itiner-
ant spins remains an open problem.

4.4 Spin Dynamics in Solids 125

Dynamical responses of spins in metals are also very different from those
in localized spin systems. For conduction electrons, magnetic responses of
their spins are directly related to details of the electron band structure. In
the noninteracting electron gas, χ0(q, ω) governing the magnetic responses
of the system is

χ0(q, ω) = 2µ2
B

∑
k

nk − nk+q

εk+q − εk − ω
, (4.93)

where nk is the Fermi distribution function and εk is the band energy at k.
We note that the Pauli susceptibility χP corresponds to χ0(q, ω) at q = 0
and ω = 0. In the same way as was found for non-interacting systems, for
interacting electron systems in the paramagnetic state, χ(q, ω) is:

χ(q, ω) = 2µ2
B

F (q, ω)
1− V̄ (q)F (q, ω)

. (4.94)

The susceptibility χ(q, ω) is directly related to the neutron scattering
cross section as:

S(q, ω) =
2

1− e−βω
Imχ(q, ω) . (4.95)

It is curious that for temperatures well above TC, neutrons are still scattered
magnetically by metallic spins. A further consideration makes this even more
curious. In thermal neutron scattering experiments, the neutron velocity vn
is typically smaller than the electron velocity vF by a factor of 10−3. This
means that a neutron interacts with approximately 103 electrons as it moves
across the magnetic moment of an atom. The average spin of 103 electrons
will be zero at T > TC. The answer to this puzzle is provided by further anal-
ysis of (4.94). Neutrons are scattered by collective motions of electron spins
(called spin-fluctuations)7, not by individual electron spins. More precisely,
the paramagnetic scattering of neutrons is caused by fluctuations of the mag-
netic force on neutrons exerted by spins of itinerant electrons. On the other
hand, in the ferromagnetic state (T < TC), we need to consider effects from
the spin polarization from the splitting of the electron band states into up
and down spin states. In this case of itinerant band electrons, the elementary
excitations are like the spin wave and Stoner excitation in the ferromagnetic
states, obtained from the condition:

1 = V̄ (q)
∑

k

nk↑ − nk+q↓

εk+q↓ − εk↑ − ω
. (4.96)

Even though the spin wave is usually discussed in the context of systems
with localized spins, it is interesting that spin waves are also excited in the
7 The original discussion of spin-fluctuations is provided by T. Izuyama, D.J. Kim,

and R. Kubo, J. Phys. Soc. Jpn. 18, 1025 (1963).

126 4. Dynamics of Materials and Condensed Matter

ferromagnetic ordered state of itinerant spins. Like the insulating case, we find
M(T)/M0−1 ∝ T 3/2, as in (4.86) for ferromagnetic metals. This experimental
finding strongly implies the existence of spin waves in metallic magnetism.

Returning to the problem of the ferromagnetic transition metals Fe, Co,
and Ni, we ask again, “Are these spins itinerant?” or “Can Stoner theory
properly explain their magnetism?” The answers are still extremely unclear.
There have been attempts to incorporate the electron-phonon interaction
within the itinerant picture. These have improved the Stoner suceptibility
somewhat and have led to a Curie–Weiss-like behavior with a smaller TC than
obtained from band theory, more consistent with experiment. Nevertheless,
many features consistent with local moments are observed experimentally.
The observed change in the specific heat of Fe at TC, for example, is asso-
ciated with an entropy of order kB ln 2, as expected for localized electrons.
Spin-resolved photoemission experiments show that the exchange splitting
does not vanish at T > TC, strong experimental indication of local moments
in ferromagnetic transition metals. These controversies demonstrate that a
better theory is needed to properly account for electron correlations.8

4.4.4 Localized Spins Embedded in Itinerant Spins

A mixed magnetic system with localized spins (or magnetic impurities) em-
bedded in itinerant spins provides many exotic magnetic properties that differ
from the properties of from systems having localized or itinerant spins, but
showing features of both. Consider two cases:

• Mn atoms in Cu metal, where Mn (3d)5 electrons play the role of a magnetic
impurity of S = 5/2, and Cu gives a sea of conduction electrons,

• An f -electron system, for example Ce which has a localized f -level and a
5d conduction band.

The governing Hamiltonian9 for both cases can be written as

H = t
∑
ij

c†iσcjσ + J
∑
il

Sl · σi, (4.97)

where σ is the spin of conduction electrons and S is the localized spin. Al-
though both cases can be explained by H, they correspond to different limits
of H.

First, for Mn impurities in Cu, we set t� J , so the Hamiltonian expresses
an effective indirect interaction of localized spins mediated by conduction
8 A compromise model that includes both itinerant and localized features with

“correlated delocalized electrons” is available, where the magnetic moments at
different sites fluctuate in magnitude and direction at finite temperatures.

9 This is called the “Kondo lattice model” (KLM). Recently, the ferromagnetic
KLM (J < 0) has been frequently adopted to describe the colossal magnetore-
sistance in manganese oxides, where J is the Hund coupling.

4.4 Spin Dynamics in Solids 127

electrons. This interaction is called the RKKY (Ruderman-Kittel-Kasuya-
Yosida) interaction:

HRKKY = J(kF|ri − rj |) Si · Sj , (4.98)

and J(x) has the functional form:

J(x) ∝ −cosx
x3

+
sinx
x4

. (4.99)

The RKKY interaction is also observed in magnetic multilayer systems com-
posed of layers of Fe/Cu, for example, where Cu plays the role of a nonmag-
netic metallic spacer. Here it is found that the exchange coupling constant
oscillates and has both positive and negative values depending on the thick-
ness of the Cu layer, consistent with the kF for the conduction electron sea
in Cu.

The second case is the opposite limit of t� J , and approaches the Kondo
model for heavy fermion systems. In the past decades, very unusual low tem-
perature behaviors have been observed in rare earth metals (e.g., Ce) and
actinides (e.g., U). The linear specific heat at low temperatures shows an un-
usually high coefficient, γ, of order 1 J/mol K2, in contrast to a 1 mJ/mol K2

typical of ordinary metals. High values of γ are typical of “heavy fermion” sys-
tems.10 Furthermore, these heavy fermion systems have an electrical resistiv-
ity of ρ0 +AT 2 at low T with huge values of A of order 10µΩcmK−2, whereas
A is of order 10−5µΩcmK−2 or less for ordinary metals. Heavy fermion sys-
tems exhibit another basic and universal magnetic property. Below a charac-
teristic temperature T ∗,11 heavy fermion systems show Fermi liquid behavior
with a huge effective mass, and then constant (but very high) Pauli suscepti-
bility. Above T ∗, they show a Curie–Weiss susceptibility that originates from
the localized f electrons. At T ∗, the quasi-particles are screened by conduc-
tion electrons and a singlet (nonmagnetic) state is formed, owing to strong
electron correlations. Although heavy fermion systems show differences in
their properties, the disappearance of a magnetic moment is a common fea-
ture.

Another unusual property originating with magnetic scattering is the
Kondo effect. The Kondo effect is a logarithmic increase of the electrical re-
sistivity of the Kondo system when the temperature is reduced. It is caused
by spin flip scatterings of conduction electrons at magnetic impurities.
10 Values of γ for UPt3, CeAl3, CeCu2Si2, UBe13 are 0.45 J/mol K2, 1.6 J/mol K2,

1.1 J/mol K2, and 1.1 J/mol K2, respectively.
11 T ∗ is not necessarily same as TK , which is the usual Kondo temperature for a

single Kondo ion, and in most cases we see T ∗ < TK owing to the condensation
of Kondo ions.

128 4. Dynamics of Materials and Condensed Matter

4.4.5 Strongly Correlated Electrons

Since the discovery of high Tc superconductors,12 enormous theoretical effort
has been made to understand the two-dimensional Hubbard model, which was
originally introduced to understand the metal-insulator transition in transi-
tion metals. The Hubbard Hamiltonian is:

H = t
∑
ij

c†iσcjσ + U
∑
i

ni↑ni↓ . (4.100)

In high Tc superconductors, c†iσ(ciσ) is the creation (annihilation) operator of
the electron (or the hole) at the highest antibonding orbital (predominantly
dx2−y2) of Cu2+ positioned at i in CuO2 plane. Approproximately, t ∼ 0.1 eV
and U ∼ 1 eV. It is immediately clear that the energy scale of the Coulomb
correlation energy, U , is too high compared to the interesting energy scales,
which are around 10 meV for critical temperature of 100 K. The low energy
excitation relevant to superconductivity is therefore believed to originate with
spins, not with charge, and effort has been made to derive an effective spin
Hamiltonian that depends on the hole concentration (doping).

In the undoped case (half-filling), there is one electron at each site and
the hopping into the nearest neighbor costs the energy U . In the limit of
t � U , the electrons look localized at each site because of the high energy
barrier U . The Hubbard model can be transformed into the Heisenberg spin
Hamiltonian:

H = J
∑
ij

Si · Sj , (4.101)

J = 4t2/U . (4.102)

In this limit of t� U , the system acts as an antiferromagnetic insulator.
By introducing a small fraction, x, of holes, the superconducting phase

appears. Typical fractions for Bi2Sr2CaCu2O8+x (Bi2212) are x ∼ 0.1 (this
may be underdoped, but overdoping occurs for x ∼ 0.2). The effective Hamil-
tonian for a small number of holes has also been reduced from the Hubbard
model, and is called the t− J model:

Ht−J = t
∑
ij

a†iσajσ + J
∑
ij

Si · Sj , (4.103)

where a†iσ = c†iσ(1−ni−σ) and aiσ = ciσ(1−ni−σ). In the limit of half-filling,
Ht−J is the Hamiltonian of a Heisenberg antiferromagnet. Research interests
are in small deviations from half-filling, where holes move in the antiferromag-
netic lattice and counteract antiferromagnetic long-range order. This leads to
12 Examples of some high Tc materials are La2−xSrxCuO4 (Tc ∼ 40 K), YBa2Cu3O7

(Tc = 92 K), Bi2Sr2Ca2Cu3O10 (Tc = 110 K), and Tl2Sr2Ca2Cu3O10 (Tc ∼ 125
K).

4.6 Simulations of Spin Dynamics 129

antiferromagnetic spin-fluctuations peaked at a momentum near Q = (π, π).
In the last decades, spin fluctuations have been found to play fundamental
roles in high Tc superconductors. In the antiferromagnetic Fermi liquid model,
many key properties of superconducting cuprates have been understood by
a strong interaction between quasi-particles and spin-fluctuations. For exam-
ple, the spin-fluctuation model has been successful in explaining transport
properties such as electrical resistivity (ρ ∝ T), the magnitude of Tc, results
from nuclear magnetic resonance (NMR) experiments, angle-resolved photoe-
mission spectroscopy (ARPES) experiments, and other experimental results.
The detailed phenomenological propagator for spin-fluctuations is:

χsf(q, ω) =
χQ

1 + ξ2(q −Q)2 − iω/ωsf
, (4.104)

which has proved applicable for interpreting NMR measurements and neu-
tron scattering experiments. Here ωsf is the spin-fluctuation energy and ξ is
the antiferromagnetic correlation length. Through the value of ξ, the spin-
fluctuation depends on the hole concentration. In the limit of ξ → ∞, the
system in the pure magnon region, i.e. the undoped antiferromagnetic insu-
lator with long-range order. An interaction between quasi-particles and spin-
fluctuations is especially strong in underdoped materials. It has been shown
recently that strong anisotropies in ARPES data for underdoped Bi2212 orig-
inate with a strong coupling between quasi-particles and spin-fluctuations.
Incidentally, for other superconducting materials, i.e., La2−xSrxCuO4 and
YBa2Cu3O7−x, data from inelastic neutron scattering and measurements of
the spin-lattice relaxation rate by NMR indicate that the spin-fluctuations
induce an opening of the gap in the spin excitation13 in the CuO2 plane, with
an energy comparable to the BCS gap. The apparent gap develops well above
Tc.

4.5 N/A Simulations of Lattice Dynamics

4.6 Simulations of Spin Dynamics

4.6.1 Monte Carlo Method

Section 4.4 introduced different spin systems and their excitations. Several
approaches are available for calculating the states and state evolution of these
spin systems. Perhaps the most conventional approach, although not a sim-
ulation per se, is the diagrammatic expansion of the Green’s function. This
formal approach is not practical for many complex systems, however. In-
stead, one may use the local density approximation (LDA), or LDA+U to

13 The spin gap corresponds to the pseudogap of a small energy scale.

130 4. Dynamics of Materials and Condensed Matter

study band magnetism, or the small-size exact diagonalization for more lo-
calized spin systems. However, for more complete descriptions of the dynam-
ics of spins, the most suitable and reliable method is often a Monte Carlo
simulation. There are many variants of Monte Carlo simulations developed
and optimized for specific problems. This section explains the Monte Carlo
approach for calculating the states and dynamics of classical lattice spin sys-
tems. Monte Carlo simulations of classical systems are easier to understand
than quantum Monte Carlo simulations, which are mentioned at the end of
this section.

A Monte Carlo simulation is a Markovian process. Such processes will
reach a steady state of a system that is independent of the initial configura-
tion. Unfortunately, especially at low temperatures, this final state of equilib-
rium may require a very long time to achieve. If one knows the ground state
a priori, at low temperatures it may be appropriate to start with the system
in a ground state configuration, and allow temperature to produce disorder
in this configuration. The ground state is often unknown, however, and this
is typical of more complicated systems. It may be possible to start with sev-
eral candidate ground state configurations, and identify the true ground state
structure as the one that does not evolve with time.

An alternative approach is sometimes called “simulated annealing,” where
the simulation begins with the system in a fully random state characteristic of
infinite temperature. Equilibrium at lower temperatures is achieved by grad-
ually reducing the temperature, and allowing the system to relax under the
spin-spin interactions. Some delicacy is required for balancing the slowness
of cooling with the need to minimize the time of the simulation.

Finally, systems that undergo spontaneous symmetry breaking may pose
special problems. Starting from the random spin configuration at T = ∞ in
the isotropic ferromagnet, one may find that the ordering direction would ro-
tate without any preferred direction even below TC. In such a case, therefore,
one may include an infinitesimal anisotropy in the Hamiltonian to induce
the symmetry breaking, or one may start with a symmetry-broken ground
state configuration14 at T = 0 and raising the temperature. Without an ap-
pled biad, the formation of local domains, each with its own direction of spin
alignment, is a common feature. Elimination of the domain boundaries is
favorable energetically, but may take a long time in practice.

4.6.2 Spin Updates in Monte Carlo Simulations

Metropolis Algorithm. In the Metropolis algorithm, a new configuration
is generated from an existing one by using a transition probability that de-
pends on the energy difference between the two configurations. The state of
thermodynamic equilibrium satisfies the detailed balance between two states
n and m,
14 For example, by initially aligning all the spins along a certain direction.

4.6 Simulations of Spin Dynamics 131

PnWn→m = PmWm→n , (4.105)

where Pn is the probability of the system being in the state n and Wn→m

is the transition rate from n → m. The Metropolis algorithm selects the
simplest choice of the transition rate that is consistent with detailed balance

Wn→m =
{

exp(−∆E/kBT) ∆E > 0
1 ∆E < 0 , (4.106)

where ∆E = En−Em. The Metropolis algorithm updates one spin at a time
in a given configuration at temperature T :

1. select the spin at site i,
2. evaluate ∆E by updating the spin at i,
3. generate a random number η, where 0 < η < 1,
4. accept the updated configuration if η < e−∆E/kBT , or reject otherwise,
5. return to step 1 for a different spin at site i+ 1.

For the model of continuous spins of |Si| = 1, oriented in three dimensions,
one may update the spin at site i by generating two random numbers η1 and
η2, such that ζ2 = ζ2

1 + ζ2
2 < 1 such that ζ1 = 1− η1 and ζ2 = 1− η2 (where

0 < η1, η2 < 1)

Sx = 2ζ1
√

1− ζ2 , (4.107)

Sy = 2ζ2
√

1− ζ2 , (4.108)
Sz = 1− 2ζ2 . (4.109)

The Metropolis algorithm ensures that the steady state of the system is
the actual state of thermodynamic equilibrium. This is proved by assuming
that the system is in thermodynamic equilibrium, and then showing that
the Metropolis algorithm has the transition rates needed to keep it there. In
thermodynamic equilibrium, the probability Pn is the Boltzmann factor nor-
malized by the partition function, e−En/kBT /Z, a central result of statistical
physics. Substituting into (4.105)

e−En/kBT Wn→m = e−Em/kBT Wm→n , (4.110)

e−(En−Em)/kBT =
Wm→n

Wn→m
(4.111)

Note that Wn→m = 1 (since the transition n→ m is downhill energetically,
it will always occur according to (4.106)). Equation (4.111) becomes:

Wm→n = e−(∆E)/kBT , (4.112)

which is the rate used by the Metropolis algorithm in step 4 or (4.106).
All Markovian processes converge to a steady state15, and the Metropolis

algorithm assures us that thermodynamic equilibrium will be achieved be-
tween all pairs of spins in the system. It does not ensure that equilibration
will occur in a reasonable time, however.
15 Or a cyclic state in anomalous cases.

132 4. Dynamics of Materials and Condensed Matter

4.6.3 Low Temperatures

At low temperatures, a more sophisticated update algorithm is necessary.
Most random updates cause a large energy exponent ∆E/kBT , so the
Metropolis algorithm will reject most changes to the spin configuration. The
equilibration procedure can then become far too slow to be practical. To
speed things up, the randomly-selected changes in spin can be made smaller,
for example. This can be done by attenuating the random changes of spin by
a factor δ (0 ≤ δ ≤ 1), i.e. ∆S should be replaced by δ∆S. The factor δ can
be adjusted so that the acceptance rate is around 50% on the average.

An actual implementation could be based on a parameterized temperature-
dependent solid angle, Ω(T), of spin i with respect to its original orientation
Si. This is begun by defining α = tan−1 Syi /S

x
i and β = cos−1 Szi , from which

we define the rotation matrices Rz(α) and Ry(β):

Rz(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , (4.113)

Ry(β) =

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 . (4.114)

The updated orientation of spin i, S′i is

S′i = R−1
z (α)R−1

y (β)S′′i , (4.115)

where

S′′i = (sinθcosφ, sinθ sinφ, cosθ) , (4.116)
θ = Ω(T) η1 , (4.117)
φ = 2π η2 . (4.118)

A useful form16 of Ω(T) may be

Ω(T) = π tanh(ξT) . (4.119)

With this form of Ω(T), we can adjust ξ so that the acceptance rate is around
50%. Note the two extreme limits: Ω(T) → 0 as T → 0 and Ω(T) → π as
T →∞.

Overrelaxation Technique. The overrelaxation technique is used in com-
bination with the Metropolis algorithm for improving the rate of relaxation to
the equilibrium configuration, especially at low temperatures. Let us assume
that we are treating a system of isotropic continuous spins in the Heisen-
berg model, with the Hamiltonian H = J

∑
ij Si · Sj . In the overrelaxation

method, a spin is precessed about the full interaction field, which it can do
16 The form of Ω(T) given here is just the simplest example. One may introduce a

more complicated form to give a more desirable performance.

4.6 Simulations of Spin Dynamics 133

without any change of energy. When the angle of precession, θ, is as large as
π, this alteration of the spin structure can promote quicker changes in the
orientation of other spins during subsequent Monte Carlo steps.

At the site i, the full interaction field for Si is Snn ≡ J
∑
j 6=i Sj . The

overrelaxed spin, S′i, is evaluated by successive rotations using rotations by
Euler angles. One needs two angles of α and β to define the direction of Snn:

α = tan−1 Synn/S
x
nn , (4.120)

β = cos−1 Sznn/|Snn| , (4.121)
S′i = R−1

z (α) R−1
y (β) Rz(π) Ry(β) Rz(α) Si. (4.122)

In an actual simulation, a single “hybrid” Monte Carlo update of the spin con-
figuration could include a Metropolis sweep and two overrelaxation sweeps.

Equilibration (Thermalization). Repeating the hybrid Monte Carlo steps,
spins are updated by sweeping the whole spin lattice, eventually reaching the
equilibrium configuration at a given T . It is an important problem to min-
imize the number of Monte Carlo steps needed to obtain the fully relaxed
equilibrium state. The optimization differs, however, depending on the spe-
cific problem or the simulation conditions such as temperature and lattice
size, for example. It is essential to perform calculations of simple quantities
like susceptibilities or magnetization, and test if the system is in the equilib-
rium state. In more advanced validations, one may check the autocorrelation
time. Substantial gains in efficiency are often found for hybrid Monte Carlo
simulations. For the square lattice Heisenberg model, the nonhybrid Monte
Carlo method typically requires at least O(104) steps at the temperature
range of O(0.1J), whereas the hybrid method requires O(103) steps.

4.6.4 Time Evolution of Spins

For a system of spins in the Heisenberg model, the equation of motion for
the spin degrees of freedom is

∂Si
∂τ

= −Si ×
∂H
∂Si

= −JSi ×
∑
j 6=i

Sj . (4.123)

The N spins are coupled to each other, and the time-evolution of the spins
is obtained by solving the coupled differential equations. There are many
integration algorithms to solve the differential equations. Here we introduce
the Suzuki-Trotter decomposition, which is especially suitable for the lattice
problem. Taking the example of the simple square lattice with the nearest-
neighbor spin coupling, one can divide the lattice into two sublattices A and
B by checkerboard decomposition. Employing the Suzuki-Trotter decompo-
sition up to O(dτ5),

{Si(τ + dτ)} = e(A+B)dτ{Si(τ)} , (4.124)

and e(A+B)dτ is decomposed using

134 4. Dynamics of Materials and Condensed Matter

e(A+B)dτ =
5∏
i=1

epiAdτ/2 epiBτ epiAdτ/2 +O(dτ5) , (4.125)

with

p1 = p2 = p4 = p5 = p = 1/(4− 41/3) (4.126)

and

p3 = 1− 4p . (4.127)

Here A and B are the rotation generators of the sublattices A and B, with
fixed {SiB} and {SiA}, respectively.

The following algorithmic explanation may be more clear.

eAδτ{Si} : time evolution of sublattice A

for i = 1 to N
when i ∈ A

Snn = J
∑
j 6=i(j∈B) Sj

eAδτ{Si} =
[
(Snn · Si)Snn/|Snn|2

]
(1− cos(|Snn|δτ))

+ Si cos(|Snn|δτ) + [(Snn × Si)/|Snn|] sin(|Snn|δτ)

eBδτ{Si} : time evolution of sublattice B

for i = 1 to N
when i ∈ B

Snn = J
∑
j 6=i(j∈A) Sj

eBδτ{Si} =
[
(Snn · Si)Snn/|Snn|2

]
(1− cos(|Snn|δτ))

+ Si cos(|Snn|δτ) + [(Snn × Si)/|Snn|] sin(|Snn|δτ)

In this algorithm, the time evolution of spins is performed by combinations
of e−Aδτ and e−Bδτ , just as given by the Suzuki-Trotter decomposition.

4.6.5 Observables

Inelastic neutron scattering, especially experiments on single crystal samples,
can probe directly the spin-spin correlation function S(q, ω) that describes
the dynamics of spins

S(q, ω) =
1
2π

1
N2

∑
ij

eiq·(ri−rj)

τmax∫
0

eiωτ 〈Si(τ) · Sj(0)〉 dτ . (4.128)

This S(q, ω) can be calculated by Monte Carlo simulation. S(q, ω) is obtained
by a simple Fourier transformation of the time-dependent correlation function

Cij(τ) = 〈Si(τ) · Sj(0)〉 , (4.129)

4.6 Simulations of Spin Dynamics 135

which is readily evaluated in a Monte Carlo simulation. Pole structures
of S(q, ω), ω(q), can provide information on magnetic excitations and re-
laxations, which are fundamental to understanding the spin systems. Inci-
dentally, the quasi-elastic response S(q, 0) tells us the kinds of magnetic
fluctuations (correlations) that dominate at a given T . For instance, if
S(Q, 0) � S(0, 0) with say Q = (π, π), we conclude that antiferromagnetic
exchange interactions are dominant over ferromagnetic ones at the given T .

For powder or polycrystal samples, the measured spectra are in the angle-
integrated form

S(|q|, ω) =
2
N2

∑
ij

sin(|q||ri − rj |)
|q||ri − rj |

τmax∫
0

eiωτ 〈Si(τ) · Sj(0)〉 dτ . (4.130)

In some experiments, or in some stages of data analysis, scattered neutrons
with a rather wide distribution of momenta are collected into a single energy
bin. For such data, the resulting spectra S(ω) probes the local responses of
spins as

S(ω) =
∫
S(q, ω) dq =

1
2π

1
N

∑
i

τmax∫
0

eiωτ 〈Si(τ) · Si(0)〉 dτ . (4.131)

The quasi-elastic local response, S(0), is also an interesting quantity. It is
directly related to the spin-lattice relaxation rate T1 of a local probe as in
nuclear magnetic resonance (NMR) or Mössbauer spectrometry.

4.6.6 Comments on Quantum Monte Carlo Simulations

An essential difference between classical and quantum Monte Carlo simula-
tions is in how the spin configuration is updated, that is, how the Metropolis
algorithm is implemented. The classical Monte Carlo method is easier in that
the equilibrium probability has the proportionality

P ({Si}) ∝ e−βH({Si}) (4.132)

for the particular configuration {Si}, that is: H({Si}) = E({Si}). On the
other hand, for the quantum Heisenberg model, for which

H = H0 + V (4.133)

with

H0 = J
∑
ij

Szi S
z
j , (4.134)

V = J
∑
ij

(Sxi S
x
j + Syi S

y
j) , (4.135)[

H0,V
]
6= 0 , (4.136)

136 4. Dynamics of Materials and Condensed Matter

we apply the Trotter formula17

e−βH ≈ [e−βH0/me−βV/m]m , (4.137)

Z =
∑
α

〈α|e−βH|α〉 , (4.138)

Z =
∑
{αk}

m∏
k=1

〈αk|e−βH0/m|α′k〉〈α′k|e−βV/m|αk+1〉 , (4.139)

where |{α}〉 can be the eigenstate of H0 and |α1〉 = |αm+1〉. Then the ma-
trix element 〈α|e−βV/m|α′〉 is evaluated classically, leading to e−βV(α,α′)/m.
A d-dimensional quantum spin problem therefore always corresponds to an
effective (d+ 1)-dimensional problem.18

Besides the quantum (localized) spin model, another important problem
is that of electrons with itineracy. One may introduce the Hubbard model as
the simplest example,

H = t
∑
ij

∑
σ

c†iσcjσ + U
∑
i

ni↑ni↓ . (4.140)

For this problem, we need to apply another kind of quantum Monte Carlo
method that incorporates the path integral formalism. In this method, the
itinerant degrees of freedom of electrons are completely integrated out by the
path integral formalism19 and the remaining problem is then cast as an Ising
spin problem in (d+ 1)-dimensions.

Further Reading

The contents of the following are described in the Bibliography.
Phillip R. Bevington: Data Reduction and Error Analysis for the Physical
Sciences (McGraw-Hill, New York, 1969). See especially Ch. 4.

L. P. Bouckaert, R. Smoluchowski, and E. P. Wigner: Phys. Rev. 50, 58
(1936).
A. A. Maradudin and S. H. Vosko: ‘Symmetry Properties of the Normal
Modes of a Crystal’, Reviews of Modern Physics 40, 1-37 (1968).
M Tinkham: Group Theory and Quantum Mechanics (McGraw-Hill, New
York, 1964) Chapter 8.

17 cf. Suzuki-Trotter decomposition for the time evolution integrator
18 One additional dimension comes from the Trotter decomposition.
19 The basic idea is to transform the Hubbard model into a quadratic form by

introducing the additional Ising-type bosonic field through the Trotter decom-
position and the Hubbard-Stratonovich transformation. Fields of the quadratic

action can be always integrated out, that is, Tr
ˆ
e−

P
ij c

†
i Aijcj

˜
= det(1 + e−A),

where A carries the Ising-type auxiliary field.

Further Reading 137

G. L. Squires: Introduction to the Theory of Thermal Neutron Scattering
(Dover, Mineola, New York 1996).
J. L. Warren: ‘Further Considerations on the Symmetry Properties of the
Normal Modes of a Crystal’, Reviews of Modern Physics 40, 38-76 (1968).

5. Instruments

5.1 Chopper Spectrometers

5.1.1 Concept of a Chopper Spectrometer

Enrico Fermi was unusual. It is a remarkable and profound honor that the
name “fermion,” with a lower case f , is standard terminology. The field of
experimental neutron scattering offers him a smaller honor with the term
“Fermi chopper” (Fig. 5.1). A generic Fermi chopper is depicted in Figure
5.2. The ARCS instrument is in fact a Wide Angular Range Direct Geometry
Fermi Chopper Spectrometer.1

Fig. 5.1. Enrico Fermi works with an elec-
tronic control for a neutron chopper during
his Argonne days.

The Fermi chopper is discussed at length in Section 5.1.4. For now we
note that it works as a fast shutter. By aligning its slot at the right instant
after a neutron burst leaves the moderator, it selects a bunch of neutrons that
have a particular velocity. We know the time of the neutron burst and the
1 Unfortunately for Enrico Fermi, the acronym ARFCS is less harmonious than

ARCS.

140 5. Instruments

Fig. 5.2. Fermi chopper, comprising a spin-
ning cylinder with a slot in it. Neutrons are
transmitted only when the slot is aligned
properly along the path of the beam. The
chopper works by scattering neutrons out
of the forward beam, or by absorbing them
by the inner surfaces of the slot. The ARCS
choppers work primarily by absorption.

distance between the neutron source and the Fermi chopper, so we therefore
know the neutron energy, E = 1

2mv
2. The idea is best illustrated with the

time and distance diagram in Figure 5.3.

Fig. 5.3. Distance–time diagram for inelastic scattering by a direct geometry chop-
per spectrometer. Positions of the moderator, chopper, sample, and detectors are
marked on the vertical axis. Two moderator pulses occur at points on the x-axis.
(Real pulses are not instantaneous, and this issue is discussed below.

The slopes of the lines in Figure 5.3 are velocities of neutrons. Neutrons
of many velocities are emitted from the moderator. The figure depicts two
neutron pulses from the moderator, separated in time by perhaps 1/60 sec.
The Fermi chopper selects a narrow range of velocities, corresponding to a

5.1 Chopper Spectrometers 141

time window of tens of microseconds. Of course the narrower this window,
the more neutrons are blocked by the chopper, and the lower the flux of
neutrons on the sample. On the other hand, the narrower this window, the
more precisely selected are the velocities, and hence better energy resolution
is achieved. The Fermi chopper therefore controls the incident energy, the
intensity, and the energy resolution of the neutrons incident on the sample.

The sample usually transmits most of the incident neutrons without en-
ergy change, and most of the scattered neutrons are scattered elastically.
There is a strong tendency for the lines in Figure 5.3 to have unchanged
slopes through the sample. Those neutrons that are scattered inelastically,
however, have lines with kinks at the sample, and have slopes after the sample
that are either steeper or shallower than for the incident beam.

It is straightforward to know the total distance from the neutron source
to the sample, and from the sample to the detector tube. Given the veloc-
ity selected by the Fermi chopper, we can figure out the time of arrival of
the elastic neutrons at the detectors. Experimentally, we observe an intense
elastic peak in the time spectrum at any of the detectors. This is typically
quite close to the predicted arrival time, but the experimental time is used to
identify the elastic scattering. The neutrons that arrive earlier have gained
energy from the sample, and those that arrive later have lost energy to the
sample. The inelastic spectrum is obtained from the histogram of neutron
arrival times. A Fermi chopper spectrometer works entirely by timing.

5.1.2 Neutron Sources

Spallation. It is a challenge to produce “free neutrons,” meaning neutrons
that are “free of the nucleus.” “Spallation” is one way to make them. The
“spallation” process got its name by analogy to using a hammer to “chip”
pieces off a heavy stone. Here the the hammer is the particle beam, the chips
are neutrons, and the stone is the nucleus. Other things come out of the nu-
cleus besides neutrons, especially γ radiation. High-energy protons (of order 1
GeV) are preferred for the particle beam because protons produce more neu-
trons, and less heat and photons than are produced by electron beams. The
major component of a spallation neutron source is therefore a high-energy,
high-current proton accelerator. It often includes a linear accelerator followed
by a buncher ring to compress the proton pulse into a short burst in time.
Neutron yields are largest for nuclei of high atomic number, since these are
neutron-rich.2 Tungsten and mercury are good choices in practice. Uranium
is even better, but it tends to give problems at higher power levels.
2 An excess of neutron over protons is required for stability. Too many protons

means too much Coulombic repulsion, but neutrons can help overcome this in-
stability and keep the nucleus together. Nevertheless, too many neutrons will
“drip” out of the nucleus, and neutron-rich isotopes near the neutron “drip line”
are good candidates for the target material.

142 5. Instruments

Moderation and Moderator Spectrum. The neutrons fresh from a spal-
lation reaction have energies of order MeV, but the neutrons used in inelastic
scattering have energies of order 100 meV. The excessive energies of the
spalled neutrons need to be “moderated.” The “moderator” makes the tran-
sition between the neutron target and the neutron instrument by delivering
a useful spectrum of neutrons to the instrument.

How does the moderator reduce the neutron energy by a huge factor
of 107? By inelastic collisions with nuclei in the moderator. In an inelastic
collision between a neutron and a nucleus of the same mass, hydrogen of
course, up to half of the kinetic energy of the collision can be transferred
to the hydrogen nuclei. The hydrogen in the moderator can be in various
chemical forms such as liquid hydrogen, water, or solid methane, depending
on the desired temperature and density, for example. The number of collisions
required for moderation, n, is

2n ' 107 , (5.1)
n ' 23 . (5.2)

For the moderator of the ARCS spectrometer, the process of moderation
therefore involves a relatively small number of collisions, and is therefore
a statistical process. As an approximation it is often assumed that the
neutrons leaving the moderator consist of two components. The first is a
fully moderated spectrum of thermal neutrons. These neutrons have the
Maxwell-Boltzmann spectrum, with probabilities based on Boltzmann fac-
tors of exp[(−mnv

2)/(kT)], where T is the temperature of the moderator.
The second subspectrum is called the “epithermal” neutron spectrum. It is
a broad spectrum with a tail that goes to very high energies. Epithermal
neutrons have not undergone enough interactions with the moderator to ac-
quire a thermal distribution. This approximation of two subspectra has some
semblance of the truth. A better moderator spectrum can be calculated by
Monte Carlo neutron transport codes, such as the one that produced the
spectra of Figure 5.4a. The cryogenic hydrogen moderator has its maximum
intensity at a lower energy than the ambient water moderator for ARCS.

