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From: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Date: Tue, 14 Apr 2009 11:39:04 -0400
To: Multiple recipients of list <hash-forum@nist.gov>

We (Atefeh Mashatan, Willi Meier, and myself) made some observations
on Shabal, including

* a related-key distinguisher for its permutation with any number of rounds

* non-trivial pseudo-collisions for a variant of Shabal that makes 24N
iterations in the final loop of the permutation instead of 36, for any
integer N>1

More details can be found in
http://www.131002.net/data/papers/AMM09.pdf
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Sara Caswell

From: hash-forum@nist.gov on behalf of Anne Canteaut [Anne.Canteaut@inria.fr]
Sent: Wednesday, May 06, 2009 2:11 AM
To: Multiple recipients of list
Subject: OFFICIAL comment: Shabal

Follow Up Flag: Follow up
Flag Status: Red

Attachments: distinguishers.pdf

distinguishers.pdf 
(324 KB)

We (the Shabal team) have some new results on the security of Shabal's mode of
operation, which point out that the round keyed permutation of Shabal does not need to be 
an ideal cipher to achieve the SHA-3 security requirements. The attached document actually
provides with a new indifferentiability proof for Shabal's mode of operation where the 
keyed permutation is not assumed to be an ideal cipher anymore, but complies with a 
distinguishing property.
Most interestingly, we prove that the recent related-key distinguishers for Shabal's keyed
permutation due to Knudsen et al. and to Aumasson et al. do not weaken the security of 
Shabal.

The Shabal team.
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Abstract

Shabal is based on a new provably secure mode of operation. Some related-key distin-

guishers for the underlying keyed permutation have been exhibited recently by Aumasson et

al. and Knudsen et al., but with no visible impact on the security of Shabal. This paper then

aims at extensively studying such distinguishers for the keyed permutation used in Shabal,

and at clarifying the impact that they exert on the security of the full hash function. Most

interestingly, a new security proof for Shabal's mode of operation is provided where the keyed

permutation is not assumed to be an ideal cipher anymore, but observes a distinguishing

property i.e., an explicit relation veri�ed by all its inputs and outputs. As a consequence

of this extended proof, all known distinguishers for the keyed permutation are proven not to

weaken the security of Shabal. In our study, we provide the foundation of a generalization of

the indi�erentiability framework to biased random primitives, this part being of independent

interest.

1 Introduction

Shabal is one of the fastest unbroken candidate to the NIST hash competition. It is based on a
new mode of operation, which is in some sense intermediate between the classical Merkle-Damgård
construction and the sponge construction, and which is provably secure. In this mode of operation,
depicted on Figure 1, the internal state is split into three parts A, B and C of respective sizes `a,
`m and `m. At each message round, a new message block M of size `m is processed and the new
internal state is obtained by

(A,B) ← PM,C(A⊕W,B �M)
(A,B,C) ← (A,C �M,B)

where W is a 64-bit counter, and P is a keyed permutation over the set of (`a + `m)-bit elements.
Notation � (resp. �) corresponds to the wordwise addition (resp. subtraction) modulo 232.

Once the whole padded message has been processed, three �nal additional rounds are performed
without incrementing the counter, and the hash value corresponds to the (truncated) C-part of
the internal state. The parameter set used in the function submitted to NIST is `a = 384 bits and
`m = 512 bits.

Shabal's mode of operation belongs to the class of supercharged mode of operation introduced
by Stam [6]. The underlying design idea was to adapt the provably secure mode of operation of
the sponge construction in order to use a permutation over a smaller set, which can be faster.
This mode of operation has been proven secure in the ideal cipher model in [3, Chapter 5] in the

following sense: it is indi�erentiable from a random oracle up to 2
`a+`m

2 evaluations of P or P−1.
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Figure 1: Shabal's mode of operation (message rounds)

Moreover, similar results concerning the provable (second) preimage-resistance are given in [3,
Chapter 5].

