- Seven more standards
~are near completion in

| this cornerstone of the

| international open-system
software effort

s the circuit design deadline
drew near, the pace be-
came more frantic by the
hour, elevating the project
leader’s anxiety level and
his blood pressure. And for
good reason—all the users
of DEC workstations,
where the computer-aided design software
resided, were out at a seminar. To be sure,
IBM, Sun, and other workstations were
available that would have allowed other en-
gineers to complete the job on time. But the
software? Only a DEC version was obtain-
able in house; in no way could it be ported
to the IBM or Sun on time to beat the
deadline—even though the project leader
. had received assurances from the software
vendor that such versions ‘‘were forth-
coming.”’

This scenario is not as fictitious as it might
seem. It reflects a growing concern among

|

APPLICATIONS/SOFTWARE

dard ISO/IEC 9945-1 by the International
Organization for Standardization (ISO) and
the International Electrotechnical Commis-
sion (IEC)—both in Geneva, Switzerland.

Today there are 19 Posix working groups
involved in 26 projects. Likely to be com-
pleted within the next 12-18 months are
standards for such tasks as handling com-
mand language and utilities (Standard
1003.2), real-time programming (10034),
and controlling access to computer files
(1003.6).

The Posix efforts have been supplement-
ed by the IEEE Technical Committee on
Operating Systems with other projects to
develop standards for application interfaces
to services [see table, p. 39].

Additional open system standards have
been developed through the American Na-
tional Standards Institute (ANSI), ISO, and
other organizations. These focus mainly on
such specialized aspects as programming
languages, databases, and communication
protocols. In contrast, Posix standards cover
operating system services in general.

Many of these other specifications have
been combined with the developing IEEE
standards to define an open systems environ-
ment using the Posix interface standards as
the basis. Already products abiding by the
Posix standards have emerged from vendors,

CEE’s Posix: making progress

ing systems with different file system struc-
tures and network interfaces, making them
more attractive to software developers.
Standard components for software have
been advocated for at least two decades, but
until recently only limited versions of such
components—mathematical subroutine
libraries, for example—have been available.
Barriers to more complex components
have been both technical and economic.
Though such modern programming lan-
guages as C++, Objective C (an object-
oriented version of C), and Ada are helping
to solve technical problems associated with
component development, a software com-
ponent created today in a language such as
C++ must still use system services that vary.
They must depend on the operating system,
database, communication interface, and
other vendor-specific functions. If a compo-
nent makes extensive use of VMS system
services, for example, then a different ver-
sion of the component must be created for
Unix System V. (VMS is a popular operat-
ing system for Digital Equipment Corp.’s
computers.)
INTERFACE SPEC. Evolving industrywide
through a consensus process, open system
standards will eventually change this situa-
tion. Generally, an open system standard is
an interface specification to which any ven-
dor can build hardware and software

engineers as well as other users of soft-
ware with the need for portability and
interoperability of software. Portabili-
ty refers to the ease with which a soft-
ware system or component can be
i transferred from one hardware or soft-
' ware environment to another. In-
teroperability is the ability of two or
more computer systems and their soft-
ware to exchange information and use
the information that has been ex-
changed.

Though the work needed to bring

In the offing:
4 M4jor new

industry geared
to standard software
components

products. Posix and related standards,
however, refer only to software inter-
faces. If a vendor of a proprietary oper-
ating system software abides by an
open system standard, it will provide
software with the standard interface.
This can be used to build portable
software.

There are two kinds of portability—
binary and source-code. Specifications
for binary portability are designed for
object code—a fully compiled or as-

about industrywide portability and in-
teroperability is extensive, there is hope. Ef-
forts have been under way for some years
in the form of the so-called open system
- standards. An important part of that effort
is the interface standards within the IEEE
portable operating system interface (Posix)
environment. (The X in Posix denotes the
Unix operating system origin of this effort.)
At least one of these standards—No. 1003.1,
which covers basic operating system ser-
vices—was adopted last December as Stan-

D. Richard Kuhn
National Institute of Standards and Technology

36

including such industry leaders as IBM, Digi-
tal Equipment, Sun Microsystems, Apple
Computers, and AT&T’s NCR.

Not only are the open system standards
within the Posix activity expected to resolve
the portability and interoperability problems,
but they are also expected to open the door
to a major new industry of standard software
components, or modules. From these com-
ponents, users will be able to build and modi-
fy larger systems to suit their evolving
needs. Such components will eliminate the
need to produce several versions of an ap-
plication program to accommodate operat-

0018-9235/91/$1.00©1991 IEEE

sembled program that is ready to be
loaded into the computer. With binary port-
ability, an executable copy of a program can
be moved from one machine to another. In
contrast, with source-code portability, a pro-
gram must be recompiled first.

