On the Effective Use of Software Standards in Systems Integration

D. Richard Kuhn

National Computer Systems Laboratory
National Institute of Standards and Technology
(formerly National Bureau of Standards)
Gaithersburg, Md. 20899

ABSTRACT

The emphasis on “open systems’’ in the
past few years has led to the development of
interface standards in almost all areas of
computing: operating systems, data commun-
ications, graphics, programming languages,
and others. While intelligent use of stan-
dards can solve many integration problems,
the architecture of applications can
significantly affect the degree of success in
systems integration. This paper explains an
approach to application development that
helps use software standards to greatest
advantage in systems integration.

1. Introduction

Software standards for programming languages
have existed for many years. Database and graphics
standards are more recent, and document processing
language standards are newer still. The POSIX
operating system interface standard 1003.1
[[EEE1988] represents the first standardization of
operating system services. Additional system service
standards are nearing completion. Within the next
two years, it will be possible to put together a com-
plete environment for software development and
operation using products conforming to non-
proprietary national and international standards.

While adherence to standards can make systems
integration easier, the architecture of systems can
have a significant impact on the degree to which the
standards help prevent problems in integration and
change. Standards solve many systems integration
problems resulting from inconsistencies between major

* UNIX is a trademark of AT&T

system components. This is one reason for the
current interest in ‘‘open systems’. Yet standards
will not solve all such problems. To be effective, the
standards should be compatible and must be used
intelligently. This paper describes a set of national
and international standards that provide an open sys-
tems environment, and defines an architecture that
can help standards realize their potential for improv-
ing quality and productivity in systems development.

2. Systems Integration

For the purposes of this paper, we define systems
integration as the practice of joining the functions of
a set of subsystems, software or hardware, to result in
a single, unified system that supports some need of an
organization. We do not restrict the definition to the
initial development of a system. Significant integra-
tion problems can occur during the maintenance phase
of an application’s lifecycle, as a result of changes
either in application requirements, requiring the
integration of new subsystems, or revisions of the
operating system or other system services, requiring
integration of the application with new system ser-
vices. Fortunately, a system architecture that eases
the integration of standard components during
development makes modification and re-integration
easier as well.

3. Industry Software Interface Standards

Responding to the demands of users for open sys-
tems, national and international standards organiza-
tions have developed standard service interfaces. A
key point is that the interface is being standardized,

+ Description of commercial products does not imply the endorsement or approval of

NIST or the U.S. Government.

THO0309-5/90/0000/0455$01.00 © 1990 IEEE

455

without regard to how the services are implemented.
An example is the POSIX operating system interface:
it is derived from the UNIX* operating system, but
POSIX interfaces are being implemented on non-
UNIX systems, such as Digital Equipment
Corporation’s VMSt. Before considering how to take
advantage of standard services, it is worthwhile to
consider some of the characteristics of software stan-
dards.

3.1. Characteristics of Standards

They represent a consensus of industry. The
Institute of Electrical and Electronics Engineers
(IEEE) requires 75% approval from a balloting group
for a standard to be adopted. Other standards bodies
follow similar rules. The development of a standard
depends on the contribution of expensive personnel
time and resources by industry. There is tremendous
pressure to develop consensus, to ensure that the stan-
dard is approved and, above all, that it is used as a
basis for products by most of the industry. A stan-
dard that is ignored by the vendors who build systems
is of no value to users. The standard that results
from the consensus building process often contains
features that represent the ‘lowest common denomi-
nator’” among systems provided by vendors. Other
features are likely to be entirely new, the result of
compromises worked out where there was no common
service definition.

They change periodically. Recognizing that stan-
dards must stay reasonably current if they are to
remain useful, standards bodies revise their work
periodically, typically with a revision cycle of about
five years. The revision period is a tradeoff between
lagging the industry and changing so fast that the
standard has so many versions that it is not a stan-
dard at all.

