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Abstract  
This paper provides an introduction to applying formal 
methods to modeling and simulation problems at reasonable 
cost. Two approaches are discussed. First, lightweight 
formal methods combine simplified specification approaches 
with automated analysis, making it possible to analyze 
requirements and designs early in the development cycle.  
Second, by hiding the complexity of the formal models and 
providing the analytical results solely in terms understood by 
domain experts, new formal tools provide rapid feedback to 
requirements teams and developers.   
 
LIGHTWEIGHT FORMAL METHODS 
   What are “lightweight formal methods” and how can they 
be useful for the practicing engineer? Traditionally, formal 
(i.e., mathematical) software development methods have 
been promoted as the only approach that can guarantee the 
absence of certain classes of errors.  By specifying software 
behavior formally, rigorous proofs of its properties can be 
developed.   But the great expense of these methods has 
confined their use to a handful of high-security or safety 
critical systems.  “Lightweight” methods may involve both 
greater automation of formal analysis, and more focused 
application of formal techniques.  As a result they can be 
cost effective for a broad range of problems.  

 
 
Figure 1.  Formal techniques in M&S 
    
To frame the discussion, consider the view of the modeling 
process shown in Figure 1 [1; 2] annotated to illustrate the 
applicability of formal techniques.  Traditionally, formal 

techniques have been applied to the software verification 
problem.  Given a formal definition of requirements, R, 
and a formal specification of the software (although 
typically only a top level specification), S, theorem 
proving tools can be used to assist in proving that the 
specification meets the requirements, i.e., that RS ⇒ . 
 
   While the verifications shown in Figure 1 can be 
conducted semi -automatically, and proofs checked 
mechanically, validation is a different problem. A 
succinct distinction between verification and validation is 
that verification is “building the system right,” while 
validation is “building the right system.” If we have a set 
of requirements, we can verify, formally or informally, 
that the system implements the requirements. But 
validation is necessarily an informal process. Only human 
judgment can determine if the system that was specified 
and built is the right one for the job. 
 
   Despite the necessity of using human judgment in the 
validation process, formal methods do have a place in 
validation, particularly in large complex applications such 
as M&S. One of the most promising applications of 
formal techniques is the “lightweight” application of 
formal methods for requirements modeling [3]. By stating 
requirements formally, theorem-proving tools can be used 
to explore properties, often detecting conflicts between 
different requirements or missing assumptions. This 
approach does not replace human judgment, but can aid in 
determining if the “right system” has been specified by 
making it easier to determine if desired properties hold.  
A particular advantage to using lightweight formal 
methods in requirements engineering is that ambiguities 
and inconsistencies in require ments are discovered early, 
when they can be corrected with much less expense than 
after code has been developed. 
 
   A significant difference between the validation problem 
for M&S systems and for software designed for control or 
calculation is that M&S systems have two types of 
validation requirements. By definition, the M&S system 
must model and predict behavior of some real world 
entity. This problem has been called “operational 
validation.” A second aspect to the validation problem for 
M&S systems is “conceptual model validation,” which is 
concerned with ensuring that the assumptions underlying 



the conceptual model are correct and that the logic and 
structure of the model are suitable for the model’s intended 
purpose [1]. Where formal methods have been applied to 
validation, their use corresponds most closely to the problem 
of conceptual model validation. Figure 1 shows a view of the 
modeling process [1;2], annotated to illustrate the 
applicability of formal techniques. 
 
   Because the conceptual model describes what is to be 
represented by the simulation, it must include assumptions 
about the system and its environment, equations and 
algorithms, data, and relationships between model entities.  
Although algorithms and equations are necessarily formal 
statements, the assumptions and relationships are most often 
described using natural language, which introduces the 
potential for ambiguities and misunderstandings between 
developers, users, and subject matter experts. An 
increasingly popular trend in formal techniques, lightweight 
formal methods have shown a potential for detecting major 
errors in requirements statements, without the expense of a 
formal design verification, by applying formal analysis to 
earlier products of the system design process. 
 