Recently, some properties of the keyed-permutation P used in Shabal have been observed by
Aumasson et al. and by Knudsen et al. [1, 2, 4]. These three works point out the existence of
related-key distinguishers for P, but all of them conclude that the given observations do not seem
extensible to the full hash function, and have therefore no visible impact on the security of Shabal.
The impracticality of exploiting related-key distinguishers for attacking the Shabal hash function
(which was still mentioned in [3, Ch. 12]) tends to show that behaving like an ideal cipher is not
a necessary property for the keyed permutation. Assuming that this can be con�rmed by formal
means (this is what this paper is about), this observation sensibly di�ers from the properties of the
Merkle-Damgård construction. One can advocate that this di�erence is not surprising in the sense
that Shabal's mode of operation stands somewhere between the plain Merkle-Damgård construction
and the sponge construction where no key is involved. For instance, a related-key distinguisher is
used in [2] to construct pseudo-collisions for a weakened variant of Shabal. However, the relevance
of pseudo-collisions for other (than the Merkle-Damgård construction) modes of operations is very
questionable: a huge number of trivial pseudo-collisions for any sponge function can be exhibited
at no cost since the internal state is updated by applying a �xed permutation to the XOR of the
IV and the message block. Thus, there is clearly a need for clarifying the impact of such properties
for non-Merkle-Damgård constructions.

In this paper, we �rst show even stronger related-key distinguishers for the keyed permutation,
which are more powerful than those put forward in [1, 2, 4]. Then, we clarify the impact that
such distinguishers exert on the security of Shabal: a new security proof for Shabal's mode of
operation is provided where the keyed permutation is not assumed to be an ideal cipher anymore,
but complies with a (standard model) distinguishing property. This new result underlines that
the round keyed permutation of Shabal does not need to be ideal to achieve the SHA-3 security
requirements. Most interestingly, the distinguishers for P put forward in [1, 2, 4] are proven not
to weaken the security of Shabal.

2 Related-key distinguishers for P
2.1 The concept of related-key distinguishers

In order to avoid any ambiguity on the notion of non-pseudorandomness, we �rst discuss the con-
cept of related-key distinguishers presented in [1, 2, 4]. Such a distinguisher exists if an adversary
is able to distinguish P from an ideal cipher when playing the following game:

1. The challenger randomly chooses the input (A,B) and the parameters (M,C).

2. The adversary makes a number of queries PM,C(A,B) where a part of (M,C) is unknown
and the other part is freely and adaptively chosen.

3. From the responses to its queries, the adversary distinguishes P from an ideal cipher.
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Therefore, this notion is quite di�erent from the notion of �non-pseudorandomness of the
round permutation�, which would mean that for a given value of the key, the permutation P is
not pseudorandom. The �non-pseudorandomness of the compression function� is not the relevant
notion either: the compression function in Shabal's mode of operation is not pseudorandom since
it is proven collision-free (see [3, Th 6, Page 122]). Thus, the appropriate formulation of the
consequence of related-key distinguishers is that the keyed permutation can be distinguished from
an ideal cipher.

2.2 New distinguishers for P and P−1

We �rst recall the de�nition of the keyed permutation P. In Shabal, the choice of parameters p
and r are p = 3 and r = 12.

Input: M,A,B,C
Output: A,B
for i from 0 to 15 do
B[i]← B[i]≪ 17

end for

for j from 0 to p− 1 do
for i from 0 to 15 do
A[i+16j mod r]← U

(
A[i+16j mod r]⊕ C[8− i mod 16]⊕V(A[i−1+16j mod r]≪ 15)

)
A[i+ 16j mod r]← A[i+ 16j mod r]⊕ M [i]
A[i+16j mod r]← A[i+16j mod r]⊕ B[i+13 mod 16]⊕ (B[i+9 mod 16]∧B[i+ 6 mod 16])
B[i]← (B[i]≪ 1)⊕A[i+ 16j mod r]

end for

end for

// �nal update
for j from 0 to 35 do
A[j mod r]← A[j mod r] + C[j + 3 mod 16]

end for

E�cient distinguishers for P−1 have been presented in Shabal's submission document [3]. A
much more expensive distinguisher based on a cube tester was then presented by Aumasson in [1],
� it is worth noticing that the description given in [1] is erroneous since this distinguisher also
requires the knowledge of C (otherwise the �nal update on A cannot be inverted). The related-key
distinguisher exhibited in [4, 2] exploits the fact that, for some di�erences ∆1,∆2 ∈ {0, 1}`m , the
images of any �xed input (A,B) for both pairs of parameters (M,C) and (M ⊕∆1, C ⊕∆2) are
equal. The interesting point here is that this property does not depend on the number of loops p.

The main property used in most of these related-key distinguishers, which has been discussed
in Shabal's submission document, originates from the structure of P−1. In turn, the words of the
B-part of the output of P−1 do not depend on all the words of parameterM . Using the same tools
as in the distinguishers presented in Shabal's documentation and an exhaustive search, we have
found the best possible related-key distinguishers for p = 3. These distinguishers are all derived
from the following basic dependence relations.