They often (but don’t always) lag the state of the
art. Most of the work of national and international
standards bodies is involved with standardizing things
that are already existing practice. The development
of standards requires support from industry, which is
usually not achievable unless there is a consensus
already. Some recent efforts have been directed
toward developing standards in relatively new ares of
technology, but these efforts may not succeed if there
is no common existing practice. An example is IEEE
P1125, Standard for an Object Oriented Programming
Language and Environment, whose project authoriza-
tion request was withdrawn in June, 1989 [IEEE1989].
Since strong support from industry is required to
approve a standard, usually only functions that are
provided by most vendors are standardized. Novel
features provided by one or two vendors, no matter
how technically interesting, are not acceptable by the
majority unless they are easy to implement. There
are some exceptions, such as the OSI Class 4 Tran-

456

sport protocol and the POSIX Real Time extensions
(1003.4). In these cases standards have been
developed where there is no common existing practice,
but many standards will continue to lag developments
in industry.

They are typically more precise than most
software specifications. Standards are developed by
large groups working over several years. The focus of
the effort is on making the definitions as precise as
possible. However, except for data communication
protocols, standards documents generally describe sys-
tem functions in natural language, as do most
software specifications. Despite the inherent problems
of natural language specifications, standards docu-
ments tend to be more precise and complete than typ-
ical software specifications, because they are given
careful review by more people than most software
specifications. A standards balloting group may have
more than 200 people, whose incentive for careful
review is to protect the interests of their companies.

3.2. A Set of Standards for Open Systems

In its role of representing Federal agency users,
the National Institute of Standards and Technology
(NIST) is addressing the need for nonproprietary stan-
dards for open systems. NIST has developed a profile
of such standards for use by government agencies.
The Applications Portability = Profile (APP)
[NIST1988, Mart1989] is a family of related standards
that can improve application portability and ease the
integration of software developed by different organi-
zations and based on a variety of hardware platforms.
The components of the APP constitute a “toolbox’’ of
standard elements for application system development
based on non-proprietary standards. Six major func-
tional areas are addressed: operating systems, data-
base management, data interchange, network services,
user interfaces, and programming services. The
planned components of the APP are shown in Figure
1. Developers in particular application areas may
wish to supplement the APP components with other
relevant standards. For example, the IEEE Standard
Reference Model for Computing System Tool Inter-
connections (IEEE P1175) [IEEE1989a] will assist
developers of Computer Aided Software Engineering
tools in enhancing interoperability and portability.
POSIX is actually a family of standards. Its members
are shown in Figure 2.

The use of APP components will allow Federal
agencies to integrate systems from different vendors
with greater ease than previously possible. The stan-
dards are intended to allow application portability at
the source code level, so that applications can be
moved from one system to another by recompiling
them. No source code changes should be required in
most cases. This will allow integration of products
from multiple vendors into the same system, with

Function Element Specification
Operating Extended POSIX [EEE 1003.1 (kernel),
System [EEE 1003.2 (shell & tools),

IEEE 1003.7 (system administration)
Database SQL FIPS 127
Management IRDS X3.138, FIPS 156
Data Interchange
- Graphics CGM FIPS 128
- Product Data IGES & PDES NBSIR 88-3813
- Document Processing SGML ISO 8879-1986, FIPS 152
ODA, ODIF ISO-DIS 8613
Network Services
- Data Communications | OSI FIPS 146 (GOSIP)
- File Management TFA (NFS) IEEE P1003.8
User Interface
- protocol, intrinsics X Window System | X V11, R3
- toolkit IEEE 1201.1
Programming Services C ANSI X3J11
FORTRAN FIPS 069-1
COBOL FIPS 021-2
Ada FIPS 119
Pascal FIPS 109

Figure 1. Applications Portability Profile

Standard Subject
1003.0 Open System Environment
1003.1 Operating System Kernel
1003.2 Shell and Tools
1003.3 Test Methods
1003.4 Real Time Extensions
1003.5 Ada Bindings
1003.6 Security Extensions
1003.7 System Administration
1003.8 Distributed System Services
(Network File Access)

1003.9 FORTRAN Bindings

1003.10 Supercomputing Application
Environment Profile

1003.11 Transaction Processing Application
Environment Profile

Figure 2. POSIX Standards

significantly less concern for differences between the
system services provided. Currently, software
developed in one variety of C for one variety of
UNIX often needs extensive modifications to reuse it
and integrate it with software for a different UNIX
and C. One goal of the APP is to significantly reduce
such problems in the future. Integration problems
cannot be eliminated entirely using standards, because
most applications will still require the use of some
proprietary services, and because ambiguities and

457

imperfections in the standards may result in
differences in implementations provided by different
vendors. In the next section, we will look at ways to
further reduce integration difficulties caused by these
two problems.

