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Abstract

Pseudo-exhaustive testing uses the empirical oaserv
that, for broad classes of software, a fault ishktrig-
gered by only a few variables interacting. The lodt
takes advantage of two relatively recent advanoesoift-
ware engineering: algorithms for efficiently geating
covering arrays to represent software interactioestt
suites, and automated generation of test oraclesgus
model checking. An experiment with a module ofTtiad-
fic Collision Avoidance System (TCAS) illustrates &p-
proach testing pairwise through 6-way interaction¥Ve
also outline current and future work applying thestt
methodology to a large real-world application, theer-
sonal Identity Verification (PIV) smart card.
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1. Introduction

Pseudo-exhaustive testing is an establishedem in
circuit design. Several different approaches alable
for pseudo-exhaustive testing in digital circulist all take
advantage of the fact that, in general, outputaatalepend
on all inputs, but on a subset of them. Circuits seg-
mented, either logically or physically, and eacgrsent is
tested exhaustively. Applying the same schemeftware
is problematic. Unit testing concentrates on sapaseg-
ments of the software, but exhaustive testing dividual
units is still intractable. In addition, interamts among
functions may cause faults and need to be tested.

We propose an approach to pseudo-exhauststmge
for software. Empirical observation suggests thatnum-
ber of variables involved in software failures eatively
small, (i.e., on the order of 3 to 6), at leastfome classes
of software [14]. Therefore, if we know from exjeerce
thatt or fewer variables are involved in failures fopar-
ticular application type and we can test tallay (ort+1
way) combinations of discrete variables, we haygh ltion-
fidence that the application will function corrgctlLooked
at another way, if we know in advance that alluiabk are
triggered byt or fewer conditions, testing allway condi-
tions is in some sense equivalent to exhaustitentesFor
realistic applications it is not possible to telsttavay com-
binations of values for variables that may ha%&values
each, so equivalence classes or other abstracteihons
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must be used.
pseudo-exhaustivather than truly exhaustive.

The methods we propose would not have beesiljes
in the past, because even after partitioning viéiaalues
into equivalence classes, testingtallay combinations for
realistic software can require an exponential nurolbéests
(tens to hundreds of thousands for much real weot-
ware). Faster algorithms for generating coveringayes
[5],[12],[17], combined with methods of automatigajen-
erating complete test cases, including test oradgp],
make it practical and cost-effective to do pseuxlmaestive
testing of software. We describe this method édndtiate
its application through an experiment with a modufiehe
Traffic Collision Avoidance System (TCAS). This s®
has been used in previous studies of softwarentesitods
and provides a benchmark for evaluation of our geeu
exhaustive testing methodology.

2. Combinatorial Testing

Methods from the field of design of experitgen
(DOE) have been applied to quality control probleéms
many engineering fields, including limited use $oftware
[4],[8],[18], DOE seeks to maximize the amount iaffor-
mation gained in an experiment with an economicahn
ber of tests. Originally used in agricultural espents in
the 1920s, DOE methods were set up to produce dedan
coverage of independent variables. For instancegxa
periment might involve six varieties of seed witbeffer-
tilizers and five soil types, using an orthogonedag in
which every combination occurs exactly once[10]rlfea
applications of these methods to software weretdithbe-
cause of two significant differences between sakwand
the problems that DOE was originally designed foeeds
for balanced coverage and the number of variables
volved — and a lack of adequate tools for genayateces-
sary combinations.

Constructing tests that provide combinatocmerage
is a hard problem that has been studied for mame two
centuries. Software testing is different from poee ap-
plications. For instance, software does not haeesdme
need for balance between parameters: if the catibm

p,=Vzand p, =V, occurs in multiple test cases, there

may be some wasted effort but testing soundnesstiaf-
fected. Software testing typically has a vast nends pa-

This approach may thus be considered



rameters and corresponding values. Unlike theicgtin
to agriculture, software may have parameters witirem
than five or six values. Abstraction methods, sash
equivalence classes, may reduce the number of/abus
the number of variable and value combinations still be
extremely large.

