ORNL Neutron Sciences SNS & HFIR Logos
Transportation Electronics Manufacturing Environment Medicine Engineering Plastics
     
 

HFIR Technical Parameters

The original mission of the HFIR was the production of transplutonium isotopes. However, the original designers included many other experiment facilities and several others have been added since operation began. Experiment facilities available include (1) four horizontal beam tubes, which originate in the beryllium reflector; (2) the hydraulic tube irradiation facility, located in the very high flux region of the flux trap, which allows for insertion and removal of samples while the reactor is operating; (3) thirty target positions in the flux trap, which normally contain transplutonium production rods but which can be used for the irradiation of other experiments (two of these positions can accommodate instrumented targets); (4) six peripheral target positions located at the outer edge of the flux trap; (5) numerous vertical irradiation facilities of various sizes located throughout the beryllium reflector; (6) two pneumatic tube facilities in the beryllium reflector, which allow for insertion and removal of samples while the reactor is operating for neutron activation analysis; and (7) two slant access facilities, called "engineering facilities," located on the outer edge of the beryllium reflector. In addition, spent fuel assemblies are used to provide a gamma irradiation facility in the reactor pool.

The HFIR is a beryllium-reflected, light-water-cooled and -moderated, flux-trap type reactor that uses highly enriched uranium-235 as the fuel. Figure 1 is a cutaway of the reactor that shows the pressure vessel, its location in the reactor pool, and some of the experiment facilities.

The reactor core assembly is contained in an 8-ft (2.44-m)-diameter pressure vessel located in a pool of water. The top of the pressure vessel is 17 ft (5.18 m) below the pool surface, and the reactor horizontal mid-plane is 27.5 ft (8.38 m) below the pool surface. The control plate drive mechanisms are located in a subpile room beneath the pressure vessel. These features provide the necessary shielding for working above the reactor core and greatly facilitate access to the pressure vessel, core, and reflector regions.

The reactor core is cylindrical, approximately 2 ft (0.61 m) high and 15 inches in diameter. A 5-in. (12.70-cm)-diameter hole, referred to as the "flux trap," forms the center of the core. The target, shown in Figure 2, typically contains curium-244 and other transplutonium isotopes and is positioned on the reactor vertical axis within the flux trap. The fuel region is composed of two concentric fuel elements. The inner element contains 171 fuel plates, and the outer element contains 369 fuel plates. The fuel plates are curved in the shape of an involute, thus providing a constant coolant channel width. The fuel (U3O8-Al cermet) is non-uniformly distributed along the arc of the involute to minimize the radial peak-to-average power density ratio. A burnable poison (boron-10) is included in the inner fuel element primarily to flatten the radial flux peak providing a longer cycle for each fuel element. The average core lifetime with typical experiment loading is approximately 22 days at 85 MW.

The fuel region is surrounded by a concentric ring of beryllium reflector approximately 1 ft (0.30 m) thick. This in turn is subdivided into three regions: the removable reflector, the semipermanent reflector, and the permanent reflector, as shown in Figure 3. The beryllium is surrounded by a water reflector of effectively infinite thickness. In the axial direction, the reactor is reflected by water.

The control plates, in the form of two thin, poison-bearing concentric cylinders, are located in an annular region between the outer fuel element and the beryllium reflector. These plates are driven in opposite directions to open and close a window at the core mid-plane. Reactivity is increased by downward motion of the inner cylinder and the upward motion of the four outer quadrant plates. The inner cylinder is used for shimming and power regulation and has no fast safety function. The outer control cylinder consists of four separate quadrant plates, each having an independent drive and safety release mechanism. All control plates have three axial regions of different neutron poison content designed to minimize the axial peak-to-average power-density ratio throughout the core lifetime. Any single quadrant plate or cylinder is capable of shutting the reactor down.

The reactor instrumentation and control system design reflects the emphasis placed on the importance of continuity of operation while maintaining safe operation. Three independent safety channels are arranged in a coincidence system that requires agreement of two of the three for safety shutdowns. This feature is complemented by an extensive "on-line" testing system that permits the safety function of any one channel to be tested at any time during operation. Additionally, three independent automatic control channels are arrayed so that failure of a single channel will not significantly disturb operation. All of these factors contribute to the continuity of operation of the HFIR.

The primary coolant enters the pressure vessel through two 16-in. (40.64-cm)-diameter pipes above the core, passes through the core, and exits through an 18-in. (45.72-cm)-diameter pipe beneath the core. The flow rate is approximately 16,000 gpm (1.01 m³/s), of which approximately 13,000 gpm (0.82 m³/s) flows through the fuel region. The remainder flows through the target, reflector, and control regions. The system is designed to operate at a nominal inlet pressure of 468 psig (3.33 x 106 Pa). Under these conditions the inlet coolant temperature is 120°F (49°C), the corresponding exit temperature is 156°F (69°C), and the pressure drop through the core is about 110 psi (7.58 x 105 Pa).