4. An Architecture for the Effective Use of
Standards

Given the existence of a comprehensive set of
standards, we face the question of how to use the
standards to the greatest advantage in systems
integration. In this section we describe three models
for the development of applications and consider the
effect each has on system integration.

An application can be built using the following
architecture:

Application
System Services - software stds, proprietary services
Operating system kernel, hardware

Using standards helps provide greater portability
for the application and makes system integration
easier because products of different vendors can be
used interchangeably. Experience shows, though, that
most applications have a few functions that cannot be
provided by standard components. These will neces-
sarily be implemented either entirely by the user, or,
more likely, by functions of proprietary systems.

To a user who already owns the proprietary sys-
tem, this may present little problem. For a govern-
ment agency, however, choosing a proprietary system
means additional justification for the purchase and
considerable delay in procurement. The contract
selection may be protested, so that the agency cannot
obtain the proprietary system it wanted on schedule,
or in some cases, cannot obtain it at all. As a result,
development is slowed because some portions of the
system cannot be built until the agency is certain
which vendor’s system services will be available to the
application, and cannot be tested until the proprietary
system is obtained.

Good software engineering practice dictates that

functions which are likely to change be isolated in
separate modules, giving us the following architecture:

Application
s, | S5
System Services - software stds, proprietary services
Operating system kernel, hardware

The S; represent modules that isolate proprietary
system services. These modules make integration
easier by making it possible to write the application in
terms of the services supplied by §,, S,, etc., rather
than using proprietary system services directly. The
advantages provided by this arrangement suggest gen-
eralizing it.

4.1. Organization Software Interface Stan-
dards

The model described above can be expanded to
provide additional application independence from sys-
tem services. This can be done using a layer of ser-

vices that are implemented using the standard system
services, giving the following model:

Application
Organization Standard Services
System Services - software stds, proprietary services
Operating system kernel, hardware

This service layer is a standard set of interfaces
for the organization. The services may be simple
mappings to services provided by the industry stan-
dards described previously, but it is generally better
for the services to be more specific to the organiza-
tion. An organization specific interface provides a
means of integrating vendor-provided services with
user-specific services. Applications can then be built
using a ‘‘toolkit” approach, by creating unique ser-
vices and integrating them with existing services
[Maju1989]. This extra layer has been called a ser-
vices backplane [McCol1989]. A similar idea is the
software backplane described in [Brow1988]. The
application calls the organization standard services,
rather than calling operating system services directly.

458

Organization standard services are functions that are
needed by a variety of applications within the organi-
zation. This approach is not new. Provision of a spe-
cial layer of primitives with which to develop an
application is one of the traditional methods of
achieving portability across a variety of operating sys-
tems and hardware. (See, for example, [Wait1977].)
The remainder of this paper will examine this old idea
in the context of the new software standards. It
might appear that standards eliminate the need for
this type of portability layer. Indeed, the service
primitives provided in the past were typically at the
level of operating system services, such as file 1/O
[Wait1977, Hans1983]. Standards now provide ser-
vices at this level, but there are other reasons for
organizations to build their own standard service
primitives for higher-level functions.

4.2. Organization Standard Services and Indus-
try Standards

Standards reflect industry consensus at a given
point in time. As innovations are made and spread
among vendors, standards must change to reflect what
has become new common practice. To accommodate
this process, the IEEE and other standards bodies
schedule standards for periodic revision. A typical
revision period is five years. If an application depends
on the use of n standard components, there is a
potential for changing the application to meet changes
in the standards n /5 times a year. A large application
might use 10 or more standards. Since most large
applications take several years to complete, developers
can expect some of the standards they are using to be
revised during the development period. Standards
revisions are also a factor in maintenance. For an
organization with k applications, kn /5 change efforts
may be needed just to keep up with evolving stan-
dards. While the changes needed may be small, as
most changes to standards are to provide new func-
tions rather than modify existing ones, an effort will
be required to review applications to determine
whether changes are needed or not.

The varying stages of completion or revision of
standards can add to integration difficulties during
development. We may be building a system that
needs services that are not available from any existing
operating system, either because a standard for the
service interface is not completed, or because the
existing standard is about to be revised and changes
are expected in revision.

Since standards necessarily lag the state of the
art, some applications will need services that cannot
be provided by any standard interfaces. Different sys-
tems may have different ways of providing a service.
For example, Sun's NFS and AT&T’s RFS are both
distributed file system services, but an application
that is built to use one of them cannot be easily
modified to use the other.