Decoupled, Poisoned Moderator. An important consideration for mod-
erator design is “coupling,” meaning the connection between the target (hit
by the proton beam) and the material of the moderator. After slowing down
in the moderator, the slower neutrons can be absorbed by materials such
as Cd and Gd. Putting a layer of Cd or Gd between the moderator and the
target can suppress the transmission of the slower neutrons back into the tar-
get. This is a “decoupled” moderator. (On the other hand, the fast neutrons
from the target are not absorbed as they enter the moderator.) In contrast, a
“coupled” moderator allows transmission of all neutrons between the target
and the moderator, and less absorption. A coupled moderator produces more
neutrons, but it has a disadvantage in the time structure of its neutron pulse.
The slow neutrons traveling around the coupled moderator take some time

5.1 Chopper Spectrometers 143

Fig. 5.4. Monte Carlo simulations of intensity spectra and time spectra for two
SNS moderators. ARCS is on the decoupled, poisoned water moderator. For com-
parison a cryogenic hydrogen moderator is also shown. (a) Total intensity. (b) Mean
emission time.

before entering the neutron instrument. This time delay degrades the energy
resolution of the Fermi chopper spectrometer, which works by timing.

Another trick to producing short neutron bursts from the moderator is to
put a neutron absorber such as Cd or Gd at some depth inside the moderator
itself. Again, the idea is to absorb the slow neutrons that haven’t found an
efficient path out of the moderator. This is called “poisoning” the moderator.
A “poisoned, decoupled moderator” generates neutron bursts that are short
in time, and this is the moderator of choice for the ARCS instrument, for
example. On the other hand, an “unpoisoned, coupled moderator” generates
more neutrons in each burst, although these neutrons are emitted over a
longer time.

An additional complexity is that the neutrons of different energies are
emitted from the moderator at different times. Of course the highest energy
neutrons, which do not undergo enough collisions with the nuclei in the mod-
erator, are emitted in the shortest times after the proton pulse hits the target.
In general, the lower-energy neutrons leave the moderator at later times, with
a broader spread in their emission times. The details of this time-energy cor-
relation are not simple, however, and are best understood by Monte Carlo
simulations and experimental measurements. Nevertheless, the neutron emis-

144 5. Instruments

sion times affect the energy resolution of the spectrometer, as discussed in
Section 5.1.4. Figure 5.4b shows this energy dependence of the pulse emis-
sion times for two SNS moderators. It also shows clearly that the emission
time is shorter for the decoupled and poisoned ARCS moderator than for the
coupled, unpoisoned hydrogen moderator.

5.1.3 Neutron Guides

Geometrical Optics. Here we develop the scattering of neutrons at in-
terfaces between two homogeneous media. In a homogeneous potential, a
neutron wavefunction propagates forward without deflection, but it has a
wavelength that depends on the potential. This is much like the propagation
of light through glass, for example. The only deflections occur at interfaces,
or at changes in the “density.” With geometrical optics we can readily utilize
the familiar constructions of light optics, scaled appropriately for neutrons. In
the present analysis we justify the “geometrical optics” approach to analyzing
neutron scattering from macroscopic objects, especially mirrors.

Recall from (2.53) and (2.54), or (2.59) the integral form of the Schrödinger
equation in the Born approximation:

Ψsc(Q) = − m

2π~2

∫
V(r′) eiQ·r′d3r′ , (5.3)

where we have ignored the standard form of the outgoing spherical wave
that properly multiplies (5.3) (and sets the relationship between f(Q) and
Ψsc(Q, r)). For nuclear scattering we use the “Fermi pseudopotential” of
(2.60), which places all the scattering potential at a point nucleus at r:

Vnuc(r) = 4π
~2

2m
b δ(r) , (5.4)

where b is a simple constant (perhaps a complex number). The next step is
to place numerous Fermi pseudopotentials at the positions of all N nuclei in
the material, {ri}:

V (r) = 4π
~2

2m
b̄

N∑
ri

δ(r − ri) , (5.5)

where b̄ is the average scattering length per nucleus (assuming a mix of iso-
topes or elements). Substituting (5.5) into (5.3), we notice the handy cancel-
lation of many constant prefactors:

Ψsc(Q) = −b̄
∫ N∑

ri

δ(r′ − ri) eiQ·r′d3r′ . (5.6)

In a homogeneous medium we can consider wave motion only in the forward
direction, for which Q = 0, In the forward direction, eiQ·r′ = 1, simplifying
(5.6):

5.1 Chopper Spectrometers 145

Ψsc(Q) = −b̄
∫ N∑

ri

δ(r′ − ri) d3r′ , (5.7)

Ψsc(Q) = −Nb̄ . (5.8)

Note how the details of the positions {ri} are lost for forward scattering.
We can obtain the same equation (5.8) if, instead of placing δ-functions at all
nuclei, we we use a homogeneous potential throughout the entire material.
Instead of using (5.5), equation (5.8) can be obtained by using the following
homogeneous potential for V (r′) in (5.3):

v0(r) = 4π
~2

2m
b̄ρ , (5.9)

where ρ is the number of nuclei per unit volume.
This is an important observation. Using (5.9) instead of (5.5), we make the

transition from individual scatterings by atomistic Fermi pseudopotentials to
geometrical optics. The neutron wave is now considered to travel through
a homogeneous potential. The neutron is treated as propagating without
scattering, although with a different wavevector depending on the “density,”
b̄ρ.
Total Reflection. When a neutron of energy E enters a region where
the potential energy v0(r) is positive, its kinetic energy is reduced and its
wavelength is increased (see Fig. 5.5). The kinetic energy cannot go be-
low zero, of course, and a consequence is that some neutrons may not have
enough energy to enter a material having a positive v0(r) (except for some
surface penetration). Substituting typical numbers into (5.9), we find that
v0(r) = 3×10−4 meV, corresponding to a neutron wavelength of 500 Å. Re-
flection will be total, since the neutron cannot penetrate into the solid, but
the neutron is conserved. This result of 500 Åpertains to neutrons arriving
normal to a surface. Neutrons of wavelength longer than this critical wave-
length will be reflected by the surface. A critical wavevector is shown in Fig.
5.6.

It is possible to get total reflection of more energetic neutrons if they
arrive at oblique angles to the surface. The effect is analogous to the case
of total internal reflection of light, where a light ray moving in a medium of
high index of refraction can be totally reflected at an interface with a medium
of low index of refraction, if it reaches this interface at an angle exceeding
a critical angle. Such a case is shown in Fig. 5.6. The neutron travels a bit
slower in the Ni than in the vacuum. In the Ni, the neutron has a lower
kinetic energy (and higher potential energy) and a longer wavelength. Notice
the matching of the wave crests across the interface. This continuity of the
neutron wavefunction forces a change in direction of the wavevector across
the interface – this allows for differences in wavelengths in the vacuum and
in the Ni.

The relationship between the neutron wavelength and the critical angle for
a homogeneous potential v0(r) can be derived from the Schrödinger equation

146 5. Instruments

Fig. 5.5. Snapshots of neutron wavefunctions near an interface, which has a step
in its potential at the transition between the vacuum (left) and the material (right).
The total energies of the wavefunctions are either larger or smaller than the homo-
geneous potential inside the material.

Fig. 5.6. Wavevectors and wave
crests at a Ni/vacuum interface. The
critical condition has the wavevector
in the Ni layer parallel to the inter-
face as shown.

(5.14) by separation of variables. Start with the neutron wavefunction for a
neutron moving as a plane wave in the x-z plane, where ẑ is normal to the
interface between, say vacuum and nickel metal. (For neutrons, the nickel
metal has the lower index of refraction than the vacuum.)

Ψsc(k, r) = eik·r , (5.10)
Ψsc(k, x, z) = ei(kxx̂+kz ẑ)·(xx̂+zẑ) , (5.11)
Ψsc(k, x, z) = eikxx eikzz , (5.12)
Ψsc(k, x, z) ≡ ψx(x) ψz(z) . (5.13)

Substitute (5.13) into the Schrödinger equation (2.32):

− ~2

2m

(∂2ψx
∂x2

+
∂2ψz
∂z2

)
+ V (z)ψx(x)ψz(z) = E ψx(x)ψz(z) , (5.14)

where we have assumed the potential varies only along z, changing only at
the interface. Dividing through by ψx(x)ψz(z) and rearranging:

5.1 Chopper Spectrometers 147

− ~2

2m

∂2ψz

∂z2

ψz
+ V (z)− E = +

~2

2m

∂2ψx

∂x2

ψx
, (5.15)

= −ε . (5.16)

We have separated the z-dependence from the x-dependence. The left-
hand side of (5.15) depends only on z, the right only on x, but both z and x
can change independently. This means that both sides can only be equal to
a constant, which we denoted −ε in (5.16). The two equations for ψx(x) and
ψz(z) become:

~2

2m
∂2ψz
∂z2

=
[
ε− E + V (z)

]
ψz , (5.17)

~2

2m
∂2ψx
∂x2

= −εψx . (5.18)

To obtain the required a plane wave solution for a propagating neutron,
ψx = e±i(

√
2mε)x/~, we see that ε must be positive. Our neutron is moving

mostly along the x-direction at a glancing angle to the surface, with kinetic
energy E when it is in the vacuum. We therefore know that ε−E, although
negative, must be rather small. It is therefore possible for a small positive
V (z) to switch the sign of the right-hand side of (5.17) from negative to pos-
itive. The consequence is interesting. The solution for ψz(z) changes from
a propagating wave to a damped exponential function. When V (z) is suffi-
ciently positive, the neutron wavefunction therefore does not propagate into
the nickel. It is instead reflected from the interface. Of course the V (z) for
nickel is fixed, but we can alter the incident angle to get the same effect as
shown in Fig. 5.5. By reference to (5.12) and (5.13), for example, we can see
that the change in sign of (5.17) occurs when we select kz so that:

kz crit =
√

2mv0
~

=
√

4π b̄ρ . (5.19)

Critical Angle. The critical angle for total reflection, φcrit, is the ratio of
kz crit to the wavevector along x, kx, (the magnitude of kx is essentially the
same as the magnitude of the incident wavevector k):

φcrit =

√
4π b̄ρ
k

=
λ

2π

√
4π b̄ρ , (5.20)

φcrit = λ

√
b̄ρ

π
. (5.21)

The critical angle increases in proportion to the wavelength of the neutron.
Lower-energy neutrons can be reflected from a surface at higher angles than
higher-energy neutrons. For natural Ni metal, the evaluation of (5.21) gives
the wavelength-dependence of the critical angle, φcrit, here converted from
radians to degrees:

φNi
crit [◦] = 0.0991 λ [Å] . (5.22)

148 5. Instruments

Finally, neutron reflectivity can be used for making spin-polarized neutron
beams. The coherent scattering lengths are different when neutrons of up
spin or down spin are scattered by a magnetic moment having a component
along ẑ. For Co, in fact, the scattering lengths, b↑Co ad b↓Co, are of opposite
sign. A polarizer can be built by choosing incident angles where one of the
neutron polarizations is transmitted into the magnetic material, and the other
reflected.
Guide Design. For neutrons incident on a surface below the critical angle,
simple ray diagrams can be used to develop conceptual designs of neutron
guides. Their characteristics are analogous to cylindrical optical fibers for
light, but neutron guides are usually made of four long mirrors with a rect-
angular cross section of order 0.1×0.1 m2. A section of the ARCS guide is
shown in Fig. 5.7. The four mirrors are seen end-on in the drawing at the top
left.

Fig. 5.7. End view and overview
of the second section of the main
neutron guide for the ARCS spec-
trometer. Rigid mounting and
mechanical adjustment screws
are required for ensuring that the
long glass mirrors are aligned pre-
cisely.

The critical angle for Ni metal is a reference standard, but today a “super-
mirror” can be prepared from multiple layers of metals, giving higher critical
angles by a factor m, where φcrit = mφNi

crit. Today the upper limit to m is a
bit less than 4. Since these angles are quite small for neutrons of meV energy,
guides tend to be quite long. Nevertheless, focusing guides can be designed
with parabolic or elliptical surfaces, for example, and these are efficient for
transporting neutrons over long distances.

Efficient neutron transport is usually the main function of a guide. With a
guide in its incident flight path, the instrument can be placed a good distance

5.1 Chopper Spectrometers 149

away from the moderator. This allows more space around the instrument,
which can be important when instruments are crowded around a small neu-
tron target. The separation from the moderator also allows the instrument to
be placed in a location with lower levels of background radiation. Two other
issues are useful for understanding the use of guides for neutron transport.

• By giving the mirrors of the guide a slight curvature along the beam direc-
tion, the direction of the neutron beam can be bent away from its original
straight-line path out of the moderator. This makes it possible for the spec-
imen to be out of a line-of-sight path from the moderator, and therefore
less subject to background from fast neutrons.

• Most importantly, the guide reduces the usual attenuation of neutron flux
with distance. Instead of the r−2 fall-off of intensity, a good guide should
cause minimal loss of neutrons that enter the guide below the critical an-
gle. (Note that those entering at higher angles would often be blocked by
collimators before the specimen anyhow.) A simple straight mirror guide
essentially takes the numbers and divergences of neutrons entering the
guide, and translates this distribution to the exit of the guide.

Brightness. Inelastic scattering measurements require beams on samples
that have:

• High neutron current [neutrons/sec]
• Small size [cm2]
• High flux [neutrons cm−2 s−1]
• Low divergence [α, radians] (This requirement is unimportant if the Q-

dependence is not of interest.)

Even if the neutron guide optics were perfect, and did not absorb neutrons
or cause unnecessary spread in divergence, for example, compromises will
always be required for meeting all these criteria of a good incident beam.
These compromises are quantified in the present section.

A fundamental problem with neutron optics is the size of the moderator.
With a cross section of order 0.1× 0.1 m2, the moderator is far from being a
point source of neutron emission. This gives a fundamental limitation to the
“brightness,” β, which is depicted with the three sources shown at the top of
Fig. 5.8. All three moderators in Fig. 5.8 emit the same neutron current, and
they send the same flux (current density) into the guides, which focus the
rays on the sample below. The sources to the left have the higher brightness,
and sources with higher brightness are better for making the smallest neutron
beams on the sample. The focused spot on the specimen is, in fact, an image
of the source itself, so it should be easiest to form a small spot when the
source is small.

The source of Fig. 5.8c has the lowest brightness. Nevertheless, the focused
beams in Figs. 5.8b and 5.8c have the same size. To make a small spot on the
specimen with the low brightness source of Fig. 5.8c, however, the guide in

150 5. Instruments

Fig. 5.8c must provide stronger focusing, i.e., a larger angle of convergence.
(Good focusing with a large angle of convergence requires higher quality
optics.)

Fig. 5.8. a–c. Formation of
focused beams with sources
of differing brightness. For
all 3 moderators (at top) the
neutron currents (number of
lines) are the same, and the
fluxes at the guide entrances
are the same. The brightness
of the sources decreases from
left to right, owing to a larger
area of the source.

More quantitatively, the source brightness, β, is defined as the flux per
solid angle

[
neutrons/

(
s cm2 sr

)]
, measured at the source of the neutrons.

Brightness is a valuable concept because brightness is a conserved quantity
when the subsequent optics are ideal. For example, after a guide focuses the
beam as in Fig. 5.8c, the width of the focused neutron beam is reduced by a
factor of two compared to the source, but the angle of convergence is increased
by a factor of 2. In other words, the flux has increased by a factor of 4, and
the solid angle has increased by a factor of 4, leaving unchanged the flux per
solid angle (the brightness is conserved). Where the focused beam hits the
specimen:

β =
j0

αxαy
. (5.23)

Here j0 is the flux (neutrons/cm2) in the beam on the specimen, αx and αy
are the the angles of beam convergence in the x- and y-planes. We can relate
the beam size to the brightness of the source and the convergence angles of
the guide, assuming perfect guide optics. The beam width, d0, is related to

5.1 Chopper Spectrometers 151

the total neutron current, Ip, by the relationship between current and flux:

Ip = dxdy j0 . (5.24)

For simplicity, assume square cross-sections for the guide and moderator, so
dx = dy = d and αx = αy = α. Substituting (5.23) into (5.24) and solving
for d0:

d0 =

√
Ip
β

α
. (5.25)

Equation 5.25 shows that the beam width d0 improves (becomes smaller)
in proportion to the product α

√
β, as suggested by the previous discussion

of Fig. 5.8.
The compromises needed in guide design and experimental setups are

therefore clear. We have to balance beam width against divergence. A high
divergence impairs the Q-resolution of the instrument, but for a moderator
of fixed brightness, a high divergence is required for a high neutron flux on a
small sample. The trade-off is one of inverse proportionality. If Q-resolution
is not an issue, however, small samples become more appropriate.

- To Do: plots of I(E) for ARCS

5.1.4 Fermi Choppers

A first glance at Figure 5.1 shows electronic equipment that looks a bit com-
plicated, and in fact it is. The electromechanical control of a Fermi chopper
is not simple, and requires specialized technology. The energy resolution of
a Fermi chopper neutron spectrometer depends on timing, and much timing
precision is demanded from the Fermi chopper. It must be open at a precise
time after the proton pulse hits the neutron target. Microsecond precisions
are needed for Fermi chopper timings, as we now show from an elementary
calculation.

A neutron of 200.0 meV energy has a velocity of 6,185 m/s. It travels
down a 11.6m flight path in 1,876µsec, where it encounters the ARCS Fermi
chopper. If the energy resolution is to be 1 %, the velocity resolution needs
to be 2 %. The Fermi chopper should therefore be open to the beam for
37µsec. To ensure that all neutrons passing through the Fermi chopper have
energies of 200 meV, this opening must occur at a reproducible time delay
after each proton pulse hits the neutron target. Variations in this time delay
correspond directly to an energy broadening (with no gain in intensity). The
electromechanical control system for the Fermi chopper should ensure that
the chopper is at the same angle of rotation after the required time delay, here
1,876µsec. This “phasing accuracy” needs to be 2 to 4 µsec to be negligibly
smaller than opening window of 37µsec in our example.

152 5. Instruments

This is a stringent demand – the slot in a rotating cylinder must be at
the same orientation after each neutron pulse, with only a 2µsec margin for
error. For the ARCS spectrometer, the SNS proton pulse on target has a pulse
frequency of 60 Hz, but has some drift over time associated with drift in the
Tennessee power grid. An electromechanical feedback control system ensures
synchronization of the Fermi chopper rotor with the proton pulse. Today
these electronic units are somewhat smaller than the one being caressed by
Enrico Fermi in Figure 5.1, but they are far more precise and reliable than
his.

Another stringent demand can be understood from the opening of the
slot in the rotor. The slot has an effective width that corresponds to per-
haps 5◦ of the rotor circumference. How fast does the rotor need to spin
for the opening time of 37 µsec in our example? This rotational frequency
is (5/360)/(48 µsec) = 375Hz. Such fast rotations present mechanical chal-
lenges for bearings and heat dissipation.3 In practice, Fermi choppers have
magnetic bearings, and their rotors spin in a partial vacuum with some he-
lium gas for heat transport. An obvious issue with our calculation of a 375 Hz
rotational frequency is that it is not an integral multiple of the 60 Hz proton
pulse frequency of the Spallation Neutron Source. In practice, we might select
a 360 Hz rotational frequency so that the chopper can be open at a fixed time
delay for every proton pulse. Note that the chopper will be open six times
for each neutron pulse.4

There are different opinions on what to do with the other five pulses that
could pass through the Fermi chopper for each proton pulse on target. The
relationship between neutron energy and neutron velocity is:

En = 5.2276×10−6 v2
n . (5.26)

For our hypothetical rotor spinning at 360 Hz (six rotations per proton pulse
at 60 Hz), with a phase delay of 1,876µsec to select a 200.0 meV energy,
chopper openings will occur at time delays, τ , of:

τ = 1, 876 + n×2, 778 [µsec] , (5.27)

where n = {0, 1, 2, 3, 4, 5}, and 2, 778µsec is one-sixth of 1/60 sec. For these
opening times and a 11.6 m flight path, the five incident energies are 200.0,
25.9, 9.6, 5.0, 3.0 and 2.0meV. It might be possible to acquire additional
inelastic scattering spectra from these five additional incident energies. This
practice is called “repetition rate multiplication.” It should be noted that in
3 Disk choppers are an alternative to cylindrical Fermi choppers. For a neutron

beam of moderate width, the disk needs to be large, and centrifugal stresses
become excessive at 375 Hz.

4 There are actually twelve openings per proton pulse if you count the half-
rotations where the back side of the rotor is facing the incident beam. For these
cases, however, the rotor is upside-down in the figures below, and the curvature
of the slats impedes the neutron transmission.

5.1 Chopper Spectrometers 153

the simple Fermi chopper configuration proposed here, the energy resolution
becomes impractically narrow for the lower incident energies, however.

The ARCS spectrometer includes a second chopper, a “T0-chopper,” lo-
cated closer to the moderator than the Fermi chopper. This T0-chopper is
much like a Fermi chopper, and is phased to block the incident neutrons that
would arrive at the Fermi chopper during our five other openings of the Fermi
chopper. The T0-chopper also serves to block the flash of γ-radiation and fast
neutrons that are emitted by the moderator when the proton pulse hits the
target.

The slot through a Fermi chopper has a gradual curvature to accommo-
date the time for neutron passage through the chopper rotor. This idea is
shown in Figure 5.9 for a neutron depicted as moving from left to right. The
positions of the neutron and the chopper are shown for three snapshots in
time, with t1 < t2 < t3.

Fig. 5.9. Fermi chopper, rotating
counterclockwise, as a neutron moves
from left to right. Compare the rota-
tion direction and slot curvature to
that of Fig. 5.2.

The slot through the rotor of a Fermi chopper contains a stack of slits
and slats, which allow the Fermi chopper to have good energy resolution
while passing a wide neutron beam. The structure is shown in Figure 5.10
for a simple case with two “slats.” The slats typically contain boron, a strong
absorber of neutrons. The neutrons traversing the Fermi chopper must travel
through the narrow gaps called “slits.” In practice these slits are plates of
aluminum with many holes in them. The aluminum serves to maintain a
precise spacing between the slats, a challenge at high rotational frequencies.
In practice, a Fermi chopper may contain 10 to 40 slats. With many slats,
it is possible for the Fermi chopper to pass a beam of 5 to 6 cm in width
while maintaining good energy resolution. Not surprisingly, with narrower
slits there is a loss of intensity that accompanies the improvement in energy
resolution.

Fig. 5.10. Fermi chopper rotor with two
slats. The structure at left is an exploded
view of the layered slits and slats that fill
the curved slot through the rotor.

154 5. Instruments

A drawing of the Fermi chopper used in the ARCS instrument is shown
in Fig. 5.11. The neutron beam passes through the circular opening at the
center of the housing. The electric motor, sensors, and magnetic bearings are
above and below the rotor assembly. A corresponding pair of photographs is
shown in Fig. 5.12. In the ARCS instrument, two identical chopper systems
are mounted on a translation table so either can be moved into the neutron
beam. The choppers can be moved while they are spinning, allowing quick
changes to the energy of the incident beam of the ARCS instrument.

Fig. 5.11. Exploded view
of ARCS Fermi chopper,
showing housing and rotor
at left. The slit packages are
held into the rotor with two
pins, as shown at right.

Rotor assemblies with curved slots, especially those with many slits and
slats, are optimized to work at particular combinations of rotational frequen-
cies, neutron velocities, and energy resolutions. These need to be selected in
the planning stage of an inelastic neutron scattering experiment.

Finally, it is important to remember that Fermi choppers scatter neutrons
out of the incident beam, generating a high intensity of scattered neutrons
around a Fermi chopper. Good shielding is required, both for radiation protec-
tion for the experimenters, and for minimizing background in the instrument
itself. The ARCS T0 chopper helps alleviate this problem by minimizing the
number of neutrons that are scattered out of the beam by the Fermi chopper.

5.1 Chopper Spectrometers 155

Fig. 5.12. Left: photograph
of ARCS Fermi chopper,
showing housing, windows,
and water cooling. Right:
photograph of the slit pack-
age, with aluminum slits seen
end-on.

5.1.5 Detectors

- short: no user adjustments.
- n capture
- ionization
- gas gain
- position sensitivity
- problems
- calibration

5.1.6 Energy Resolution

Energy resolution is an important figure-of-merit for the design of direct
geometry chopper spectrometers, and can be the most important figure-of-
merit for incoherent scattering. The primary flight paths at SNS are quite
long, and the moderator pulses are short on flight paths 17 and 18, pro-
moting good energy resolution. In evaluating instrument configurations, the
secondary flight path is the parameter for adjusting energy resolution. When
selecting a distribution of detector positions around the specimen, a spherical
locus of detector positions provides energy resolution that is uniform at all
angles around the sample.

Basic considerations for energy resolution were presented in the discussion
of Fig. 5.3. Here we consider the issue further, starting with the moderator.
The moderator does not produce an instantaneous pulse of neutrons, but the
pulse has a time spread of several microseconds. The important consequence
is a lower bound on the energy resolution. Even by reducing the opening time

156 5. Instruments

for the Fermi chopper to nearly zero seconds, a minimum energy resolution
is caused by the spread of moderator emission times. Figure 5.3 presents a
graphical explanation of the issue. In comparison to Fig. 5.3, note the spread
in emission times. Even though the Fermi chopper has a minimal open time,
the neutrons passing through the chopper have a spread in slopes in Fig. 5.3,
a spread in velocities, and hence a spread in energy.

Fig. 5.13. Distance–time diagram for a direct geometry chopper spectrometer.
The figure is much the same as Fig. 5.3, but there is a spread in times when the
neutrons leave the moderator. Positions of the moderator, chopper, sample, and
detectors are marked on the vertical axis. Here the Fermi Chopper is open for only
a minimal time.

The energy resolution of a Fermi chopper spectrometer is often analyzed
in terms of the moderator performance and the chopper performance. For
analytical calculations, it is typical to assume that both the moderator and
the chopper cause time smearing that has a Gaussian shape about an average
time. The advantage to this approach is that one can convolute the different
effects of time smearing to get another Gaussian function, whose width is
obtained by adding in quadrature the widths from independent broadenings.
The resolution is then obtained in terms of the following variables for time,
energy, and distance:

• L0...distance from the moderator to the Fermi chopper
• L1...distance from the sample to detector
• L2...distance from the Fermi chopper to the sample
• tr...time spread of neutrons passing through the Fermi chopper
• tm...time spread of neutrons from the moderator
• δm...distance the neutrons travel in time tm

5.1 Chopper Spectrometers 157

• E0...incident energy selected by Fermi chopper
• E1...energy of the neutron leaving the sample

It is typical to express the energy resolution as a fraction of the incident
energy, ∆E/E. The Gaussian analysis performed by Windsor [C.G. Windsor]
gives:

∆E

E
=

2δm
L0

[(
1 +

(
E1

E0

)3/2
L2

L1

)2

+
(
tr
tm

)2
(

1 +
(
E1

E0

)3/2
L0

L1

(
1 +

L2

L0

))2]
, (5.28)

Energy resolution can be presented in various ways, and it is important
to be careful when comparing plots for different instruments. Perhaps the
most important criterion is the neutron flux on the sample for a given energy
resolution, calculated for conditions that optimize the intensity. Figures 5.14
and 5.15 show such plots for the ARCS instrument. The first figure shows the
performance for incident neutrons of 63 meV energy, approximately at the
peak of the moderator brightness. These neutrons have a longer time spread
for emission from the moderator, however, and this limits the ultimate energy
resolution to about 2.5% of the incident energy. Figure 5.15 shows the same
plot for neutrons of 250 meV incident energy. The ultimate resolution is
better, perhaps 2% of the incident energy, in large part owing to moderator
performance. The intensity is lower at 250 meV for the modest resolution
of 4%, however. The neutron guide is not so effective at 250 meV, and the
moderator spectrum is weaker at this energy.

Fig. 5.14. Flux on sample
for various energy resolutions
of the ARCS spectrometer for
63 meV incident neutrons.

5.1.7 Q Resolution

Optimization is quite different for Q resolution, however. This has been less
of a focus of the ARCS instrument design, however, because historical trends

158 5. Instruments

Fig. 5.15. Flux on sample
for various energy resolutions
of the ARCS spectrometer for
250 meV incident neutrons.

have emphasized the design of instruments for work with polycrystalline sam-
ples. Measuring dispersive excitations in single crystals forces the considera-
tion of Q resolution. Specifically, it is suggested that the instrument be op-
timized for fractional Q resolution. The figure-of-merit, ∆Q/Q, is analogous
to the figure-of-merit, ∆E/E for E resolution.

The parameter space for optimization is broad, since various types of exci-
tations must be considered. The extreme cases are treated below as: 1) elastic
scattering, 2) highly dispersive inelastic scattering and 3) dispersionless in-
elastic scattering.
Summary of Q Broadening. Four sources of Q broadening are considered:

• The finite size of the moderator, even over a long primary flight path,
provides a significant angular divergence of neutrons on the specimen. This
divergence is about 0.4◦ without a guide, and will be larger for thermal
neutrons that have been reflected along the guide. If the excitations in
the specimen do not select among these incident ki, the resolution of the
experiment will be dominated by incident divergence.

• A 0.2◦ mosaic spread of a good crystal will cause an angular spread of 3.5
cm at 10 m. This is comparable to detector pixelation along a diagonal
direction, which is approximately 2.5

√
2 = 3.5 cm.

• The energy resolution leads to a coupled smearing in Q. Since the energy
resolution is quite good for all flight paths, this source of Q smearing is
not the biggest problem for single crystal work, especially in the forward
direction.

• The sin θ-dependence of Q conspires with finite detector pixel size to give
a divergent l3 in the the forward direction. A RQ of 1.0 % is not possible
for scattering angles, 2θ, smaller than 14◦ if a 10 m secondary flight path
is used with 2.54 cm detectors. The problem is proportionately worse for
shorter flight paths.

5.1.8 Optimization for ∆Q/Q in Elastic Scattering

It is easiest to first analyze the Q resolution for elastic scattering, and some
of the issues for elastic scattering pertain directly to inelastic scattering.

5.1 Chopper Spectrometers 159

Incident Divergence. The finite size of the moderator provides an angu-
lar divergence of incident neutrons on the sample. This is approximately 10
cm over 1350 cm, or about 0.4◦. This incident divergence may or may not
contribute to the divergence in scattered beams, depending on the process in-
volved. For elastic Bragg scattering, for example, the incident divergence will
allow intense Bragg peaks from all parts of a sample misoriented to within
about 0.4◦. Although incident divergence is a potentially serious problem, a
perfect crystal will still provide sharp Bragg diffractions. This incident diver-
gence can be the dominant effect on Q-resolution for some types of inelastic
scattering, however.

Mosaic Spread. It is important to consider the limit to Q resolution caused
by the sample itself – the instrument should need not be much better than the
intrinsic resolution of the sample. One issue is that a finite sample subtends
a non-zero angle over the secondary flight path, l3. This can be ignored for a
typical 1 cm sample, which is much smaller than the expected size of detector
pixels.

The “mosaic spread,” denoting the mean mutual misorientations of the
different subvolumes of a crystal, is an important figure-of-merit for single
crystal samples. A good single crystal sample may have a mosaic spread of
0.2 ◦, for which the angular blurring of an elastic beam at a detector located
10 m away from the sample is 3.4 cm. This is only slightly larger than typical
detector pixel resolutions. Better instrument resolution would be a reasonable
request, except for the fact that a 10 m sphere of detectors around the sample
is prohibited by constraints of cost and space. Nevertheless, we note that a
long secondary flight path, l3 = 10 m, could be justified for single crystals of
high quality in cases where the incident divergence does not dominate the Q
resolution.

Locus of Constant ∆Q/Q. We seek the locus of detectors that provides
a constant ∆Q/Q, defined as the resolution, RQ:

RQ ≡
∆Q

Q
. (5.29)

By definition

Q ≡ 4π
sin(θ)
λ

, so (5.30)

∆Q = 4π
cos(θ)
λ

∆θ , (5.31)

giving

RQ = cot(θ)∆θ . (5.32)

When RQ is plotted in polar coordinates, the detector locus is defined.
This is shown in Fig. 5.16. This shape is quite incompatible with the spherical

160 5. Instruments

solution for constant ∆E/E. At low angles, the detector placements required
for constant ∆E/E and constant ∆Q/Q are exactly orthogonal.

The resolution RQ diverges at small angles, because at small angles Q→
0, so very small ∆Q is needed to maintain a constant ∆Q/Q. A small angular
spread for ∆Q is achieved only when the detector pixels are very small or
are placed at very large l3. At the other extreme, the detector distance for
constant ∆Q/Q is infinitesimal when the scattering angle, 2θ, is 180 ◦, since
small variations in angle have no effect on Q for direct backscattering.

Fig. 5.16. Detector locus for constant ∆Q/Q. Crosses are spaced at 2 ◦ increments
of 2θ . Labels indicate specific 2θ angles. Sample would be located at (0,0). Distance
units are arbitrary, but they are equal for the two axes.

Coupling of Q Resolution to E Resolution. One obvious incompati-
bility of the ∆Q/Q optimization and the ∆E/E optimization is that the
secondary flight path, l3, becomes vanishingly small at θ = 90◦. (This is
strictly true only for the elastic scattering. For a fixed energy transfer, how-
ever, there will be a particular angle of inelastic scattering for which ∆Q = 0
in Eq. (5.32).)

Poor energy resolution will cause a smearing in Q, increasing RQ. For
elastic scattering:

5.1 Chopper Spectrometers 161

Q = kf − ki =
√

2mE
~

2 sin θ , (5.33)

dQ
dE

=
√

2m
~
√
E

sin θ , (5.34)

dQ
dE

=
Q

2E
sin θ , (5.35)

dQ
Q

=
dE
E

sin θ
2

, (5.36)

so ∆Q/Q and ∆E/E are comparable for modest angles.
The obvious solution is to use a spherical detector locus for high scattering

angles. The 3.0m flight path of ARCS gives energy resolutions as small as
∆E/E = 1%. At 2θ = 40◦ the contribution to ∆Q/Q is less than 0.2 %, and
this is even smaller at lower angles.

5.1.9 Optimization of ∆Q/Q for Inelastic Scattering

Ewald Spheres and Incident Divergence. Three important cases are
depicted in Fig. 5.2. Case 1, elastic scattering, was the topic of the previous
Sect. 5.1.8. Case 2, dispersive inelastic scattering, is considered first. This
problem is presented in two parts, the case for the first Brillouin zone, and
the case for higher Brillouin zones. Case 3 of Fig. 5.2 is presented last, since
it is more straightforward.

Fig. 5.2. Three types of scattering processes (1) is elastic scattering, (2) is disper-
sive inelastic scattering, and (3) is non-dispersive inelastic scattering.

For a fixed energy loss, the value of
∣∣kf ∣∣ is constant, although kf may

take different orientations. The kinematics of this scattering are understood
most conveniently by use of the Ewald sphere construction, which is shown
for elastic scattering in Fig. 5.3a. The Ewald sphere construction is useful for

162 5. Instruments

analysis of diffraction conditions because it identifies the relationship between
the wavevector transfer, Q, and the reciprocal lattice vector, τ , showing when
the Laue condition, Q = τ , is satisfied for diffraction. In inelastic scattering
the momentum of the excitation, q, plays a similar role to τ , especially in
the first Brillouin zone where τ is zero.