   The basic premise of this approach is to use formal 
techniques in analyzing the assumptions, relationships, and 
properties of requirements stated in a requirements statement 
or conceptual model. An advantage of the approach is that it 
can be applied to partial specifications, or to a limited 
segment of a complete specification. The analysis is done in 
three phases [4]: 
 
1. Restate the requirements and conceptual model in a 
formal (or semi-formal) notation, typically a state table 
description. 
2. Identify and correct ambiguities, conflicts, and 
inconsistencies. 
3. Use a model checker or theorem prover to study system 
behavior, demonstrate properties, and produce traces of 
system behavior.  
 
Developers, users, and subject matter experts can then use 
these results to improve the conceptual model.  
 
   The representational abstraction phase of conceptual 
model design uses a variety of modeling methods to 
represent simulation elements and their relationships [5;6]. 
Notations such as those provided in the Unified Modeling 
Language are often effective. While standard UML does not 
contain sufficient formality to map directly to formal 
representations used by model checkers, some more recent 
additions to UML may make this possible. The Object 
Constraint Language [7] includes elements of first order 
logic that, when combined with some of the state machine 
representations of UML, can provide a rigorous system 
specification. Because popular model checkers use state 
machine representations as input, a conceptual model 

defined with OCL would appear to have the potential for 
efficient translation into the input notations of either 
theorem proving tools or model checkers such as the 
popular SMV and SPIN tools. However, we must admit to 
some uncertainty that a rigorous foundation for 
UML/OCL can be developed; reverse engineering a 
rigorous foundation into an existing language is generally 
exceedingly difficult. Jackson's Alloy [8] uses a well-
founded UML/OCL-like notation to perform formal 
modeling and analysis. 
 
   A more rigorous notation, the Z formal specification 
language [9] has primarily been used to model system 
requirements. ORA Canada's Z/EVES system [10], which 
has been used in 62 countries, uses state-of-the-art formal 
methods techniques,, integrating the Z specification 
notation with a leading automated deduction capability. 
The resulting system supports the analysis of Z 
specifications in several ways: 
 
• Syntax and type checking. 
• Schema expansion. 
• Precondition calculation. 
• Domain checking. 
• General theorem proving. 
 
   From a lightweight formal methods perspective and 
technology transfer perspective, it is important to note 
that users can be introduced to Z/EVES capabilities in 
steps. For example, little knowledge of the theorem 
prover is required for syntax and type checking, schema 
expansion, and precondition calculation. Even with 
domain checking, many of the proof obligations are easily 
proven. In more difficult cases, generating the proof 
obligation is often a substantial aid in determining 
whether a specification is meaningful. The use of 
engineering judgement in what analyses to perform and to 
what detail is crucial to the beneficial use of Z/EVES, in 
particular, and formal methods, in general. Example 
applications of Z/EVES include security and safety 
systems [11, 12,13]. 
 
 
 
Example Applications  
   A particularly interesting aspect of the lightweight 
approach to formal methods is that it has been used to 
model and analyze the behavior of software, hardware, 
and humans acting together in systems. Agerholm and 
Larsen [14] describe the application of formal modeling 
to a NASA extravehicular activity system. Using the PVS 
theorem-proving tool, the authors were able to model the 
EVA system and study its properties using a model that is 
essentially executable.  Lutz [15] describes requirements 
validation of onboard fault monitors for a spacecraft. An 



interesting aspect of this project is that developers were able 
to reuse the requirements model for a second project that 
evolved from the first in a series of builds.  
 
   Janssen et al. [16] describe the application of model 
checking to the analysis of automated business processes, 
such as insurance claim processing. The formal model is 
used to ensure that processes maintain desired properties, 
such as ensuring that the proper sequence of processing is 
maintained, that two mutually exclusive outcomes are 
prevented by the system, or that particular events always 
lead to the correct outcome. The formal analysis helps to 
prevent unexpected failures that can occur in large 
distributed systems where processes occur with partial 
human intervention. By modeling processes at the 
requirements stage, developers can identify problems that 
might require major rework if not detected until the system 
is built and tested. 
 