An example of a de facto standard for bi-
nary portability is the IBM PC machine-
language instruction set. Executable copies
of software can run on PC clones from many
different manufacturers.

Of the two portabilities, binary portabili-
ty is the more difficult to achieve because
it puts constraints on the machine architec-
ture and instruction set. Standards efforts,

IEEE SPECTRUM DECEMBER 1991

therefore, have concentrated on developing
interfaces for source code.

Open system standards for source code
portability define interfaces available to ap-
plication programs for essential services like
process control, file and directory access,
interprocess communication, and graphics.

Interoperability standards, though neces-

sary, are not sufficient for a complete open
systems environment. An example of this is
provided by the X Window System protocol,
another de facto standard that specifies how
graphics primitives can be communicated
between an application program and graph-
ics software running on a workstation. The
protocol allows, say, an X Window applica-
tion running on an IBM workstation to in-
teract with a user sitting at a Sun worksta-
tion. The interoperability, however, does not
mean that the source codes on these two
systems are compatible. Each one may use
different library functions to generate the X
Window protocols.
OPEN SYSTEMS ENVIRONMENT. No single stan-
dard provides all the functionality needed in
a modern computing environment. To pro-
vide portability and interoperability requires
a comprehensive set of standards.

The Posix open systems environment
(OSE) being put together by Working Group
1003.0 of the IEEE Technical Committee on
Operating Systems (TCOS) offers a standard
set of interfaces to information systems’
building blocks, covering both portability and
interoperability standards.

Not all the specifications in the Posix OSE
are IEEE Posix (1003.x) standards. Posix
functions serve as a basis, supplemented by
other applicable open system standards—
like those under development by the ISO
and ANSL

Two types of standard interfaces are
specified in the Posix OSE: the application
program interface (API) and the external en-
vironment interface (EEI) {Fig. 1]. The APIs
generally are the procedure calls made to the
application platform—the computer in which

N

slice on avg at dine 15 in Example 3. f]
subroutine stat(n.avg,std) i

010 i = 1.
rend (8,200)x(1)]

X Flow Graph Drawin Exampie 577

Mark Helfer, NIST

9 °
10
i P

atd = sqrid(ssg -

print 500 otd
print 600.(x¢4). i
return

format (15
format (£10.0))
format (.

formot ("« = ©. 1504 0
d 3td = aq
print 30

B S S S SR i
i~ e " .

form
end

IEEE portable operating system interface (Posix) standards are being used by a programmer
at the National Institute of Standards and Technology, Gaithersburg, Md., to manipulate
slices, lines of code that affect the final value of a variable. Highlighted in the lefimost win-
dow are all the lines of the program used in generating the output values of “‘avg’’ (average).
A slice in the center window shows the variable ‘‘std’’ (standard deviation), with lines from
the first slice masked. The result shows lines used to compute ‘‘std’’ but not “‘avg,”” lines
believed to contain an ervor. The rightmost window graphically illustrates data flow within
the slice. Windows and graphics are generated by using the X Window system with a Posix
operating system interface; data flow and slicing code was written in ANSI C.

the application program is running and its
operating system—for a particular program-
ming language. Through these calls, APIs
provide source-code portability.

The external environment refers to exter-
nal entities with which the application plat-
form exchanges information, including the
human end-user, hard copy documents, and
physical devices such as video displays,
disks, printers, and networks. Generally in
the form of communication protocols, rec-
ord and document formats, display formats,

Defining terms

Compiler: a computer program that translates com-
puter code in a high-order language (such as For-
tran) into its machine-language equivalent.
Envirenment services: services related to exter-
nal objects, such as conditions and processes that
influence the behavior of a system.

Interface: a shared boundary across which infor-
mation is passed.

Kernel: a software module that encapsulates an
elementary function or functions of a system.
Language binding: definition of the parameters
passed and functions to be performed by a sub-
routine call for a specific language (C, maybe).
Language services: functions provided by
programming languages (basic mathematical func-
tions, for example).

Legical naming: services that allow the use of sys-
tem resources by name rather than by hardware ad-
dresses.

Open system standard: a specification developed

Kuhn—IEEE's Posix making progress

in a consensus process, to which any vendor can
build products.

Pesix standards: a family of open system standards
developed by the IEEE Technical Committee on Oper-
ating Systems.