Covering arrays are combinatorial objects twat be
generated to represent interaction test suitesovering
array, CA;(N;t,k,v), is anN x k array. In everN x t su-

barray, eaclt-tuple occurs at leagttimes. In our applica-
tion, t is thestrengthof the coverage of interactions,is

the number of components (degree), and the number

of symbols for each component (order). In all of dis-
cussions, we treat only the case whenl, (i.e. that every
t-tuple must be covered at least once). The efficien-
struction of objects to represent these test sifitaied
covering arrays) is an NP-hard problem, but advances
have been made within the past decade [5],[17].

Software testing using DOE methods, oftenrreteto
as combinatorial testing (or interaction testinggs been
advocated as an efficient means of providing a tegkl
of coverage of the input domain with a small nhumbgr
tests, typically limited to pairwise combinations
[8].[9].[12]. For example, consider a device thas 20
inputs, each with 10 settings (or 10 equivalenessds if

the variables are continuous), for a totall6@f°combina-

tions of settings. The few hundred test cases dhatbe
built under most development budgets would coveinan

finitesimally small proportion (¥07'°) of the possible
cases. But the number phirs of settings is small, and
since every test case must have a value for eatifeden
variables, more than one pair can be included simgle
test case. Only 180 — 200 test cases [8] are exdjdor

pairwise coverage of the example above Wii® combi-
nations of settings.

Several authors have demonstrated the eftewts of
pairwise testing for software. A test set that ersvall
possible pairs of variable values can typicallyede60%
to 75% of the faults in a program [4],[9],[26]. Gther
work we found 100% of faults detectable by a retdsi
low degree of interaction, typically 4-way to 6-way
combinations [14],[15],[27]. Advances in coveriagay
algorithms make the generation of all 4-way to Grwa
combinations tractable for many realistic testinglgpems

checking can produce test oracles and more thad0Q7,
test cases can be generated. These tests can hha
few minutes of processing time and a few hoursabbt.

In the next section we describe the model checking
approach to test case generation, followed by eewneof

the proof-of-concept experiment. We also discessilts

on how combinatorial designs can be efficiently borad
with model checking for software testing.

3. Test Generation Using Model Checking

One practical problem in software testingésedmining
the correct output for a given set of input varakalues,
generally referred to as the test oracle probldfrhuman
intervention is required to check outputs, the nendf test
cases will be limited to a few hundred at most,seme
form of automation is essential for thorough tegtinrOne
approach to automated generation of test oraclesoiel
checking [1],[6], which uses a formal specificatimncom-
pute expected output for input values and events.

Model checking is a formal technique basedstate
exploration. Input to a model checker has two p#itst is
a state machine defined in terms of variablesiainialues
for the variables, environmental assumptions, addszrip-
tion of the conditions under which variables maarue
value. Second is temporal logic expressions owestand
execution paths. Conceptually, a model checketsvisil
reachable states and verifies that the tempor#t kexpres-
sions are satisfied over all paths. If an expresssonot
satisfied, the model checker attempts to generataiater-
example in the form of a sequence of states.

A common logic for model checking is the braing-
time Computation Tree Logic (CTL), which extend®-r
positional logic with temporal operators. For exénm
CTL formulaAG saf e means that all reachable states are
safe, andAG (request -> AX response) means
thatr equest is always followed by esponse in the
next step.

In SMV [20], a CTL symbolic model checker, @esifi-
cation consists of one or more modules. One module,
named main, is the top-level module. Figure 1 isSafv
example. Variabled, b, andf are inputse anda are inter-
mediate variables. The statemémit(e) := O; setse to O
initially. The next value oéis 1 if the guard = On is true,
otherwise it is 0. The output is the variablat, which may
be Low or High. Its value isHigh if a is greater than 10,

combinations will be required, but far fewer tharilyf
exhaustive testing. For the small example usedthis

is possible to get to some state where ottigh. We often
drop the keywordsPECwhen the meaning is clear from the

experiment, exhaustive coverage would have requiredCONtext.