Benefits, Costs, and Success Characteristics     
   The true test of any method, of course, is whether its 
benefits outweigh its expense in time and materials.  Three 
case studies reviewed by Easterbrook et al. [4] describe the 
use of lightweight formal methods in modeling systems for 
the International Space Station, detailing the effort involved: 
 
• High level Fault Detection, Isolation, and Recovery 
requirements – This effort formalized 18 pages of text 
requirements, then used the PVS theorem proving tool to 
analyze FDIR properties.  A total of 15 ambiguities and 
inconsistencies were discovered, at a cost of two staff-
months. 
• Bus controller FDIR requirements – This study 
analyzed requirements for the controller for the main 
communications bus on the space station.  A 15-page 
detailed requirements document was formalized using the 
SCR methodology.  A large number of ambiguities in the 
original English language requirements document were 
discovered, using approximately 1.5 staff-months effort. 
• Cassini deep space probe fault protection – A total of 85 
pages of English language requirements were formalized 
using state tables followed by PVS specifications.  The 
analysis detected 37 problems with the requirements, 
including 10 cases of inadequate handling of off-
nominal/failure conditions.  Approximately 12 staff-months 
were required for this effort. 
 
   Like other successful applications of lightweight formal 
methods, these projects shared characteristics that appear to 
be important for success from a cost/benefit standpoint: 
 
• Formal methods were only used where existing, 
informal requirements review techniques had been 
inadequate.  Experience had shown that extensive review of 

requirements by experts still resulted in flaws carried 
forward to implementations. 
• Selective use of formal methods: only the most 
critical or complex aspects of requirements were formally 
analyzed. 
 
HIDING COMPLEXITY – CASE STUDY 
   Hiding complex technologies is one well-recognized 
means of successful technology transfer. ([17] and [18] 
discuss in-depth formal methods technology transfer 
issues and approaches.) For example, we do not need to 
fully understand the technologies underlying our DVD 
players and Digital Cameras to enjoy the benefits of such 
products. In a similar manner, the benefits of formal 
methods modeling and analysis can be brought to various 
domains where clear value is added, yet the complexity of 
the technology is hidden from the domain experts. This 
approach provides one means of introducing logic-based 
models into the M&S world and, while providing M&S 
capabilities, supports the formal analysis of such models 
to determine properties of interest. We concretize the 
discussion by using a formal logic-based model to capture 
various aspects of IP networks.  
 
    The Cayenne Network Analyzer (CNA) works on 
models of networks; this data can correspond to a 
deployed network, a planned network, or a prior version 
of an existing network. The analyses provided, 
particularly change impact analysis, can help the network 
manager assess the functionality or security of a network 
and the impact of changes. 
 
   The CNA can model network devices such as hosts, 
gateways, and routers; physical networks such as LANs 
or dialup lines; routing tables; access control and filtering 
rules; and services offered by hosts.  The CNA offers 
several analyses: 
 
• Reachability of one host from another. 
• Differences in reachability between two 
configurations of a network. 
• Accessibility of services; and changes to accessibility 
of services in two networks. 
 
   The CNA analysis is exhaustive.  Every possible packet 
is accounted for in the results, so there is no need to make 
guesses about suitable test cases or to measure the 
coverage of tests.  The exhaustive analysis can be 
constrained by, for example, specifying a source or 
destination host or by specifying some other aspect of the 
packet. 
 
   The following example shows how a network manager 
might use the CNA to assess the impact of a change to 
access rules.  Figure 2 shows the network involved.  A 



backbone connects smaller LANs for three divisions of a 
business, each protected by a gateway/firewall. Hosts Sales 
WS and Admin WS have symbolic addresses, and are used 
to represent any of the workstations on their LANs. The only 
constraint is that their addresses lie within the block of 
network addresses assigned to the LAN, and are not the 
same as the gateway or server address. 

 
Figure 2: The Network Topology  
 
One simple analysis is to show the services available to a 
host. Figure 3 shows the resulting table of available services.  
 

Source 
Host 

Prot. Source 
IP 

Dest. IP Dest. 
Port 

Dest 
Host 

Service 

Sales 
WS 

tcp sales-ws-
address 

10.1.1.2 smtp Services mail 

Sales 
WS 

tcp sales-ws-
address 

10.1.1.2 www Services web 

Sales 
WS 

udp, tcp sales-ws-
address 

10.1.1.2 domain Services DNS 

Figure 3: Query Result: Services Available to Sales WS 
 
   In our example, we suppose that a user in the sales 
department wants to be able to log in to the administration 
server using telnet, but is unable to do so in the existing 
configuration as all telnet traffic is blocked leaving the Sales 
gateway (as shown in Figure 4). In order to allow the 
requested traffic, a new entry is made, allowing outgoing 
telnet connections. Figure 5 shows the revised rules. 
 