Real-time pregramming: programming for com-
putation to be performed during an external process,
S0 that the computation may be used to respond
o the process in a timely fashion.

Software compenent: a piece of software whose
interfaces are precisely defined so that programmers
can use it without knowing its structure.

Source cede: computer instructions and data defi-
nitions expressed in a form suitable for input to an
assembler, compiler (see above), or other translator.
Transaction: a data or control element, signal,
event, or change of state that causes, triggers, or
initiates an action or a sequence of actions.
Utility: a software tool designed to perform a fre-
quently used support function.

subtoutine stat€n.avg.utd)

£ print 300.n 7 real 0)
e 700, av E read 510000
do 10 o
5 tead (B.0000,¢1)

0-n
print 400.avg
print 500.5Ld
print 600, (x(i). i
retorn

1.0

and distributed systems services, EEls, in
contrast to APls, provide mainly for inter-
operability.

FIVE ROLES. Examining details of the Posix
OSE application program interfaces is help-
ful in exploring how standards can be used
in constructing portable software. Based on
services they provide, four general catego-
ries and a special-purpose category are avail-
able. The general categories cater to sys-
tem, communications, information, and
human-computer interaction services. A
typical computing environment will require
some, but not all, of the standards contained
in each of these four categories. A fifth
category—domain services—is provided for
such special-purpose environments as trans-
action processing.

System services include both language
and operating system services. Language
services are the functions typically provid-
ed by programming languages such as C,
Fortran, Pascal, and others. Operating sys-
tem services are those used to control the
resources of a computer system—hard-disk
storage, printer, and so on.

In the language service area standard in-
terfaces specify instructions in different
programming languages—Ada, Basic, C,
C++, and Pascal (for example, the ISO/IEC
9899 standard for the C language). To make
other services in the OSE accessible from
application programs, language bindings
(subroutine calls in specific languages) are
needed for one or more of these languages.

37

{ Application
! software

\ Application program interface (AP} l

$

Application
platform

!

l External environment interface (EEI)

!

External environment

[1] The standards being developed under the
IEEE portable operating system interface
(Posix) open systems environment effort em-
ploy this reference model. It includes two im-
portant interfaces: an application program in-
terface between the application software and
platform, and an external environment inter-
Jace between the platform and such peripher-
al systems as printers and displays.

The Posix kernel standard (1003.1), origi-
nally defined using C, will soon have Fortran
(1003.9) and Ada (1003.5) language bindings.
The most common language for Posix inter-
faces is C, although language-independent
bindings (generic subroutine calls not tied
to a specific programming language) are now
being developed by IEEE Posix working
groups.

Among the major categories of operating
system services in the Posix OSE are pro-
cess management, task management (sus-
pension or resumption of a process, for ex-
ample), and environment services (like
obtaining a terminal identification or user
profile). Other services include: process
communication and synchronization;
input/output; file management; event, error,
and exception management (enabling and
disabling interrupts, for example); time ser-
vices; and memory management.

Standards in the OSE providing these ser-
vices include Posix shell and utilities
(1003.2), which provides a command lan-
guage (similar to DOS commands used in
IBM PC batch files); software tools for such
common operations as sorting; and real-time
extensions (10034), which handles real-time
programming features.

Communications services, including [SO
Open Systems Interconnection, make com-
munication possible for application programs
running on networked computers. They in-
clude services for file transfer, namespace
and directory services, network file access,
remote procedure calls, protocol-indepen-
dent network access, and data representa-
tion. Both API and EEI functions are includ-
ed in this area.

The interface to the interoperability func-
tions is through the standard APIs, such as
the protocol-independent interface (1003.12)
and the remote procedure call interface

38

being developed by ANSI X3T5.5 working
group.

Information services include database ser-
vices, which provide the capability to store
and retrieve data from long-term storage,
and data interchange services to exchange
data between systems.

¢ dards being developed for data format

Database services are the functions as- !
sociated with database management sys- i

tems. These include: data definition and
manipulation (the ability to create, update,
and delete records, fields, or tables); data
access (the ability to retrieve data based on
complex search conditions); and data integri-
ty (the locking of data items, transaction con-
trol, and synchronous writes—that is, writ-
ing of data on an external, backup hard-disk
system synchronously with the writing in the
main memory).

Application programs use database ser-
vices extensively, and the APIs in the Posix
OSE information services area include such
non-Posix standards as Structured Query
Language (ISO 9075:1982) and Network
Data Language (ISO 8907:1987).