230,400 combinations, but all 4-way combinationgeve
covered with 1,450, all 5-way with 4,347, and alvéy
with 10,902. Clearly, tests for such a large numbfke
combinations could not be constructed manually. wHo
ever, the application of combinatorial methods witbdel

Model checking can be applied to test genematind
test coverage evaluation [1],[6]. In both uses, dingt
chooses a test criterion, that is, decides on &siphy
about what properties of a specification must berased
to constitute a thorough test.



MODULE nmi n
VAR
d: 0..5; b: 0..11;
f: {On, Of};
out: {Low, High};
a: 0..16; e: 0..1;
ASSI GN
init(e) :=0;
next (e) := case
f =0On: 1;
1: 0;
esac;
a:=e*d+ b
out := case
a > 10 : High;
1 : Low,
esac;
SPEC AG (f = On -> EF out = High)

Figure 1. An SMV example.

One applies the chosen test criterion to pezification
to derive test requirements, (i.e., a set of irdiial proper-
ties to be tested). To use a model checker, thegaire-
ments must be represented as temporal logic fosridla
To generate tests, the test criterion is appliegidéll nega-
tive requirementsthat is, requirements that are considered
satisfied if the corresponding temporal logic fofasuare
inconsistent with the state machine. For instaiidée cri-
terion is state coverage, the negative requiremamshat
the machine is never in state 1, never in stagtc2,

When the model checker finds that a requirgnsem-
consistent, it produces a counterexample. Agaithencase
of state coverage, the counterexamples would hawelss
that puts the machine in state 1 (if it is reachplbdnother
to put the machine in state 2, and so on. Setesatriteria
have been proposed, including branch coverage §bd]
mutation adequacy [1]. We udevay coverage as a test
criterion. Different methods can be used to dethe test
requirements fot-way coverage; we present some possi-
bilities in the Discussion section.

4. TCASExperiment

Our experiment used a module of Traffic CallisAvoidance
System (TCAS). The module is part of a set of Cgpams that
has been used in other evaluations of softwarénteshethods
[22],[24].

The program came with 41 faulty versions deti\by
manually seeding realistic faults. Two thirds oé thaulty
versions have single changes such as replacinqistastd
with another constant, replacing >= with >, or ¢img a
condition. The rest involve either multiple changesnore
complex changes. These faulty versions servedeabdhis

of our evaluation. The program has 12 input véeisb
specifying parameters of own aircraft and anotheraft

and one output variabl@lt_sep a resolution advisory to
maintain safe altitude separation between the tinaradt.

The program computes intermediate values and prints
alt_septo the standard output. A model of the prograrm wa
written in SMV. The model, together with the C prag,

was used in evaluations of specification-based tiouma
testing methods [22]. In this project, we used 8V
model to produce counterexamples.

To make model checking feasible, the domafrispmut
variables were partitioned into equivalence classesonly
one representative value from every equivalencsscheas
chosen. The TCAS model has three Boolean andsuiae
lar input parameters, shown in Figure 2. The outaniable
can take one of three values.

Cur _Vertical _Sep :
H gh_Confi dence :

{299, 300, 601};
bool ean;

Two_of _Three_Reports_Valid : bool ean;
Onn_Tracked_Al't {1, 2};

O her _Tracked_Al t {1, 2};
Omn_Tracked_Al't _Rate : {600,601 };
Al't_Layer_Value : 0..3;

Up_Separation :
{0, 399, 400, 499, 500, 639, 640, 739, 740, 840 };

Down_Separati on :
{0, 399, 400, 499, 500, 639, 640, 739, 740, 840} ;

Other _RAC : { NO_INTENT, DO NOT_CLI MB,
DO NOT_DESCEND };

O her_Capability : {TCAS_TA, OTHER};
Cinb_Inhibit bool ean;

Figure 2. TCAS variables.

