Subject: OFFICIAL COMMENT: Vortex - simple correlation on some of the output bits
From: Niels Ferguson niels@microsoft.com
Date: Sun, 14 Dec 2008 17:38:29-0800
To: "hash-function@nist.gov" hash-function@nist.gov
CC: "hash-forum@nist.gov" hash-forum@nist.gov
I think I found a simple correlation on some of the output bits of Vortex.
The hash result is the output of the V function. I'll use the notation of Figure 4 in the Vortex documentation, and use $\mathrm{X}[0]$ to refer to the least significant bit of word X .
new_B0 and new_A0 are two of the output words of the function V.
new_BO[0] is a function of three bits $\mathrm{Bl}[0], \mathrm{BO}[0]$, and $\mathrm{AO}[0]$.
new_AO[0] is a function of three bits $\mathrm{BO}[0], \mathrm{Al}[0]$, and $\mathrm{AO}[0]$.
These two functions share inputs and are correlated. new_BO[0] = new_AO[0] with probability $5 / 8$. This leads to a trivially detectable output bias, and makes the hash function unsuitable for many applications, including key derivation and Hash_DRBG from SP800-90.

Let's rename the four input bits to A, B, C, and D, and the two output bits to X and Y. We have:
$X=(A \& D) \wedge B$
$Y=(B \& C) \wedge D$

If $A=0$ then $X=B$ and $Y=$ <some expression> ${ }^{\wedge} D$ so both output bits are uncorrelated and unbiased.
If $C=0$ the same applies.
But if $A=C=1$ we have
$X=D^{\wedge} B$
$Y=B \wedge D$
and thus
$X=Y$
So $3 / 4$ of the time the two output bits are unrelated, and $1 / 4$ of the time they are the same, which leads to $\mathrm{X}=\mathrm{Y}$ for $5 / 8$ of all inputs.

I haven't verified this experimentally, but the submitters of Vortex agreed with this analysis.

Cheers!
Niels
$\begin{array}{ll}\text { From: } & \text { Michael Kounavis [michael_kounavis@hotmail.com] } \\ \text { Sent: } & \text { Saturday, May 30, } 2009 \text { 3:40 AM } \\ \text { To: } & \text { hash-function@nist.gov } \\ \text { Cc: } & \text { hash-forum@nist.gov } \\ \text { Subject: OFFICIAL COMMENT: Vortex - New paper and web page }\end{array}$
Hello,
In response to the bit correlation remark posted by Niels and the other published attacks we have posted a new paper titled: "Security Enhancement of the Vortex Family of Hash Functions" that can be found in our algorithm's new web site: http://math.haifa.ac.il/~vortex

Regards
Shay and Michael