Using organization standard services isolates the
application from the interface with industry standard
system services. Modifications to accommodate
changes in system services are restricted to the organi-
zation standard service modules. The organization

standard services can be compared with obijects in the
object-oriented programming paradigm. The

difference is that an organization standard service is
more general than a typical “object”. Consider a
video game example: an object might be a ship that
is moved by the user, the organization standard ser-
vices could be functions that calculate speed and
heading from coordinates, while the standard func-
tions used are provided by the compiler’s math
library. In this case the organization standard ser-
vices are equivalent to a very general class of object
that moves in a two-dimensional plane.

Industry software standards thus provide
independence from hardware and operating systems,
while the organization standard provides indepen-
dence from system services. This helps insulate the
application from proprietary operating system services
as well as from changes in standards.

4.3. Organization Standard Services and For-
mal Methods

Software standards are generally written in
natural language, with little or no use of mathemati-
cal formalism. This inevitably results in the kinds of
problems common to informal, natural language
specifications. The extensive review process removes
most ambiguities and inconsistencies, but the result is
usually less precise than a formal specification. IEEE
Std. 1003.1 (POSIX) went through 13 revisions and
was reviewed by over 200 people. Even with this
extensive scrutiny, specification problems were later
discovered by IEEE working group 1003.3, which
defines test methods for the POSIX family of stan-
dards.

Formal methods aid in both verifying properties
that cannot be shown by testing alone, such as secu-
rity and safety, and in clarifying the description of
system functions. In this discussion, we will concen-
trate on the latter use. Ideally, one would like to
have system services formally specified. Sadly, there
are few system service specifications that are written
using anything more precise than natural language,
resulting in ambiguities and inconsistencies. Writing
applications to wuse system services requires
verification of the application calls to informally
specified system services, as below:

informal service
spec

This requires km verifications against an informal
specification for k¥ uses of a function that requires m
system services. The function can be created as an
organization standard service that is formally
specified. The applications can use the organization
standard service rather than use the system services
directly. Developing organization standard services
that can be formally specified results in the following
configuration:

informal
service spec

This is really the same situation as traditional func-
tional abstraction, reducing the effort to understand
and verify a program by combining related functions
into a single interface. But system integration prob-
lems can be reduced even when the organization stan-
dard services use only one system service, as below:

formal service spec

h informal service spee

Suppose developers’ understanding of the system ser-
vice h is incomplete, so that some or all k£ uses of it
are incorrect. If & is called directly by the applica-
tion, and errors are discovered at system integration
time, there will be up to k uses to correct. Writing a
formally specified function ¢, that uses 4, provides an
unambiguously specified function that can be used in
applications. The use of & by ¢ may still be
incorrect, but when the error is discovered, there will
be only one place where it must be corrected. Realist-
ically, we know that having a formal specification
does not mean the elimination of all errors and
misunderstandings, but we do expect errors to be
significantly reduced [Mill1987, Hoar1984].

4.4. Organization Standard Services and Win-
dow Systems

Carrying this approach one step further, we can
take advantage of the capabilities of windowing sys-
tems. Bit-mapped graphics workstations have made it
possible to use direct manipulation window interfaces
as the primary means of interaction with the user.

Systems such as the X Window System [Schel986]
and InterViews [Lint1989] are designed to allow
separation of the user interface code from the applica-
tion , resulting in the following architecture:

User

(relatively stable User Interface - Organization Std

(fast change) Application

(slow change System Services - software stds

)
)
(relatively stable) Organization Standard Services
)
)

(slow change Operating system

In addition to separating interface and applica-
tion code, the X Window System supports an object-
oriented programming model, allowing developers to
create customized “widgets’ (screen objects). These
widgets turn out to be ideal for implementing organi-
zation standard services for the user interface.

5. Experience with the Approach and Plans

Several Federal agencies have developed their
own organization standard services to provide
independence from proprietary products. These
efforts have been successful and agency personnel have
shared their experiences in NIST sponsored
workshops. Some of the same agencies are now mov-
ing toward the adoption of standards such as POSIX.
The organization standard services are expected to
greatly simplifiy the integration of new system ser-

vices as proprietary products are replaced with stan-
dards.