There are 230,400 possible combinations of these va
ables, but covering array methods make it possibver
all 6-way combinations with only 10,902 input commbi
tions, and all 5-way combinations with only 4,220nbina-
tions (see Table 1).

Table 1. Combinations produced for TCAS example

4-way
1375

5-way
4220

6-way
10902

2-way
100

3-way
405

5. Discussion: Integrating Combinatorial

Methods with Model Checking
While model checking has been used for tesegdion
in a number of previous studies, it had not be¢egirated
with combinatorial testing prior to this work. Owé the
significant questions we investigated was how inyart-



able combinations should be used to generate t&itgen
assertions of the forlAG(P -> AX(R)), and tests con-
sisting ofn variables of strength(i.e.,t-way variable com-
binations),v, & v, & ... & V_, counterexamples
can be produced in several ways. At least thrb&erses
are possible. Method 1 simply combines the inpuiable
combination (the expressioh, & v, & ... & V)
in a conjunction with the original predicate P:

Method 1. Use
AV, &V, & ... & Vv, &P -> AX I (R)

A disadvantage of this method is that as theraction
level is increased, the variable combinations . . . Vp
will include more variables in the conjunction, base
there are fewer “don’t care” conditions (those wiib
specified value for a particular variable in a camakion).
As a result, some of theg V, may resultinv, &
Vo & ... & Vvn & P evaluating to 0, preventing
the model checker from finding a counterexamplecgsi
0 - Q =1for any Q, the expression becomes trivially true

and no counterexample is possible).

The problems of method 1 can be preventedeplac-
ing the consequent of the assertion with O (or &bl re-
moving P. This causes the model checker to finchtzr-
examples for all of the variable combinations. t Because
many of the combinations include “don’t care” cdiutis,
and the model checker makes non-deterministic elsdica
variable value is not asserted, the counterexamptes
duced may not cover all values of R.

Method 2. Use
AQVvy &vy & ... & vy -> AX 1(1))

Method 2 can be strengthened by including assertion
each possible value of expression R. This forcesibdel
checker to attempt to produce counterexamples dagh,e
not just one, value of R.

Method 3. Use
AQvy &vy & ... &vy -> AX 1 (R)

The last assertion means that for the chaseut ivari-
able combination, R is always false on the nexp.s&o
SMV will choose any counterexample where the coimbin
tion of input variables will result in satisfactiof R. This is
sufficient for the SMV example used in this papsnce it
simply computes the output based on the inputs. d¥ew
reactive systems have a state, and the output depeot
only on the inputs but also on the current st&ter the case
of reactive systems, we can strengthen Method iBdiyd-
ing a particular state in the conjunction of inpatiables.
Given a set of inputs produced by combinatoridingsthe
model checker will produce a counterexample thatdeto
the chosen state, applies the inputs, and prodiheegx-
pected outputs.

While Method 3 ensures the production of edlult val-
ues, it does not guarantee that tests-faples at an interac-
tion coverage strength o#will be a subset of tests for inter-
action levelt+1. Thus in some cases, faults detected by a
particular interaction level may not be detectedallyigher
level, because of “don’t care” conditions. For fétccare”
conditions, we do not assert any value for thealdei, so
the model checker will non-deterministically selactalue.

In other words, tests fdrway interaction are not necessar-
ily a subset of tests fot#1)-way interactions

Table 2 shows the number of input combinatiand
test cases produced for TCAS using pairwise thrdiglay
interaction levels. There is not a one-to-one magppie-
tween input combinations and test cases in Talilecause
counterexamples are produced for each of the dessilt-
puts, and there are so many combinations with 'tdamne"
conditions, SMV can produce more counterexamplas th
there are combinations. For example, a booleamtinp
010XXX could be mapped to two different results)csi
the model checker will keep trying until it findalues for
the "X" - "don't care" - values that will producecaunter-
example. So an input of 010XXX could produce & ¢ase
with output value UP and another test with outpatug
DOWN, since the X's will get filled in with valudkat pro-
duce the two different counterexamples. This isagig-
nificant problem in practice since they are bothidvéest
cases. The model checker may also produce test taese
are redundant in the sense that one is a prefanother.
This output could be filtered easily, but the srmalinber of
extra test cases we generated only cost a few dsooih
extra computation time.  As can be seen from & ablhe
percentage of redundant tests declines rapidlyfastar as
the interaction coverage increases. Of 17,473 igsher-
ated, 17,039, or 97.5%, are unique.