Interface Protocol Dst port  Action 
eth0 tcp smtp ACCEPT 
eth0 tcp www ACCEPT 
eth0  domain  ACCEPT 
eth0   DENY 

Figure 4: Initial Output Filter of Sales GW  
 
 

Interface Protocol Dst port  Action 
eth0 tcp telnet  ACCEPT 
eth0 tcp smtp ACCEPT 
eth0 tcp www ACCEPT 
eth0  domain  ACCEPT 
eth0   DENY 

Figure 5: Revised Output Filter/Sales GW  
 

We can use the CNA to discover what services are now 
accessible that were not previously. Figure 6 shows the 
results of this query. 
 

Source 
Host 

Prot. Source 
IP 

Dest. IP Dest. 
Port 

Dest 
Host 

Service 

Sales 
GW 

tcp 10.1.1.10 10.1.3.2 telnet Admin 
Server 

Remote 
login 

Sales 
GW 

tcp 10.1.1.10 10.1.4.2 telnet Finance 
Server 

Remote 
login 

Sales 
WS 

tcp sales-ws-
address 

10.1.3.2 telnet Admin 
Server 

Remote  
login 

Sales 
WS 

tcp sales-ws-
address 

10.1.4.2 telnet Finance 
Server 

Remote 
login 

Figure 6: Query Result: Services Newly Available After 
Final Filter Revisions 
 
As can be seen, the change has had some unintended 
effects: now any workstation in the sales network can not 
only login to the administration server, but also the 
finance server. 
 
   This analysis might prompt a more elaborate revision, 
where the input filters for the administration and finance 
networks are strengthened.  When these changes are 
made, and we again query what services are newly 
available, the result, shown in Figure 7, is exactly what 
we want: one user (at address 10.1.2.5 in the Sales 
network) has access to the administration server. 
 

Source 
Host 

Prot. Source 
IP 

Dest. IP Dest. 
Port 

Dest 
Host 

Service 

Sales 
WS 

tcp 10.1.2.5 10.1.3.2 telnet Admin 
Server 

Remote 
login 

Figure 7: Query Result: Services No Longer Available 
After Final Filter Revisions 
 
   We can also see which services are no longer available 
(by querying what is newly available when changing from 
the new to the old configuration).  Figure 8 shows that we 
have removed access to remote login from a few servers 
and a gateway. 

Source 
Host 

Prot. Source 
IP 

Dest. IP Dest. 
Port 

Dest 
Host 

Service 

Services tcp 10.1.1.2 10.1.4.2 telnet Finance 
Server 

Remote 
login 

Admin 
GW 

tcp 10.1.1.11 10.1.4.2 telnet Finance 
Server 

Remote 
login 

Admin 
Server 

tcp 10.1.3.2 10.1.4.2 telnet Finance 
Server 

Remote 
login 

Services tcp 10.1.1.2 10.1.3.2 telnet Admin 
Server 

Remote 
login 

Figure 8: Query Result: Services Newly Available After 
First Filter Revision 
 
Change of Topology 
   The next example is derived from an actual situation, 
where we restructured our network to include a DMZ and 
restricted access to our LAN.  In the initial configuration 
a router with some simple firewall rules connected the 
LAN directly to the Internet. The LAN had several 
workstations, a printer, and a main server with dial-up 
PPP access.  We have a class C address block 
206.191.58.0/24 and do not use any address translations. 



   In this model, there are three symbolic addresses used: the 
external host has any address outside our address block; the 
workstation has any address in the range 206.191.58.5 to 
206.191.58.39, and the dialup has any address in the range 
206.191.58.40 to 206.191.58.49.  The actual network has a 
number of workstations and dialup hosts. 
 
   The new configuration inserted a new bastion host 
between the router and LAN. Web pages and an ftp server 
were moved from the internal server to the bastion, and the 
bastion also functioned as a firewall for access to and from 
the LAN. In order to minimize disruption to external users of 
the services, the new bastion host used the IP number 
(206.191.58.2) that had originally been assigned to the 
server.  The internal server received a new, previously 
unused, address.  
 