A more interesting development is a recently ini-
tiated project that will incorporate all aspects of the
model described here into a set of formally specified
standard system services. The formal specification
will be done using the extended state transition
language Estelle [ISO1986]. Much implementation
code can be generated mechanically from the Estelle
specification [NBS1987]. User interface services will be
built using either InterViews [Lint1989] or TAE+
[Cent1988].

An additional topic of importance is the question
of when the various open system standards should be
introduced into an organization. Many organizations
have existing systems that they would like to migrate
to an open systems environment, but it is not often
practical to change operating system interface, com-
munications, database, and other interfaces all at the
same time. Organizations will need to develop migra-
tion strategies that allow them to integrate open sys-
tem standards into their operations in a system of
stepwise refinements. NIST is currently developing
guidance in this area [Hank1989].

6. Conclusions

Open systems standards are new to the computer
industry. They can be especially beneficial in systems
integration if used wisely. This paper has presented a
set of standards for an open systems environment and
defined an approach to use these standards to greatest
advantage in systems integration. In particular, the
approach helps to deal with three aspects of software
standards that affect systems integration: periodic
revision, missing features that result in the use of
proprietary system services, and imprecise, natural
language specification. The architectural approach is
consistent with the ‘‘toolkit” model of systems
development that has been popularized by window
systems, and takes advantage of the features provided
by many window systems for building user-defined
components.

7. References

[Brow1988] Brown, D.W., CD. Carson, W.A.
Montgomery, P.M. Zislis, "Software Specification and
Prototyping Technologies,” ATET Technical Journal,
July/August, 1988.

[Cent1988] Century Computing, “TAE+ User’s
Guide”, NASA Goddard Space Flight Center, Green-
belt, Md., 1988.

[Hank1989] Hankinson, A.L., “Migration to an Open
System Environment, A Strategy,” (draft) National
Institute of Standards and Technology, November 11,
1989.

[Hans1983] Hanson D.R., “A Portable Input/Output
System,” Software Practice & Experience, Vol. 13,
No. 1 (January, 1983).

[Hoar1984] Hoare, C.A.R., “Programming: Sorcery or
Science?”, IEEE Software, Vol. 1, No. 2, (April,
1984).

(IEEE1988] IEEE Standard Portable Operating System
Interface for Computer Environments, Institute of
Electrical and Electronics Engineers, Inc., New York,
1988. Piscataway, New Jersey.

[[EEE1989] [EEE Standards Bearer, Vol. 3, No. 3,
(June, 1989), IEEE, Piscataway, New Jersey.
[[EEE1989a] A Standard Reference Model for Comput-
tng System Tool Interconnections, Institute of Electr-
ical and Electronics Engineers, Inc., New York,
August 30, 1989. Piscataway, New Jersey.

[[SO1986] ISO TC97/SC21, ‘Estelle: A Formal
Description Technique Based on an Extended State
Transition Model,” ISO DP9074, 1986.

[Lint1989] Linton, M.A., J.M. Vlissides, P.R. Calder,
“Composing User Interfaces with InterViews,” IEEE
Computer, Vol. 22, No. 2 (February 1989).

Maju1989] Majurski, W., M. Ruhl, “AES Technical
Architecture Evaluation,” National Institute of Stan-
dards and Technology Report, Advanced Systems
Division, June, 1989.

[Mart1989] Martin, R.J., “The Standards Test for
Portability”’, Datamation, May 15, 1989.

[McCo1989] McCoy, W., Majurski, W., “A Structure
for Developing ISDN Applications”, ISDN Forum
Report, National Institute of Standards and Technol-
ogy, January 17, 1989.

[Mill1987] Mills, H.D., M. Dyer, R. Linger, “Clean-
room Software Engineering”, IEEE Software, Vol. 4,
No. 5, (September, 1987).

[NBS1987] National Bureau of Standards, User’s
Guide for NBS Prototype Compiler for Estelle,
National Institute of Standards and Technology,
Gaithersburg, Md., October, 1987.

[NIST1988] Federal Information Processing Standard
151, POSIX: Portable Operating System Interface for
Computer Environments, National Institute of Stan-
dards and Technology, Gaithersburg, Md., September
12, 1988.

[Sche1986] Scheifler, R.W., J. Gettys, “The X Window
System,” ACM Transactions on Graphics, Vol. 5, No.
2., (April 1986).

461