Table 2. Test cases produced for
input variable combinations

2-way 3-way 4-way 5-way 6-way
Comb. 100 405 1375 4220 10902
Cases 156 461 1450 4309 11094

Counterexamples produced by the model cheakee
post-processed into test harness code and exeontdoke
41 versions of the TCAS module. We later deteruhitheat
two pairs of the TCAS versions were equivalent, arnkird
had a seeded source code error that did not riesalfault
in the executable. (The correct version has aayaof
length 4 that is length 3 in the faulty versiont the array is
followed by empty space in memory so an executanit f
did not occur; compiled with gcc ver. 3.4.4 undeg@in,
on Windows XP.) Results are shown in Figure 3 Bable
3.



Table 3. Fault detection rate by interaction level

2-way | 3-way | 4-way | 5-way | 6-way
Number 20 28 34 36 37
detected
Cumulative 20 28 34 38 38
detected
Detection 53% 74% 89%| 100%| 100%
Rate

Detection Rate for TCAS Seeded

Errors
100%
80% /
60% ‘/ —&— Detection
40% rate
20%
0% T

2 way 3 way 4 way 5 way 6 way

Fault I nteraction level

Figure 3. Fault detection rate by interaction level

The percentages of errors per failure triggerfault
interaction (FTFI) level shown in Figure 3 are cargble
to those we found by analyzing failure reports amgé
systems [14],[15],[27]. However, the faults-per-FThrve
grows more slowly for this example than for thel-warld
software previously tested, suggesting that thdesterrors
were relatively difficult. As shown in Figure the number
of tests per detected error approximately doubliéis @ach
interaction level (up to 5-way, which detected 100%ut
since tests are produced and analyzed automatichly
cost in terms of time is relatively unaffected. thMiiealistic
software, it is inevitable that more human inteticam will
be required to review tests and results, so tegtingigh
FTFI levels is likely to have significantly higheosts.

6. Scaling Up: A Ralistic Application

Methods described in this paper will be agplie three
modules of thePersonal Identity Verification RIV) smart
card, with 43, 26, and 29 variables respectivel@ur
current version of the extended IPO algorithm canegate
combinations up to 4-way interactions in a few Isofor
each of these modules.
developed an algorithm that can generate coveningys

for 50 — 500 parameters, depending on the level of

interaction [16]. The algorithm is suboptimal ihat it

For larger problems, wee hav

produces more than the minimal number of tests,tieit
increment beyond optimal is small, and additioredtg
have relatively small cost in execution time, siticey are
generated automatically.

Tests per error
350.0
300.0 /,
250.0
2000 / —e— Tests per
150.0 error
100.0 A

0.0 | —

0.0 T
2 way 3 way 4 way 5way 6 way

Fault Interaction level

Figure 4. Number of tests per detected error

The second component of the method, modedkimg,
is also subject to scaling problems. Once input
combinations have been produced, test generatiah an
execution can be distributed across any number of
machines, since there are no dependencies betwstn t
Using 100 machines it is practical to generate exetute
10° tests in a few weeks, a level of effort consisteith
most development budgets.

In addition we are investigating the use ahbmatorial
methods with the TVEC test generation tool [3], Which
is already being used to produce tests for the &dkd.
TVEC is efficient and appears to be suitable foegmnation
with combinatorial methods.

7. Conclusions

This work serves as a proof of concept foedgnating
combinatorial testing with model checking to pravid
automated specification based testing. One valugddalt
from the project was determining the most efficiesaty to
integrate combinatorial testing with model checking
Results suggest that this approach is efficient eanal be
effective.
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