Source Host Source IP  Dest. IP Fate 1 Fate 2 
Workstation, 
gw, dailup 
Outside 

 206.191.58.4 LOST DELVD 

Workstation, 
gw, dialup 

~206.191.58.* 206.191.58.4 LOST DELVD 

Outside ~206.191.58.* 206.191.58.19 LOST DELVD 
Gw  206.191.58.19 LOST DELVD 
Outside ~206.191.58.* 206.191.58.2 DELVD DELVD 
Gw, dialup  206.191.58.2 DELVD DELVD 
Outside ~206.191.58.* 206.191.58.19 DELVD DELVD 
Workstation, 
dialup 

 206.191.58.19 DELVD DELVD 

Workstation, 
dialup 

 206.191.58.2 DELVD LOST 

Workstation, 
dialup 

 206.191.58.1 DELVD LOST 

Figure 9: Different Fates in the Old and New 
Configurations 
 
   Rather than renumber all our internal hosts, we decided to 
divide our class C address space into two blocks, the first, 
206.191.58.0-206.191.58.3 for the DMZ (giving us exactly 
two usable host addresses), and the remainder, 206.191.58.4-
206.191.58.255, for the internal LAN. We used the CNA to 
determine whether we had correctly revised our routing rules 
and the results appear in Figure 9. This shows all packets, 
including possibly spoofed ones, sent by any host in the 
model, having a different fate in the two configurations. 
There are four kinds of difference: 
• Packets with a destination of 206.191.58.4 used to be 
lost; they are now delivered to the bastion host.  This is 
expected, as that address was unused in the original 
configuration. 
• Packets with a destination of 206.191.58.19 used to be 
lost; they are now delivered to the internal server host.  This 
is also expected, as that address was unused in the original 
configuration.  (In some rows, these packets are shown as 
being delivered to the workstation.  A side condition, not 
visible in the figure, shows that this covers the case where 
the workstation address variable has this .19 address as its 
value.) 
• Packets with a destination of 206.191.58.2 are delivered 
to the bastion rather than the original server. 

• Packets from a workstation or dialup with a 
destination of 206.191.58.1 are lost, but used to be 
delivered to the gateway. 
 
All but the last difference was expected. The last 
difference shows we did not quite restore connectivity. 
 
Discussion 
   The above analysis was presented entirely in terms 
understandable to a network manager. Yet, the 
underpinning for the analysis is that of formal mo deling 
and analysis. The benefits, especially that of 
comprehensive analysis of a network model, are clear, yet 
the complexity hidden.  Cayenne's ability to make use of 
"symbolic simulation" is of particular note as it provides a 
basis for the comprehensive analysis and the ability to 
prove that networks are compliant with policy. 
 
   In an abstract for a presentation that J Moore (U. T. 
Austin) recently gave at the University of Pennsylvania, 
Dr. Moore succinctly described some of the benefits of 
formal mo deling and analysis: 
 
"Computer hardware and software can be modeled 
precisely in mathematical logic. If expressed 
appropriately, these models can be executable. This 
allows them to be used as simulation engines or rapid 
prototypes. But because they are formal they can be 
manipulated by symbolic means: theorems can be proved 
about them, directly, with mechanical theorem provers. 
But how practical is this vision of machines reasoning 
about machines? In turns out that researchers in 
academia and industry are using mechanical theorem 
provers to prove important theorems about commercial 
microprocessor designs, including processors by AMD, 
Motorola, IBM, Rockwell-Collins and others. Some of 
these microprocessor models execute at 90% the speed of 
C and have had important functional properties verified. 
In addition, we are modeling the Java Virtual Machine 
and are proving theorems about JVM methods." 
 
What is of particular note to the M&S community is that 
it is possible to have the benefits of formal models and yet 
still have these models nearly as efficient as simulations 
written in C or the like. 
 
CONCLUSION 
   This brief paper has introduced two means through 
which formal methods could be successfully introduced 
into the M&S field: lightweight formal methods and 
hiding complexity. Both approaches can provide 
significant benefits, yet reduce impediments to 
technology adoption. 
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