Included in data interchange services are
data description protocols, character sets,
and data format protocols. Data description
protocols provide a standard means of as-
sociating a name with individual data ele-
ments. Data format protocols add attributes
that describe the physical characteristics of
the data. Among the standards addressing
data interchange services is the Standard

1 Appilication programs

!

Application programs i

Organization-specific
components

[TIndustry standard |
components

\ 4

’ Open system standard interfaces

|

Sy i

[2] In today’s architecture, the application
programs operate divectly with the designat-
ed operating system and hardware (top). Aim-
ing at total portability and interoperability of

software, the IEEE Posix open system ar- .

chitecture allows three application program in-
terfaces, each with its own possibility for soft-
ware components. The first is specific to an
organization that uses or designs the software,
the second relates to industrywide standard
software components, and the third—open sys-
tem standard interfaces—is designed to work
with each of the previous two or directly with
the application program (bottom,).

. a “‘profile,”’ is typically sufficient to meet

. puter and software vendors. Most vendors

Generalized Markup Language (ISO 8879:
1986)—again a non-Posix example—useful -
for defining the layout and structure of a
document.

The Posix OSE includes national and in-
ternational electronic data interchange stan-

protocols—like ISO 9735. Other standards
embraced by Posix in the information ser-
vices category include Computer Graphics
Metafile (ANSI X3.122-1986), which pro-
vides a standard means for storage and ex-
change of computer graphics.
HUMAN-COMPUTER INTERFACE. Using the
window and mouse style of interaction
popularized by the Apple Macintosh, the
human-computer interaction services in the
Posix standards provide functions for com-
munication between user and computer.

Applicable external environment interface
standards will include the X Window pro-
tocol, which specifies the format and mean-
ing of messages between an application pro-
gram and a display terminal, and human
factors standards.

In development in this category is the
IEEE 1201.2 Drivability Recommended
Practice. It will recommend a set of window
system behaviors designed to make work-
ing with different systems of this kind as easy
as driving different makes of automobiles.

API standards in this area are still being
defined. Among them is IEEE Standard
1201.1, a standard intended to be a set of
window system function calls that can be
used with any system that provides the ser-
vices to create and manipulate menus, but-
tons, scroll bars, graphics, and other com-
mon features of window-based interfaces.

It is doubtful that any information-pro-
cessing system will implement all the stan-
dards included in the Posix open systems en-
vironment, A subset of them, referred to as

an organization’s requirements. Profiles for
different types of applications, such as trans-
action processing, real-time programming,
and supercomputing, are being developed
within the Posix working groups.

Such profiles are incorporated in the do-
main services area—the fifth component of
the Posix open systems environment. Or-
ganizations may also have their own profiles,
based on their unique needs. For example,
the National Institute of Standards and Tech-
nology (NIST) has established an applica- ;
tions portability profile, which some Federal
agencies have adopted to promote software
portability within the Government.

The widespread interest in open systems
has encouraged strong support from com-

now provide a system compatible with the
Posix 1003.1—a basic operating system, or
kernel standard, as well as the other, non-
Posix completed standards (such as those for
programming languages). As other Posix
standards are completed in the near future,
conforming systems from leading vendors |
should follow. !

IEEE SPECTRUM DECEMBER 1991

When Posix standards for the open sys-
tems environment become available, what
will be the most effective way of using them
to achieve applications portability? One ap-
proach is to build components that provide
services specific to an industry or an in-
dividual organization, resulting in a hierar-
chy of services. These would include gener-
ic system services provided by standards
such as the Posix kernel, industry-specific
services provided by components built on
the system services, and organization-
specific services provided by components
built on the industry-specific and the generic
system services.

Application programs for end-users can
then be built for the application program in-
terfaces provided by the hierarchy of com-
ponents. For example, an organization-
specific interface might be a specification for
a function that displays a company logo,
department name, and time of day on a
graphics terminal. A software component to
provide the specified service would use
operating system functions to obtain the time
of day, bitmap for the logo, and department
information from a database. Many of the or-
ganization’s application programs use the
same service, and the application programs
may run on many different computers.

The application programs call these APIs,
rather than calling operating system services
directly. This approach is sometimes used
today to deal with system dependencies, and
it will still be necessary when open system
standards are used.

It is also possible to specify an API for a
particular industry. For example, NIST and
the Interactive Multimedia Association (for-
merly the Interactive Video Industry Associ-
ation), Washington, D.C., are developing an
API for multimedia services to be used in
computer-aided training systems. Compo-
nents providing the services specified in the
API can be built on standard interfaces. Be-
cause they are built using open system stan-
dards, the components can be ported to di-
verse hardware at low cost.

