Position Statement
Evolving Directions in Formal Methods

D. Richard Kuhn
National Institute of Standards and Technology
Gaithersburg, Maryland, USA

Abstract - Formal methods have
demonstrated their effectiveness in a
number of application areas, but are
still not widely used in the computing
industry. Advances in theorem proving
tools, particularly those combining
model checking with traditional
interactive proof techniques are
reducing the cost of formal techniques.
Although traditionally used for
analyzing the correctness of
specifications against requirements (and
to a lesser extent the correctness of
source code), formal methods can help
reduce the cost of test generation,
making formal methods more cost
effective.

Advances in software development
technology have made it possible to build
highly complex and sophisticated
software at an ever increasing rate.
Ensuring that software is dependable is a
difficult problem, not only because of the
size and complexity of the software, but
also because source code is often not
available for components that are
acquired rather than developed in-house.
Improved methods of assurance are

0-7803-3979-7/97/$10.00 ©1997 IEEE

127

essential for complex component-based
systems.

Many observers have noted that the
process of developing a formal
specification is often as effective for
finding errors as the verification effort in
which the specification is to be used.
Developing a formal specification
requires a detailed and precise
understanding of the system, which helps
to expose errors and omissions. Yet
despite their advantages, formal
specifications are rarely used in practice.

Formal methods have been developed
with the goal of allowing rigorous proof
of system properties, a task that requires
precise descriptions of systems. In
practice, formal specifications are used to
show system conformance to a set of
formally stated requirements. (See
[Craigen et al, 1993], [Clarke and Wing,
1996] for examples.) The specification
can also be used in implementing the
system in code. Thus the cost of
developing a specification and proving its
correctness must outweigh the cost of
errors that might otherwise find their way
into a released product.

But developing rigorous system tests
also requires a precise, complete
description of system functions, and
practical system assurance requires
testing, even when formal methods are
used. Test development is typically an
enormous expense, and may even exceed
the cost of application development.
Thus any increases in the efficiency of
test development can have a significant
impact on product cost.

To date, most research on automated
software testing has focused on
structural testing, i.e., testing based on
execution paths within the code that
implements a specified function.
However, structural testing is not
possible with many systems, as there is
no access to source code. An alternative
is to use specification-based testing, in
which tests are derived from the
specification alone [e.g., Weyuker et al,,
1994; Tai, 1996].

Methods for generating tests from
specifications can make formal methods
cost effective for a much larger class of
systems. At least in the United States,
use of formal methods is largely
confined to secure systems or safety-
critical systems, i.e., those systems
whose failure can have catastrophic cost.
But if the high cost of formal methods
can offset the possibly higher cost of test
development, formal techniques become
much more attractive. The past two
decades have seen great advances in
methods and tools for formal verification.
More effective tools can do a great deal
to increase the use of formal techniques
in industry. In addition, better methods
and tools for specification based testing
could reduce the cost and increase the
effectiveness of system testing.

References

Clarke, EM.,, JM. Wing, Formal
Methods: State of the Art and Future
Directions, ACM Computing Surveys,
Dec. 1996.

Craigen, D., S. Gerhart, T. Ralston, An
International Survey of Industrial
Applications of Formal Methods, NIST
GCR 93/626 (vols. 1 and 2).

Tai, K.C, Theory of Fault-Based
Predicate Testing for Computer
Programs, IEEE Trans. Software Eng.,
Vol. 22, No. 8, 1994.

Weyuker, E ., T. Gorodia, A. Singh,
Automatically Generating Test Data
from Boolean Expressions, IEEE Trans.
Software Eng., Vol. 20, No. 5, 1994.

128