For the inelastic scattering process shown in Fig. 5.3b, all {kf} have the
same length (as for the elastic case of Fig. 5.3a), since the energy Ef is
identical for all orientations of kf . In both Figs. 5.3a and 5.3b, the allowed
kf make a sphere, which when placed at the tail of ki, provide the allowed
{Q} as shown in the figure (where as usual Q ≡ kf − ki).

Fig. 5.3. (a) Ewald sphere construction for elastic scattering, showing allowed Q
for Bragg diffraction. (b) Ewald sphere construction for inelastic scattering, showing
allowed {Q}.

The advantage of the Ewald sphere constructions of Fig. 5.3 is in analyzing
tilts of the incident beam, as occurs for incident divergence, for example. The
cases of Fig. 5.4 show conditions for elastic scattering before and after tilt. It
is evident that the condition for momentum conservation (the Laue condition)

Q− τ = 0 (5.37)

is generally violated by tilting, because tilts of ki by the angle φ cause Q to
tilt by this same angle φ. The consequence of this violation of momentum con-
servation is that coherent elastic scattering is altered, and Bragg diffractions
may be eliminated, for example. Those neutron trajectories with improper
ki will not contribute to the Bragg diffraction.

First Brillouin Zone – Soft Dispersions. One case for inelastic scattering
is shown in Fig. 5.5a. This case is a scattering from the first Brillouin zone,
where the reciprocal lattice vector, τ = 0. The diameters of the two circles
are set by the energy and momentum transfer to the excitation. In Fig. 5.5a,∣∣kf ∣∣ ' √

2
∣∣ki∣∣, indicating that the neutron has lost half its energy to the

solid. For the present case where the excitation is of energy Ei/2, we further
assume a relatively soft dispersion where the momentum of the excitation q

5.1 Chopper Spectrometers 163

Fig. 5.4. Ewald sphere construction for elastic scattering (a) before, and (b) after
tilt of ki. Notice that Q no longer touches the reciprocal lattice vector τ after tilt.

is assumed the same as the momentum of the neutron, kf . A circle is used
for the locus of acceptable q (a circle is not expected for anisotropic crystals,
of course). This circle has a large radius, as may be expected if a dispersive
excitation has a soft dispersion relation.

The effect of tilt on the scattering condition is shown in Fig. 5.5b. It is
evident by geometry that the tilt of ki and q are by the same angle for this
case of q lying in the first Brillouin zone. This could affect the ability of
the neutron to excite the dispersive mode, at least if the dispersive mode
is as sharp in q as a Bragg diffraction. Conditions where highly anisotropic
dispersions have a delicate contact with the locus of Q can also be envisioned.

Higher Brillouin Zones – Stiff Dispersions. The case of a high energy
excitation is shown in Fig. 5.6. In this case the dispersion is very steep, and
the energy is so high that the energy of the excitation is large, even when q
is small. In this particular case, there are no excitations in the first Brillouin
zone because q < Qmin.5 The excitation can occur in a higher Brillouin zone
with the help of a reciprocal lattice vector, τ so that

Q− q − τ = 0 . (5.38)

This case of a high-energy excitation is a higher Brillouin zone is interesting
because a tilt of ki does not induce a tilt of Q by the same angle. Figure
5.6 shows that small tilts have big effects on the orientation of q. In essence,
the reciprocal lattice vector can amplify the tilt of the incident beam on the
rotation of q. In this case it seems plausible that for sharp, stiff excitations,
only a ki of the correct orientation can generate the excitation. The mosaic
spread of the sample will be able to pick these acceptable ki from the incident
beam, and the Q resolution of the experiment will originate with the mosaic
spread of the sample and not the incident divergence.
5 Experimentally, it might be prudent to use a larger Ei and kf so that excitations

in the first zone are allowed. In this case the result of Sect. 5.1.9 is recovered,
that is the tilt angle of ki equals the tilt angle of q. The present results from
higher Brillouin zones remain valid, however.

164 5. Instruments

Fig. 5.5. Ewald sphere construction for inelastic scattering (a) before, and (b) after
tilt of ki. Notice that although Q has the same magnitude, it changes orientation
by the same tilt angle, φ, as the incident beam.

Non-Dispersive Excitations. The case of non-dispersive excitations in
Fig. 5.2 is straightforward to analyze with Figs. 5.5 and 5.6. The point is
that the circle of q can be of arbitrary radius, since the energy of the excita-
tion does not depend on q. For this reason, at a fixed energy transfer equal to
that of the excitation, there will always be an excitation with an appropriate
q to satisfy momentum conservation. All orientations of ki will be useful for
generating the excitation, and the incident divergence will dominate over the
crystal mosaic spread in setting the Q resolution.

A similar result pertains to inelastic incoherent scattering.

5.1.10 Background

- Important section...as long as possible. This is a real issue.
- forward beam scattering
- double scattering/triple scattering
- neutron gas theory

5.1 Chopper Spectrometers 165

Fig. 5.6. Ewald sphere construction for inelastic scattering (a) before, and (b)
after tilt of ki. In this case the excitation has a large E for a small q. Notice that
although Q has the same magnitude, it changes orientation strongly after tilt of
the incident beam.

5.1.11 Sample Design

Inelastic neutron scattering experiments require careful attention to the sam-
ple itself. Of course the sample must be in the correct state, satisfying basic
criteria such as magnetic polarization, chemical composition, crystal struc-
ture, crystallographic quality or texture, temperature and pressure. Criteria
for these sample states must not be compromised to the detriment of the
science. The in-situ control of temperature, pressure, and magnetic field of-
ten leads to some compromises in experiment design, and expertise with the
available “sample environment equipment” is essential in planning an exper-
iment.

A most common problem for inelastic scattering experiments is a sample
that is too small. There is always a background in the spectrum from stray
neutrons in the instrument, and inelastic neutron scattering experiments will
suffer from poor signal-to-noise ratio whenever this background has an inten-
sity comparable to the scattering from the sample itself. Robust scattering
from the sample usually means having a large quantity of sample. Experi-
menters are often dismayed that inelastic scattering measurements typically
require one or even two orders-of-magnitude more sample than is typical for
neutron diffraction measurements. The ideal sample for inelastic scattering
will be as wide as possible so that it fills the cross section of the incident

166 5. Instruments

beam. With a wide sample, all neutrons in the beam will be candidates for
scattering, and no parts of the beam will pass directly into the beamstop or
generate unnecessary background.

The thickness of the sample in the direction of the beam needs to be
chosen with care. It is possible to have a sample that is too thick. There are
two limits that set upper bounds on the thickness of samples, and we consider
each in turn below. The sample should be as thick as possible, provided it
does not exceed limits imposed by:

• Multiple scattering. If the scattering cross-section is large and the sample
is thick, too many neutrons will be scattered multiple times inside the spec-
imen. Each scattering has its own energy spectrum, and the convolution of
these spectra is difficult to sort out in the measured data.

• Absorption. Some nuclei are strong absorbers of neutrons. For thick sam-
ples of strong absorbers, few neutrons can leave the samples and enter the
detectors.

Scattering and Attenuation. As the neutron beam passes through a ma-
terial, there is a reduction in the number of neutrons traveling in the incident
beam. At the depth x, the increment of thickness of a material, dx, scatters
a number of neutrons, dI, removing them from the beam. The number of
scattered neutrons, −dI(x), equals the product of 1) the increment of thick-
ness, dx, 2) the number of neutrons present at x, I(x), and 3) a material
coefficient, s:

−dI(x) = s I(x) dx , (5.39)
dI(x)
dx

= −s I(x) , (5.40)

I(x) = I0 e−sx . (5.41)

If scattering is the only process that removes neutrons from the incident
beam as it traverses a sample of thickness t, the loss from the beam equals
the intensity of the scattering:

Iscat(t) = I0
(
1− e−st

)
. (5.42)

The product in the exponent, sx or st, must be dimensionless, so s has
dimensions of [cm−1]. When sx is small, it equals the fraction of neutrons
removed from the incident beam. From Fig. 2.3 we know that this fraction
also equals Nσ/A, so:

s =
Nσ

Ax
=
N

V
σ , (5.43)

where N/V has units [atoms cm−3] and σ is the scattering cross-section with
units [cm2].6

6 Since density varies with the type of material, “mass attenuation coefficients”
are often normalized as ratios s/ρ. Here the density, ρ, has units [g cm−3], so the
coefficients s/ρ have units [cm−1]/[g cm−3]=[cm2 g−1]. Exponents in (5.41) are
products (s/ρ)× ρ× x, and are, of course, dimensionless.

5.1 Chopper Spectrometers 167

It is straightforward to calculate the composite mass attenuation coeffi-
cient for a compound or an alloy. The point to remember is that the total
neutron scattering depends on the number and types of atoms in the path of
the beam. The composite attenuation coefficient is obtained from the atten-
uation coefficients, si, for the different elements, i, weighted by their atomic
fractions in the material, fi:

〈s〉 =
∑
i

fi si . (5.44)

Multiple Scattering Criterion. It may seem curious that for well-planned
experiments, most of the neutrons are transmitted through the sample with-
out scattering.7 Inverting this heirarchy with very thick specimens can cause
the data to be uninterpretable, as we now show.

Consider the probability of inelastic scattering, pi, and elastic scattering,
pe, through a thin layer of material. We set pe + pi = p, where p is the total
probability of scattering in the layer. For thin samples of n layers, each of
thickness x, we have the relationship between numbers of layers and the bulk
scattering coefficient, s:

〈s〉x = n p . (5.45)

For considerations of multiple scattering, it is most convenient to work with
the numbers of layers and scattering probabilities.

A challenge for multiple scattering calculations is the three-dimensionality
of the sample. Neutrons can be scattered initially upwards, followed by a
second scattering to the side, and a third scattering out to the detectors.
A computer program such as MSCATT is required for accounting for such
possibilities. Here we provide an approximate analysis in one dimension.

We assume that all neutrons entering the layered sample eventually leave
the back of the specimen and are observed. The probability, p′ for a neutron
being scattered j times is the product of j of the layers doing a scattering,
and n− j of the layers doing no scattering:

p′ = pj(1− p)n−j . (5.46)

We are not keeping track of which particular layer has done the scattering.
We keep track of the fractions of neutrons that are scattered j times in our
n layers when the scattering probability in each layer is p. The number of
ways of arranging the j scatterings over the n layers is therefore the binomial
coefficient. The total fraction of neutrons that are observed in our example
is 1, and should equal the sum of all scatterings, including j = 0 for no
scattering:

1 =
n∑
j=0

n!
(n− j)! j!

pj(1− p)n−j . (5.47)

7 Often the next largest fraction of neutrons are scattered elastically, and the
smallest fraction are scattered inelastically.

168 5. Instruments

We have implicitly assumed p� 1, so the number of scatterings j � n, and
each layer scatters at most once. (This also ensures that the terms for which
j ∼ n are negligible in (5.47).) We can always satisfy this assumption p� 1
by dividing our sample into finer and finer layers, because (5.45) shows us
that for a fixed sample, np is a constant. Write out the first few terms of
(5.47) in the binomial expansion:

1 = (1− p)n + np(1− p)n−1 +
n(n− 1)

2
p2(1− p)n−2 +

+
n(n− 1)(n− 2)

6
p3(1− p)n−3 + ... (5.48)

We simplify by using our condition of large n and small p,

1 = (1− p)n + (np)1(1− p)n−1 +
1
2

(np)2(1− p)n−2 +

+
1
6

(np)3(1− p)n−3 + ... (5.49)

The first term in (5.49) is the the probability of zero scattering, the second
is the probability of one scattering, the third – two scatterings, etc. We are
interested in knowing the ratios of the different terms in this series. Since
1− p ' 1, and using (5.45), the ratios are:

1 : sx :
1
2
(sx)2 :

1
6
(sx)3 ... (5.50)

The parameter sx is dimensionless, and for experiment design we seek
sx ' 0.10. In other words, we seek a sample that scatters 10% of the incident
neutrons. For this particular case, (5.50) gives the ratio of double scattering to
single scattering of 1/2sx = 0.05. Consider the effect of this double scattering
on the inelastic spectrum. The scattering probability is the sum of an inelastic
and elastic probability:

p = pe + pi , (5.51)
np = npe + npi , (5.52)
〈s〉x = 〈se〉x + 〈si〉x . (5.53)

For this sample that scatters 10% of the incident neutrons, the ratio of the
amount of inelastic single scattering to the amount of inelastic double scat-
tering will be 5% – the same ratio as for the total scattering.

The effect of multiple scattering is to smear out the measured inelastic
energy spectrum, and spread it out over twice the energy range of the single-
scattering spectrum. Suppose the first scattering has the double-differential
cross section of (2.78). Suppose a particular inelastic scattering causes an en-
ergy loss ε = ~ω. If this scattered neutron with altered energy and wavevector
now undergoes a second inelastic scattering, the process may involve another
double-differential cross section of (2.78), but with somewhat different pa-
rameters. An energy spectrum associated with this second scattering will be

5.1 Chopper Spectrometers 169

associated with every energy loss from the first scattering. Approximately,
the energy spectrum for double scattering is the convolution of the single-
scattering energy spectrum with itself. A similar type of argument applies to
momentum distribution, but this is complicated by the vectorial aspects of
the momentum transfer. Today the accepted practice is to ignore multiple
scattering by assuming it is a weak background underneath the measured
data, and does not contain significant structure. So long as it represents only
5% of the spectral area, this shouldn’t be a problem, should it?

Absorption Criterion. When the sample contains a strong absorber of
neutrons, the analysis is a bit more complicated than for (5.41). The loss of
neutrons from the incident beam is now

−dI(x) = (s + a) I(x) dx , (5.54)
I(x) = I0 e−(s+a)x . (5.55)

where the parameter a is the absorption coefficient, causing neutrons to “dis-
appear,” rather than scatter. The I(x) in (5.55) is the number of neutrons
at depth x into the specimen, but it is not equal to the number of scattered
neutrons. Furthermore, the scattered neutrons can be absorbed on their way
out of the sample. With a one-dimensional model, for a sample of thickness t,
the path out has a length t−x, so an exponential function with this argument
attenuates the outgoing beam. For the scattered neutron intensity, Iscat from
the increment dx

dIscat = I(x) e−a(t−x) s dx , (5.56)

Substituting (5.55) into (5.56), rearranging, and integrating dIscat:

Iscat = I0 s e−at

∫ t

0

e−sx dx , (5.57)

Iscat = I0 e−at (1− e−st) . (5.58)

We can use (5.58) to calculate the scattering for any combination of ab-
sorption coefficient (a) and scattering coefficient (s). Suppose that a = 0,
and there is no absorption. For a sample that scatters 10% of the incident
neutrons, we obtain (5.42). Incidentally, for such a thin scatterer we can ex-
pand the exponential in (5.42) to obtain Iscat = I0 s t, which is perhaps more
intuitive. It is perhaps more interesting to consider the other limit where ab-
sorption is strong. A sample that is too thick will have no scattered intensity,
since all neutrons are absorbed. There is an optimal thickness t′ for maximum
scattering that we find by the analysis:

Iscat
dt

∣∣∣
t′

= 0 (5.59)

t′ =
1
s

ln
(s

a
+ 1
)
. (5.60)

For strong absorbers, a � s, and we obtain from (5.60):

170 5. Instruments

t′ =
1
a

optimal for strong absorbers. (5.61)

Hydrogen Criterion. Finally, we consider the inelastic scattering from hy-
drogen, a unique element. Phonon scattering cross sections are proportional
to σ/m. Hydrogen has a uniquely large σ and an uniquely low m, making it a
stronger inelastic scatterer than Zr, by a factor of 1100. A trace of hydrogen
in Zr would contribute a large amount of the inelastic scattering, and Zr has
a tendency to absorb hydrogen and retain it in a modest vacuum. In many
cases the spectral contributions from hydrogen are at high frequencies, and
can perhaps be separated from the modes from Zr, for example. Nevertheless,
it is important to know the hydrogen concentration in a sample for inelastic
scattering experiments, and the best practice is to eliminate hydrogen from
the sample.

5.1.12 Sample Design: Worked Example of LiFePO4

Here are some sample calculations that were used for obtaining a thickness
and mass of a typical sample for inelastic scattering. The neutronic properties
of the elements of lithium iron phosphate are listed in Table 5.1.

Table 5.1. Neutronics of LiFePO4

units Li Fe P O O×4

σscat 10−24 cm2 1.37 11.62 3.312 4.232 19.93

σabs 10−24 cm2 70.5 2.56 0.172 0.0 0.0

σscat/m 10−24 cm2/A 0.196 0.208 0.107 0.265 1.06

The first step is to calculate the mass, M , of a sample that is a 10%
scatterer. We do the calculation for 1 cm2 of sample area, so the total cross
section should be 0.1 cm2

σtot = 0.1 cm2 = [1.37 + 11.62 + 3.31 + 16.93]

×[10−24 cm2]
[
1 mole
158 g

6.02× 1023 atoms
mole

]
M . (5.62)

M = 0.79 g . (5.63)

To fill the 5×5cm beam of the ARCS instrument, the sample mass should be
19 g.

The second check is for absorption. The total absorption for a 1 cm2 sam-
ple is:

Further Reading 171

σabs tot = [70.5 + 2.56 + 0.176]

×[10−24 cm2]
[
1 mole
158 g

6.02× 1023 atoms
mole

]
0.79 g . (5.64)

σabs tot = 0.219 . (5.65)

This is small enough to be ignored, but if it were much larger we would have
to resize the sample to be consistent with (5.61), for example.

Finally, we consider the risk from some residual water in the sample. One
H2O molecule has a ratio of σscat/m = 170 for its hydrogen atoms. The
σscat/m in Table 5.1 are nearly 1000 times smaller. We should seek a mole
fraction of water that is 10−4 or less. Perhaps some water could be removed
by heating the sample slightly in the vacuum of the ARCS spectrometer.

Through data analysis procedures described in Chapter 6, it is possible
to convert a measured inelastic spectrum to a representation of the phonon
DOS. The problem of neutron weighting in LiFePO4 can be seen from the last
line in Table 5.1 in the values of σscat/m. For this material, the vibrational
modes involving large amplitudes of motion for Li atoms will be much more
prominent in the extracted DOS than the modes involving large amplitudes
for O atoms. This neutron weight problem is one that can be addressed by
lattice dynamics calculations, or at least it should be in the near future.

Further Reading

The contents of the following are described in the Bibliography.
Varley F. Sears: Neutron Optics, (Oxford University Press, New York and
Oxford 1989).
G. Shirane, S. M. Shapiro, and J. M. Tranquada: Neutron Scattering with a
Triple-Axis Spectrometer, (Cambridge University Press, Cambridge 2002).
G. L. Squires: Introduction to the Theory of Thermal Neutron Scattering,
(Dover, Mineola NY 1978).
C. G. Windsor: Pulsed Neutron Scattering, (Taylor and Francis, London
1981).

6. Essential Data Processing

This chapter explains procedures for the reduction of data from a time-
of-flight inelastic neutron spectrometer. To date the practice of reducing
inelastic scattering data from time-of-flight instruments has been poorly-
documented, dull, tedious, and error-prone. We hope this chapter transcends
these traditional shortcomings.

The present chapter explains the rationale behind the data reduction
modules of DANSE (Chapter 7 better explains their use). After an overview
of a typical data reduction process, the individual steps are explained in de-
tail. Approximately, analysis steps that are further from the raw data are
more closely-related to the dynamic processes in the sample, and tend to be
more computationally-intensive. These steps (such as corrections for absorp-
tion, multiple scattering, and multiphonon scattering) are described later in
this chapter. Although the data analysis steps described first are somewhat
independent of the previous chapters, understanding some of the later steps
(such as corrections for multiphonon scattering) may be easier after reading
Chapters 2 and 3.

The treatment in this chapter presupposes a “direct geometry” configura-
tion (monochromation before the sample) and a two-dimensional, pixellated
detector system, composed of an array of linear, position-sensitive detectors.
This configuration is used in the Pharos and ARCS spectrometers, for exam-
ple.

The first task is to take a raw set of data from an inelastic neutron scat-
tering experiment (with a powder sample), and convert it into physical units
such as meV and Å−1 for energy and momentum transfer. Such basic steps
are needed before the data can be compared to predictions from theory, or
even compared to results from other inelastic spectrometers. Although the
specific steps may depend in part on the scientific issues being studied, some
data processing steps are common for nearly all experimental work, and are
required to make an inelastic neutron scattering data set useful. There may be
others steps as well, but most experiments follow most of the steps presented
here.

Some notation is listed in Table 6.1. Fig. 6.1 shows the position of the
detector tubes with respect to the sample, S, in the plane of the spectrometer,
Fig. 6.2 the position perpendicular to the plane.

174 6. Essential Data Processing

Table 6.1. Notation

ki (kf) modulus of the initial (final) neutron wavevector

Q = ki − kf momentum transferred from the neutron to the sample

φ scattering angle (Q =
p
k2
i + k2

f − 2kikf cosφ)

Ei (Ef) incident (final) neutron energy

~ω = ∆E = Ei − Ef Energy transferred from neutron to sample

l2 distance from the sample to the center of a detector

d labels a specific detector

h the height of a pixel in a detector

Fig. 6.1. Layout of the secondary flight path of
a direct geometry time-of-flight spectrometer. The
detectors are arrayed in a circle of radius l2 around
the sample (at S). The beam is incident on the
sample from the left. The x and z axes show the
coordinate system used in the discussion of binning
into rings (Sect. 6.1.2), the y-axis of that system
points out of the page. ψ is the angle from the z-
axis to the center of a given detector (in the x-z
plane).

Fig. 6.2. Labeling some of the distances in
the secondary flight path of a direct geome-
try time-of-flight spectrometer. The center of
the detector is l2 from the sample (at S), and
a given pixel is at height h from the center.
The total distance from the sample to a pixel
is l2 + b(h) = (l22 + h2)1/2.

Typically one wants to know the dynamic structure factor, or scattering
law, S(Q,ω). The coherent nuclear scattering of (3.94) can be summarized
in simplified form:(d2σ

dΩdE

)
coh

=
σcoh

4π
kf

ki
NScoh(Q, ω) , (6.1)

with similar expressions for incoherent scattering or magnetic scattering. Ow-
ing to several complications originating with how the measurement is made,
the measured data are actually:

6. Essential Data Processing 175(d2σ

dΩdt

)
coh

= Φ
[σcoh

4π
kf

ki
NScoh(d, h, t)× T (d, h, t)× ε(d, t)

+ Snuis(d, h, t) + b(d, h, t)
]
. (6.2)

Here Φ is the incident flux, and often must be known by an independent
measurement with a beam monitor, for example. The data are initially his-
togrammed as a function of neutron time-of-flight (TOF) rather than neutron
energy,1 where the two are related by E = 1/2mnv

2 = 5.227(l/t)2 (the sec-
ond equality holds for speeds in mm/µs or equivalent). Background b and
nuisance scattering from the sample, Snuis, pollute the interesting signal.2

Other factors modify the interesting term involving Scoh. The sample may
absorb neutrons, so only a fraction T of neutrons are transmitted through
the sample, and this varies with scattering angle and neutron energy. The
efficiency ε of the detectors varies with energy and from one detector to
another. The jobs ahead are:

• Account for incident flux.
• Remove background.
• Compute incident energy.
• Convert from time to energy.
• Correct for detector efficiency.
• Correct for absorption.
• Subtract similarly treated empty can data.
• Bin into rings of constant scattering angle φ.
• Subtract additional nuisance scattering (multiple scattering and so on).
• Convert from angle to momentum.

Errors must be propagated. This is usually done according to a few simple
rules, such as when data sets are added or subtracted, the errors add in
quadrature; the error for the raw histogram is the square root of the counts
in any given bin [81].

While many experiments could be treated by a similar process, not all of
them can. In the later case, we have to know when departures from the routine
require intervention in the reduction process. The sequence in which these
tasks are presented here is that in which they are usually performed. As a
rule, these operations do not commute, and we have to figure out what needs
to be adjusted when re-ordering things. For instance, if the background is
known as a function of time, either it should be subtracted before the data are
1 The introduction of new data acquisition hardware and software might alleviate

this by histogramming directly into energy and momentum. That may simplify
some tasks, for example eliminating the conversions from TOF to energy and
from TOF and angle to momentum. However, this may complicate other tasks
such as background subtraction.

2 This list includes anything that does not interest the experimenter. For example,
in a phonon measurement this may include all magnetic scattering, multiphonon
and multiple scattering effects.

176 6. Essential Data Processing

transformed into energy, or the background must be transformed into energy
as well. The sequence for other tasks, such as conversion to momentum units,
is motivated by efficiency (one needs to think about energy when thinking
about momentum, but not vice versa, so one might as well do the energy
conversion first, followed by the momentum conversion).

6.1 Steps to Transforming Data into a Function of
Energy and Momentum

6.1.1 Operations and Data Structures

The basic data structure is a histogram. This implies sets of arrays: the array
to store the histogram values per se, a similar array for errors, and associated
arrays to store the axis values for each dimension.

Operations can be divided into those that change the structure of some of
the arrays, and those that change only the contents of the arrays. Those that
change the structure include energy rebin (§ 6.1.2), sum into rings (§ 6.1.2),
and momentum rebin (§ 6.1.2); those that don’t change the array structures
include subtracting various artifacts (§ 6.1.2, 6.1.2) and multiplicative correc-
tions (§ 6.1.2, 6.1.2). The structure-changing operations require the creation
of one or more new arrays; the rest can be done in place (assuming one is
confident of the correction or if the correction can be easily undone). In the
sections ahead, changes to the structure of the data will be noted.

6.1.2 A Closer Look at Each Task

Initial Data. The starting point is an array representing I0(d, h, t), the raw
counts in each detector, at each detector position, for each TOF bin. The
error is assumed to be the square root of the intensity: σ0 =

√
I0(d, h, t).

The TOF bins in this histogram usually have a constant time width, so all
the bins are specified by some initial time t0, the bin-width ∆t, and the
number N of bins.

Initially there are five major arrays representing:

• The actual data. Three dimensional array; if there are T time bins, D
detectors, and H positions per tube, the array dimensions are D×H × T .

• The error. Same dimensions as the data.
• The time of flight. A one dimensional array of length T.
• The detector angles. A one dimensional array of length D.
• The pixel heights. A one dimensional array,3 length H.
3 One might allow for the possibility that the pixel heights vary from one tube

to another. The pixel position array becomes a two dimensional array, with size
D ×H.

6.1 Steps to Transforming Data into a Function of Energy and Momentum 177

Those arrays are stored in a histogram.
Some additional parameters are needed. These include the incident neu-

tron energy, Ei, and the geometry of the instrument, especially the length l2
from the sample to each detector, and the angle of each detector. We assume
these additional parameters are known.

Normalize by Incident Flux. Typically one divides by the total counts m
in a peak in a beam monitor, which gives a proportional measure of the inci-
dent flux. Other measures may also be considered in unusual circumstances,
for example, microamp-hours of proton beam delivered to the target. Regard-
less of the source, one still divides each element of the input array by some
scalar:

I1(dj , hk, ti) = I0(dj , hk, ti)/m , (6.3)

for all {i, j, k}, and similarly for the error.

Subtract Background. Physically, the background is another complex sub-
ject; computationally, it is not. It can have different origins, from cosmic rays
hitting the detectors (probably a small contribution) and neutrons from other
experiments, to more serious causes, such as fast neutrons thermalizing in the
instrument shielding, or slow neutrons scattering from poorly-masked beam-
line components. At times it can be difficult to determine what is background
and what isn’t, especially when looking for diffuse scattering.

A common way to estimate the background is to subtract a constant (in
time) background determined from the data. This may have some justification
for removing the background that originates with radiations from neighboring
instruments, or neutrons from far enough away that any time structure is lost.
Another approach subtracts the scattering measured with an empty can. This
is better done at a later stage, and is described below.

Because the background could vary with time and detector position, we
denote it as b(d, h, t). Thus, we have

I2(dj , hk, ti) = I1(dj , hk, ti)− b(dj , hk, ti) . (6.4)

For each element of I2 one must know about one element of I1 and one
element of b, and the same for the error.

Convert from Time to Energy. This step changes the structure of the
data arrays. Prior to this step, the structures are the same as the initial arrays.
There are still some more corrections to be made, but those corrections can
be done more easily in terms of energy. This is computationally more intricate
than the previous steps. In fact, it may be done in two steps.

First, one creates a new set of histogram bins whose boundaries are deter-
mined by t2, the sample-to-detector TOF, and l2, the distance from sample
to detector, via the classical relation

~ω = Ei − Ef = 5.227
[
v2
i −

(l2
t2

)2]
. (6.5)

178 6. Essential Data Processing

Note that pixels at different positions along the length of the detector tube
are at different distances from the sample.4 The effect is to coarsen the energy
resolution. An extra 3 cm is a little more than the diameter of the detector
tube, so this makes a contribution to the resolution similar to the size of the
detector, or the sample size. For 35 meV neutrons and l2 = 4m the difference
in energy is about 1.5%. One way to account for this is to write a separate
set of histogram energy bin boundaries for each height in the detector tube:

~ω = Ei − Ef = 5.227
[
v2
i −

(l22 + h2

t22

)]
. (6.6)

In making this transition, we need to multiply by the time bin-width and
divide by the energy bin-width:5

I3(˜d, h, ω(h)) = I2(d, h, t)
∣∣∣ dt
dω

∣∣∣ . (6.7)

At this step, the array describing the time bins has been replaced by a
two-dimensional array describing the energy bins. Here is a list of the arrays
at this stage of data reduction:

• Data array. Still D ×H × T .
• Error array. Still D ×H × T .
• Intermediate energy bin boundaries array. Two dimensional, H × T or so.
• Detector angles array, one-dimensional, length H. Same as before.
• Pixel position array. Same as before.

The energy binwidth is changing from bin to bin, which makes it hard
to think about in plotting, fitting, etc. Also, the energy of any given bin is
a function of the position of the pixel height. This is why we usually take
the second step, rebinning into constant energy bins. Rebinning will also
remove the artifact of each detector position having a unique set of energy
bin boundaries.

For the second step one creates another set of histogram bin boundaries,
spaced uniformly in energy. One then assigns counts from the old bins to the
new bins by prorating them. The rules are simple: if an old bin lies entirely
within a new bin, one puts all of the old counts into the new bin; in doing
so, multiply by the old bin width and divide by the new bin width. If an old
bin overlaps two new bins, assign counts to the first new bin based on the
fraction of old bin overlapped by the first, and assign counts to the second
new bin according to the fraction of the old bin overlapped by the second
bin (and multiply by the old bin width while dividing by the new). The same

4 For a nominal l2 of 4 m (Pharos), this discrepancy gets as large as about 0.03 m

(generally, the extra path length is b = l2[(1 + h2/l22)
1/2 − 1] ≈ h2/2l22).

5 This is because the histogram reflects counts per some unit (µs or meV); we have
the constraint that the integral of the cross section be independent of the unit. If
the histogram contains counts instead of counter-per-some-unit, then this factor
is not necessary.

6.1 Steps to Transforming Data into a Function of Energy and Momentum 179

holds true if the old bin overlaps many new bins. One can of course think of
this the other way around: each new bin asks “what does each old bin owe
me”.

One could write:

I3(d, h, ω) =
∑
i

M(ω, ω̃i(h))× I3(d, h, ω̃i(h))×
∣∣∣dω̃i
dω

∣∣∣ , (6.8)

where M(ω, ω̃(h)) is a matrix with the overlaps between old bins and the
bins. One could get clever and drop the |dt/dω̃| in Eq. 6.7 if one remembers
to use |dt/dω| instead of |dω̃/dω| in Eq. 6.8. One typically needs to know
something about several (but not all) elements of the old array before he can
learn something about one element of the new array.

At the end of this step, three arrays have changed:6

• Data array. Now D ×H ×NE .
• Error array. Now D ×H ×NE .
• Energy bin values array. One dimensional, NE .
• Detector angles array, one-dimensional, length H. Same as before.
• Pixel position array. Same as before.

Detector Efficiency. Detector efficiency varies with energy. These data are
provided by the manufacturer. One simply divides by a pre-existing array of
numbers:

I4(dj , hk, ω) =
I3(dj , hk, ω)
ε(dj , ω)

. (6.9)

The efficiencies are typically known as a function of final neutron energy, so
an additional step is required to convert ε(Ef) into ε(ω).

Absorption correction. The absorption by the sample varies with both
neutron energy and mean path length through the sample. For a single energy,
the transmission through a material with unit cell volume V and absorption
cross section per unit cell σabs, the transmission probability is T = e−lσabs/V .
For a wise choice of units for V and σabs, the path length l will be in cm.
The mean path length through the sample varies with angle, so one needs to
compute T (φ, ω).

In a real experiment, the length through the sample depends on where
in the sample the neutron scatters, to which direction it scatters, and the
change in the neutron energy (recall that the absorption cross section per
unit cell varies as inversely with neutron speed, so when the speed changes,
the probability of absorption per unit length changes). It does not depend
on momentum transfer. One must calculate this dependence; let us assume
this has been done. Then one divides each element of the old array by one
element the array representing T (φ, ω)

6 NE is the number of new energy bins

180 6. Essential Data Processing

I7(φi, ωj) = I6(φi, ωj)/T (φi, ωj) . (6.10)

Section 6.3 of this chapter takes a more detailed look at the absorption
correction.

Subtract empty can data. Having accounted for absorption by the sam-
ple, it now makes sense to subtract the scattering measured from the empty
can, if the data from the empty can be brought through a similar treatment
chain to this stage7.

Bin into Rings. For a powder sample, the useful spatial information is the
scattering angle φ. That is to say, for a given Q, Ei, and ω, a powder scatters
into a cone of angle φ . So the two labels d and h can be condensed into the
scattering angle φ.

The first step is to identify the φ for each pixel. A conventional instru-
ment coordinate system has the sample at the origin and the transmitted
beam forming the z-axis. The x-axis runs horizontally from the sample (for
Pharos, that’s toward FP-15) and perpendicular to the beam, and the y-axis,
determined by right-handedness, points upward. (See Fig. 6.1.) It is natural
to think of the detector as lying on a cylinder, with the axis of the cylinder
coincident with the y-axis just described. So consider two vectors: p, which
runs from the sample to the pixel, and a, with length l2 running from the
sample in the direction of the transmitted beam. In the instrument coordi-
nate system, a = l2ẑ, and p = −l2 sin(ψ)x̂ + hŷ + l2 cos(ψ)ẑ. ψ is the angle
between the tranmitted beam and the center of the detector; it lies in the
x-z plane. The angle between a and p is given by p · a = |a||p| cosφ = azpz:

φ = cos−1
(azpz
|a||p|

)
= cos−1

(pz
|p|

)
= cos−1

(l2 cos(ψ)√
l22 + h2

)
= cos−1

(cos(ψ)√
1 + h2/l22

)
. (6.11)

Having found the angle φ for each pixel, an efficient method to combine pixels
with similar angles is desirable. The simplest method uses three nested for
loops: one over the new angles, and two over the old detector indices. More
abstractly:

I5(φk, ω) =
∑
i,j

N(φk, di, hj)× I4(di, hj , ω) , (6.12)

where N is a matrix whose elements are 1 or 0 depending on whether φ for
the ith, jth pixel is within the bounds defined for the kth element of the new
array. It may not be necessary to know all of the points of the old array in
order to find one element of the new array.