From the reactor, the coolant flow is distributed to three of four identical heat exchanger and circulation pump combinations, each located in a separate cell adjacent to the reactor and storage pools. Each cell also contains a letdown valve that controls the primary coolant pressure. A secondary coolant system removes heat from the primary system and transfers it to the atmosphere by passing water over a four-cell induced-draft cooling tower.

The graph below shows an overview of the available neutron fluxes in HFIR. Note that these are unperturbed fluxes at 100 MW. Reduce the given values to 85% to account for the current power level of 85 MW.

Radio neutron flux graph
Click image for a larger view

A fuel cycle for the HFIR normally consists of full-power operation at 85 MW for a period of 21 to 23 days (depending on the experiment and radioisotope load in the reactor), followed by an end-of-cycle outage for refueling. End-of-cycle refueling outages vary as required to allow for control plate replacement, calibrations, maintenance, and inspections. Experiment insertion and removal may be accomplished during any end-of-cycle outage. Interruption of a fuel cycle for experiment installation or removal is strongly discouraged to avoid impact on other experiments and neutron scattering. Deviations from the schedule are infrequent and are usually caused by electrical power outages, reactor and experiment component malfunctions, etc.

 

Horizontal Beam Tubes

The reactor has four horizontal beam tubes which supply the neutrons to the instruments for the Center for Neutron Scattering. Details for each beam tube and instrument can be found on the HFIR instrument page. Each of the beam tubes that supply these instruments is described below.

HB-1 and HB-3

The HB-1 and HB-3 thermal neutron beam tube designs are identical except for the length. Both are situated tangential to the reactor core so that the tubes point at reflector material and do not point directly at the fuel. The in-vessel sections of these tubes have an outer diameter of 5 in. The outer diameter flares out to 6 in outboard of the reactor vessel and then again steps to 7.6 in diameter at approximately 10 ft from the tip of the tube. An internal collimator is installed at the outboard end. This collimator is fabricated out of carbon steel and is plated with nickel. The collimator provides a 2.75-in by 5.5-in. rectangular aperture.

A rotary shutter is located outboard of each of these beam tubes. The shutter is fabricated using carbon steel and high-density concrete. The purpose of the shutter is to provide shielding when the neutron beam is not required.

HB-2

The HB-2 thermal neutron beam tube is situated radially relative to the reactor core, looking directly at the fuel.  The in-vessel tube section has an outer diameter of 8.5-in inside the permanent reflector penetration. The tube diameter then steps to a nominal outer diameter of 11.0 in. The diameter is stepped up again to 12.5-in outboard of the vessel adaptor flange. Two beryllium inserts are installed in the spherical tip of the beam tube to maximize the thermal neutron flux within the critical acceptance angle of the neutron scattering experiment equipment. The beam tube cavity outboard of the reactor vessel has a rectangular cross-section that converges vertically and diverges horizontally such that the aperture at the outboard window is a rectangle nominally 6-in tall by 10-in wide. A carbon steel collimator assembly is located just outboard of the beam tube window. This collimator assembly provides further neutron-beam collimation and houses a fast-neutron filter to increase the signal-to-noise ratio at the neutron scattering instruments.

A rotary shutter is located outboard of the outer collimator assembly. The shutter is fabricated using carbon steel and high-density concrete. High-density concrete blocks are placed around the shutter to prevent streaming. The purpose of the shutter is to provide shielding when the neutron beam is not required.

HB-4

The HB-4 cold neutron source beam tube is situated tangential to the reactor core so that the tube points at reflector material and does not point directly at the fuel. The in-vessel tube section has an outer diameter of 6-in. inside the permanent reflector penetration. The tube diameter then steps to a nominal outer diameter of 7 in once outside of the reflector. The diameter is stepped up again to 12.5-in outboard of the reactor vessel in the reactor pool.

A vacuum tube fits closely inside in-vessel section of the HB-4 beam tube all the way to the spherical end. The vacuum tube contains and insulates a hydrogen moderator vessel and its associated tubing. The moderator vessel contains supercritical hydrogen at 17K (nominal). Thermal neutrons scattered into the moderator vessel from the reflector are scattered and cooled by the hydrogen so that the 4-12 Å neutrons scattered down the tube are maximized.

An internal collimator is installed in the outboard end of the HB-4 tube. This collimator is fabricated out of carbon steel and is plated with nickel. The collimator provides three rectangular apertures. The outboard dimensions of the apertures are 1.61 in by 4.33 in; 2.17 in by 3.65 in; and 1.78 in by 4.33 in.

A rotary shutter is located outboard of the outer collimator assembly. The shutter is fabricated using carbon steel and high-density concrete. The purpose of the shutter is to provide shielding when the neutron beam is not required. The shutter has provisions for routing the cryogenic hydrogen transfer line, gaseous helium, and vacuum piping necessary to support the Cold Source.

 

 
  Information Contact: neutronscience@ornl.gov  

Oak Ridge National Laboratory

Office of Science