In application architecture today, the ap-
plication software interfaces with the oper-
ating system and hardware. Open system
standards introduce three layers that will
make the portability and interoperability
possible—organization-specific APIs, indus-
try standard APIs, and an open system stan-
dard interface [Fig. 2].

Open system standards are likely to have
a significant impact on both cost and com-
petition in the computer industry. Software
products can now be made more efficiently
because developers can produce a single
version for the standard programming inter-
face rather than a different version for each
hardware vendor.

Also, vendors will be able to compete for
business that previously was denied to them
because of users’ dependence on another
vendor. When all the Posix standards are
completed, users will be able to buy soft-
ware from different vendors without requir-

Kuhn—IEEE's Posix making progress

Representative IEEE application program interface standards

Standard Subject Scope | NENTH
1003.1 System application Basic operating system services such as Complete; became
program interface file 1/0 and process control 1SO Standard 9945.1
(kernel) in December 1990
1003.2 Shell and utilities Command language and utifities that can | Nearing completion
be used in shell scripts® or command pro-
cedures
1003.2a | User portabiity ex- Utilities for time-sharing systems Nearing completion
tension
1003.4 Real-time extensions | Real-time programming features suchas | Nearing completion
process locking and synchronization
1003.4a | Threads extension Real-time features useful for supporting | Nearing completion
transaction processing
1003.5 | Ada language binding | 1003.1 function calls for the Adalanguage | Nearing.completion
1003.6 Security extensions Security features such as access control | Nearing completion
lists and multilevel security
1003.7 System administration | System management features: for such- | In.progress
tasks as adding users-and checking de-
vice status
1003.8 Transparent {network) | Functions for making files on several | In progress
file access machines appear to reside on a single
machine
1003.9 Fortran interface 1003:1: function- calls' for-the Fortran | Nearing complstion
language o :
1003.12 | Protocol-independent | Communication services independent of | In progress
network interface protocol
1003.15 | Batch scheduling Functions. for -bateh (noninteractive) | In progress
processing
1003.17 | Name space and direc- | Distributed systems directory functions | In progress
tory service
1201.1 Window-based user in- | Window system, graphical user-interface | In progress
terface functions :)
1224 X.400 message-han- Open systems interconnection (0OS!) elec- | In progress
dling interface tronic mail services
1238.0 Support functions Common 0S1 support functions for lower- | In: progress
level interface
1238.1 File transfer access 08l file transfer functions In progress
method

Shell scripts: commands similar to DOS commands used in IBM PC batch files.

ing major conversions of their internally de-
veloped software. Since software products
will be developed more efficiently for a
wider range of hardware, software compo-
nents will become more economically
practical.

T0 PROBE FURTHER. UniForum, the interna-
tional association of Unix systems users,
publishes a series of booklets entitled
“‘Posix Explored.”’ Contact UniForum, 2901
Tasman Dr., Suite 201, Santa Clara, Calif.
95054; 408-986-8840.

The Posix 1003.1-1990 (kernel) standard
is available from IEEE Publications, which
can be reached at 800-272-6657. IEEE Stan-
dard 1003.1-1990 is also referenced as
ISO/IEC 9945-1:1990.

The National Institute of Standards and
Technology Special Publication, ‘‘Application
Portability Profile—APP—the U.S. Govern-
ment’s Open System Environment Profile
OSE/1 Version 1.0”’ (Order No. SN: PB91-
201004), explains Posix and other open sys-
tem standards. It is available from the Na-
tional Technical Information Service, 5285
Port Royal Rd., Springfield, Va. 22161;
703-487-4650.

““The Guide to Posix Open Systems En-
vironment IEEE 1003.0,"’ currently in draft
form, should be available from the IEEE
Service Center in 1992.

The seven-layer, open-systems intercon-
nection model is discussed in detail in
‘‘Helping computers communicate,”’ IEEE
Spectrum, March 1986, pp. 61-70.

ABOUT THE AUTHOR. D. Richard Kuhn is a
computer scientist at the National Institute
of Standards and Technology, Gaithers-
burg, Md., where his responsibilities include
operating system interface standards, formal
methods, and computer security. He
received an M.S. in computer science
from the University of Maryland in College
Park. *

The use of specific products and companies as
examples in this article does not indicate their
endorsement either by the National Institute of
Standards and Technology or by the US. gov-
ernment. Nor does such use imply that the prod-
ucts named are the best available for the stated
purpose.

Unix is a trademark of AT&T Co. VMS is a trade-
mark of Digital Equipment Corp.

39