This operation depends on the instrument configuration (where the de-
tectors are) and the set of angular rings which can be defined by users. After
7 Not an identical chain: hopefully your empty can didn’t need an absorption

correction. (If it was made out of vanadium, it might need that!)

6.2 Transformations and Information 181

this step, all but one of the arrays have changed. Here is a list of the arrays
after this step of data reduction:

• Data array: Nφ ×NE .
• Error array: Nφ ×NE .
• Energy bin values array: NE .
• Phi-bin values array, Nφ

Subtract Nuisance Scattering. Other nuisance scattering includes all
scattering from the sample that is either non-interesting or confusing. This
usually includes higher-order scattering processes, and is generally difficult
to compute (especially since one has now applied a number of multiplica-
tive factors which must be accounted for). Computationally, this is simply a
matter of subtracting two arrays, element-by-element, which brings us to:

I6(φ, ω) = I5(φ, ω)− Snuis(Q,ω) (6.13)

Convert to Momentum Transfer. Ideally, there would be a prorating
scheme like that used in going between time and energy. Another approach
frequently used is interpolation. Essentially one recognizes that the regularly-
spaced angles at which one has measured are an irregularly-spaced array of
momentum transfers, Q. This momentum rebinning is typically performed
with a convenient interpolation algorithm in, for example, IDL. Like the
energy rebinning, one could write this process as a matrix operator acting on
a vector:

S(Q,ωj) =
∑
i

M(Q,φi, ωj)I7(φi, ωj) . (6.14)

The arrays have changed again. After this step in data reduction, the
arrays are:

• Data array: 2D, NE ×Nq.
• Error array: 2D, NE ×Nq.
• Energy bin values array: 1D, NE .
• Q-bin values array: 1D, Nq.

At this point we have isolated the scattering of interest, and converted it
into real physical units. This was considered a real achievement in the 1990’s.
For some experimental work the data analysis can be declared complete, and
graphs of the results prepared for publication.

6.2 Transformations and Information

Information is lost in the course of data reduction – the word “reduction”
itself implies a loss. Some loss of information is both inevitable and necessary

182 6. Essential Data Processing

with data from a direct geometry chopper spectrometer – with 105 detec-
tor pixels of 104 time bins each, a data set of 109 elements defies human
comprehension. As described in the previous sections, the full experimental
information on the arrival of each neutron at a specific detector pixel at a
specific time is put through a number of transformations to improve compre-
hension, but also to improve counting statistics by summing events that are
expected to be physically equivalent. It should also be noted that many data
elements are usually uninteresting, or hold minimal counts, but even this
information can be useful for removing extraneous scattering in the “good”
data elements.

This section discusses the different physical scattering processes that can
be measured experimentally, the possible transformations that can be per-
formed on them, and whether these transformations are warranted, given the
information required to do the transformation properly. For example, if the
Q-resolution is lost by doing experiments on an incoherent scatterer like hy-
drogen, by performing measurements on a filter-difference spectrometer, or
by rebinning all the Q-dependent data into energy, there is no path back to
Q information by direct analysis of data alone. Fortunately, there may be a
route back to the Q information through the use of a theoretical model or a
simulation, and this is an opportunity provided by DANSE software.

Theory and computation play a bigger role when the experimental data
require more supplementary information to enable the transformation. For
data containing minimal information, it is possible to obtain detailed elemen-
tary excitations with theory alone – this is of course what has been done for
many years by computational condensed-matter physicists. This dominance
of theory over experiment was not the original intent of DANSE, but since
DANSE provides such tools it will be interesting to see the path taken by future
users of the DANSE system. Some community standards will have to be consid-
ered, but it is already clear that some transformations are better described as
computational science rather than experimental science, even if experimental
data is part of the effort. For example, consider data on elastic incoherent
scattering from a polycrystalline sample. Very little information is contained
in such data on excitations in solids, but these data could be augmented by
ab-initio theory to make predictions of the inelastic coherent scattering from
a monocrystal. In this example most of the work would be done by theory,
and the experimental data would add little value. For this reason, the DANSE
software does not support this transformation.8 The present section lists all
possible data transformations, and explains why approximately half of them
are supported by DANSE.
8 Such analysis is possible by the ab-initio tools in DANSE, but DANSE does not offer

this as a transformation of experimental data.

6.2 Transformations and Information 183

6.2.1 Categorization of Transformations and Information

Table 6.2 lists the fundamental possibilities for a neutron scattering measure-
ment. A real experiment may include combinations of coherent and inelastic
scattering processes, but we consider these independently in what follows,
because this is the approach used in data analysis. The categories of energy,
momentum, and sample are orthogonal, and make the natural diagram of
Fig. 6.3. Figure 6.3 is structured so that it the data of maximum detail is
near the origin in the box labeled “inelastic coherent mono.” (Note: with the
word “inelastic,” elastic scattering is also assumed included.) This inner cube
contains enough information so that reprocessing allows one to move in any
of the other three directions using experimental data alone (assuming the
data are complete, of course).

As examples, consider the reprocessing of data from the inner box labeled
“inelastic coherent mono”:

1. Averaging the scattering over all crystal orientations (from Q toQ) allows
reprocessing into the box above it, “inelastic coherent poly,”

2. Averaging over Q allows transformation to incoherent scattering, to the
box in back, “inelastic incoherent mono,”

3. Discarding the inelastic contribution moves to the box at right “elastic
coherent mono,” which is useful for single-crystal diffraction patterns.

These three statements are discussed further below, as are other transfor-
mation paths. Some are less obvious than others – statement 2 above is less
obvious than 1 and 3, and it has been discussed in the literature. Nevertheless,
it should be almost intuitive that considerable information is lost in going to
the remote cube, “elastic incoherent poly.” Returning from such data to the
origin is impossible.

Table 6.2. Scattering Processes

Energy Momentum Sample

inelastic coherent monocrystal

elastic incoherent polycrystal

6.2.2 Coherent – Incoherent

Forward. An energy spectrum can be obtained by integrating over the Q
coordinate of S(Q,E). With some care to account for thermal factors, multi-
ple scattering, and multiphonon scattering, often before integrating over Q,
this can be converted to a phonon energy spectrum or a density of states.
This approach is rigorous if all values of Q are accounted for, even if the

184 6. Essential Data Processing

Fig. 6.3. Eight possibilities for scattering processes in a neutron experiment. Each
of the eight can be calculated independently in a simulation or modeling process.
Some can be obtained from another by transformation. In general, information is
lost as one moves away from the origin, as explained in the text.

sample is a coherent scatterer with sharp dispersion information. An inte-
gration over all Q accounts for all phonons, at least in principle. Some of
the issues concerning the incoherent averaging over coherent scattering have
been discussed in the literature:

• V.S. Oskotskii, “Measurement of the Phonon Distribution Function in
Polycrystalline Mateirals using Coherent Scattering of Slow Neutrons into
a Solid Angle” Sov. Phys. Solid State 9, 420 (1967).

• F. de Wette and A. Rahman, “Inelastic Scattering of Neutrons by Poly-
crystals” Phys. Rev. 176, 784 (1968).

• M.M. Bredov, B.A. Kotov, N.M. Okuneva, V.S. Oskotskii and A. L. Shakh-
Budagov, “Possibility of Measuring the Thermal Vibration Spectrum g(ω)
using Coherent Inelastic Neutron Scattering from a Polycrystalline Sam-
ple,” Sov. Phys. Solid State 9, 214 (1967).

Nevertheless, the forward transformation from “inelastic coherent” to “inelas-
tic incoherent” can be done reliably, especially for data from direct geometry
chopper spectrometers that provide a wide range of Q. This transformation
is offered by the DANSE software.

It should be mentioned that for many years, phonon DOS information has
been obtained from phonon dispersion curves measured in special crystallo-
graphic directions on a triple-axis spectrometer. These dispersions are not
good averages over Q, and energies are not measured for all phonons in the
solid. Nevertheless, after fitting the dispersion curves to a lattice dynamics
model, the energies of all other phonons can be calculated. This approach
has never been challenged for measurements on pure elements – it seems to

6.2 Transformations and Information 185

work well because the high amount of information in the dispersion curves
cause the interatomic force constants to be well determined. This method
is not appropriate for disordered alloys, at least when the virtual crystal
approximation is employed.
Reverse. In the same sense that it takes a lattice dynamics model to go from
coherent inelastic scattering data from a triple-axis instrument to a good
sampling of the incoherent inelastic scattering over all phonons, a model is
always required for the reverse transformation. The positions of the Van Hove
singularities in the phonon DOS are effective in constraining the dispersion
curves, but there are only three of them in a phonon DOS of a pure element.
It is not yet clear how reliably the reverse transformation can be performed,
but it is certainly a useful capability that is offered in the DANSE software.

6.2.3 Monocrystal – Polycrystal

Forward. Transforming a complete data set from a monocrystalline sample
to a polycrystalline average is simple in principle, and has the most physical
interpretation of all the transformations in this section. In essence, the single
crystal data need to be averaged over all crystallographic orientations by “ro-
tating” the monocrystalline data to produce a polycrystalline average. This
amounts to transforming Q to Q. The results can be similar to the transfor-
mation of coherent to incoherent scattering, and in fact proves identical when
the crystals have isotropic scattering. DANSE supports these transformations.
Reverse. Except in special cases, the reverse transformation from polycrys-
tal data to monocrystal data requires a model. The question of importance is
how reliably can the polycrystalline average of, for example phonon disper-
sions, be used to define the single crystal phonon dispersions along specific
crystallographic directions. The answer is not fully known today, but in the
case of crystals such as tungsten, which are elastically isotropic, it is expected
that the amount of information is essentially the same for data from polycrys-
talline and monocrystalline scattering experiments. In the case of anisotropic
crystals it is expected that the dispersive information in S(Q,E) will have
intensity variations from anisotropic effects, and perhaps important infor-
mation can be obtained from the intensity variations within the dispersion
curves if the data are of good statistical quality. DANSE supports these trans-
formations, using both phenomenological and ab-initio models. It is hoped
that the neutron scattering community will eagerly assess these capabilities
of DANSE, because they free the experimenter from acquiring single crystals.

6.2.4 Inelastic – Elastic

Forward. A good diffraction pattern should be possible to acquire using
white-beam mode on a direct-geometry chopper spectrometer, and the in-
terpretation of the data would be the same as for a total scattering diffrac-
tometer. Here, however, we consider operation with a monochromatic beam

186 6. Essential Data Processing

as in the normal operation of a direct-geometry chopper spectrometer such
as ARCS. The coherent elastic scattering is measured as part of the spec-
trum, so ignoring the scattering with energy transfers greater than the elas-
tic peak width is essentially the same as performing a diffraction experiment.
There are some defects in this approach – the spread of incident wavelengths
broadens the diffraction peaks in Q. Nevertheless, useful information about
the sample can often be obtained by simply ignoring the inelastic part of the
data. Transformations to do this are provided by DANSE.

Reverse. Taking elastic data and transforming it to inelastic data is not
impossible. Unfortunately, direct transformations are not robust. Robust ap-
proaches require substantial additional information. Phonon effects are evi-
dent in pair distribution functions, but care must be taken to separate these
from atomic size effect diffuse scattering, which can be of the same order.
There have been some efforts to obtain phonon dispersions from diffraction
patterns, and the reader is welcome to explore these:

• D.A. Dimitrov, D. Louca, H. Roder, “Phonons from neutron powder
diffraction,” Phys. Rev. B 60, 6204 (1999).

• W. Reichardt, L. Pintschovius, “Influence of phonons on the pair distribu-
tion function deduced from neutron powder diffraction,” Phys. Rev. B 63,
174302 (2001).

• A.L. Goodwin, M.G. Tucker, M.T. Dove, D.A. Keen, “Phonons from pow-
der diffraction: A quantitative model-independent evaluation,” Phys. Rev
Lett. 93 075502 (2004), Ibid. 95, 119901 (2005).

At the inception of the DANSE project, the methods in these reference were
placed outside the scope of the effort.

Nevertheless, DANSE does offer methods for reverse transformation. These
are robust in that they give stable answers, but they require substantial
computational effort. The approach is to obtain the lattice dynamics for the
structure. From the lattice dynamics the inelastic scattering can be obtained.
If the crystal structure or molecular structure is obtained from a diffraction
measurement, for example, phonon dynamics can be calculated in one of two
ways.

• A model of the lattice dynamics for the structure can be used to calcu-
late the phonons. This requires input on interatomic force constants. They
may be guessed, or obtained from other sources. From the dynamics, the
inelastic scattering can then be calculated.

• Using the unit cell obtained from a diffraction pattern, or a molecular
structure obtained by other means, an ab-initio electronic structure cal-
culation can be performed to optimize the positions of the atoms in the
structure. These may not be the real atom positions, but relaxed positions
are needed for the following computational step. Next, the atom positions
are displaced by a controlling software package such as PHON, and the ab-
initio code is run again for the distorted unit cell. This permits calculation

6.2 Transformations and Information 187

of tensorial force constants that are used in the lattice dynamics. From the
dynamics, the inelastic scattering can be calculated.

Without such theoretical input, however, attempting a reverse transformation
from elastic to inelastic would not be robust, and with the DANSE software
it is an error to do so. Note that the transformation of structural informa-
tion into inelastic inelastic scattering information requires perhaps the most
sophisticated tools offered by DANSE. An increasing loss of experimental in-
formation requires an compensating sophistication in the theoretical tools to
reverse the situation.

6.2.5 All Specific Cases

The previous subsections discussed general issues when transforming data
forward or backwards between elastic and inelastic, coherent and incoher-
ent, and monocrystal and polycrystal. For each of these three cases, and
six general transformations, there are four specific cases. For example, Fig.
6.3 shows that between the monocrystal and polycrystal samples (up in the
graph), there are a total of eight forward and reverse transformations:

• inelastic coherent (mono�poly),
• inelastic incoherent (mono�poly),
• elastic coherent (mono�poly),
• elastic incoherent (mono�poly).

Similar forward and reverse transformations between adjacent cubes are
also possible along the elastic�inelastic and coherent�incoherent directions
of Fig. 6.3, giving a total of 24 such transformations between adjacent cubes
in the figure (along the 〈100〉 directions). In addition, a total of 12 transfor-
mations are possible between scattering data in cubes in Fig. 6.3 that are
not immediately adjacent (along the 〈110〉 directions), and a total of 8 pos-
sibilities for transformations between cubes located diagonally in the figure
(along 〈111〉 directions). Tables 6.3 – 6.5 list all 44 possible transformations,
and identify the specific transformations supported by the DANSE software.
As of early 2007, the plan for DANSE supports 24 of these possible transfor-
mations.

Sections 6.2.2 - 6.2.4 provided general reasons for the why transformations
along the main axes of Fig. 6.3 are not provided by DANSE. Eight transfor-
mations are possible along each of these axes, however. Nearly all cases in
Table 6.3 can be understood with the rules of Sects. 6.2.2 - 6.2.4, with the
following exceptions:

• Transformations from elastic coherent polycrystal data (powder diffraction
patterns) to elastic coherent monocrystal data (single crystal diffraction
data) are not supported in the rebinning operation in the first release of
DANSE. These capabilities are possible with Rietveld refinement methods

188 6. Essential Data Processing

(or PDF modeling), which are available as methods outside the scattering
kernel.

• Elastic incoherent scattering pertains to the isotopic incoherence of neutron
scattering, for example, and not to incoherence from atomic disorder (which
is treated in methods for elastic coherent scattering). DANSE therefore does
not support well transformations involving elastic incoherent scattering
from either monocrystals or polycrystals.

The more complex transformations of two or three data characteristics,
listed in Tables 6.4 and 6.5, are generally consistent with the previous rules
and individual transformations. More transformations are possible by chain-
ing individual transformations from Table 6.3 than are listed in these Tables
6.4 and 6.5. These latter tables list algorithms that do both transformations
in an integrated way. The emphasis is on data from inelastic scattering, since
this field was first to exploit this method of direct experiment simulation.

6.2 Transformations and Information 189

T
a
b
le

6
.3

.
D
A
N
S
E

tr
a
n
sf

o
rm

a
ti

o
n
s

in
v
o
lv

in
g

a
ch

a
n
g
e

in
o
n
e

d
a
ta

ch
a
ra

ct
er

is
ti

c

S
ca

tt
er

in
g

D
a
ta

T
ra

n
sf

.
S
ca

tt
er

in
g

D
a
ta

S
u
p
p
o
rt

?

in
el

a
st

ic
co

h
er

en
t

m
o
n
oc

ry
st

a
l

→
in

el
a
st

ic
co

h
er

en
t

po
ly

cr
ys

ta
l

Y
es

ro
ta

ti
o
n
a
l
re

b
in

in
el

a
st

ic
co

h
er

en
t

m
o
n
oc

ry
st

a
l

←
in

el
a
st

ic
co

h
er

en
t

po
ly

cr
ys

ta
l

Y
es

B
-v

K
m

o
d
el

in
v
er

t

in
el

a
st

ic
in

co
h
er

en
t

m
o
n
oc

ry
st

a
l

→
in

el
a
st

ic
in

co
h
er

en
t

po
ly

cr
ys

ta
l

Y
es

is
o
tr

o
p
ic

re
sc

a
le

,
ro

ta
ti

o
n
a
l
re

b
in

in
el

a
st

ic
in

co
h
er

en
t

m
o
n
oc

ry
st

a
l

←
in

el
a
st

ic
in

co
h
er

en
t

po
ly

cr
ys

ta
l

Y
es

is
o
tr

o
p
ic

re
sc

a
le

,
B

-v
K

m
o
d
el

in
v
er

t

el
a
st

ic
co

h
er

en
t

m
o
n
oc

ry
st

a
l

→
el

a
st

ic
co

h
er

en
t

po
ly

cr
ys

ta
l

Y
es

ro
ta

ti
o
n
a
l
re

b
in

el
a
st

ic
co

h
er

en
t

m
o
n
oc

ry
st

a
l

←
el

a
st

ic
co

h
er

en
t

po
ly

cr
ys

ta
l

N
o

n
o
n
e

el
a
st

ic
in

co
h
er

en
t

m
o
n
oc

ry
st

a
l

→
el

a
st

ic
in

co
h
er

en
t

po
ly

cr
ys

ta
l

Y
es

is
o
tr

o
p
ic

re
sc

a
le

el
a
st

ic
in

co
h
er

en
t

m
o
n
oc

ry
st

a
l

←
el

a
st

ic
in

co
h
er

en
t

po
ly

cr
ys

ta
l

N
o

n
o
n
e

in
el

a
st

ic
co

h
er

en
t
m

o
n
o
cr

y
st

a
l

→
in

el
a
st

ic
in

co
h
er

en
t
m

o
n
o
cr

y
st

a
l

Y
es

Q
re

b
in

in
el

a
st

ic
co

h
er

en
t
m

o
n
o
cr

y
st

a
l

←
in

el
a
st

ic
in

co
h
er

en
t
m

o
n
o
cr

y
st

a
l

Y
es

B
-v

K
m

o
d
el

in
v
er

t

in
el

a
st

ic
co

h
er

en
t
p
o
ly

cr
y
st

a
l

→
in

el
a
st

ic
in

co
h
er

en
t
p
o
ly

cr
y
st

a
l

Y
es

Q
re

b
in

in
el

a
st

ic
co

h
er

en
t
p
o
ly

cr
y
st

a
l

←
in

el
a
st

ic
in

co
h
er

en
t
p
o
ly

cr
y
st

a
l

Y
es

B
-v

K
m

o
d
el

in
v
er

t

el
a
st

ic
co

h
er

en
t
m

o
n
o
cr

y
st

a
l

→
el

a
st

ic
in

co
h
er

en
t
m

o
n
o
cr

y
st

a
l

Y
es

Q
re

b
in

el
a
st

ic
co

h
er

en
t
m

o
n
o
cr

y
st

a
l

←
el

a
st

ic
in

co
h
er

en
t
m

o
n
o
cr

y
st

a
l

N
o

n
o
n
e

el
a
st

ic
co

h
er

en
t
p
o
ly

cr
y
st

a
l

→
el

a
st

ic
in

co
h
er

en
t
p
o
ly

cr
y
st

a
l

Y
es

Q
re

b
in

el
a
st

ic
co

h
er

en
t
p
o
ly

cr
y
st

a
l

←
el

a
st

ic
in

co
h
er

en
t
p
o
ly

cr
y
st

a
l

N
o

n
o
n
e

in
el

a
st

ic
co

h
er

en
t

m
o
n
o
cr

y
st

a
l

→
el

a
st

ic
co

h
er

en
t

m
o
n
o
cr

y
st

a
l

Y
es

en
er

g
y

sl
ic

e,
in

te
n
si

ty
th

re
sh

o
ld

in
el

a
st

ic
co

h
er

en
t

m
o
n
o
cr

y
st

a
l

←
el

a
st

ic
co

h
er

en
t

m
o
n
o
cr

y
st

a
l

N
o

n
o
n
e

in
el

a
st

ic
co

h
er

en
t

p
o
ly

cr
y
st

a
l

→
el

a
st

ic
co

h
er

en
t

p
o
ly

cr
y
st

a
l

Y
es

en
er

g
y

sl
ic

e,
in

te
n
si

ty
th

re
sh

o
ld

in
el

a
st

ic
co

h
er

en
t

p
o
ly

cr
y
st

a
l

←
el

a
st

ic
co

h
er

en
t

p
o
ly

cr
y
st

a
l

N
o

n
o
n
e

in
el

a
st

ic
in

co
h
er

en
t

m
o
n
o
cr

y
st

a
l

→
el

a
st

ic
in

co
h
er

en
t

m
o
n
o
cr

y
st

a
l

Y
es

en
er

g
y

sl
ic

e,
in

te
n
si

ty
th

re
sh

o
ld

in
el

a
st

ic
in

co
h
er

en
t

m
o
n
o
cr

y
st

a
l

←
el

a
st

ic
in

co
h
er

en
t

m
o
n
o
cr

y
st

a
l

N
o

n
o
n
e

in
el

a
st

ic
in

co
h
er

en
t

p
o
ly

cr
y
st

a
l

→
el

a
st

ic
in

co
h
er

en
t

p
o
ly

cr
y
st

a
l

Y
es

en
er

g
y

sl
ic

e,
in

te
n
si

ty
th

re
sh

o
ld

in
el

a
st

ic
in

co
h
er

en
t

p
o
ly

cr
y
st

a
l

←
el

a
st

ic
in

co
h
er

en
t

p
o
ly

cr
y
st

a
l

N
o

n
o
n
e

190 6. Essential Data Processing

Table 6.4. DANSE transformations involving changes in two data characteristics

Scattering Data Transf. Scattering Data Support?

inelastic coherent monocrystal → inelastic incoherent polycrystal Yes

inelastic coherent monocrystal ← inelastic incoherent polycrystal Yes

elastic coherent monocrystal → elastic incoherent polycrystal Yes

elastic coherent monocrystal ← elastic incoherent polycrystal No

inelastic coherent monocrystal → elastic coherent polycrystal Yes

inelastic coherent monocrystal ← elastic coherent polycrystal No

inelastic incoherent monocrystal → elastic incoherent polycrystal No

inelastic incoherent monocrystal ← elastic incoherent polycrystal No

inelastic coherent monocrystal → elastic incoherent monocrystal Yes

inelastic coherent monocrystal ← elastic incoherent monocrystal No

inelastic coherent polycrystal → elastic incoherent polycrystal Yes

inelastic coherent polycrystal ← elastic incoherent polycrystal No

Table 6.5. DANSE transformations involving changes in three data characteristics

Scattering Data Transf. Scattering Data Support?

inelastic coherent monocrystal → elastic incoherent polycrystal Yes

inelastic coherent monocrystal ← elastic incoherent polycrystal No

inelastic coherent polycrystal → elastic incoherent monocrystal Yes

inelastic coherent polycrystal ← elastic incoherent monocrystal No

elastic coherent monocrystal → inelastic incoherent polycrystal No

elastic coherent monocrystal ← inelastic incoherent polycrystal No

elastic coherent polycrystal → inelastic incoherent monocrystal No

elastic coherent polycrystal ← inelastic incoherent monocrystal No

6.3 Absorption 191

6.3 Absorption

With an absorbing sample, one observes d2σ/dΩdω×T (Ω,ω) rather than just
d2σ/dΩdω, where T (Ω,ω) is the probability of a neutron being transmitted
through the sample in a given direction (described by the solid angle Ω) and
with a given final energy (final energy = incident energy− energy transfer, or
Ef = Ei − ~ω). All that needs to be done is to calculate the transmission
for each final energy and for each detector, and then divide the observed
scattering by the transmission probability. For an experiment in which all
the observed neutrons scatter once, the calculation is straightforward, though
somewhat computationally demanding.

We suppose that the sample is divided into a number of cells of equal vol-
ume; then a neutron observed in any given detector with a given final energy
was scattered in any cell with equal probability. We compute the transmis-
sion probability for each scattering cell, then average over probabilities for all
cells. The reason we have to be so careful is that the transmission probability
depends on the distance the neutron travelled through the sample, and this
depends on where in the sample the scattering occurred, and the outgoing
direction of the neutron9.

For a neutron travelling across an absorbing medium, the probability of
transmission is 10

T =
N

N0
= exp(−lσabsρ). (6.15)

Here, l is the length of the path through the sample, σa is the absorption
cross section, and ρ is the number density of absorbers. If the neutron changes
direction (scatters) while travelling through the sample, the probability be-
comes

T = exp(−lincσabsρ− lfσabsρ) (6.16)

where linc is the path length from where the neutron enters the sample to the
scattering spot, and lf is the path length from the scattering spot to where
the neutron exits the sample. There’s one more difficulty: the absorption cross
section depends on the neutron energy, so if the scattering is inelastic, there
will be two absorption cross sections, σ(ωinc) and σ(ωf), and we have the
transmission probability as

T = exp(−lincσabs(ωinc)ρ− lfσabs(ωf)ρ). (6.17)

In what follows, we assume that the scattering is purely horizontal. This is
an approximation that greatly reduces complexity of the computation. This is
justifiable for several existing instruments including LRMECS and PHAROS.
9 We assume the incoming neutrons are perfectly monochromatic and collimated.

10 Think dN/dx = −σρ...

192 6. Essential Data Processing

In fact, any horizontal scattering lies within about ±5◦ of the horizontal on
an instrument like Pharos,11 and is therefore negligible.12 This means each
scattering cell needs two labels.

In considering a number of cells, the incoming path length depends on
where the cell is located. The outgoing path length depends on where the
cell is, and in what direction the neutron is heading. This direction can be
determined if we know the detector d that the neutron is hitting. So we need
four labels for the transmission from a given scattering cell to a given detector
with a given final energy:

T (d, ωf , i, j) = exp(−linc(i, j)σabs(ωinc)ρ− lf (i, j)σabs(ωf)ρ). (6.18)

In the last step, we’re going to average over all N cells for each detector
and energy:

T (d, ωf , i, j) =
1
N

∑
i,j

exp
(
− linc(i, j)σabs(ωinc)ρ− lf (i, j)σabs(ωf)ρ

)
.

(6.19)

It does not get much easier than that. Now all we need is a program that
computes Eq. 6.19 for a number of interesting geometries.

6.4 N/A Multiple Scattering Correction

6.5 Calculation of Multiphonon Scattering

The multiphonon expansion was developed with some rigor in Section 3.3.7.
Here we explain how it works in practice. The total measured spectrum,
S(E), is the sum of components,

∑∞
n=0 Sn(E), from neutrons scattered after

creating different numbers, n, of phonons in the sample.13 Only the 1-phonon
scattering is useful for obtaining a phonon DOS, so it is important to have
an understanding of the higher-order terms for planning an experiment, or if
one seeks quantitative corrections of experimental data. Performing a multi-
phonon expansion is done in two steps.
11 the detectors are at most 0.5 m above the scattering plane, while the middle

of the detector is 4 m from the sample, so the maximum angle is about ±7◦.
However, the top and bottom 10 cm or so of the tubes are thrown out...

12 This assumption has not been sufficiently examined. Unless the effect is very
small (� 1%), it should be included in the calculation when that becomes com-
putationally affordable. On Pharos, the extra path length is about 0.5%. Is this
important? For instruments with larger vertical divergence (ARCS), this will be
necessary anyway, so might as well get used to it.

13 Phonon annihilation is handled by extending the range of E to negative numbers
for each Sn(E).

6.5 Calculation of Multiphonon Scattering 193

• First, the weights of the different n-components are calculated indepen-
dently with input information on Q and atom displacements u at the tem-
perature T .

• Second, the spectral shape of each component Sn(E) is obtained by se-
quentially convoluting the 1-phonon profile with itself a total of n − 1
times.

Finally, for a chopper spectrometer, detectors at different scattering angles
φ provide energy spectra Sφ(E) where Q varies with E across the spectrum.
The multiphonon corrections must take into account the kinematical relation
of Q vs. E at each scattering angle φ if data are analyzed from each detector
bank. The constant-Q multiphonon analysis is simpler to understand, and is
applicable for data from triple-axis spectrometers, or for data from chopper
instruments that have been reduced to S(Q,E).

Intensities of n-Phonon Spectral Components. Start with the Debye–
Waller factor, which attenuates the elastic scattering S0, to a fraction of the
total scattering S:

S0 = S exp(−2W) , (6.20)

which we rearrange and expand:

S = S0 exp(+2W) , (6.21)

S = S0

∞∑
n=0

(2W)n

n!
. (6.22)

We now have a series of terms in an expansion, but the next step of substitut-
ing (6.20) into (6.22) amounts to nothing more than writing exp(−2W) exp(+2W) =
1:

S = S exp(−2W)
∞∑
n=0

(2W)n

n!
, (6.23)

1 =
∞∑
n=0

(2W)n

n!
exp(−2W) . (6.24)

The terms in (6.24) are associated as 0 for elastic scattering, 1 for 1-phonon
scattering, 2 for 2-phonon scattering, etc. What is special about (6.24) is that
the nth term in the series is exactly the fraction of the n-phonon spectral
component in the total scattering (elastic plus inelastic).

To calculate the fraction of any multiple phonon term (e.g., the amount
of 2-phonon scattering), all we need is 2W . Recall the physical origin of 2W :

2W = 〈Q2u2〉 , (6.25)

where 〈u2〉 is the mean-squared atom displacement. Equation (6.25) shows
that exp(−2W) becomes much less than 1 when the atom displacement be-
comes comparable to 1/Q ∼ λ/2π, the number of wavelengths associated

194 6. Essential Data Processing

with the scattering angle. This is consistent with 2W originating from the
destructive interference of scattered wavelets. The Q2 and u2 are related to
the energy of recoil, and the thermal energy, respectively. The recoil energy,
ER is

ER =
~2Q2

2M
, (6.26)

where M is the mass of the atom that is scattering, in units of the neutron
mass. (The units of M are very similar to the atomic weight.) The thermal
energy is:

kBT =
1
2
Mω2〈u2〉 (6.27)

for one mode of frequency ω, and is a quantity that depends on the phonon
DOS for a real material. Sadly, an exact evaluation of (6.27) is not simple,
in part because the phonon states are not fully occupied at modest tempera-
tures, but also because of the commutation relationships discussed in Section
3.3.4. The result is summarized as γ0, where:

γ0 =

∞∫
0

coth(E/2kBT)
g(E)
E

dE . (6.28)

In the limit of high temperatures, where coth(E/2kBT) → 1, it is clear from
(6.28) that γ0 increases as 1/E (because the amplitudes of atom motions
become larger in low-energy modes as predicted by (6.27)). The low-energy
modes are even more important at low temperatures, where they have a larger
phonon occupancy. The Debye–Waller factor of (6.25) is, rigorously:

2W = γ0ER , (6.29)

In performing a multiphonon expansion for one T and one phonon DOS
g(E), the value of γ0 is computed once with (6.28). The 2W from (6.29) for
appropriate Q is used in (6.37) to get the fractions of all n-phonon scatterings.
We therefore rewrite (6.24) as

S(Q) =
∞∑
n=0

Sn(Q) , where : (6.30)

Sn(Q) =

(
2W(Q)

)n
n!

exp
(
− 2W(Q)

)
. (6.31)

Shapes of n-Phonon Spectral Components. It remains to get the spec-
tral shape of each order of the multiphonon scattering. The energy spectrum
for 1-phonon scattering was discussed in Sections 2.3 and 3.3.7. The spec-
trum for one-phonon scattering weights more heavily the low-energy modes
because they have larger amplitudes of motion, providing a factor of g(E)/E.
The number of phonons is the Planck distribution 1/[exp(E/kBT) − 1], so
the two factors provide the shape of the 1-phonon profile, A1(E):

6.5 Calculation of Multiphonon Scattering 195

A1(E) =
g(E)
Eγ0

1
eE/kBT − 1

. (6.32)

Each phonon created has the profile A1(E) of (6.32). When two phonons are
created simultaneously, the total spectrum of energies is the convolution of
the 1-phonon profile with the 1-phonon profile.14 The 2-phonon spectrum is:

A2(E) = A1 ∗A1 =

∞∫
−∞

A1(E − E′) A1(E′) dE′ , (6.33)

and the n-phonon profile is the convolution of another 1-phonon profile with
the (n− 1)-phonon profile:

An(E) = A1 ∗An−1 =

∞∫
−∞

A1(E − E′) An−1(E′) dE′ . (6.34)

Starting with A1, we can generate the spectral shapes of all the orders of
multiphonon scattering by the systematic application of (6.34). The total
scattering is the sum of these spectral profiles, weighted by the corresponding
terms of (6.30):

S(Q,E) =
∞∑
n=0

Sn(Q) An(E) , (6.35)

S(Q,E) =
∞∑
n=0

(2W)n

n!
exp(−2W) An(E) . (6.36)

If we define each term in the sum as Sn(E):

S(E) =
∞∑
n=0

Sn(E) . (6.37)

Examples of Multiphonon Scattering from a Chopper Spectrome-
ter. The analysis presented here is for inelastic energy spectra obtained from
a group of detectors centered about the scattering angle, φ. The energy trans-
fer, E, is obtained simply and reliably from the arrival times of the neutrons
at the detector. On the other hand, for each detector bank at φ, the value of
Q varies with E and the energy of the incident neutron Einc as:

Q[Å−1] = 0.6947
√

2Einc − E − 2
√
Einc(Einc − E) cosφ , (6.38)

where E and Einc have units [meV]. Curves showing relationships Q(E) are
presented in Figure 6.4. The curves cannot extend to the right beyond Einc

because the incident neutron cannot lose a greater amount of energy to the
sample. Notice that the curves are generally asymmetrical in ±E.
14 Consider each phonon excitation to be a random variable with a probability

distribution of A1. The sum of two random variables has a distribution that is
the convolution of the probability distributions A1 ∗A1.

196 6. Essential Data Processing

Fig. 6.4. Graphs of Q vs. E for a time-of-flight chopper spectrometer, calculated
using (6.38) for five values of scattering angle φ (labels on curves). Incident energy
was Einc = 100 meV. Positive E correspond to phonon creation, negative to phnon
annihilation.

For calculating the multiphonon scattering at a particular scattering an-
gle φ, it is necessary to evaluate the 2W and the Debye–Waller factor at
each energy of the spectrum, because Q varies with E as in (6.38) and as
shown in Figure 6.4. Examples of such calculations are shown in Figure 6.5.
Figure 6.5a shows the phonon DOS curve from fcc nickel metal from which
the subsequent curves were calculated. Figure 6.5b shows the total inelastic
scattering calculated for a temperature of 500 K.15 The 1-phonon scattering
is confined to the range ±37 meV, since this is the maximum phonon energy.
With the excitation of two phonons, the energy range can be extended to
2 × ±37 = ±54 meV, and this is the energy range of the 2-phonon scatter-
ing. In Figure 6.5b, the intensity at 40–50 meV is almost entirely 2-phonon
scattering.

Notice the general trend in Figure 6.5b showing that the inelastic scat-
tering to increases with the scattering angle, owing to the factor of 2Wn in
(6.31). On the other hand, the scattering is suppressed by the Debye–Waller
factor, exp(−2W). At high Q or high T the Debye–Waller factor becomes in-
creasingly important, and effects of this are seen in Figure 6.5c. First notice
that although there are about twice as many phonons at 1000 K as at 500
K, the inelastic scattering of Figure 6.5c is nowhere near twice as large as
in Figure 6.5b. Also notice the change in symmetry of the spectra in Figure
6.5c with detector angle. For a detector angle of 60◦, Figure 6.5c shows an
15 An experimental spectrum would contain a large peak at E = 0 from the elas-

tic scattering. In principle, the area of this elastic peak would be the factor
exp(−2W) of the total integrated scattering (elastic plus inelastic).

6.5 Calculation of Multiphonon Scattering 197

inelastic scattering that is approximately symmetrical in ±E. This is con-
sistent with the gradual variation of Q with E in the kinematics as shown
in Figure 6.4. On the other hand, for the larger detector angles of 90◦ and
140◦, the value of Q is larger for −E than +E. This asymmetry causes the
Debye–Waller factor to attenuate the scattering at −E more severely than
at +E. When these effects are significant, it is obviously naive to interpret
the asymmetry in E of the inelastic scattering in terms of detailed balance.

Fig. 6.5. (a) Phonon DOS of fcc Ni metal. Inelastic scattering from four angle
banks of a time-of-flight chopper spectrometer with incident neutron energy of 70
meV are shown in: (b) for 500 K and (c) for 1000 K. In parts b and c, the four curves
with detailed features are the total scattering, summing the 1-phonon through 4-
phonon terms. The broad curves, which are the full intensity above 37 meV, are
the mulitphonon scattering from 2-phonon through 4-phonon contributions.

198 6. Essential Data Processing

6.5.1 Multiphonon Correction – Iterative

The present section describes a correction procedure that can be used to
remove higher-order multiphonon scattering from an experimental inelastic
scattering spectrum, so the spectrum can the be used to deduce a 1-phonon
profile and a phonon DOS. It is based on the incoherent approximation, but
this procedure has been used for many years with coherent multiphonon scat-
tering data, and it is often expected to be reliable in such cases, at least for
polycrystalline samples. (The idea is that averaging over crystalline orien-
tations provides a broad sampling of reciprocal space, performing a good
average over phonon modes. The incoherent approximation is adequate when
all modes are sampled this way. It is unlikely that this approach could be re-
liable for the analysis of coherent scattering from single crystals, of course.)

An example of multiphonon calculations and an extraction of 1-phonon
scattering is shown in Figure 6.6. Cerium is a coherent scatterer, and the
data were acquired at several values of Q to average over the different phonon
modes. An inelastic spectrum for one value of Q = 3.924 Å−1 is presented
in the figure.16 Steps of an iterative procedure to refine the phonon DOS
are shown in Figure 6.6. The first step of the iteration used a very crude
approximation for the multiphonon scattering plus random background –
a simple constant function of approximately 70 counts. After this constant
was subtracted from the experimental data, the DOS curve, g(E) labeled
“1” in Figure 6.6b was obtained from the 1-phonon profile from (6.32) with
a Debye–Waller factor of (6.31). The 2–5 phonon scattering was calculated
from this first iteration of a phonon DOS, scaled in height (plus a constant
background was also fit to the data), and a second iteration of the DOS was
generated by the same procedure. Notice that the second and third iterations
of the phonon DOS in Figure 6.6b are rather similar. Even for this difficult
case where the 2–5 phonon scattering is a large fraction of the total inelastic
scattering, convergence is fairly quick because the 2–5 phonon scattering does
not have much structure.

The multiphonon expansion assumes that the scattering is incoherent.
Unfortunately, a better approximation would require a detailed simulation
of the lattice dynamics to account for the Q-dependence. To our knowledge,
such a calculation has not been done as of 2004. Another case where the
assumptions of this procedure are stretched is the application of the incoher-
ent multiphonon correction procedure to inelastic spectra from alloys. One
concern about alloys is that the Debye–Waller factors differ for the different
atoms in the alloy, causing some phonons to be weighted more than oth-
ers. Although the multiphonon correction procedure has been used without
adapting to the different 〈U2〉 of the atoms in the alloy, comparisons with

16 A spectrum at one value of Q can provide a piece of the dynamical structure
factor intensity, which we loosely call a “phonon DOS,” since the result would
be a phonon DOS if the scattering were incoherent. Data were acquired from the
triple-axis spectrometer HB3 at HFIR.

6.5 Calculation of Multiphonon Scattering 199

Fig. 6.6. (a) points: experimental inelastic scattering from cerium metal at 1028 K
and Q = 3.924 Å−1. The elastic peak at low energy extends an order-of-magnitude
beyond the top of the graph. Calculations of the 1–5 phonon scattering plus a
constant background were scaled to fit these data, and are labeled 1, 2, 3, denoting
the order of iteration. The 2–5 phonon scattering is shown with the same scaling,
again with labels 1, 2, 3 for the iteration. By subtacting the 2–5 phonon scattering
from the experimental data, the difference was converted into a “phonon DOS”,
g(E), by correcting for the thermal factor of (6.32) and Debye–Waller factor of
(6.31). (b) The “phonon DOS” obtained from the experimental data of part a at
different iterations. The first iteration, labeled 1, was obtained by subtraction of
a constant background from the experimental data, and correcting by the thermal
factor of (6.32). This “DOS” was used for generating the multiphonon corrections
for the next iteration of the procedure.

other measurements have shown that the procedure is often acceptable, per-
haps because the multiphonon scattering is essentially featureless.

6.5.2 Multiphonon Correction – Fourier Log

Another way to correct for multiphonon scattering is possible for energy
spectra at constant Q. Following the notation of Section 6.5, for fixed values
of Q and temperature, the energy dependence of the various phonon contribu-
tions, Sn(Q,E), is

S(Q,E) =
(2W)n

n!
e−2WAn(E) , (6.39)

200 6. Essential Data Processing

The measured scattering intensity, S(Q,E), is the sum of intensities from all
phonon processes:

S(Q,E) =
∑
n

Sn(Q,E) , (6.40)

Our problem is to use the measured S(Q,E) to isolate the single scattering
profile, A1(E).

An approach to extracting the phonon partial DOS from experimental
data is called the “Fourier-log deconvolution method.” It was used for analy-
sis of plasmon scattering measurements in electron energy-loss spectrometry
[Spence]. This method is also used for incoherent inelastic phonon scatter-
ing [M. Y. Hu, W. Sturhahn, et al.]. It has the additional feature of being
able to correct for the broadening of the elastic line, but only if the energy
resolution is constant across the energy spectrum (not the case in TOF spec-
trometers). The zero-loss peak, Z(E), is convoluted with the scattering from
the specimen as:

S(Q,E) = Z(E) ∗

(
e−2W δ(E) +

∑
n

Sn(Q,E)

)
, (6.41)

where the first term in (6.41) is the zero-loss peak, reduced by the Debye–
Waller factor. Taking the Fourier transform, F [], of (6.41) simplifies the con-
volutions of (6.34), which become multiplications in Fourier space:

F [S(Q,E)] = F [Z(E)]e−2W

(
1 +

∑
n

(2W)n

n!
(F [A1(E)])n

)
. (6.42)

The term in parentheses () on the right side of (6.42) is recognized as the
expansion of an exponential function:

F [S(Q,E)] = F [Z(E)]e−2W
(
e2WF [A1(E)]

)
. (6.43)

Taking the logarithm of (6.43) and rearranging:

F [A1(E)] =
1

2W
ln
(
F [S(E)]
F [Z(E)]

)
+ 2W . (6.44)

The inverse Fourier transformation, F−1[], provides the single scattering pro-
file, A1(E):

A1(E) =
1

2W
F−1

[
ln
(
F [S(E)]
F [Z(E)]

)]
+ 2Wδ(E) . (6.45)

If we do not care about the normalization of the single scattering profile, and
if we delete the zero-loss peak Z(E) from the data (it is suppressed by the
thermal correction anyway), we obtain:

A1(E) =
1

2W
F−1

[
ln
(
F [S(E)]
F [Z(E)]

)]
. (6.46)

6.5 Calculation of Multiphonon Scattering 201

6.5.3 Neutron Weighting

Strictly speaking, the phonon DOS arrived at using the procedure outlined
above is not the true phonon DOS, but rather the neutron-weighted DOS.
The neutron-weighted DOS is identical with the phonon DOS for an elemental
scatterer. This is not the case for a sample that contains more than one type
of atom, or scatterer. The neutron-weighted phonon DOS is rigorously defined
as:

gNW(E) ∝
∑
d

gd(E) exp(−2Wd) exp(2W)
σd
md

(6.47)

where exp(−2Wd), σd and md are the Debye-Waller factor, total scattering
cross-section and mass of atom d. The Debye-Waller factor is an explicit
function of gd(E). The term exp(2W) is the average Debye-Waller correction;
this is calculated from the self-consistent neutron-weighted DOS. The factor
exp[2(W −Wd)] is approximately unity. For the case where σd/md is the
same for all species d, gNW(E) ≈ g(E).

Obtaining the true phonon DOS from the neutron-weighted phonon DOS
requires a full analysis of the lattice dynamics. This can be performed by
simulational procedures described in a later chapter. The neutron-weight cor-
rection as well as other approximations involved in the data analysis can be
overcome by fitting a dynamics model to the neutron-scattering data directly.
Although this approach is both scientifically and computationally demand-
ing, we foresee no better method for extracting the vibrational dynamics from
inelastic neutron scattering measurements.

6.5.4 N/A Coherent Case

6.5.5 Simultaneous Multiphonon and Multiple Scattering
Corrections

Corrections for multiple scattering have been performed in many ways, from
subtracting a constant from the data [1], to full Monte-Carlo simulations
[2]. At high temperatures, the former does not account for the slope of the
scattering past the cutoff energy. The latter can be computationally intensive,
and requires detailed information about the shape of the sample. Here we
take an approach of intermediate complexity, reported previously [3]. For
both multiple scattering and multiphonon scattering, a two-scattering profile
involves a convolution of two single-scattering profiles. In either case, the idea
is that an n-phonon-scattering profile, Pn(E), is related to the 1-phonon-
scattering profile, P 1(E), through the recursion relation:

Pn(E) =
∫ ∞

−∞
Pn−1(E′)P 1(E − E′) dE′ . (6.48)

For multiple scattering processes, the n-phonon probability function has
additional position and momentum dependencies, that do not appear for

202 6. Essential Data Processing

multiphonon scattering processes. Sears, et al. [1], argue that the integrals
for multiple scattering are related to those for the multiphonon scattering
through slowly varying functions of Q and E. Here we take these functions
to be constants, an. In essence, we make the approximation that the position
and momentum dependencies can be factored out. Thus,

I(Q,E) = N ′

[∞∑
n=1

(1 + an)Sn(Q,E)

]
, (6.49)

where I(Q,E) is the experimentally-determined total scattering (including
multiple scattering), Sn(Q,E) is the n-phonon scattering (both creation and
annihilation), and N ′ is a normalization constant. Note that I(Q,E) is dis-
tinct from the scattering function, S(Q,E), which does not include multiple
scattering [4]. (When we stripped the elastic peak from the data, the domi-
nant multiple elastic scattering is removed, so the index n in Eq. 6.49 starts
at 1 rather than 0.)

Consistent with this factoring of Q and E dependencies, we make the
incoherent approximation [5]:

Sncoh(Q,E) =
σcoh

σinc
Sninc(Q,E) , (6.50)

where we apply this equation to the 1-phonon terms as well as all higher
orders. The last step in our procedure will be to assess any error this has
introduced into our analysis.

Our next assumption is that an = C ′
ms for all n ≥ 2, where C ′

ms is
a single constant that relates the multiple scattering to the multiphonon
scattering. Since the multiphonon scattering drops off rapidly with increasing
n, this approximation will only have a small effect on our results. The final
normalization is performed with the total scattering, so the factor 1 + a1 is
included in the normalization constant. We find:

I(Q,E) = N
[
S1

inc(Q,E) + (1 + Cms)S2+
inc(Q,E)

]
, (6.51)

where N = N ′(1 + a1) (1 + σcoh/σinc) is the normalization constant, and
1 + Cms ≡ (1 + C ′

ms)/(1 + a1). Also, for notational convenience,

Sj+(Q,E) ≡
∞∑
n=j

Sn(Q,E) . (6.52)

For a cubic crystal, and a fixed value of Cms, we can now find the DOS by
solving Eq. 6.51 in the manner described by Sears, et al. [1].

Since we do not know the value of Cms a-priori, we generate a list of
possible values, and solve for the DOS at each one. In the current study,
values of Cms between 0.0 and 2.0 were tested. It then remains to select the
“best” DOS from those generated with the different Cms. This was done by
minimizing a penalty function constructed to find the DOS that produced
S(E) that best satisfied the following conditions:

Further Reading 203

(1) I(E)
N

= Sinc1(E) + (1 + Cms)S2+
inc(E) , (6.53)

where the implied sum over Q allows us to compare the partially coherent
scattering on the left with the totally incoherent scattering on the right.
(2) The experimental noise at energy transfers near the incident energy os-
cillates about (1 + Cms)S2+

inc(E).
(3) At energy transfers near the incident energy, the slope of a linear fit to
the experimental noise matches the slope of a linear fit to (1 +Cms)S2+

inc(E).

These three criteria are correlated, but are not identical. For nickel at 300 K,
these three contributions and their sum are shown in Fig. 6.7. Figure 6.8 shows
the best fit to the normalized scattering, I(E)/N for nickel at 300K, which
had Cms = 0.6.

The DOS curves obtained this way were fit with a Born–von Kármán
model, from which all phonon contributions to the scattering, both coherent
and incoherent, were calculated. With these results, and with the final value
for Cms, the calculation was checked against the measured scattering. It was
our experience that this procedure worked well for the present case of nickel,
and also works for cases of other BCC and FCC materials.

[1] V.F. Sears, E.C. Svensson, and B.M. Powell, “Phonon density of states in
vanadium,” Can. J. Phys. 73, 726 (1995).
[2] E. Johnson, and L. Robinson, “Neutron multiple scattering and absorption
factors,” Rev. Sci. Instrum. 60, 3447 (1989).
[3] M. Kresch, O. Delaire, R. Stevens, J.Y.Y. Lin, and B. Fultz “Neutron
scattering measurements of phonons in nickel at elevated temperature,” Phys.
Rev. B 75, 104301 (2007).
[4] G. Placzek and L. Van Hove, “Crystal Dynamics and Inelastic Scattering
of Neutrons,” Phys. Rev. 93, 1207 (1954).
[5] G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering,
(Dover Publications, New York, 1997), Chap. 3, Sec. 10, p. 57.
See also: V.F. Sears, “Slow-neutron multiple scattering,” Adv. Phys. 24, 1
(1975).

Further Reading

The contents of the following are described in the Bibliography.
Mark Lutz and David Ascher: Learning Python (O’Reilly & Associates, Inc.
1999).
Stephen W. Lovesey: Theory of Neutron Scattering from Condensed Matter
Vol. 1, (Clarendon Press, Oxford 1984).

204 6. Essential Data Processing

P
e

n
a

lt
y

2.01.51.00.50.0
Cms [unitless]

(1)

(2)

(3)

 Total = (1)+(2)+(3)

Fig. 6.7. Penalty functions for nickel at 300K, as defined in the text. The dash-
dotted line (1) relates to the overall fit, the dotted line (2) relates to the noise near
the incident energy, and the dashed line (3) relates to the slope near the incident
energy. The solid line is the sum of these three contributions (offset).

A. A. Maradudin, E. W. Montroll, G. H. Weiss and I. P. Ipatova: The Theory
of Lattice Dynamics in the Harmonic Approximation, Second Edn. (Academic
Press, New York, 1971)
Varley F. Sears: Neutron Optics, (Oxford University Press, New York and
Oxford 1989).
G. Shirane, S. M. Shapiro, and J. M. Tranquada: Neutron Scattering with a
Triple-Axis Spectrometer, (Cambridge University Press, Cambridge 2002).
G. L. Squires: Introduction to the Theory of Thermal Neutron Scattering,
(Dover, Mineola NY 1978).
C. G. Windsor: Pulsed Neutron Scattering, (Taylor and Francis, London
1981).

Fig. 6.8. Best fit to scattering for nickel at 300K. The triangles are the normal-
ized experimental scattering, I(E)/N . The solid line shows the fit, S1

inc(E) + (1 +

Cms)S
2+
inc(E). The dashed line is the multiple scattering, CmsS

2+
inc(E). The dash-

dotted line is the multiphonon scattering, S2+
inc(E). The dotted line is the sum,

(1 + Cms)S
2+
inc(E).

7. Software Reference

7.1 reduction

DANSE Reduction software is a set of orthogonal python packages for
reducing neutron scattering data. Those components can be used as building
blocks of a new reduction application if a developer follow the procedure in
Section 7.1.10.

First let us make a distinction between two words we are going to use in
this chapter: reduction software and reduction package.

• reduction software:a collection of packages that we created for the purpose
of reducing data;

• reduction package:one specific package in the reduction software.

7.1.1 Introduction

Reduction is a procedure to transform measured raw data to a form which
is more easily understandable for scientists. This procedure usually consists
of transformations 1 of a histogram measured in a dimension to another di-
mension that is more physically meaningful (an example of which would be
converting time-of-flight to neutron energy) and/or conversion of multidimen-
sional data to lower dimension (an example of which is intensity measured in
an area detector sometimes can be binned into ”rings” in case of powder sam-
ple). In conclusion, a reduction procedure consists mainly of transformations
from input histograms to output histograms.

Thus, it is pretty obvious that our fundamental data structure is his-
togram. Section 7.1.2 has more details about the histogram package.

In reduction, transformations from input histograms to output histograms
require knowledge of the instrument in which measurements are taken. For
example, in direct-geometry time-of-flight spectrometer, to convert time of
flight to neutron energy, we need to know the length of the flight path, and the
time at which neutron hit the sample. The positions of sample and detectors
are clearly necessary inputs for reduction procedure. Therefore, we need find
a way to store information of the instrument in which the to-be-reduced
1 For inelastic neutron scattering, such transformations are described in Ch. 6.

208 7. Software Reference

histogram is measured. The instrument package deals with this problem,
and details of that package can be found in Section 7.1.3.

Another major piece of our reduction software is the measurement pack-
age. The measurement package is a layer of classes between input data files
and reduction engine. Section 7.1.4 has more details.

Finally, the transformations from input histograms to output histograms
are implemented in the reduction package, which queries the measurement
package for input histograms, calls reduction engines with parameters derived
from the instrument package, and produces output histograms.

In the following sections, we will go deeper into each packages in Sections
7.1.2, 7.1.3, 7.1.4, and 7.1.5. We can then get a feeling of how they interact
with each other in Section 7.1.7. Developers who want to create a reduction
application using the available building blocks should read on to Section
7.1.10.

7.1.2 Histogram

To further this discussion, we need to first clearly define what do we mean
here by ”histogram”. The result of any measurement is actually a histogram,
by which we mean we have data in some bins. For example, if we measure
a spectrum with x-axis being time-of-flight, we will get an array of counts,
while each element in that array represents the number of counts measured
in a predefined time slot (bin). This array of counts can be approximated by

dI

dx
(x)∆x (7.1)

where dI
dx is a density function and ∆x is bin size. This observation forms the

base of our design of histogram classes.
It is now clear that there are two pieces of critical information in a his-

togram: the data, and the axis (or axes). Some time we need to know the
context in which the histogram is, and that brings us meta-data. Following
are more rigorous definitions:

A histogram consists of axes, datasets, and meta-data related to the his-
togram:

• dataset: a dense array of numbers which may have many dimensions. Data
and errors are all represented by datasets.

• axis: a one dimensional dataset whose elements are the bin boundaries of
one dimension of a histogram.

• meta-data: data which provides context for other data: data about data.
• histogram: it contains

– (1) at least one dataset whose elements represent the number of counts
in some range of axis or axes values;

– (2) optionally one dataset for error bars 2

2 actually the squares of error bars are stored to improve computation efficiency

7.1 reduction 209

– (3) a set of associations concerning a histogram and potentially every-
thing that can be known about it: axes, history, etc. (meta-data).

Design. The design of the histogram package is not too complex. We need a
way to deal with representations of arrays in low-level language, and we have
an abstract inteface NdArray to handle that. By introducing the NdArray
layer, we isolate histogram from any particular c/c++ array implementations.
We also need a way to keep meta-data, and this is handled by AttributeCon-
tBase class.

Figure 7.1 is the class diagram of histogram package.

7.1.3 Instrument

Classes in the instrument package are used to represent an instrument, inde-
pendently of any particular measurement. It could be used in several places,
such as parsing files derived from engineering plans of an instrument (for
reduction package), creating a 3d visualization of an instrument, or per-
haps in setting up a Monte Carlo simulation.

An instrument consists of several instrument elements and form a hierar-
chial structure. All instrument elements are in subpackage instrument.elements.
In our design, all instrument elements are derived from class instrument.elements.Element.Element.
An instrument object can be built out of those elements and follow the real
instrument as closely as possible. A diagram of an example instrument is
shown in Figure 7.2.

Currently this package is mostly concerned with inelastic direct geometry
time-of-flight instrument. To support more instruments, we just need to find
out those elements that are not yet supported and add them to the element
library.

geometers. Geometers are responsible to measure distances, angles, and
other geometric quantities. Each instrument should have an geometer (or
several geometers) associated. There are some Geometers in subpackage in-
strument.geometers.

factories. Three instruments are now supported: LRMECS, PHAROS, and
ARCS. Factory methods are created for those instruments and a factory
method can create a representation of a particular instrument by reading a
text configuration file (for older instruments not using nexus) or a nexus file
(for ARCS).

Note: Since the nexus format for ARCS is not settled yet, so the support
for ARCS may not be compatible with nexus standard.

For more information, try
http://wiki.cacr.caltech.edu/danse/index.php/Instrument and related classes
wiki page

210 7. Software Reference

Fig. 7.1. Class diagram for histogram package

7.1 reduction 211

Fig. 7.2. Hierarchy of instrument elements in an example instrument

7.1.4 Measurement

Now we introduce another important piece in reduction software, the measurement
package. It is a layer of classes between input data files and reduction engine.
It converts input data files into input histograms.

In reality, a successful measurement usually consists of several runs:

• a run for the sample you are interested in
• a run for the empty sample can
• a run to calibrate detector efficiency

Each run results in one or more histograms (one main histogram, plus other
accompanying histograms, like beam monitor histogram).

The structure of measurement package is simple. It consists of measur-
ment classes for every instrument we are supporting, and their common base
class. Each instance of a measurement class is a container of “run”s. Each
“run” has methods to extract histograms from input data files.

7.1.5 Reduction Package

This section is about the reduction package inside the reduction software.
The reduction package is carefully separated to several layers to ensure

a clean design.

• ”c/c++” layer is responsible for intensive computations only feasible to be
implemented in low level language. For example, this layer includes a class
ERebinAllInOne to rebin data in tof bins to data in evenly-spaced energy
bins.

212 7. Software Reference

• ”python vector compatible” layer vectorCompat is the joint point between
c++ and python. All c++ codes are implemented to deal with ”vector”-like
objects, e.g., energy bins. The vectorCompat python package accepts vec-
tor arguments and call the corresponding c++ methods to do the real work.
This layer separate other python layers from c++ codes and python bind-
ings. It forms a bridge between the reduction operators in the histogram-
compatible layer and the low-level language implementations of reduction
operators.

• ”python histogram compatible” layer histCompat allows developers to deal
with objects with more physics meanings. This layer is built on top of
the vectorCompat layer. A histogram is an object consisting of axes and
datasets and meta data. In the histCompat layer, histograms are our focus.
Classes in this layer take histograms instead of vectors as arguments, and
implementations of those classes decompose histograms to vectors and call
the corresponding methods in the vectorCompat layer.

• ”pyre vector compatible” layer pyreVC wraps classes in vectorCompat layer
to pyre components. There should not be many of this kind of components
because we should be dealing more with histograms in the pyre layer

• ”pyre histogram compatible” layer pyreHC wraps classes in histCompat
layer to pyre components.

• ”pyre” layer reduction.pyre makes use of pyre components in pyreVC and
pyreHC layers, and implement classes that are more high-level. The pyreVC
and pyreHC layers are more concerned with lower-level operations like
”rebin to evenly-spaced energy bins” and ”fit a curve to gaussian and find
the center”. The pyre layer is more concerned with ”calculate calibration
constants out of calibration data” and ”reduce I(det, pix, tof) to S(phi,E).

This layered structure may be illustrated in Figure 7.3 (it is far from
complete, and only shows a part of the whole structure).

7.1.6 Reduction Applications

Reduction components are assembled together to create reduction applica-
tions. Details of them can be found in
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/reduction/reduction/html/namespacereduction 1 1applications.html

7.1.7 Package Design

As mentioned in the 7.1.1, several packages are involved in our reduction
software. There are four ”central” packages:

• histogram: fundamental data structure
• instrument: instrument information
• measurement: provide histograms

7.1 reduction 213

Fig. 7.3. Layers in reduction package

• reduction: reduction methods

And there are other supporting packages:

• nx5: ”nexus” readers/(writers) based on hdf5fs
• hdf5fs: a tool to create/read/write hdf5 files by treating a hdf5 file as a

filesystem with trees of directories and files
• stdVector: python binding to c++ std::vector template
• array kluge: tools to manipulate c arrays

Relationship among those packages can be illustrated in Figure 7.4.

7.1.8 Miscellaneous Design issues

Error propagation. Error propagtion happens in all histogram numerical
operatorions like + - * /

Reduction components always propagate errors.
IMPORTANT POINT: The error arrays in histograms are always assumed

to contain the squares of errors. The reason is that constantly squaring and
square-rooting data is not only redundant, it will thrash your numerical pre-
cision. It is up to the user (which may be other programmers) to take square
roots as appropriate (for instance, when plotting an intermediate result, or
writing a final result to disk).

7.1.9 Doxygen documentations

More details can be found in
http://www.cacr.caltech.edu/projects/ARCS/autogen-arcs-docs/reduction/reduction/html/
doxygen documentations

214 7. Software Reference

Fig. 7.4. Reduction software package diagram

7.1.10 Procedure to Create Reduction Application

This tutorial explains how to create a reduction application using buiding
blocks in DANSE reduction packages within the DANSE reduction frame-
work.

Powder reduction application for direct-geometry time-of-flight spectrom-
eter is used as the example.

Instrument representation. Our understanding of reduction is that re-
duction is a transformation between input-histogram and output-histogram.
Instrumentation information are needed to do those transformations. So the
first step is to create a representation of the instrument where data are taken.

An instrument representation should be created with a hierarchial struc-
ture which mimics the real instrument structure. It can be done by using
instrument elments available in instrument.elements python package. If an
instrument element does not exist in that package, you will need to imple-
ment a new element.

For an quick example, here we create an instrument without introducing
new instrument elements:

>>> from instrument.elements import *
>>> instrument = Instrument.Instrument(’instr_name’, version = ’0.1’)

>>> moderator = Moderator.Moderator(instrument.getUniqueID(), instrument.guid(),
100, 100, 100)

>>> instrument.addModerator(moderator)

7.1 reduction 215

>>> monitor = Monitor(instrument.getUniqueID(), instrument.guid(),
xLength=30, yLength=0., zLength=50,
monitorNumber=1,
name = "monitor1")

>>> instrument.addMonitor(monitor, 1)

Things to note:

• The first step is to create an instrument by calling Instrument constructor.
• A instrument-wide unique ID is needed for any instrument element except

instrument itself. This unique ID can be generated by calling instrument’s
method “getUniqueID”.

• Sizes are in units mm

In the simple example above, we did not introduce the geometer. A ge-
ometer is always needed before an instrument becomes useful. Positions and
orientations of any instrument element must be registered by the instrument’s
geometer. Following is a more complete example of an instrument, this time
with a geometer.

>>> from instrument.elements import *
>>> instrument = Instrument.Instrument("instr_name", version = "0.1")
>>> from instrument.geometers.ARCSGeometer import Geometer
>>> geometer = Geometer()
>>> moderator = Moderator.Moderator(instrument.getUniqueID(), instrument.guid(),

100, 100, 100)

>>> instrument.addModerator(moderator)
>>> position = [20000.0, 90.0, 180.0]
>>> orientation = [0.0, 0.0, 0.0]
>>> geometer.register(moderator, position, orientation)

>>> monitor = Monitor(instrument.getUniqueID(), instrument.guid(),
xLength=30, yLength=0., zLength=50,
monitorNumber=1,
name = "monitor1")

>>> position = [2300.0, 90.0, 180.0]
>>> orientation = [0.0, 0.0, 0.0]
>>> geometer.register(moderator, position, orientation)

Things to note here:

• The coordinate system used by ARCSGeometer is a spherical one centered
at sample position. Position is specified hence by a 3-tuple (ρ, θ, φ)

You might want to implement your own geometer if the ARCSGeometer
does not fit your needs.

Examples of instrument factories and geometers can be found in python
package instrument.factories and instrument.geometers.

216 7. Software Reference

Histogram. In this section we identify and implement histogram classes
that are specific for the target reduction task.

For direct-geometry TOF spectrometer, following histograms are possible
inputs and outputs:

• input histograms
– I(det, pix, tof)
– I(det, tof)
– I(tof) for monitors

• output histograms
– S(phi,E)
– S(Q,E)

To implement those histogram classes, we simply inherit a new class from
the Histogram base class in python package histogram, and implement new
interface that is more convenient.

Measurement. In this section we explain how to implement measurement
classes and measurement pyre components.

As mentioned in Section 7.1.4, a measurement usually consists of several
“run”s. First we would like to implement a class “PharosRun”.

The “PharosRun” class is a subclass of the measurement.Run.Run class.
We implemented several methods to extract input histograms we have iden-
tified in Section 7.1.10 from data files. So it is quite clear that we should have
following interface for PharosRun:

• ctor constructor takes the data file name as input
• getDetPixTOFData Extract I(det,pix,tof) histogram from data file
• getDetTOFData Extract I(det,tof) histogram from data file
• getMonitorData Extract monitor I(tof) histogram from data file

Now we implement PharosMeasurement class. It will be a subclass of
measurement.Measurement.Measurement class. It should be a container of
several “run”s which are instances of PharosRun. Those “run”s are

• main data for main sample
• calib data for calibration sample
• mt data for empty sample can

The last step is to create a pyre component for the PharosMeasurement
class. This pyre component will be very thin because most of the real work
are already done in class PharosMeasurement.

Transformation and rebinning. In this section we implement the trans-
formation in low-level language and export those transformations up to
python and pyre layer.

Pyre components. In this section we carefully separate reduction proce-
dure into small steps and implement pyre componenents for each step.

7.1 reduction 217

Pyre application. In this step we combin pyre components constructed in
the previous section and create a reduction pyre application.

User Interface. In this step we uses and customizes the univeral pyre GUI
(prototype) to create GUI for the pyre application created in the previous
section

7.1.11 Status

Currently (November, 2006), reduction has four essential layers: pure C++,
and Python-C++ integration (written in C++), pure Python, and pyre. In
reduction’s precursor, topline, all scientific functionality resided in the
C++ layer; Python bindings (exposing a few specialized pieces of C++ code)
only made it easier to run. reduction blurs that relationship: now Python is
the “primary” layer, with most of what happens in C++ accessible to Python
and a number of high-level services, such as rebin drivers, implemented purely
in Python. For simplicity, scientific content is forbidden in the integration
layer (Hopefully, this has been enforced). The growth in the code base from
topline to reduction-1.0 reflects these changes: topline had about 2000
lines of C++ in a dozen or so classes; about 900 lines of C++ code provided
Python bindings to six entry points for high-level routines. Version 1.0 of
reduction has about 1500 lines of C++ code, and about 2100 lines of Python
bindings providing roughly 60 entry points for much finer-grained access to
the C++ layer. The topline Python layer was an after thought, weighing
in with 100 or so lines of Python; reduction’s pure Python layer has over
21000 lines.

7.1.12 Build/Install

Please download the ARCS 1.0 reduction source from
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/Download source.html

and follow instructions there to build and install.

7.1.13 Performance

Under linux (gcc 4.0, etc.) a 2.0 GHz AMD Opteron box with 4 GB RAM
can reduce a dataset to S(Q,E) in about 27 sec—about how long it took
to do the same task under these conditions with topline. On a Windows
XP box (using Microsoft Visual C++ v7.1), it takes about 60 sec; this is a
disappointment, as the topline code executed in about 6 sec. Some of the
Windows bottleneck seems to be caused by memory swapping. Other factors
might include file I/O of hdf5 file, and expensive looping in python layer.

218 7. Software Reference

7.1.14 To Do

• instrument: More instrument elements should be added to instrument.elements
package. Geometers might deserve better implementation. Currently the
way geometer deals with coordination system is a little clumsy.

• reduction:
1. Energy rebin driver in c++ layer has a generic alogrithm to rebin 1-D

data, but is not implemented generic enough. We can create a generic
rebinner so that it can be used by many rebin tasks.

2. Reduction pacakge make explicit uses of STL vectors; many of these
uses can be replaced by iterators, which would broaden their reusability
while insulating them from changes to the underlying containers. For
instance, rebinning procedures should be willing and able to operate on
any contiguous chunk of data, whether it belongs to an STL vector, an
ordinary C-array, NumArray, etc.

3. Will need to incorporate Jae Dong Lee’s single crystal codes.

7.2 Module Documentation 219

7.2 Module Documentation

This section provides web access to the online ARCS software documentation.
You will need to have an internet connection to make proper use of the present
section.

The following include links to the developer’s API-level socumentation for
all available ARCS 1.0-release packages. You may need to alter your Acrobat
preferences to open a web browser or capture the web pages in Acrobat, as
you prefer.

As a test of your connection and browser interface, please check some of
the top pages of the ARCS and DANSE resources:
DANSE homepage http://wiki.cacr.caltech.edu/danse/
ARCS homepage http://www.cacr.caltech.edu/projects/ARCS/
PYRE homepage http://www.cacr.caltech.edu/projects/pyre/

The top-level web page for the ARCS software, including installa-
tion and release information, is:

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/Software.html

The top-level documentation index for the reduction software is:

http://wiki.cacr.caltech.edu/danse/index.php/DANSE Reduction Documentation Index
The top-level web page for all software module documentation can
be accessed at:

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/Modules.html

7.2.1 distutils adpt

Distutils was extended to more easily generate distributions for packages that
include both python codes and low-level c/fortran codes. Official python dis-
tutils don’t build c/c++/fortran libraries, but only python extensions. With
distutils adpt, one can build and install libraries and executables like nor-
mal software in a scheme with ”bin”, ”lib”, ”include”, and ”python” folders.
Some improvements include recursive inclusion of python subdirectories, the
option to use dynamically linked libraries, and the ability to find and modify
PATH variables (from DANSE’s grid services light package).
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/distutils adpt/distutils adpt/html/index.html

distutils adpt python package

7.2.2 config headers

Config is a cross-platform build procedure. For developer, one configuration
file ”.tools” is what he all needs to start enjoying developing without worries

220 7. Software Reference

on things like how to create a dynamic library on darwin. Pakcage config-
headers only contains header files from Config.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/config/headers/html/index.html

distutils adpt python package

7.2.3 journal

journal allows component and core programmers to communicate information
to subsequent users on an unlimited number of channels that can be switched
on at will, with severities including debug, error, info, warning, and firewall.
journal is available in both C++ and Python, with C++ journals fully inte-
grated with their Python counterparts. journal devices are abstracted, mak-
ing them adaptable to environments such as massively parallel platforms or
geographically dispersed distributed computing.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/journal/journal/html/index.html
journal python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/journal/libjournal/html/index.html
journal C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/journal/journalmodule/html/index.html

journal python bindings

7.2.4 pyre

http://www.cacr.caltech.edu/projects/pyre

pyre is the software framework for high performance computing. Written
in Python, pyre is an extensible, object-oriented framework for specifying
and staging complex, multi-physics simulations. It includes support for re-
mote monitoring and visualization. With pyre, you don’t need to be fluent in
FORTRAN or C to harness the power of massively parallel computational re-
sources. Pyre, which has the ability to utilize code written in other languages,
provides a level of transparency that allows scientists to focus on their re-
search rather than being distracted by computational details. However, while
pyre will enable the average user, it was also designed not to hinder expert
users, offering powerful, flexible development features.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/pyre/pyre/html/index.html
pyre python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/pyre/libpyre/html/index.html
pyre C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/pyre/pyremodule/html/index.html
pyre python bindings

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/pyre/applications/html/index.html

examples/applications

7.2 Module Documentation 221

7.2.5 array kluge

http://wiki.cacr.caltech.edu/danse/index.php/array kluge

Dynamically allocate C arrrays of numbers and maintain them correctly.
Limited array to and from list conversions are offered. array kluge has been
largely replaced by stdVector.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/array kluge/array kluge/html/index.html
array kluge python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/array kluge/libarray kluge/html/index.html
array kluge C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/array kluge/array klugemodule/html/index.html

array kluge python bindings

7.2.6 stdVector

http://wiki.cacr.caltech.edu/danse/index.php/StdVector

StdVector allows Python programmers to create C++ standard vector ob-
jects in a variety of numerical types. Limited interaction with those vectors is
supported through methods like size, assign, begin, end, plusEquals, average,
etc. Through the asNumarray() method, StdVectors may also be manipu-
lated using the Numarray multidimensional indexing interface, and passed to
functions that expect a numarray object, without potentially costly copying.
Through the asList method, a StdVector may be converted to a Python list.
Thus, StdVector objects are compatible with a wide variety of Python, C,
and C++ interfaces.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/stdVector/stdVector/html/index.html
stdVector python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/stdVector/libstdVector/html/index.html
stdVector C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/stdVector/stdVectormodule/html/index.html

stdVector python bindings

7.2.7 hdf5 cpp

http://wiki.cacr.caltech.edu/danse/index.php/hdf5 cpp

Recent releases of NCSA’s C++ interface have not supported the building
of shared objects. For those who do not have access to a properly prepared
HDF5 distribution, this package provides a limited remedy by distributing the
NCSA HDF5 C++ interface, version 1.6.4, along with Caltech build system
or Python distutils instructions to build as a shared object. It requires the
user to have the NCSA HDF5 version 1.6.4 of the C library already built.

222 7. Software Reference

7.2.8 hdf5fs

http://wiki.cacr.caltech.edu/danse/index.php/Hdf5fs

hdf5fs provides Python bindings to part of the HDF5 C++ library. It
offers the user a UNIX filesystem abstraction, implementing function like
‘open’, ‘stat’, etc. Written primarily by Maciek Brodowicz of CACR, it has
since been modified by Tim Kelley. This is the primary ARCS interface to
HDF5 files.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/hdf5fs/hdf5fs/html/index.html
hdf5fs python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/hdf5fs/hdf5fsmodule/html/index.html

hdf5fs python bindings

7.2.9 nx5

http://wiki.cacr.caltech.edu/danse/index.php/nx5

Our primary file format is HDF5, structured according to NeXus. nx5 is
a layer above HDF5 (via hdf5fs, though one could use the nexus API) that
represents the structure of files and the corresponding semantic content.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/nx5/nx5/html/index.html

nx5 python package

7.2.10 histogram

http://wiki.cacr.caltech.edu/danse/index.php/ARCS Alpha subpackage histogram

The histogram package supplies classes that combine arrays (storage) with
attributes to model various complex ideas about datasets for neutron scat-
tering.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/histogram/histogram/html/index.html

histogram python package

7.2.11 measurement

http://wiki.cacr.caltech.edu/danse/index.php/measurement

The measurement package combines nx5 and histogram to provide a con-
venient layer for applications programmers through functions such as “get-
PixelData”, “getMonitorData”, etc.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/measurement/measurement/html/index.html

measurement python package

7.2 Module Documentation 223

7.2.12 instrument

http://wiki.cacr.caltech.edu/danse/index.php/ARCS Alpha subpackage instrument

The instrument package consists of classes to represent neutron scatter-
ing instrument information. An instrument is represented by an instance
of the Instrument class, which is the root node of a graph of objects (El-
ements). The coordinates of the elements of an instrument are maintained
by a separate class, Geometer. This creates a generic way to represent and
serve information about instrument configuration and properties and sample
configuration and properties. Factories construct core representations from
both hard-coded sources (such as ARCSBootstrap) and from nx5 file graphs
(NX5ToARCS family); additional factories render instrument graphs to file
graphs (ARCSToNX5 family) or to visual models (VTKInstrumentViewer).
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/instrument/instrument/html/index.html

instrument python package

7.2.13 reduction

http://wiki.cacr.caltech.edu/danse/index.php/ARCS alpha subpackage reduction

The reduction subpackage contains the classes and components that are
responsible for actually reducing data from a time-of-flight direct geometry
spectrometer. Reduction transforms data from I(TOF, detectorLabels) to
something approximating (or resembling) S(|Q|, E). These classes are mostly
built up out of pieces from other ARCS subpackages.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/reduction/reduction/html/index.html
reduction python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/reduction/libreduction/html/index.html
reduction C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/reduction/reductionmodule/html/index.html
reduction python bindings

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/reduction/examples/index.html

examples/applications

7.2.14 bvk

http://wiki.cacr.caltech.edu/danse/index.php/bvk

bvk provides basic Born-von Karman (lattice dynamics) models of phonons
from perfect crystals. While nothing in the code precludes the use of a com-
pletely arbitrary crystal structure, presently the relation between bonds and
force constants must be specified by the user by overriding the ForceConstant-
Tensor class. Present outputs include density of states histograms; plans are
in place to include neutron scattering cross sections. The code is structured to
allow arbitrary iteration of Q-space; random sampling from a user-specified
cube is implemented.

224 7. Software Reference

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/phonons/bvk/bvk/html/index.html
bvk python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/phonons/bvk/libbvk/html/index.html
bvk C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/phonons/bvk/bvkmodule/html/index.html

bvk python bindings

7.2.15 sam

Sam provides python bindings to Matlab, and is written and maintained by
Patrick Hung. Sam does NOT provide a pyre component; however, it is both
a standalone package and is required by ‘graphics.Matlab’.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/sam/sam/html/index.html
sam python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/sam/libsam/html/index.html
sam C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/sam/sammodule/html/index.html

sam python bindings head

7.2.16 pyIDL

pyIDL provides python bindings to RSI’s IDL, and is based on Andrew Mc-
Murray’s python–IDL. pyIDL provides an IDL session emulator where IDL
commmands can be used directly to manipulate data. pyIDL is also NOT a
pyre component; however, it is both a standalone package and is required by
‘graphics.IDL’.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/pyIDL/pyIDL/html/index.html
pyIDL python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/pyIDL/libpyIDL/html/index.html
pyIDL C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/pyIDL/pyIDLmodule/html/index.html

pyIDL python bindings head

7.2.17 graphics

This package is a collection of bindings to several graphics and visualization
enviroments. Packages currently include: Matlab, IDL, Matplotlib, gnuplot,
and grace. The gnuplot component uses gnuplot-py, while the grace compo-
nent uses both Michael Haggerty’s grace np and Nathaniel Gray’s gracePlot.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/graphics/gnuplot/html/index.html
graphics.gnuplot
python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/graphics/grace/html/index.html
graphics.grace
python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/graphics/IDL/html/index.html
graphics.IDL python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/graphics/Matlab/html/index.html
graphics.Matlab python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/graphics/Matplotlib/html/index.html

graphics.Matplotlib python subpackage

7.2 Module Documentation 225

7.2.18 cctbx adpt

This package extends the cctbx python bindings to the pyre framework. The
boost python library was integrated to speed up large matrix manipulations.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/cctbx adpt/cctbx adpt/html/index.html
cctbx adpt
python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/cctbx adpt/boost ext/boost ext/html/index.html
boost ext
python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/cctbx adpt/boost ext/libboost ext/html/index.html
boost ext C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/cctbx adpt/boost ext/boost extmodule/html/index.html

boost ext python bindings

7.2.19 simulation

http://wiki.cacr.caltech.edu/danse/index.php/Instrument Simulation: simulation#package simulation

The simulation package provides a framework allowing flexible integration
of virtual neutron instruments for simulation. A base class for constructing
a simulation application can be conveniently subclassed for a neutron in-
strument. Currently most neutron components that can be used in such a
simulation application are provided by package “mcstas.” This simulation
package, however, has a collection of generic components, which provides a
scheme for flexible and extensible simulation of samples and detectors.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/simulation/simulation/html/index.html
simulation python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/common/common/html/index.html
simulation.common python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/common/libcommon/html/index.html
simulation.common C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/common/commonmodule/html/index.html
simulation.common python bindings

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/geometry/geometry/html/index.html
simulation.geometry python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/geometry/libgeometry/html/index.html
simulation.geometry C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/geometry/geometrymodule/html/index.html
simulation.geometry python bindings

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/instruments/html/index.html
simulation.instruments python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/neutron buffer/neutron buffer/html/index.html
simulation.neutron buffer python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/neutron buffer/libneutron buffer/html/index.html
simulation.neutron buffer C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/neutron buffer/neutron buffermodule/html/index.html
simulation.neutron buffer python bindings

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/neutron comp/neutron comp/html/index.html
simulation.neutron comp python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/neutron comp/libneutron comp/html/index.html
simulation.neutron comp C++ library

226 7. Software Reference

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/neutron comp/neutron compmodule/html/index.html
simulation.neutron comp python bindings

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/nexus/nexus/html/index.html
simulation.nexus python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/phonon/phonon/html/index.html
simulation.phonon python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/phonon/libphonon/html/index.html
simulation.phonon C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/phonon/phononmodule/html/index.html
simulation.phonon python bindings

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/stdVector/stdVector/html/index.html
simulation.stdVector python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/stdVector/libstdVector/html/index.html
simulation.stdVector C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/stdVector/stdVectormodule/html/index.html
simulation.stdVector python bindings

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/xtal/xtal/html/index.html
simulation.xtal python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/simulation/xtal/lib/html/index.html

simulation.xtal C++ library

7.2.20 mcstas

http://wiki.cacr.caltech.edu/danse/index.php/Instrument Simulation: simulation#package mcstas

The mcstas package provides Python bindings to the distribution of Mc-
Stas from Riso. Bindings are available for building neutron scattering in-
strument components and launching simulations of experiments. In the Riso
McStas, an instrument is constructed from an ordered list of components de-
scribed by a dedicated meta-language. Neutrons go through each component
one by one. The state of a neutron is modified (scattered or absorbed) by the
C-code of each component. The statistical weight of the neutron is adjusted
if, for example, a specific target solid angle for scattering is provided, in order
to reduce the simulation time. The code is generated by McStas, which acts
as a compiler that compiles the meta language in an instrument description
file to one big C file. In pyre-mcstas, the instrument components are pyre
components, and can be scripted together. In essence, the meta-language is
Python. Another difference is that a buffer of many neutrons is passed from
component to component in pyre-mcstas.
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/mcstas/html/index.html
mcstas python package

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/mcstas lib/html/index.html
mcstas C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/mcstas wrapper/html/index.html
mcstas.mcstas wrapper python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/components/html/index.html
mcstas.components python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/utils/html/index.html
mcstas.utils python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/array conversion/array conversion/html/index.html
mcstas.array conversion python subpackage

7.2 Module Documentation 227

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/array conversion/lib/html/index.html
mcstas.array conversion C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/array conversion/module/html/index.html
mcstas.array conversion python bindings

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/bin file io/bin file io/html/index.html
mcstas.bin file io python subpackage

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/bin file io/libbin file io/html/index.html
mcstas.bin file io C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/bin file io/bin file iomodule/html/index.html
mcstas.bin file io python bindings

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/generic/libgeneric/html/index.html
mcstas.generic C++ library

http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/mcstas/generic/genericmodule/html/index.html

mcstas.generic python bindings

7.2.21 pyIO

PyIO is a ‘generic’ file reader/writer package for N-column text or Python-
nested list formats. PyIO reads some plain text dialects, can read/write data
asRows or asColumns, and can extract simple headers from text files (if
matches dialect format)
http://www.cacr.caltech.edu/projects/ARCS/arcs-1.0/web/autogen/pyIO/pyIO/html/index.html

pyIO python package

7.2.22 Multiphonon

http://wiki.cacr.caltech.edu/danse/index.php/Multiphonon py

Multiphonon performs a multiphonon expansion to simulate experimental
inelastic scattering spectra. Input to the program is a disk file of a phonon
DOS in terms of energy, intensity, and error, plus user input on the tempera-
ture, atom mass, energy of the incident neutron, request for analysis of data
with constant-Q (must supply Q) or TOF angle bank (must supply angle, φ).
Multiphonon calculates terms in the multiphonon expansion as explained in
Section 6.5, using the theory of Section 3.3.7, and sums spectral contributions
from the user-specified multiphonon processes. The names of the variables in
the code are matched to those of the theory, as developed by Varley Sears
and used in Section 6.5. An iterative procedure for performing this correction
is explained in Section 6.5.1.

228 7. Software Reference

Further Reading

The contents of the following are described in the Bibliography.
Tim Kelley, Mike McKerns, Jiao Lin, Michael Aivazis and Brent Fultz:
DANSE wiki web site,
http://wiki.cacr.caltech.edu/danse/index.php/Main Page

Tim Kelley, Mike McKerns, Jiao Lin, Michael Aivazis and Brent Fultz: ARCS
software web site,
http://www.cacr.caltech.edu/projects/ARCS/Software.html

Mark Lutz and David Ascher: Learning Python (O’Reilly & Associates, Inc.
1999).
C. G. Windsor: Pulsed Neutron Scattering, (Taylor and Francis, London
1981).

8. N/A Structure of Computer Programs

8.1 N/A Abstractions

8.1.1 N/A Abstractions of Procedures

8.1.2 N/A Abstractions of Data

8.2 N/A Functions, Classes, Modules, and All That

8.3 N/A Data Flow and Streams

8.4 N/A Computer Graphics

Further Reading

The contents of the following are described in the Bibliography.
H. A. Abelson and G. J. Sussman: Structure and Interpretation of Computer
Programs (MIT Press, Cambridge Mass, 2001).
Mark Lutz and David Ascher: Learning Python (O’Reilly & Associates, Inc.
1999).

9. DANSE Architecture and Engineering

9.1 Software for Inelastic Scattering

9.1.1 Overview of Capabilities

Data from inelastic chopper spectrometers can reveal the fundamental dy-
namical processes in materials or condensed matter, but not without sub-
stantial data analysis to produce even a basic graph of S(Q, E), the intensity
as a function of momentum and energy transfers. The elementary excitations
in solids are a substantial topic in themselves, and are covered in the earlier
chapters of this book. Making comparisons between the experimental S(Q, E)
and the underlying theory requires another level of software sophistication.
The it DANSE architecture was designed to make basic data reductions, the-
oretical computations, and comparisons between theory and experiment as
convenient as possible. A useful software architecture must be flexible, allow-
ing users to rearrange the steps of data analysis, for example. For longevity
this system must allow users to extend its capabilities beyond what those of
today.

This chapter describes the essential features of the it DANSE architec-
ture, although it does not document the individual software components. The
first section provides an overview of the scientific capabilities of it DANSE,
explaining some of the design philosophy. The second section describes the
essential features of the architecture – components acting on data streams.
A later section explains how to extend the capabilities of it DANSE by de-
veloping new components from C++ code.

9.1.2 Data Reduction

A schematic of the DANSE software for inelastic scattering is presented in
Fig. 9.1. This figure, first presented as a roadmap in Sept. 2001, shows three
paths for extracting scientific results from the raw data in the upper left
corner.

The first path, horizontally across the top of Fig. 9.1, is the traditional
approach to data reduction and visualization. The goal of this analysis is to
obtain the intensity as a function of momentum transfer and energy transfer,

232 9. DANSE Architecture and Engineering

S(Q, E). To do so, the data arrays of counts acquired in terms of instru-
ment parameters such as detector pixel and arrival time must be converted
into normalized intensities with physical units such as Å and meV. Instru-
ment backgrounds and other distortions must also be removed. It is often
necessary to correct for other distortions caused by, for example, multiple
scattering or multiple excitations. By implementing all software components
in the interpreted Python language, the DANSE architecture provides a set of
components that are continuous across all data analysis steps. Furthermore,
components in the chain can be replaced or rearranged to test different pro-
cessing algorithms. It is also important that data streams can be piped into
visualization windows for inspecting the data after the different steps of data
processing. An example of a component for energy rebinning of data from a
chopper spectrometer is described in the context of the data stream archi-
tecture in Sect. 9.2.2.

Fig. 9.1. Schematic of DANSE software for inelastic scattering.

9.1.3 Modeling

The second and third paths for extracting scientific results from experimen-
tal data are designed to connect experimental data to theory or analytical
models.

The second path, the vertical chain in the center of Fig. 9.1, is for compar-
ing experimental results to models of sample dynamics. This path is especially
appropriate for analytical models with adjustable parameters. Consider its
use for the “neutron-weighting problem” in phonon dynamics, which orig-
inates as follows. A measured S(Q,E) from a polycrystalline sample of a
pure element can often be converted into a phonon density-of-states using

9.1 Software for Inelastic Scattering 233

a thermal correction procedure. On the other hand, a phonon DOS from a
binary compound cannot be otained from the measured S(Q,E) because the
different elements in the compound do not scatter neutrons with equal effi-
ciencies, causing a “neutron-weighting” of the experimental spectra. Without
knowing the lattice dynamics of the compound, it is impossible to know the
distortions of an experimental DOS obtained from a measured S(Q,E) after
a thermal correction procedure.

The phonon scattering efficiencies of the different atoms are well known,
so a lattice dynamics model can be used to calculate an experimental spec-
trum. We do so with an iterative procedure where the force constants in the
dynamics model are varied to obtain the best fit to the experimental data.
We therefore can use a lattice dynamics model plus a “neutron weighting”
correction to obtain the true phonon density-of-states from the measured
S(Q,E) of the compound. The force constants are obtained as parameters
that give the best fit between calculation and experiment. This is now a
routine procedure for us, and new experiments can be designed around this
capability.

Besides phonon dynamics in ordered compounds, there are many dynam-
ics models that can be compared to experimental data. Applications include
data corrections, the determination of parameters such as force constants or
exchange stiffnesses, or testing if the model is in fact consistent with the
measured S(Q,E). Four standard types of dynamics models were included in
the baseline design for the inelastic software project:

1. lattice dynamics with a Born–von Kármán model (periodic structure)
2. spinwave dynamics with a Heisenberg hamiltonian on a periodic structure
3. lattice dynamics on a disordered structure, using a moments analysis of

the dynamical matrix
4. spin dynamics in a paramagnetic model

9.1.4 Direct Experiment Simulation

The third path from data to science is shown on the left of Fig. 9.1. This
approach is a direct simulation of the data measured at the detectors. It is
based on Monte Carlo codes that are used in the neutron community for
simulation of instrument performance. These codes have been tested and val-
idated against the performance of real instruments. We will put these Monte
Carlo simulations together with molecular dynamics simulations to perform
direct simulations of experimental data. A number of molecular dynamics
simulations are available to the theory community. These simulations are
complementary to the analytical models of Sect. 9.1.3, and are sometimes
advantageous. For example, no approximations are needed when implement-
ing structural models of disordered solids, which are not handled well by
the methods of Sect. 9.1.3 (except when the Q information is ignored as in
methods 3 and 4).

234 9. DANSE Architecture and Engineering

One possibility is to include the sample into the Monte Carlo computa-
tions as a component of the instrument, transforming an individual incident
neutron into a neutron scattered into the detector array. Alternatively, simu-
lation results for the primary flight path could be stored and used for several
simulations. For lattice dynamics simulations, we are tentatively planning on
treating the scattering as individual events in the first Born approximation.
This is equivalent to sampling the velocity-velocity correlation function of
the atoms in the sample. These motions will be obtained from a molecular
dynamics simulation, embedded as a core in a Python component. This same
path is followed for classical spin dynamics simulations.

9.2 An Architecture for Distributed Data Analysis

9.2.1 Overview

Selector

raw counts

Selector

times

NeXusReader

filename

NeXusWriter

filename

Selector

instrument
info

Energy

energy bin
info

Bckgrnd

time
interval

Fig. 9.2. Schematic of the conversion of raw time of flight data into an energy
histogram.

Most common data analysis tasks can be cast as the results of components
acting on data streams, very much like the electrical engineer’s concept of a
signal processing system. As an example, consider Figure 9.2. The module
NeXusReader is responsible for reading a file that contains raw data and in-
strument information in some standard format and converting it into a data
stream. This stream is fed to three filters, each of which selects a particular

9.2 An Architecture for Distributed Data Analysis 235

subset of the information in the stream, such as instrument information, ar-
rival times and raw detector counts. The outputs of the three filters are data
streams that are in turn fed to Bckgrnd, which corrects for the instrument
background. The conversion to a histogram of intensity as a function of en-
ergy is carried out by Energy, which requires details about the instrument,
the times of flight and the background-corrected counts from Bckgrnd. In
this example, the resulting stream is fed to NeXusWriter for storing in a file,
but one can easily imagine that other components, perhaps those of a visu-
alization system, might be involved in the further manipulation of the data
stream. Similarly, the input stream in this example was generated by reading
a file. However, one can easily envision an interface to the instrument that
makes the data available as it is collected by an experiment in progress.

The diagram in Figure 9.2 is sufficiently intuitive that certain conven-
tions are easily inferred. For example, most people deduce correctly that
data streams flow from left to right, hence the protrusions to the left of
a component represent its inputs and those to the right its outputs. Fur-
ther, components may require information such as file names, or energy bin
layout, that is best provided by the user rather than another component.
This information is represented by the gray boxes above the yellow triangles.
Most readers also infer that components nest, and complex modules such
as Bckgrnd and Energy are themselves implemented in terms of lower-level
components, details of which are not shown for the sake of clarity.

The DANSE data analysis software is organized using this data flow
paradigm as the basic abstraction. The architecture is a set of services that
enable the encapsulation of the computational engines, establish the trans-
port of data between these engines, and provide uniform access to user input.
The framework shields the computational engines from the user interface, al-
lowing the construction of interfaces that are suitable for a variety of end-user
environments. Advanced user interfaces allow the direct manipulation of the
analysis network and provide visual ways to interact with the components
and display the results of the analysis.

The remainder of this section describes in detail some of the framework
services and their interactions.

9.2.2 Components

The bulk of the intellectual capital in data analysis software lies in the rou-
tines developed by instrument scientists and expert users that enable the
physical interpretation of the raw detector signals, or facilitate the compari-
son with theoretical models. Certain clusters of these routines carry out iden-
tifiable higher-level tasks and have enough in common to constitute reusable
modules. A major goal of the proposed architecture is to enable scientists to
make contributions to a sophisticated software package with as little expo-
sure to the complexity of the system as possible. Conversely, the rest of the

236 9. DANSE Architecture and Engineering

software should be as shielded as possible from the requirements of a par-
ticular computational engine. A component is the architectural element that
acts as the mediator between a low-level module and its environment. We
will refer to these low-level routines as the component’s core, as illustrated
in Figure 9.3.

Component

Core

Fig. 9.3. Schematic representation of a software component.

A component is responsible for the initialization of its core, which may in-
volve delivering user-supplied information. We will refer to such information
as the component’s properties. When a component is instantiated, it pro-
vides the framework with a table of pairs of strings with property names and
default values. The framework makes this information available to the user
interface, which is responsible for soliciting the user’s input. The property
table is read at component execution time. It is used to initialize the core by
converting each property string to its native representation. This mechanism
bypasses much of the complexity of component initialization and allows for
the complete decoupling of the core from the user interface.

Components interact with each other by exchanging information in data
streams. Streams are a useful abstraction because they promote a weak, stan-
dardized coupling between components. For each application domain, there
is typically only a handful of different data types that are exchanged between
components. For the analysis of neutron scattering data, the majority of data
exchanges involve tables and generalized histograms, described in more detail
in Section 9.2.3. Components negotiate the actual details of the data exchange
when they are first connected to each other.

When a stream delivers data at the input port of a component, the com-
ponent must make the data available to its core. Conversely, the component
must place results in the data stream connected to its output ports. The de-
tails of this process depend rather strongly on the choices of programming
languages, operating systems and compilers. Fortunately, these platform de-
pendencies are rather generic and can be handled as part of the services
offered by a component1.
1 This implies delegating part of the task of resolving the platform dependencies

to the configuration management system.

9.2 An Architecture for Distributed Data Analysis 237

Typical component cores manipulate large data sets and can be compu-
tationally intensive. They are appropriately implemented in low-level lan-
guages, such as FORTRAN and C. To the extent possible, the DANSE software
is language neutral so it can provide a forward migration path for legacy
codes. The software provides explicit support for parallel programming.

The work required to transform a data analsis program into a component
is discussed in Sect. 9.3 below. Common tasks, such as accessing the contents
of data streams, are done with a standardized interface. For certain types of
components, such as those that manipulate a single data stream, upgrading
may involve little beyond using the services provided by the framework. How-
ever, component cores have somewhat more stringent quality requirements
than the typical routines in monolithic codes that run on a single worksta-
tion. Software defects, such as those that lead to core dumps or, even worse,
memory leaks, are much more destructive and annoying to the user when
they disrupt a large scale distributed computation that involves the alloca-
tion of scarce resources in remote facilities. Clearly, contributed components
that are targeted for wide usage by typical users must go through extensive
testing and a quality approval process.

For similar reasons, component cores cannot simply abort a computation
that failed to converge or appears to be going astray by calling system rou-
tines such as exit that cause the unconditional termination of execution.
Further, practices such as printing to the user console become much more
complicated for components that may not have a user console or may not
even have a controlling terminal. Components have access to a centralized
mechanism for structured logging of status and error messages. Legacy cores
may require some minor re-engineering to comply with this requirement.

9.2.3 Data Streams

Data streams are the conceptual encapsulation of the mechanism for data
exchange among components. Streams can be thought of as single-port com-
ponents that merely copy data present in their input port to their output
port. They are an essential architectural element because they enable the
decoupling of components from one another and hide the details of the data
transport mechanism.

The conceptual decoupling of components from each other through the use
of streams enables their physical decoupling. This makes it possible to dis-
tribute the computation among multiple process spaces. The user can choose
whether components reside in the same process space, as separate threads, as
separate processes on the same machine or are deployed across the network.
Connections that cross process boundaries can discover where the compo-
nents they connect are physically deployed and then determine an appropri-
ate mechanism for data transfer. The choice is completely transparent to the
components themselves and therefore the control and data transfer mech-
anisms can be implemented independently by an expert. Further, one can

238 9. DANSE Architecture and Engineering

take advantage of emerging protocols and services for distributed computing
without disturbing any of the existing components.

Connections between components are established at run time when one
cannot rely on compilers to ensure that an input port receives data compatible
with its expectations. A frequently-used (but extreme) solution is to bypass
the problem by allowing streams to carry only one data type, such as three-
dimensional arrays of doubles. At the other extreme is a solution commonly
employed by industrial-strength component systems that allows components
to exchange arbitrary data types. A specialized language allows components
to describe the types of data streams they consume or generate, providing in
essence a run time typing system. The first extreme is rather restrictive, while
the latter is fairly complex to implement and maintain. Instead, we propose
a compromise that takes the requirements of our specific application domain
into proper account and restricts the data stream types without sacrificing
generality.

We have identified two abstract types, tables and histograms, that appear
to be sufficiently general to satisfy the data exchange needs of our compo-
nents for the analysis of neutron scattering data. Tables are inspired by the
database concept of the same name. Potential uses include the storage of raw
events in a detector. The data are conceptually organized in rows, each of
which has the same number of named columns. A description of the table
stores the name and data type of each column, along with the number of
rows, if known. This information constitutes the table meta-data. Histograms
are a generalization of multi-dimensional dense arrays of floating point num-
bers and are the typical structure for exchanges between components that
manipulate processed data. The histogram meta-data consists of the number
of dimensions plus an array for each dimension that describes the histogram
bins. Other data types may be added in the future if enough components
exchange information not expressible as histograms or tables.

There is a clear separation of large data sets from the lightweight informa-
tion that describes them. Data storage and data transport are entirely opaque
to the data producers and consumers, and these data handling functions are
considered implementation details that differ for each platform. Transport
of the actual data is considered an expensive operation, since it scales with
the amount of data in the stream, whereas the meta-data can be exchanged
freely between components. We will construct a simple stream description
language based on XML to allow components to explain to each other the
content flowing in the data streams connected to their ports. The meta-data
will be part of the negotiation protocol for component connections and will
be used to issue proper diagnostics when irreparable incompatibilities are
detected.

9.2 An Architecture for Distributed Data Analysis 239

9.2.4 Implementation

The software is written as components in Python, a modern very-high-level
computer language, and as C++ cores with Python wrappers. The C++
cores are then accessible as Python functions, but they perform as compiled
code. The Python interpreter makes it easy to arrange components into cus-
tom scripts without recompilation. Interpreted Python scripts provide users
with great flexibility in constructing custom analysis procedures from a well-
stocked software toolkit. Scripts for common types of data analysis will be
nested into “one-click” analysis packages, but their customization should be
readily possible.

Data analysis as a service accessed through an Internet web site is illus-
trated in Figure 9.4. Components can be maintained and run centrally on
well-tested platforms. A compute server, not the user, arranges for compu-
tation on the appropriate hardware. A user could elect for little code and
no raw data to reside on his or her local computer, while still directing the
reuse and reconfiguring of the needed Python components, including those
that run on specialized hardware such as Beowulf clusters. Our intent is to
ensure that any user can utilize the highest-performance hardware without
buying and maintaining it.

Fig. 9.4. Architecture for distributed computing.

Today the computing resources are located at Caltech, where we are rela-
tively free to experiment with them. The essence of a working web portal and
two user interfaces have been demonstrated. In one interface, the user logs
on to our web portal through a standard browser such as Internet Explorer,
and receives a Java applet that runs under the browser. The applet provides
a “Labview-like” graphical user interface (GUI) where the user “wires to-
gether” a set of data analysis components. Changing the present GUI is not
difficult because of a clean separation between the user’s depiction of the data
analysis procedure, and the server’s execution of the data analysis procedure.
With this separation, a user could select among several GUIs, depending on
needs or preferences. We have already tested two of them.

240 9. DANSE Architecture and Engineering

After the user arranges an analysis procedure in the GUI, the Java ap-
plet transmits instructions to the web server using XML-RPC protocols. The
software on the server arranges an appropriate Python script and executes
it. Execution may occur locally or on other computing resources, today ac-
cessed by XML-RPC protocols. The response to the user is through his or
her Internet browser.

Many of the data analysis components could be selected to run locally on
the user’s computer. Nevertheless, software released for running on a user’s
own computer will include automatic and transparent Internet access to the
DANSE compute server. Such a remote access to the DANSE system will
overcome a traditional problem with software releases for a user’s local com-
puter, where software developers must design for the least-capable hardware.
The user could specify what parts of the analysis would be performed locally
or remotely. With such access to the central service, capabilities for large
simulations on the DANSE system, for example, would be available to the
user through a familiar software package.

In principle, the DANSE architecture can serve all instruments at all
neutron sources. Moving this principle into practice is underway as of this
writing in 2003.

9.2.5 Advantages of a User-Directed, Distributed Architecture

• The architecture offers access to the best combination of hardware and
software.

• The architecture allows the user to select which processes are executed lo-
cally, and which ones are distributed automatically to the central DANSE
hardware. The user can analyze data with any platform, although it may
be advantageous to have a local capability for some frequently-used com-
putations.

• When experimental data and analysis codes reside on central servers, inter-
action with the data across the Internet requires minimal data bandwidth.

• A clean separation of the user interface from the analysis code allows in-
terchanging the user interface without affecting the core service.

• Centralization of the main codes simplifies their maintenance, and com-
puting resources can be changed without affecting the user.

• One web portal will serve all neutron instruments. This consistency is pos-
sible for other neutron facilities too.

9.2.6 Extensibility by Scientists

Python scripts can be prepared for routine analysis, and used easily. De-
veloping code for the proposed architecture can be done at three levels of
increasing complexity. New users may be satisfied by the first level. Arbi-
trary data analysis is possible at the second level, but optimal performance
is offered by the third level.

9.3 Extending DANSE: Writing C++ Extensions to Python 241

1. A user could select a complete script from a menu of tested procedures.
A set of standard data reduction and visualization could be performed
as a “one-click” operation.

2. For altering existing Python scripts, the entry barrier is very low. This
low barrier is possible with a “Labview”-style interface that allows users
to “wire-up” modules of data and code through a graphical user interface.

3. For writing new Python code, the entry barrier is as low as possible with
any computer language. Python programs are interpreted and easy to
debug. Their performance is comparable to what is expected of propri-
etary scientific data analysis packages such as IDL or Matlab, which may
run some two orders of magnitude slower than compiled code. If this is a
difference between 10 microseconds and 1 millisecond, compilation may
be unnecessary. The user can decide when it is appropriate to make the
transition from Python to compiled code.

4. For optimal computing performance, a transition path to a lower-level
language such as C++ is available. Code written in C++ needs Python
bindings so the entry points to the compiled C++ code and data are
known to the Python interpreter. Writing these bindings can be done
by scientists, although this involves understanding some details of how
Python functions are implemented. Automated tools exist today to do
this reliably, and they could do the bindings elegantly if they were devel-
oped further in the proposed effort on central resources. Another impor-
tant product of the central resource effort will be a standardized object
model to allow low-level codes written in FORTRAN, C, or C++ to be incor-
porated as cores of Python components. Writing these C++ extensions
for Python is the subject of the next section.

9.3 Extending DANSE: Writing C++ Extensions to
Python

Important sources of information on this topic are available elsewhere: the
Python extension and embedding manual, and the Python-C API reference
manual. These documents are available at the Python website: http://python.org,
but better yet, just look in the ’ext’ and ’api’ subdirectories of your Python
distribution’s Doc directory for HTML versions.

This section was written to supplement those documents, first by giv-
ing an example of dynamically allocating C++ objects and keeping track
of them, and second by introducing some of the API functions for working
with aggregate types like tuples and lists, for which the easiest Python-C
conversion tools don’t work. Also, I’ve concocted some simple, try-this-at-
home examples to illustrate the process. Finally, I’ve added a more real-life
example.

Note: In the following, C++ is used to mean both C and C++. The
Python-C API is written in C, but for the most part, but that can be called

242 9. DANSE Architecture and Engineering

seamlessly from C++. There’s only one item that must have C linkage, the
init function, described below.

9.3.1 Overview

Why write C++ extensions to Python? To reuse existing code, and to gain
better performance. A great deal of software has already been written in C
and C++ (not to mention FORTRAN), and, at least at the present, nothing
beats compiled languages for performance in the numerically intensive codes
that DANSE supports. Extending Python allows us to turn all that code into
building blocks for solutions. Libraries of extensions package those building
blocks into kits that users can adapt to solve their problems.

Of course you can do all that without Python, so why use it at all?
Python has an easier learning curve than C++, and it’s more flexible and
immediate, making it available to a wider set of users. Once a library of
extensions is available on a platform, users can call out to that library, mixing
and matching components and testing combinations, without the overhead
of compiling and linking. (This immediacy should not be underestimated.)
And with all its standard library packages, Python can be manipulated to do
some pretty amazing things that would be more difficult to realize in C++,
like parsing XML documents, setting up computations, etc.

Writing C++ extensions for Python can be learned in an afternoon, es-
pecially if there are some examples to follow.2 The idea is this: you have a
C++ class or function, and you’d like to make it callable from the Python
interpreter. You’ll need to (I) write some wrapper code in C++, and (II)
compile it into a C++ library that the Python interpreter can dynamically
load and use. You then typically (III.) write a Python module that mediates
between the Python user and this library. This makes life plush for those
users who don’t want to be bothered with the details of finding out what’s
in the library and how to call it. More importantly, it gives us the chance to
check inputs as soon as possible for errors. When a bad pointer is sent to the
C++ level, the results are disastrous (a core dump on a good day), so our
software can be made more robust if we handle the pointers ourselves.

It takes more care to create a library that is complete: catches exceptions,
checks that preconditions and postconditions have been met, and so on. These
2 If it’s so easy, why hasn’t someone written a program to write the wrappers

automatically? They have! Packages like the Simple Wrapper Interface Generator
(SWIG, http://www.swig.org) will do nearly all of the work for you. There are
arguments for and against automatic code-generators like SWIG, and I’ve worked
both ways. At the moment, writing the bindings is such an easy task, and I do so
relatively little of it, that I prefer to do it myself. Others no doubt feel differently,
and I have no interest in changing their minds. But even if you’re going to use
SWIG, or a similar library, there’s merit in putting in some time writing your
own wrappers to learn how and why things get done. Then you can judge well
for yourself which approach suits your situation.

9.3 Extending DANSE: Writing C++ Extensions to Python 243

are more advanced topics, covered in other parts of the book (SOMEDAY
NAME A FEW??). Low-level DANSE programmers will be expected to in-
corporate these techniques into their code, but first things first.

9.3.2 A Little More Detail

Here are those three easy steps again, in slightly more detail:

• Write the bindings. There are three essential components:
1. Wrapper function(s). (One for each function you want callable from

Python). The wrapper typically calls a function or a class method, or
it creates a heap object. Once you learn how to write one wrapper, you
know how to do it, because all wrappers do the same three things.

2. Method table. (One entry in the table for each function you want callable
from Python). The method table tells the Python interpreter which C++
functions it can call from the library.

3. init function. (One per module) This is the interpreter’s entry point into
the C++ library.

These three steps are accomplished with generous aid from the Python-C
extension API.

• Compile it. This is slightly platform dependent (Michael Aivazis’s system
for processing source code removes this platform dependence for UNIX
flavors, including cygwin; Windows is in the works). The goal is to compile
into a shared object library (unix) or a dynamically linked library (the
beloved Windows dll).

• Call it from Python. One typically writes a Python module that acts as a
layer between the user and the C++ library. By doing things like providing
Python classes that mirror the C++ classes, one can make the experience
quite similar. Or dissimilar. The choice is yours.

9.3.3 A Lot More Detail: Wrappers

Every wrapper function does three things:

a) Converts a Python object with the arguments to the C++ function into
C++ objects,

b) calls the C++ function,
c) converts the output to a Python object with the result and return it.

Let’s first run through these steps with numbers and strings, for which
there’s an immediate connection between Python and C++ types; we can
use a function, PyArg_ParseTuple(), which is built in to the API. Later
examples look at tasks like working with C++ class instances and using
aggregate Python types, such as dictionaries and lists.

244 9. DANSE Architecture and Engineering

Simple Example: PyArg ParseTuple, Py BuildValue
a) Convert arguments from Python to C++

To convert the Python arguments into C++ objects, first define variables of
the appropriate type, one for each C++ argument. Then pass the addresses
of these variables into PyArg_ParseTuple(). This function takes the args
tuple, pulls PyObject’s out of it, and converts them to C++ types according
to a format string.

Here are some examples:

//One integer:
int a;
int ok = PyArg_ParseTuple(args, "i",&a);
if(!ok) return o;
//Two integers
int a, b;
int ok = PyArg_ParseTuple(args, "i",&a, &b);
if(!ok) return 0;
//One integer, a string, two doubles
int anint;
char * astring;
double dub1, dub2;
int ok = PyArg_ParseTuple(args, "isdd", &anint, &astring,

&dub1, &dub2);
if(!ok) return 0;

A complete list of what can go into the format string is given in the exten-
sion documentation (look in the ext subdirectory of the doc directory in your
Python distribution, or look online at http://python.org/doc/current/ext/ext.html).
In the current (Oct. ’02) documentation, you want section 1.7, ”Extracting
Parameters in Extension Functions”.

PyArg_ParseTuple() checks the types of the objects in the tuple args
against the types given in the format string. If there’s a discrepancy, it sets
the exception context and returns 0 to our wrapper. If our wrapper detects
that, it returns 0 to the Python interpreter, which understands that to mean
failure, and raises an exception. So if you’re using PyArg_ParseTuple(),
most of the error checking is done for you! It is not idiot-proof, but it is
smart-friendly.

Once PyArg_ParseTuple has successfully returned, do any additional pro-
cessing or checking of the input data that’s appropriate. For instance, Python
does not have an unsigned integer type. With a C++ function that takes an
unsigned int, you’ll need to pass an int to PyArg_ParseTuple, check that the
int is greater than -1, and then convert it to an unsigned int.

b) Call your code

It’s your function, call it.

c) Convert output to a Python object, and return it

9.3 Extending DANSE: Writing C++ Extensions to Python 245

The API gives a function called Py_BuildValue. It returns a pointer to a
PyObject; it takes a format string and variables. The format strings are the
same as those used in

PyObject *py_result = Py_BuildValue("i", result);
or—

PyObject *py_result = Py_BuildValue("s", astring);
etc. What’s returned by Py_BuildValue is what the wrapper will return. One
note: don’t return 0; the interpreter will take this as sign of failure. You could,
of course, return a Python integer with value zero: Py_BuildValue("i",0).
You can specify more than one item to return, in which case Py_BuildValue
will place the items in a tuple.

Here’s a complete example of wrapping a function, “bogus”, that takes
a double, a string, and an int (in that order) and returns an int. We expect
that the arguments will come from Python in the order string, int, double.

static PyObject *wrap_bogus(PyObject *, PyObject * args){
//First, get the arguments from Python
int anint = 0;
double adub = 0;
char * astring = 0;
int ok = PyArg_ParseTuple(args,"sid",&astring, &anint, &adub);
if(!ok) return 0;
//do any checking of arguments here
//Second, make the function call
int result = bogus(adub, astring, anint);
//do any extra stuff you want with the return result here
//Third, build a Python object to return
return PyBuildValue("i",result);

}

Wrapping classes: PyCObject FromVoidPtr, PyCObject AsVoidPtr.

a) Creating C++ objects

Wrapping functions is well and good, but what about C++ classes? Python
can work with a C++ object by dynamically allocating it and holding onto
a pointer. That pointer can be passed back to subsequent wrappers that
can then invoke class methods on the object. The pointer is handled in
Python by a type PyCObject. To convert a pointer to a PyCObject, use
PyCObject_FromVoidPtr(). This API function takes two arguments: the void
pointer, and a pointer to a function that takes a void pointer and no return.
The purpose of the function is to delete the C++ object when nothing in the
Python session is paying attention to it any more.

We get the arguments to the constructor from the Python API, create the
object using new, and return a pointer to that object to the interpreter. Use
the API function PyCObject_FromVoidPtr() to create the Python object to
return to Python. Here’s an example with a real (if dull) class called Numbers:

class Numbers

246 9. DANSE Architecture and Engineering

{
public:
Numbers(int first, double second) : m_first(first), m_second(second){;}
~Numbers(void){;}
double NumMemberMult(void){return (double)m_first*m_second;}

private:
int m_first;
double m_second;

};

Here’s a wrapper that creates a new instance of Numbers:

PyObject *wrap_new_Numbers(PyObject *, PyObject* args){
//First, extract the arguments from a Python tuple
int arg1;
double arg2;
int ok = PyArg_ParseTuple(args,"id",&arg1,&arg2);
if(!ok) return 0;
//Second, dynamically allocate a new object
Numbers *newnum = new Numbers(arg1, arg2);
//Third, build a Python object to return
PyObject * py_newnum = PyCObject_FromVoidPtr(static_cast<void *>(newnum),
&DelNumbers);
return py_newnum;

}

Look familiar? This wrapper has essentially the same form as wrap_bogus().
That’s because ALL wrappers have essentially this form.

The pointer to the dynamically allocated object, newnum, goes out of
scope as soon as wrap_new_Numbers() returns. The only thing keeping this
from being the mega-classic memory leak is that the Python interpreter has
an object that will keep track of the address of the new object. The interpreter
keeps track of that object for us, and when we lose interest in it (when its
reference count goes to zero), the interpreter will call a C++ function to
delete the C++ object. So, the second slot in PyCObject_AsVoidPtr() is
a pointer to a function with return type void and one void argument. The
signature of PyCObject_AsVoidPtr() is:
PyObject * PyCObject_FromVoidPtr(void *, void (*DeleteFunction)(void*));

You must supply the function pointed to (in this example called DelNum-
bers). It has the delete corresponding to the new above. Here’s it is:

static void DelNumbers(void *ptr)
{

Numbers * oldnum = static_cast<Numbers *>(ptr);
delete oldnum;
return;

}

This strategy can be used for any dynamically allocated resource, such as file
handles or arrays.

Using the object

9.3 Extending DANSE: Writing C++ Extensions to Python 247

The user can’t actually do anything with the pointer in the Python layer,
except send it back to the C++ layer to do something else: call a C++
class method on it, or give it as an argument to another function. Here’s an
example of wrapping a class method.

#include <Python.h>...
PyObject *wrap_Numbers_MemberMult(PyObject *, PyObject* args)
{
// First, extract the PyCObject that has the
// Python version of the address
// from the args tuple
PyObject *pynum = 0;
int ok = PyArg_ParseTuple(args, "O", &pynum);
//"O" is for Object
if(!ok) return NULL;
//Convert the PyCObject to a void *
void * temp = PyCObject_AsVoidPtr(pynum);
//cast void pointer to Numbers pointer
Numbers * thisnum = static_cast<Numbers *>(temp);
//Can combine the two lines into one:
//Numbers *thisNum = static_cast<Numbers *>(
// PyCObject_AsVoidPtr(pynum));
//Second, make the function call
double result = thisnum->NumMemberMult();
//Third, build a Python object with the return value
return Py_BuildValue("d",result);

}

All you have to do is fish the PyCObject out of the tuple, extract the void
pointer to a C++ variable, cast it to the appropriate type, and use it; then
bundle up the result and send it back to the interpreter.

Working with composite types. What if you want to pass a Python
list of numbers to a C++ function? There’s no format code to pass to
PyArg_ParseTuple for lists. The solution is to extract the list from the args
tuple as a PyObject (format code: “O”). Then use the Python-C API func-
tions for working with lists to load the Python list, item-by-item, into a C++
array. Suppose our target function has the signature

double sum_some_numbers(double *numbers, int array_length)
Here’s some code that could wrap this function. Note that we have to take re-
sponsibility for error checking. We can set the exception using PyErr_SetString().
We can verify that Python objects are the type what we think they are by
Pytype Check().

#include <Python.h>
#include <valarray> // This example uses the std::valarray class....
PyObject *py_sum_some_numbers(PyObject *, PyObject* args)
{

PyObject *pyList;
int ok = PyArg_ParseTuple(args, "O", &pyList);
if(!ok) return 0;

248 9. DANSE Architecture and Engineering

//Did the user send a Python list?
int isList = PyList_Check(pyList);
if(!isList)
{

//If not, complain to the Python user and raise an exception:
PyErr_SetString(PyExc_TypeError, "You fool! That’s not a list!");
return 0;

}
//How many items are in the list?
int numNums = PyList_Size(pyList);
//Maybe you want to do something here if the size of the list is 0.
// Now transfer the contents of the list to an array
// valarray: this C++ standard library class is a great
// way to avoid memory leaks, and much more
std::valarray<double> nums(0.0, PyList_Size);
for(int i=0; i<numNums; i++)
{

//Extract the next object in the list:
PyObject *temp = PyList_GetItem(pyList, i);
// Was the list item a Python float? If not, quit.
// Note that we don’t need to worry about cleaning
// up the memory: nums will be automatically destroyed
// when execution exits the scope of nums.
if(!PyFloat_Check(temp))
{

//Just what was in that list?
PyErr_SetString(PyExc_TypeError, "You fool! That’s not a float";
return 0;

}
// Now convert the Python float to a double, and load
nums[i] = PyFloat_AsDouble(temp);

}
//Step 2: Call the function
double sum = sum_some_numbers(&nums[0], nums.size());
//Step 3: return result.
return Py_BuildValue("d", sum);

}

Sometimes you’ll want to return a Python object, such as a list. In this
case, you’ll have created a PyObject pointer at some point. You can return
that pointer directly. If you need to return several Python objects, you can
use Py_BuildValue() with the “O” format code.

The Python-C api is very complete and well-documented. Similar func-
tions exist for inserting objects into lists, and working with dictionaries, tu-
ples, modules, and so on. Consult Chapter 7 of the api reference. Hopefully,
these examples have given you the flavor for wrapping C++ functions.

9.3 Extending DANSE: Writing C++ Extensions to Python 249

9.3.4 A Lot More Detail: Method Table

The method table is sort of like a table of contents for the Python interpreter.
When it loads the library, it reads the method table to find pointers to the
functions in the library.

static PyMethodDef numbersMethods[] = {
{"PyNumbers", wrap_new_Numbers, METH_VARARGS,

"Create new Numbers object"},
{"PyNumbers_MembMult", wrap_Numbers_MemberMult, METH_VARARGS,

"Multiply Numbers object’s members"},
{NULL,NULL}

};

The name of the table must match the second argument in the init function.
Each function in the library gets an entry in the table, and each entry has
four components.

1. The string (”PyNumbers” or ”PyNumbers MemberMult”) is what you’ll
call from the interpreter.

2. The name wrap_whatever is the name of the corresponding C++ func-
tion.

3. METH_VARARGS indicates that one is using the “tuple named args” ap-
proach.

4. The final string will appear as the docstring for this function in the
Python layer.

The {NULL,NULL} marks the end of the table for the interpreter.

9.3.5 A Lot More Detail: Init Function

The final component in the bindings is the init function. This function has to
be named initname of library(). If the filename of the library is numbers.dll or
numbers.so, this function must be named initnumbers; if it’s numbers.dll,
then this function is named init_numbers. For this example, let’s call the
extension library numbers. The init function’s return type is void, and it
takes no arguments. It calls Py_InitModule(), which takes two arguments:
a string literal with the name of the library, and the name of the Methods
table. It must match the name of the Method table. Also, the function must
have C linkage, not C++, meaning the function must be declared extern ”C”
if you’re using a C++ compiler. Also, on Windows, the function must be
exported by the dll, hence the __declspec(dllexport). To keep some plat-
form independence, wrap this in a pre-processor conditional. This function
is executed when the library is loaded, so if there’s other initialization steps
you need to take, this is the place.

extern "C"
#ifdef WIN32 || _WIN32
__declspec(dllexport)

250 9. DANSE Architecture and Engineering

#endif
void init_numbers(void)
{

(void) Py_InitModule("_numbers", numbersMethods);
}

9.3.6 More Detail: Compile

Compiling the Numbers example under Linux. Here’s a way to com-
pile the Numbers example under Linux. You’ll need files with the Num-
bers source code (Numbers.cpp and Numbers.h), and the wrapper, Num-
bers bindings.cpp. I assume you’re using gcc; if not, you’ll need to modify
the compiler flags appropriately.

To compile, compile each source file:

gcc -I/usr/include/python2.2 -I. -c -fpic Numbers.cpp
gcc -I/usr/include/python2.2 -I. -c -fpic Numbers_bindings.cpp

and link them into a shared library:

gcc Numbers.o Numbers_bindgins.o -lm -lc -fpic -shared -o _numbers.so

In the compile lines, you’ll of course need to make sure that you’ve pointed
to the directory where your Python.h file lives. The ”-fpic” specifies position
independent code, ”-shared” a shared library that can be dynamically linked.

Once you’ve compiled numbers.so, move it into a place on your system’s
PYTHON PATH and go to town.

Compiling the Numbers example under Windows. Well, of course we
want all our ARCS modules to run under Linux/Unix, but for all those times
Windows needs a helping hand, here’s how to do it:

For working in Windows, it may be best to use MS Visual C++. Here’s
what you’d do to create a project and so on in VC7.

1. From the Start page select New Project.
2. From the Project Types, pick Visual C++ Projects, from the Templates,

choose Win32 project. Fill in the name for your library.
3. On the next window, pick Application Settings, and set Application Type

to DLL.
4. In the Solution Explorer,
• get rid of stdafx.cpp
• right-click on the name of the project, and choose Properties
• Under the C/C++/General folder, add the additional include directory

in which your distribution’s Python.h file resides.
• Under the Linker/General tab, set the output file to your project name.dll.

Note that everything up the “.dll” must be the same as what follows
“init” in the init_your_project_name function in the bindings. In
the Numbers example, we called that function init numbers (it’s the
last function in the file). So the dll has to be called numbers.dll. If the

9.3 Extending DANSE: Writing C++ Extensions to Python 251

name of the file and the init function don’t agree, the interpreter will
get lost.

5. In Solution Explorer, look in the file your project name.cpp– you’ll need
to get rid of that crap about APIENTRY DllMain. Better yet, just get
rid of the automatically generated code.

Now fill add the source files Numbers.cpp, Numbers bindings.cpp, etc. Build,
and when the your project name.dll appears in the output directory, move
it into your PYTHON PATH, and enjoy.

9.3.7 More Detail: Call it from Python

In keeping with the Numbers example used above, here’s a Python class
called Numbers. It’s a ”shadow class” for the C++ Numbers class. Pretty
much everything you can do with the C++ class can also be done with the
Python.

import _numbers
class Numbers:

def __init__(self, an_int, a_float):
#Check an_int
if type(an_int) != type(1):

raise TypeError, "Fool! an_int must be an integer"
#Check a_float
if type(a_float) != type(3.14159)

raise TypeError, "Fool! a_float must be a float"
self.this = numbers.PyNumbers(an_int, a_float)

def MemberMult(self):
return numbers.PyNumbers_MembMult(self.this)

If this were saved in a module named numbers.py (stored somewhere on
your PYTHON PATH), then an interpreter command line session might look
like

>>> import numbers
>>> n = numbers.Numbers(2,3.14)
New Numbers object created
>>> n.MemberMult()
6.280000000002
>>> n = 1

The variable n is the only thing keeping track of the Numbers object. When
we reassign n, the interpreter calls our bit of code from the C++ library that
deletes the object, preventing the resource leak.

So now the Python user has something like ”interpreted C++”. Pretty
cool, eh?

9.3.8 More realistic example

Let’s wrap a function from the NeXus API, NXopen, with all the bells and
whistles. This wrapper is part of a larger library that wraps the entire NeXus

252 9. DANSE Architecture and Engineering

C API. The latter, of course, is a simplified interface to the HDF libraries
that the NeXus standard currently uses.

Since this is one of several dozen libraries, we split the bindings up into
several files. The wrappers live in pairs of files, one pair for each major func-
tional group: file.h/file.cc for file level operations, group.h/group.cc for group
level, etc. Only two file level operations from the original NeXus C API are
in the Python NeXus API: NXopen and NXflush. Therefore, file.h looks like
the following:

#ifndef NeXus_file_h
#define NeXus_file_h
// Python bindings for file level operations:
// NXopen
extern char pyNeXus_NXopen__name__[];
extern char pyNeXus_NXopen__doc__[];
extern "C" PyObject * pyNeXus_NXopen(PyObject *, PyObject *args);
// NXflush
extern char pyNeXus_NXflush__name__[];
extern char pyNeXus_NXflush__doc__[];
extern "C" PyObject * pyNeXus_NXflush(PyObject *, PyObject *args);
#endif

This file will be included into the file that contains the methods table. Note
that in addition to the actual wrapper functions, we declare two char ar-
rays for the name and docstring. Defined in file.cc, these variables keep the
methods table neat (the docstrings in particular may get lengthy).

How do we implement the wrapper for NXopen? Begin with the signature
of NXopen, located in napi.h in the NeXus source distribution:

NX_EXTERNAL NXstatus CALLING_STYLE NXopen(CONSTCHAR * filename,
NXaccess access_method, NXhandle* pHandle);

The various types NXstatus, CONSTCHAR, NXaccess, and NXhandle are
defined in the NeXus C API header files; we need to track them down so we
can know what the Python user will have to give us in order to satisfy the
function call.

Searching through napi.h, we learn that NXstatus is a typedef for int,
CONSTCHAR is a typedef for char,3 NXaccess is an enumeration with members
like NXACC_READ, and NXhandle is a typedef for void *. We can’t map the
NXaccess enumeration directly into Python types, so we’ll expect a string
from the user; by comparing values of the string we’ll assign the proper value
to an NXaccess variable. As for the CONSTCHAR * filename, we can derive
that directly from a Python string.

What about the NXhandle *pHandle? This is interesting. Let’s open up
the NeXus C API source code and find out what exactly is done with that
void pointer. Reading through napi.c, we discover that NXopen dynamically
3 Prefering to not mislead the readers of our code, we might have chosen CON-

STCHAR as typedef const char.

9.3 Extending DANSE: Writing C++ Extensions to Python 253

allocates a structure of type NexusFunction, and that the NXhandle we pass
to NXopen becomes a handle to that object. In other words, pHandle is an
output of NXopen, not an input. We don’t need to trouble the Python user
with giving us a NXhandle object; instead, we’ll give them one.

Expecting two inputs, both Python strings, we write the first few lines of
the wrapper as follows:

PyObject * pyNeXus_NXopen(PyObject *, PyObject *args)
{

char *filename = 0;
char *acc_method = 0;
int ok = PyArg_ParseTuple(args, "ss", &filename, &acc_method);
if(!ok) return 0;

and we’ve got what we needed from the Python user. Or do we? We owe it to
ourselves to check the inputs from the user. This could be done either here or
in the Python layer. Checking that the inputs are Python strings has already
been performed by PyArg_ParseTuple. There are two questions about the
filename: is it the name of an actual file, and is it the name of an appropriate
HDF file? The first question is easily answered in a platform independent way
in Python. The second can only be answered by essentially doing what we do
anyway in NXopen. We need to inspect the value of acc_method anyway to
convert it to the appropriate member of the NXaccess enumeration. We can
do that easily using the C++ standard library class string:

//Check access_method:
std::string methstring(acc_method);
NXaccess mode;
if (methstring == "r") mode = NXACC_READ;
else if(methstring == "rw") mode = NXACC_RDWR;
else if(methstring == "c") mode = NXACC_CREATE;
else if(methstring == "c4") mode = NXACC_CREATE4;
else if(methstring == "c5") mode = NXACC_CREATE5;
else
{

std::string errstr("NeXus_bindings.cc pyNeXus_NXopen(): ");
errstr += "unrecognized access_method string.";
PyErr_SetString(PyExc_ValueError, errstr.c_str());
return 0;

}

Here we’ve used PyErr_SetString to set the (Python) exception con-
text if we don’t recognize what the Python user wants, and then forced the
interpreter to raise the exception by returning 0.

At this point, we’re nearly ready to call NXopen—we only need to declare
a variable of type NXhandle:

NXhandle handle;
NXstatus status = NXopen(filename, mode, &handle);
if(status != NX_OK)
{

std::string errstr("NeXus_bindings.cc pyNeXus_NXopen(): ");

254 9. DANSE Architecture and Engineering

errstr += "NXopen failed.";
PyErr_SetString(PyExc_IOError, errstr.c_str());
return 0;

}

If we get to this stage, we’re almost ready to return. Since we are not
content with any NXstatus but NX_OK, all we need to do is to return the
NXhandle initialized by NXopen. But there’s another issue here: NXopen al-
locates a resource, so we must release that resource when we’re finished.
As with the discussion of allocating C++ objects (§ 9.3.3), we can use
PyCObject_FromVoidPtr and a helper function to release the resource when
the Python user is finished:

return PyCObject_FromVoidPtr(handle, pyNeXus_NXclose);
}

The helper function (declared static to avoid) wraps NXclose, which in
turn disposes of the resources allocated in NXopen:

static void pyNeXus_NXclose(void *file)
{

NXhandle oldnxh = static_cast<NXhandle >(file);
NXclose(&oldnxh);
return;

}

Finally, we define the name and docstring for this function. The name should
be something sensible, while the docstring is an opportunity to incorporate
a little documentation.

char pyNeXus_NXopen__name__[] = "nxopen";
char pyNeXus_NXopen__doc__[] = "Open a nexus file\n"
"2 Arguments: filename, access_method\n"
"Input: \n"
" filename (Python string)\n"
" access_method (Python string)\n"
" allowed values: r (read only)\n"
" rw (read/write)\n"
" c (create)\n"
" c4 (create HDF 4)\n"
" c5 (create HDF 5)\n"
"Output: (return)\n"
" PyCObject holding pointer to NXhandle\n"
"Exceptions: ValueError, IOError\n";

9.4 Data Stream Protocols

How much should we say about this?

Further Reading 255

Further Reading

The contents of the following are described in the Bibliography.
H. A. Abelson and G. J. Sussman: Structure and Interpretation of Computer
Programs (MIT Press, Cambridge Mass, 2001).
Mark Lutz and David Ascher: Learning Python (O’Reilly & Associates, Inc.
1999).
Bernard D. Cullity: Elements of X-Ray Diffraction, (Addison-Wesley, Read-
ing, MA 1978).

1. B. Fultz and J.M. Howe, Transmission Electron Microscopy and Diffractometry
of Materials (Second Edition, Springer–Verlag, Heidelberg, 2002).

2. T. Egami and S.J.L. Billinge, Underneath the Bragg Peaks: Structural analysis
of complex materials (Pergamon Press Elsevier, Oxford England, 2003).

3. M. Aivazis, W.A. Goddard, D. Meiron, M. Ortiz, J. Pool, and J. Shepherd,
“A Virtual Test Facility for Simulating the Dynamic Response of Materials,”
Computing in Science and Engineering 2, 42 (2000).

4. TeraGrid http://www.teragrid.org/
5. Center for Advanced Computing Research http://www.cacr.caltech.edu/
6. Python Programming Language http://www.python.org/
7. M. Lutz and D. Ascher, Learning Python (O’Reilly, Sebastopol, CA 1999).
8. Extensible Markup Language (XML) http://www.w3.org/XML/
9. E.T. Ray, Learning XML (O’Reilly, Sebastopol, CA 2001).
10. The MathWorks - MATLAB http://www.mathworks.com/products/matlab/
11. Research Systems, Inc. - IDL Software http://www.rsinc.com/idl/index.asp
12. WaveMetrics IGOR Pro http://www.wavemetrics.com/Products/IGORPro/IgorPro.html
13. Extending and Embedding the Python Interpreter

http://www.python.org/doc/current/ext/ext.html
14. Python/C API Reference Manual http://www.python.org/doc/current/api/api.html
15. VASP Group, Theoretical Physics Department, Vienna

http://cms.mpi.univie.ac.at/vasp/
16. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, “Itera-

tive minimization techniques for ab initio total-energy calculations - molecular-
dynamics and conjugate gradients”, Rev. Mod. Phys. 64 1045-1097 (1992);
CASTEP http://www.tcm.phy.cam.ac.uk/castep/

17. X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese,
L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami,
P. Ghosez, J.Y. Raty, D.C. Allan, “First-principles computation of material
properties: the ABINIT software project”, Comp. Mater. Sci. 25 478-492 (2002);
ABINIT HOME PAGE http://www.abinit.org/

18. WIEN 2k http://www.wien2k.at/
19. Gaussian.Com http://www.gaussian.com/
20. F.P. Brooks, Jr., The Mythical Man-Month – Essays on Software Engineering,

Anniversary Edition, (Addison-Wesley, Reading, Mass 1995).
21. M.A.G. Aivazis and B. Fultz, “DANSE – Distributed

Data Analysis for Neutron Scattering Experiments”
http://arcs.cacr.caltech.edu:8000/arcs/uploads/1/danse.pdf

22. H. Abelson and G.J. Sussman, Structure and Interpretation of Computer Pro-
grams (McGraw–Hill/MIT Press, Blacklick, Ohio, Cambridge, Mass., 1996).

23. C.A. Jones and F.L. Drake, Jr., Python & XML, (O’Reilly, Sebastopol, CA
2002).

24. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns (Addison–
Wesley, Reading, Mass., 1995).

25. J. Lakos, Large Scale C++ Software Design, (Addison-Wesley, Boston, 1996).
26. ViPEr: a visual programming environment for Python

http://www.scripps.edu/ stoffler/proj/ViPEr/viper.html
27. IPNS - Computing - Web Project(ISAW)

http://www.pns.anl.gov/computing/isaw/
28. H.M. Rietveld, “Line profiles of neutron powder diffraction peaks for structure

refinement,” Acta Cryst. 22, 151 (1967). H.M. Rietveld, “A profile refinement
method for nuclear and magnetic structures.” J. Appl. Cryst. 2, 65 (1969).

29. McStas - A neutron ray-trace simulation package http://neutron.risoe.dk/
30. W.-T. Lee and X.-L. Wang, “IDEAS, a general-purpose software for sim-

ulating neutron scattering instruments,” Neutron News, 13 30-34 (2002).
www.sns.gov/ideas

258

31. These classic books begin with structure: J.W. Christian Theory of Transfor-
mations in Metals and Alloys (Pergamon, Oxford 1975). C. Kittel, Introduction
to Solid State Physics (J. Wiley & Sons, New York 1971).

32. A. Le Bail, H. Duroy, J. L. Fourquet, “Ab initio Structure Determination of
LiSbWO6 by X-ray Powder Diffraction. ” mater. res. Bull. 23, 447-452 (1988).

33. G.S. Pawley “Unit Cell Refinement from Powder Diffraction Scans,” J. Appl.
Cryst. 14, 357-361 (1981).

34. V. Gerold and J. Kern, “The Determination of Atomic Interaction Energies in
Solid-Solutions from Short-Range Order Coefficients – An Inverse Monte-Carlo
Method,” Acta Metall 35, 393-399 (1987).

35. A.K. Soper, “Empirical potential Monte Carlo simulation of fluid structure.”
Chemical Phys. 202 295-306 (1996).

36. S.J.L. Billinge and M.G. Kanatzidis, “Beyond Crystallography: the study of dis-
order, nanocrystallinity and crystallographically challenged materials,” Chem.
Commun., in press.

37. R.B. Von Dreele, P.W. Stephens, G.D. Smith and R.H. Blessing, “The first pro-
tein crystal structure determined from high-resolution X-ray powder diffraction
data: a variant of T3R3 human insulin-zinc complex produced by grinding,”
Acta Crystallogr. D 56 1549-1553 (2000).

38. D. Dragoi, E. Üstündag, B. Clausen and M.A.M. Bourke, “Investigation of ther-
mal residual stresses in tungsten-fiber/bulk metallic glass matrix composites,”
Scripta Mater. 45, 245-252 (2001).

39. B. Clausen, S.Y. Lee, E. Üstündag, C.C. Aydiner, R.D. Conner and M.A.M.
Bourke, “Compressive yielding of tungsten fiber reinforced bulk metallic glass
composites,” Scripta Mater. 49, 123-128 (2003).

40. B. Clausen, T. Lorentzen and T. Leffers, “Self-consistent modeling of the plastic
deformation of FCC polycrystals and its implications for diffraction measure-
ments of internal stresses,” Acta Mater. 46, 3087-3098 (1998).

41. R.C. Rogan, E. Üstündag, B. Clausen and M.R. Daymond, “Texture and strain
analysis of the ferroelastic behavior of Pb(Zr,Ti)O3 by in situ neutron diffrac-
tion,” J. Appl. Phys. 93, 4104-4111 (2003).

42. Y.D. Wang, H. Tian, A.D. Stoica, X.-L.Wang, P.K. Liaw, and J.W. Richardson,
“Evidence on the Development of Large Grain-Orientation-Dependent Residual
Stresses in a Cyclically-Deformed Alloy,” Nature Materials, 2, 103-106 (2003).

43. E. Üstündag, B. Clausen and M.A.M. Bourke, “Neutron diffraction study of
the reduction of NiAl2O4,” Appl. Phys. Lett. 76, 694-696 (2000).

44. M.A.M. Bourke, D.C. Dunand and E. Üstündag, “SMARTS – a spectrometer
for strain measurement in engineering materials,” Appl. Phys. A 74, S1707-
S1709 (2002).

45. I.C. Noyan and J.B. Cohen, Residual Stress: Measurement by Diffraction and
Interpretation, Springer–Verlag, New York (1987).

46. D. Chidambarrao, Y.C. Song and I.C. Noyan, “Numerical simulation of the X-
ray stress analysis technique in polycrystalline materials under elastic loading,”
Metall. and Mater. Trans. A 28, 2515-2525 (1997).

47. X.-L. Wang, Y.D. Wang, and J.W. Richardson, “Experimental Error due to
Displacement of Sample in Time-of-flight Diffractometry,” J. Appl. Cryst. 35,
533-537 (2002).

48. D.C. Montgomery, Design and Analysis of Experiments, 5th ed., John Wiley
& Sons, New York (2001).

49. P.J. Withers, M.R. Daymond and M.W. Johnson, “The precision of diffraction
peak location,” J. Appl. Cryst. 34, 737-743 (2001).

50. ABAQUS User Manual, version 6.3, Hibbitt, Karlsson and Sorensen, Inc., 2002.
51. P.R. Dawson, “Computational crystal plasticity,” Int. J. Solids and Structures

37, 115-130 (2000).
52. A. Guinier, X-ray Diffraction in Crystals, imperfect Crystals, and Amorphous

Bodies (Dover, Mineola, NY 1994).

259

53. P.-G. de Gennes Scaling Concepts in Polymer Physics (Cornell University Press,
Ithaca, NY, 1979).

54. L. Liebler, “Theory of Microphase Separation in Block Co-Polymers,” Macro-
molecules 13, 1602-1617 (1980).

55. E. W. Cochran, D.C. Morse, and F.S. Bates “Design of ABC triblock copoly-
mers near the ODT with the random phase approximation,” Macromolecules
36, 782-792 (2003).

56. D.I. Svergun and M.H.J Koch “Small-angle scattering studies of biological
macromolecules in solution,” Reports on Progress in Physics 66 1735-1782
(2003).

57. M.E. Wall, S.C. gallagher, C.S. tung, and J. Trewhella, “A molecular model of
the troponin C/troponin I interaction using constraints from X-ray crystallog-
raphy, NMR neutron scattering, and cross-linking,” Biophysical Journal 78(1)
366A (2000).

58. P. Chacon, F. Moran, J.F. Diaz, E. Pantos, and J.M. Andreu, “Low-resolution
structures of proteins in solution retrieved from X-ray scattering with a genetic
algorithm,” Biophysical Journal 74(6) 2760-2775 (1998).

59. G.W. Lynn, M.V. Buchanan, P.D. Butler, L.J. Magid, and G.D. Wignall, “New
high-flux small-angle neutron scattering instrumentation and the center for
structural and molecular biology at Oak Ridge National Laboratory,” J. Appl.
Cryst. 36 829-831 (2003).

60. S. Krueger, “Neutron reflection from interfaces with biological and biomimetic
materials,” Current Opinion in Colloid & Interface Science 6, 111 (2001).

61. M.R. Fitzsimmons, S.D. Bader, J.A. Borchers, G.P. Felcher, J.K. Fur-
dyna, A. Hoffmann, J.B. Kortright, Ivan K. Schuller, T.C. Schulthess,
S.K. Sinha, M.F. Toney, D. Weller, and S. Wolf, “Neutron scatter-
ing studies of nanomagnetism and artificially structured materials,”
Journal of Magnetism and Magnetic Materials, in press. Preprint at
http://www.ncnr.nist.gov/programs/reflect/rp/magnetism/nanomag 21july.pdf.

62. S.K. Sinha, E.B. Sirota, S. Garoff, and H.B. Stanley, “X-ray and neutron scat-
tering from rough surfaces,” Phys. Rev. B 38, 2297 (1988); R. Pynn, Neutron
scattering by rough surfaces at grazing incidence. Phys. Rev. B 45, 602 (1992).

63. B.P. Toperverg, “Specular reflection and off-specular scattering of polarized
neutrons,” Physica B 297, 160 (2001). B. Toperverg, O. Nikonov, V. Lauter-
Pasyuk, and H.J. Lauter, “Towards 3D polarization analysis in neutron re-
flectometry,” Physica B 297, 169 (2001). A. Rühm, B. P. Toperverg, and H.
Dosch, “Supermatrix approach to polarized neutron reflectivity from arbitrary
spin structures,” Phys. Rev. B 60, 16073 (1999). V. Lauter-Pasyuk, H.J. Lauter,
B.P. Toperverg, L. Romashev and V. Ustinov, “Transverse and lateral struc-
ture of the spin-flop phase in Fe/Cr antiferromagnetic superlattices,” Phys. Rev.
Lett. 89, 167203 (2002).

64. For example, Bede REFS 4.0 http://www.bede.co.uk/overview.php?overviewID=1015939212.63555
65. J.F. Ankner and C.F. Majkrzak, “Subsurface profile refinement for neutron

specular reflectivity,” Neutron Optical Devices and Appl. 1738, 260 (1992).
66. N.F. Berk and C.F. Majkrzak, “Using parametric B splines to fit specular

reflectvities,” Phys. Rev. B 51, 11296 (1995).
67. S.W. Lovesey, Theory of neutron scattering from condensed matter Vol. 1

(Clarendon Press, Oxford, 1984).
68. G. Shirane, S.M. Shapiro and J.M. Tranquada, Neutron scattering with a triple

axis spectrometer (Cambridge Univ. Press, Cambridge, 2002).
69. G.L. Squires, Introduction to the theory of thermal neutron scattering (Cam-

bridge Univ. Press, Cambridge, 1978), reprinted by Dover, Mineola, NY, 1996.
70. K. Sköld, D.L. Price, “Neutron scattering,” in Methods of Experimental Physics

Vol. 23, R. Celotta and J. Levine, Eds. (Academic Press, Orlando, 1986).

260

71. A.F. Yue, I. Halevy, A. Papandrew, P.D. Bogdanoff, B. Fultz, W. Sturhahn,
E.E. Alp, and T.S. Toellner, “Mass Effects on Optical Phonons in L12-Ordered
Pt573 Fe and Pd57

3 Fe,” Hyperfine Interact. 141, 249 (2002).
72. P. D. Bogdanoff, T. Swan–Wood, and B. Fultz, “The phonon entropy of alloying

and ordering of Cu-Au,” Phys. Rev. B 68 (1): art. no. 014301 July 1, 2003.
Peter D. Bogdanoff, “The Phonon Entropy of Metals and Alloys: The effects of
thermal and chemical disorder” Ph.D. Thesis California Institute of Technology,
Nov. 20, 2001.

73. G.J. Kearley, “A Profile-Refinement Approach for Normal-Coordinate Analyses
of Inelastic Neutron-Scattering Spectra,” J. Chem. Soc.-Faraday Trans. II 82
41, (1986).

74. S. Kasuriya, S. Namuangruk, P. Treesukol, M. Tirtowidjojo, and J. Limtrakul,
“Adsorption of Ethylene, Benzene, and Ethylbenzene over Faujasite Zeolites
Investigated by the ONIOM Method,” J. Catalysis 219 320 (2003).

75. H.V. Brand, L.A. Curtiss, L.E. Iton, F. R. Trouw and T.O. Brun, “Theoretical
and Inelastic Neutron-Scattering Studies of Tetraethylammonium Cation as a
Molecular Sieve Template,” J. Phys. Chem. 98 1293 (1994).

76. B.S. Hudson, J.S. Tse, M.Z. Zgierski, S.F. Parker, D.A. Braden, and C. Mid-
dleton, “The Inelastic Incoherent Neutron Spectrum of Crystalline Oxamide:
Experiment and Simulation of a Solid,” Chem. Phys. 261 249 (2000).

77. B. Fultz, T. Kelley, J.-D. Lee, O. Delaire, T. Swan–Wood and M. Aivazis, Exper-
imental Inelastic Neutron Scattering http://arcs.caltech.edu:8000/arcs/1.

78. T.H. Dunning, R.J. Harrison, D. Feller, and S.S. Xantheas, “Promise and
challenge of high-performance computing, with examples from molecular mod-
elling”, Phil. Trans. R. Soc. London A 360, 1079 (2002).

79. Scientific Computing and Imaging Institute
http://software.sci.utah.edu/scirun.html

80. NeXus Data Format Home Page http://www.neutron.anl.gov/nexus/
81. P. R. Bevington and D. Keith Robinson, Data Reduction and Error Analysis

for the Physical Sciences

A. Appendix

A.1 Convolutions and Correlations

A.1.1 Convolution Theorem

It is easiest to explain convolutions is in terms of a broadening of a sharp peak
caused by making a measurement with a blurry instrument. The instrumental
broadening function is f(k).1 We seek the true specimen diffraction profile
g(k). What we actually measure with our diffractometer is the convolution
of f(k) and g(k), denoted h(K) (where K is the shift of the detector across
the diffraction intensity). Deconvolution will require the Fourier transforms
of f(k), g(k), h(K):

f(k) =
∑
n

F (n) ei2πnk/l equipment, (A.1)

g(k) =
∑
n′

G(n′) ei2πn′k/l specimen, (A.2)

h(K) =
∑
n′′

H(n′′) ei2πn′′K/l measurement. (A.3)

Note that l has units of inverse distance, so n/l is a real space variable. The
range in k of the Fourier series is the interval −l/2 to +l/2 , which includes
all features of a diffraction peak.2 The convolution of f and g is defined as:

h(K) =

∞∫
−∞

f(K − k) g(k) dk . (A.4)

We must choose an interval so that that f and g vanish outside the range
± l/2, so we can change the limits of integration from ± ∞ to ± l/2. Sub-
stitute (A.1) and (A.2) into (A.4):

h(K) =

l/2∫
−l/2

∑
n

F (n) ei2πn(K−k)/l
∑
n′

G(n′) ei2πn′k/l dk . (A.5)

1 Measurements are typically in scattering angle, which is interpretable as a k-
space variable.

2 We don’t care about f(k) and g(k) outside this interval, but with (A.1)–(A.3)
these Fourier transforms repeat themselves with a period of l. We confine our-
selves to one period, and require that f and g vanish at its ends.

262 A. Appendix

We rearrange summations over the independent variables n and n′, and re-
move from the integral all factors independent of k:

h(K) =
∑
n′

∑
n

G(n′)F (n) ei2πnK/l

l/2∫
−l/2

ei2π(n′−n)k/l dk . (A.6)

Now we employ the orthogonality condition3:
l/2∫

−l/2

ei2π(n′−n)k/ldk =
{
l if n′ = n

0 if n′ 6= n

}
. (A.7)

With the orthogonality condition of (A.7), the double sum in (A.6) is reduced
to a single sum:

h(K) = l
∑
n

G(n)F (n) ei2πnK/l . (A.8)

Compare (A.8) to the definition for h(K) in (A.3). We see that that the
Fourier coefficients H(n′′) are proportional to the product of G(n) and F (n):

l G(n)F (n) = H(n) . (A.9)

By comparing (A.4) and (A.9), we see that a convolution in k-space is
equivalent to a multiplication in real space (with variable n/l). The converse
is also true; a convolution in real space is equivalent to a multiplication in
k-space. This important result is the convolution theorem.

A.1.2 Deconvolutions

Equation (A.9) shows how to perform the deconvolution of f(k) from h(K);
perform a division in n-space. Specifically, when we have the full sets of
Fourier coefficients {F (n)} and {H(n)}, we perform a division in n-space for
each Fourier coefficient:

G(n) =
1
l

H(n)
F (n)

. (A.10)

We obtain each F (n′) by multiplying both sides of (A.1) by exp(−i2πn′k/l)
and integrating over k:

l/2∫
−l/2

f(k) e−i2πn′k/ldk =
∑
n

F (n)

l/2∫
−l/2

ei2π(n−n′)k/ldk . (A.11)

3 Verified by writing the exponential as cos(2π(n′ − n)k/l) + i sin(2π(n′ − n)k/l).
The sine integration vanishes by symmetry. The cosine integration gives l[2π(n′−
n)]−1[sin(π(n′ − n))− sin(π(n′ − n))], which = 0 when n′ − n 6= 0. In the case
when n′ − n = 0, the integrand in (A.7) equals 1, so the integration gives l.

A.2 Fourier Transform of Screened Coulomb Potential 263

The orthogonality relationship of (A.7) causes the right-hand-side of (A.11)
to equal zero unless n = n′. Equation (A.11) therefore becomes:

1
l

l/2∫
−l/2

f(k) e−i2πn′k/ldk = F (n′) . (A.12)

The Fourier coefficients H(n) are obtained the same way. The simple division
of Fourier coefficients in (A.10) then provides the set of Fourier coefficients for
the true specimen profile, {G(n)}. If we then use (A.2) to take the Fourier
transform of the {G(n)} from (A.10), we obtain g(k), the true specimen
diffraction profile.

A.2 Fourier Transform of Screened Coulomb Potential

In this subsection we calculate the Fourier transform of a “screened Coulomb”
potential, a result that is useful in calculations of form factors of atoms for
example. This screened Coulomb potential, V(r), is:

V (r) = −Ze
2

r
e−r/r0 . (A.13)

The exponential factor accounts for the screening of the nuclear charge by the
atomic electrons, and r0 is an effective Bohr radius for the atom. Interestingly,
the exponential decay also facilitates the mathematics of working with a
potential that is otherwise strong at very large distances.

We now use the first Born approximation, (2.54), to calculate the atomic
scattering factor, f (∆k), as the Fourier transform of V (r) :

fel(∆k) = − m

2π~2

∫
all space

e−i∆k·r V(r) d3r . (A.14)

Substituting the potential (A.13) into (A.14):

fel(∆k) =
mZe2

2π~2

∫
all space

e−i∆k·r e−r/r0

r
d3r . (A.15)

The integral, I (∆k, r0), in (A.15) occurs in other contexts, so we pause
to solve it.

I (∆k, r0) ≡
∫

all space

e−i∆k·r e−r/r0

r
d3r , (A.16)

which is the 3-dimensional Fourier transform of the screened Coulomb po-
tential (A.13). It is natural to use spherical coordinates:

264 A. Appendix

I (∆k, r0) =

∞∫
r=0

π∫
θ=0

2π∫
φ=0

e−i∆k·r e−r/r0

r
r2 sinθ dθ dφdr . (A.17)

The trick for working with the exponential in (A.17), e−i∆k·r, is to align
the vector ∆k along the z-axis so that ∆k · r = ∆kz. Also, since z = r cosθ:

dz = −r sinθ dθ . (A.18)

The limits of integration are changed as:

θ = 0 =⇒ z = r , (A.19)
θ = π =⇒ z = −r . (A.20)

With the substitution of (A.18)–(A.20) into (A.17):

I (∆k, r0) =

∞∫
r=0

−r∫
z=r

2π∫
φ=0

e−i∆kze−r/r0dφ(−dz)dr , (A.21)

I (∆k, r0) = 2π

∞∫
r=0

r∫
z=−r

e−i∆kze−r/r0dz dr . (A.22)

Writing the exponential as e−i∆kz = cos(∆kz)− i sin(∆kz), the z-integration
of the sine function vanishes by symmetry in the interval −r to +r, and the
cosine integral is:

r∫
z=−r

cos(∆kz) dz =
+2
∆k

sin(∆kr) , (A.23)

which does not depend on the direction ∆̂k. Using (A.23) for the z-
integration in (A.22), we obtain:

I (∆k, r0) =
4π
∆k

∞∫
r=0

sin(∆kr) e−r/r0dr . (A.24)

Equation (A.24) is the Fourier transform of a decaying exponential.
This integral can be solved by twice integrating by parts.4 The result is
a Lorentzian function:

∞∫
r=0

sin (∆kr) e−r/r0dr =
∆k

∆k2 + 1
r20

. (A.25)

4 Defining U ≡ e−r/r0 and dV ≡ sin(∆kr) dr, we integrate by parts:R
UdV = UV −

R
V dU . The integral on the right hand side is evaluated as:

(∆kr0)
−1 R ∞

r=0
cos(∆kr) e−r/r0dr, which we integrate by parts again to obtain:

− (∆kr0)
−2 R ∞

r=0
sin(∆kr) e−r/r0dr. This result can be added to the

R
UdV on

the left hand side to obtain (A.25).

A.2 Fourier Transform of Screened Coulomb Potential 265

We substitute the result (A.25) into (A.24), completing the evaluation of
(A.16):

I (∆k, r0) =
∫

all space

e−i∆k·r e−r/r0

r
d3r =

4π
∆k2 + 1

r20

. (A.26)

For later convenience, we now obtain a related result. The use of an ex-
ponential screening factor to perform a Fourier transform of the Coulomb
potential is a useful mathematical trick. By letting r0 →∞, we suppress the
screening of the Coulomb potential, so e−r/r0 = 1 in (A.13). The Fourier
transform of this bare Coulomb potential, with its mathematical form of 1/r,
is obtained easily from (A.26):∫

all space

e−i∆k·r 1
r

d3r =
4π
∆k2

. (A.27)

266 A. Appendix

A.3 Fundamental and Derived Constants

Fundamental Constants

~ = 1.0546× 10−27 erg·sec = 6.5821× 10−16 eV·sec
kB = 1.3807× 10−23 J/(atom·K) = 8.6174× 10−5 eV/(atom·K)
R = 0.00198 kcal/(mole·K) = 8.3145 J/(mole·K) (gas constant)
c = 2.998× 1010 cm/sec (speed of light in vacuum)
me = 0.91094× 10−27 g = 0.5110 MeV·c−2 (electron mass)
mn = 1.6749× 10−24 g = 939.55 MeV·c−2 (neutron mass)
NA = 6.02214× 1023 atoms/mole (Avogadro constant)
e = 4.80× 10−10 esu = 1.6022× 10−19 coulomb
µ0 = 1.26× 10−6 henry/m
ε0 = 8.85× 10−12 farad/m

a0 = ~2/(mee
2) = 5.292× 10−9 cm (Bohr radius)

e2/(mec
2) = 2.81794× 10−13 cm (classical electron radius)

e2/(2a0) = R (Rydberg) = 13.606 eV (K-shell energy of hydrogen)
e~/(2mec) = 0.9274× 10−20 erg/oersted (Bohr magneton)
~2/(2me) = 3.813× 10−16 eV s cm−2

Definitions

1 becquerel (B) = 1 disintegration/second
1 Curie = 3.7× 1010 disintegrations/second

radiation dose:
1 roentgen (R) = 0.000258 coulomb/kilogram
Gray (Gy) = 1 J/kG

Sievert (Sv) is a unit of “radiation dose equivalent” (meaning that doses of
radiation with equal numbers of Sieverts have similar biological effects, even
when the types of radiation are different). It includes a dimensionless quality
factor, Q (Q∼1 for x-rays, 10 for neutrons, and 20 for α-particles), and energy
distribution factor, N. The dose in Sv for an energy deposition of D in Grays
[J/kG] is:

Sv = Q×N×D [J/kG]
Rad equivalent man (rem) is a unit of radiation dose equivalent approximately
equal to 0.01 Sv for hard x-rays.

1 joule = 1 J = 1 W·s = 1 N·m = 1 kg·m2·s−2

1 joule = 107 erg
1 newton = 1 N = 1 kg·m·s−2

1 dyne = 1 g·cm·s−2 = 10−5 N
1 erg = 1 dyne·cm = 1 g·cm2·s−2

1 Pascal = 1 Pa = 1 N·m−2

1 coulomb = 1 C = 1 A·s
1 ampere = 1 A = 1 C/s

A.3 Fundamental and Derived Constants 267

1 volt = 1 V = 1 W·A−1 = 1 m2·kg·A−1·s−3

1 ohm = 1 Ω = 1 V·A−1 = 1 m2·kg·A−2·s−3

1 farad = 1 F = 1 C·V−1 = 1 m−2·kg−1·A2·s4
1 henry = 1 H = 1 Wb·A−1 = 1 m2·kg·A−2·s−2

1 tesla = 1 T = 10, 000 gauss = 1 Wb·m−2 = 1 V·s·m−2 = 1 kg·s−2·A−1

Conversion Factors

1 Å = 0.1 nm = 10−4 µm = 10−10 m
1 b (barn) = 10−24 cm2

1 eV = 1.6045× 10−12 erg
1 eV/atom = 23.0605 kcal/mole = 96.4853 kJ/mole
1 cal = 4.1840 J
1 bar= 105 Pa
1 torr = 1 T = 133 Pa
1 kG = 5.6096× 1029 MeV·c−2

Useful Facts

energy of 1 Å photon = 12.3984 keV
hν for 1012 Hz = 4.13567 meV
1 meV = 8.0655 cm−1

temperature associated with 1 eV = 11, 600 K
lattice parameter of Si (in vacuum at 22.5◦C) = 5.431021 Å

Neutron Wavelengths, Energies, Velocities

En = 81.81λ−2 (energy-wavelength relation for neutrons [meV, Å])
λn = 3955.4/vn (wavelength-velocity relation for neutrons [Å, m/s])
En = 5.2276×10−6 v2

n (energy-velocity relation for neutrons [meV, m/s])

Some X-Ray Wavelengths [Å]
Element Kα Kα1 Kα2 Kβ1
Cr 2.29092 2.28962 2.29351 2.08480
Co 1.79021 1.78896 1.79278 1.62075
Cu 1.54178 1.54052 1.54433 1.39217
Mo 0.71069 0.70926 0.71354 0.632253
Ag 0.56083 0.55936 0.56377 0.49701

Relativistic Electron Wavelengths

For an electron of energy E [keV] and wavelength λ [Å]:

λ = h
[
2meE

(
1 +

E

2mec2

)]−1/2

=
0.3877

E1/2 (1 + 0.9788× 10−3E)1/2

kinetic energy≡ T = 1
2mev

2 = 1
2E

1+γ
γ2

268 A. Appendix

Table A.1. Parameters of high-energy electrons

E [keV] λ [Å] γ v [c] T [keV]
100 0.03700 1.1957 0.5482 76.79
120 0.03348 1.2348 0.5867 87.94
150 0.02956 1.2935 0.6343 102.8
200 0.02507 1.3914 0.6953 123.6
300 0.01968 1.587 0.7765 154.1
400 0.01643 1.7827 0.8279 175.1
500 0.01421 1.9785 0.8628 190.2
1000 0.008715 2.957 0.9411 226.3

Index

CV , 109
Cp, 109
S(Q, E), 231
γ-radiation, 153
FORTRAN, 241

Absorption, 191
absorption, 169, 179
abstraction, 8
accelerator, 141
actor, 18
anharmonic, 105
annealing (simulated), 130
annihilation, 47, 82
Appendicies – tables and charts, 261
application program, 22
architecture, 234
ARCS, 173
– alpha software, 16
array kluge, 221
atom
– as point, 48, 66
atomic displacement disorder, 56
atomic form factor
– screened Coulomb potential, 263
attenuation of beam, 166
autocorrelation function, 49
autocorrelation functions, 73
Avogadro constant, 266

background, 85, 149, 177, 181
bar, 267
barn, 267
basis functions
– closure, 81
becquerel, 266
Beowulf cluster, 239
binwidth, 178
Biot-Savart law, 93
Bohr magneton, 266
Born approximation, 40
– first, 40
– higher order, 41
– second, 41
Born–von Kármán model, 233
Bose–Einstein statistics, 63
Bose-Einstein distribution, 47

Bose-Einstein factor, 106
brightness, 149
– conservation of, 150
Brillouin zone, 103, 162
Brillouin zones, 161
browser, 240
buncher ring, 141
bvk, 223

C, 241
C++, 8, 241
calorie, 267
Caltech, 239
cerium
– phonons, 199
chemical disorder, 56
chopper spectrometer, 139
class, 19
classical electron radius, 94, 266
classical scattering, 91
coherence, 30
coherent elastic scattering, 32
coherent inelastic scattering, 32, 42
coherent scattering, 28
– phases, 37
coherent-incoherent, 183
commutation, 87
compatibility relations, 115
complete the square, 90
component, 235, 236
– core, 236
– ports, 236
– properties, 236
components
– connections, 238
condensed matter, 101
config headers, 219
constants, 266
constructive interference, 28
conversion factors, 267
convolution, 195
– theorem, 262
coordinates
– neutron and crystal, 78
correction
– absorption, 191
– multiphonon

270 Index

– – coherent, 201
– multiple scattering, 192
correlations
– general, 77
creation, 47, 82
creation operator
– spin wave, 122
critical angle, 146, 147
cross-section, 46
crystal
– periodicity, 85
cube of scattering processes, 183
Curie, 266
Curie temperature, 122
Curie–Weiss law, 124

damping, 72
data
– size, 182
data arrays, 176
data flow paradigm, 235
data histograms, 176
data processing, 173
data reduction, 173, 231, 235
data streams, 24, 236, 237
data structures, 176
data transformations
– support for, 187
Debye model, 62
Debye–Waller factor, 59, 89, 193
– calculation of, 62
– concept, 61
– conventions, 62
degeneracy
– time-reversal, 117
density of states
– partial, 78
dephasing time, 73
deployment diagram, 15
derivation, 8
detailed balance, 82
detector
– efficiency, 179
– pixel, 180
– timing, 177
– tubes, 173
differential scattering cross-section, 35
diffuse scattering
– thermal, 61
Dirac δ-function, 49
disk chopper, 152
disordered excitations, 71, 76
disordered systems, 233
dispersions
– compatibility relations, 115
dispersive excitations, 70, 76
displacement disorder
– dynamic, 56
– static, 56
distutils adpt, 219

divergence, 149, 159
drip line, 141
Dulong-Petit limit, 108
dynamical matrix
– symmetry operations on, 112
dynamics, 101

eigenvectors
– of dynamical matrix, 104
elastic, 32
elastic peak
– stripping of, 202
elastic scattering, 32, 82
elastic-inelastic, 185
electron mass, 266
electron wavelengths, table of, 267
electrons
– strongly correlated, 128
elementary excitation, 68
encapsulation, 8
energy, 32
energy conservation, 46
equations of motion, 103
equilibration, 133
equilibrium
– in simulations, 130
errors, 175
Ewald sphere, 161
excitations
– detailed balance, 82
– disordered, 71, 76
– dispersive, 70, 76
– local, 69, 75
– non-dispersive, 164
executive layer, 24
experimental units, 173
extensibility, 240

Fermi, 139
– chopper, 139, 151
– – electromechanical control, 152
– – magnetic bearings, 152
– – phasing accuracy, 151
– fermion, 139
– pseudopotential, 145
Fermi chopper
– ARCS, 154
– magnetic bearings, 154
Fermi’s golden rule, 78
ferromagnetic excitations, 123
flux (in scattering), 34
force constants, 101
force-constant matrix, 102
form factor
– neutron, 41
Fourier transform
– bare Coulomb, 265
– decaying exponential, 264
– deconvolution, 200
– Lorentzian, 264

Index 271

– scattered wave, 41
free energy, 106
Friedel’s law, 52

Gaussian, 156
– normalized, 88
Gaussian thermal spread, 88, 90
geometrical optics, 144
gnuplot, 224
Grüneisen parameter, 107
graphics, 224
Gray, 266
Green’s function, 39
ground state, 130
group theory, 111
– k-space, 111
– Great Orthogonality Theorem, 115
– implementation in DANSE, 120
– lattice dynamics, 111
– projection operators, 114
– quantum mechanics, 111, 114
guide
– ARCS, 148
– design, 148
– optical quality, 150

harmonic, 105
harmonic approximation, 102
harmonic oscillator
– partition function, 109
hdf5 cpp, 221
hdf5fs, 222
heat, 93
heat capacity, 108
– high temperature, 110
heavy fermions, 127
– T ∗, 127
Heisenberg model, 122
Heisenberg picture, 86
high Tc superconductors, 128
– energy scales, 128
– hole doping, 128
high-temperature limit, 194
histogram, 222
histograms, 236
homogeneous medium, 144
Hubbard Hamiltonian, 128
hybrid
– Monte Carlo, 133
hydrogen, 142, 170

IDL, 224
impulse approximation, 78, 89
incident plane wave, 37
incoherence, 28, 30
incoherent approximation, 93, 202
incoherent elastic scattering, 32
incoherent inelastic scattering, 32
incoherent scattering, 31

inelastic, 32
inelastic scattering, 32
information
– loss in transformations, 181
instantiation, 20
instrument, 223
instruments, 139
interitance, 8, 19
inversion symmetry, 70
Ising model, 122

journal, 220

kinematical scattering theory, 47
kinematics, 195
Kondo
– effect, 127
– lattice model, 126
– temperature, 127

lattice dynamics, 63, 102
LDA, 130
Lenz’s law, 121
LiFePO4, 170
local excitations, 69, 75

magnetic field
– applied, 96
magnetic form factor, 93
magnetic impurities, 126
magnetic multilayers, 127
magnetic scattering, 93, 96
– above TC, 125
– mathematical tricks, 94
– orbital contribution, 93, 121
– polarization averaging, 97
– spin combined with orbital contribu-

tion, 95
– spin contribution, 93, 121
– time-reversal symmetry, 117
magnetic scattering amplitude, 93
magnetism, 120
– classical, 120
magnetization
– temperature dependence, 126
magnon, 122
Maradudin, A.R. and Vosko, S.H., 110
Maradudin, et al., 101
Markovian process, 130
materials, 101
matlab, 224
McStas, 226
mcstas, 226
mean field approximation, 122
measurement, 222
memory, 20
memory function, 78
meta-data, 238
Metropolis algorithm, 130
modeling of data, 232

272 Index

moderation, 142
moderator, 142
– brightness, 149
– coupling, 143
– emission time, 144
– emission times, 156
– intensity, 144
– poisoning, 143
– water, 142
molecular dynamics, 234
momentum conservation, 46
momentum transformation, 181
momentum-time corrrelation function,

77
monocrystal, 182
monocrystal-polycrystal, 185
Monte Carlo, 234
– hybrid, 133
Moore’s Law, 18
mosaic spread, 159
multiphonon, 227
– expansion, 192
multiphonon and multiple scattering,

201
multiphonon excitation, 84, 192
multiphonon expansion, 91, 227
Multiphonon.py, 227
multiple scattering, 192
multiplier representation, 113

neutron
– fast, 153
– mass, 266
– wavelength, 266
neutron guide, 144
neutron scattering
– Born approximation, 37
– Green’s functions, 39
neutron sources, 141
neutron wave (probability interpreta-

tion), 37
neutron weighting, 171, 201, 233
Ni, 203
Ni-Fe, 96
nickel
– phonons, 196
normalize (by flux), 177
nuclear scattering
– general, 78
nuisance, 181
nx5, 222

object, 20
object-oriented programming, 8
operating system, 22
operators
– exponential, 86
orthogonality condition, 262
overrelaxation, 132

paramagnetism, 233

Patterson function, 77
– atomic displacement disorder, 56
– average crystal, 55
– definition of, 49
– deviation crystal, 55
– graphical construction, 51
– homogeneous disorder, 54
– perfect crystal, 53
– random displacements, 57
– thermal spread, 60
periodic boundaries, 103
Pharos, 173
phase
– velocity, 28
phase problem, 52
phase relationships, 28
phonon, 45, 59
– branches, 47
– quantization, 45
– scattering, 32
– thermodynamics, 105
phonon DOS, 104
phonon entropy, 109
phonon scattering, 45
phonon softening, 108
Planck’s constant, 266
polarizations, 104
polycrystal, 182
ports (for i/o), 24
Potts model, 122
precession, 133
process space, 238
programming
– elegance and discipline, 9
– object-oriented, 8
projection operators, 114
proton pulse, 153
pyIDL, 224
pyIO, 227
pyre, 220
pyre framework, 21
Python, 7, 239, 241
– Monty, 7
– www.python.org, 7

quantum mechanics
– subtlety, 85
quasiharmonic, 105

reader, 227
rebin, 231
rebinning, 176, 180, 235
recoil energy, 194
reduction, 181, 223
reflection, 145
relativistic correction, 267
repetition rate multiplication, 152
resolution

Index 273

– energy, 155
– Q, 157, 158
– Q and E, 160
Riso, 226
RKKY interaction, 127
roentgen, 266
runtime environment, 22
Rydberg, 266

sam, 224
sample, 165
sample environment, 165
sample thickness
– absorption, 169
– example, 170
– multiple scattering, 167
SANS, 96
scattering
– differential cross-section, 35
– high energy, 89
– total cross-section, 36
scattering law, 77
scattering potential
– time-varying, 43
Schrödinger equation
– Green’s function, 39
scripts, 239
Seitz space group, 110
self-correlation function, 78
self-force constants, 102
shielding, 154
Sievert, 266
signal processing analogy, 234
simulation, 225
simulation of experiment, 233
simulations
– dynamics, 129
slat, 153
slit, 153
slot, 153
small displacements, 101
snapshot in space, 75
snapshot in time, 73
space group, 110
space-energy corrrelation function, 77
space-time correlations, 65
spallation, 141
spin, 117
spin dynamics, 129
spin fluctuations
– magnetic scattering, 125
spin wave, 122
spin wave scattering, 32
spin waves
– itinerant, 125
spins
– itinerant, 123
– localized, 121
spinwaves, 233
Squires, 94

Squires, G., 87
stdVector, 221
Stoner condition, 124
strongly correlated electrons, 128
superclass, 19
superconductors
– t− J model, 128
– bismuth, 129
– cuprates, 129
– energy gap, 129
– high Tc, 128
– spin flip model, 129
symbols, big table of, 1–3
symbols, table of, 112
symmetry
– broken, 130
symmorphic, 110

T-zero chopper, 153
tables, 236
theory vs. experiment, 182
thermal averages, 87
thermal diffuse scattering, 59
thermal energy, 194
thermal expansion, 108
thermal vibrations
– diffuse scattering, 56
thermodynamic average, 82
thermodynamics
– detailed balance, 82
– phonon, 105
threads, 24
time dependence
– quantum mechanics, 86
time-reversal, 117
timing, 141
torr, 267
total scattering cross-section, 36
transformations and ynformation, 181
transition metals
– itinerant of local spins?, 126
– magnetism, 124
triple-axis spectrometer, 193

UML
– actor, 18
– class diagram, 21
– deployment diagram, 15, 18
– package diagram, 16
– sequence diagram, 15
– use case, 17
UML diagrams, 14
Unified Modeling Language, 14
unit cell, 101
use case, 17

Van Hove function, 65, 77
– definition of, 66
– graphical construction, 70, 72, 74
virtual functions, 8

274 Index

Warren, J.L., 110
wave amplitudes, 31
wave crests, 28
wavelengths
– electron, table of, 267
– x-ray, table of, 267
wavelet (defined), 28
web portal, 239
weighting, neutron, 233
writer, 227

x-ray
– scattering from one electron, 36
– wavelengths, table of, 267
XML-RPC, 240
XY model, 122

zero-point vibrations
– diffuse scattering from, 63