The technique used for �nding the basic relations relies of the fact that two di�erent types of
equations can be used for computing the output B of P−1:

A[i+ 12] = U(A[i]⊕ V(A[i+ 11]≪ 15)⊕ C[8− i])
⊕B[i+ 6]B[i+ 9]⊕B[i+ 13]⊕M [i] (1)

(B[i]≪ 1) = B[i+ 16]⊕A[i+ 12]. (2)

With those relations, we have been able to compute each word of B without having to know
the whole message, M . Those relations are summarized in Table 1, where 1 (resp. 0) at the
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intersection of row B[i] and column M [j] means that B[i] depends (resp. does not depend) on
M [j]. The next example shows how the dependencies for B[15] are determined.

M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7] M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

B[15] 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0

B[14] 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1

B[13] 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1

B[12] 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1

B[11] 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1

B[10] 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1

B[9] 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0

B[8] 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 1

B[7] 0 0 0 1 0 1 0 0 1 1 1 1 1 0 1 1

B[6] 0 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1

B[5] 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1

B[4] 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0

B[3] 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1

B[2] 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1

B[1] 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1

B[0] 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1

Table 1: Dependence relations between the words of the B-part of the output of P−1 and the
words of M .

Example: a relation for B[15]. Here, we show how B[15] can be computed from the inputs
of P−1, A′ and B′, and given C and only four words of M :

• From C and A′, we can invert the �nal update of A and compute the 12 words A[48], ..., A[59].

• Using Equation (2) for i from 36 to 47, we compute B[36], . . . , B[47].

• Now we use Equation (1).

From (1) for i = 38 we obtain thatA[38] depends onA[49], A[50], B[44], B[47], B[51], C[2],M [6].

From (1) for i = 39 we obtain thatA[39] depends onA[50], A[51], B[45], B[48], B[52], C[1],M [7].

From (1) for i = 43 we obtain thatA[43] depends onA[54], A[55], B[49], B[52], B[56], C[13],M [11].

From (1) for i = 45 we obtain thatA[45] depends onA[56], A[57], B[51], B[54], B[58], C[11],M [13].

• Now using (2) for i = 33, we obtain B[33] from B[49] and A[45].

Using (2) for i = 31, we obtain B[31] from B[47] and A[43].

Using (2) for i = 27, we obtain B[27] from B[43] and A[39].

• We apply (1) for i = 27, in order to compute A[27] which depends on A[38], A[39], B[33],
B[36], B[40], C[13], M [11].

• Using (2) for i = 15, we �nally obtain B[15] from B[31] and A[27].

Thus, B[15] depends on M [6],M [7],M [11],M [13] only.

A related-key distinguisher for P−1. With the previously shown algorithm, we can build a
distinguisher on P−1 in a trivial way which works with a single query, since an adversary is able
to compute some words of the output of P−1 without calling P.

1. The challenger chooses (A′, B′) and (M,C). .

2. The adversary knows C and the four words M [6],M [7],M [11],M [13] only. He makes the
query P−1

M,C(A′, B′).

3. From (A′, B′) and four known words of M , he computes B[15] and checks whether this
corresponds to the value of B[15] obtained in the response.
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A distinguisher for P. We also have a distinguisher for P with makes two queries in the
following model:

1. The challenger chooses randomly (A,B) and two sets of parameters (M,C), (M ′, C ′) with
M [i] = M ′[i] for i ∈ {6, 7, 11, 13}.

2. The adversary knows C, C ′ and M [6],M [7],M [11],M [13]; the other part of M and M ′ is
unknown. He makes the queries PM,C(A,B) and PM ′,C′(A,B).

3. From the responses, he computes B[15] and checks whether he gets the same value.

By using the previous independence relationships, it appears that from any value (A′, B′, C),
it is possible to choose some M in such a way that certain words of B are equal to a target value.
Then, we can show that the highest number of words of B before the message insertion which can
be �xed to a target value is equal to 7. However, extending this property to the whole compression
function is much more di�cult, because of the �nal update of A. Moreover, these distinguishers
have no impact on the security of Shabal, as shown later on. We also comment that in the context
of (second)-preimage attacks, when computing forwards, the value of C used in the permutation
is �xed. But when computing backwards the value of C will be B′ + M . If we want to use the
previous property to �x say, 7 words of B, then we must know C before being able to determine
M . As a result, and because C depends on M , we cannot apply the observed property.

2.3 Distinguishers on the compression function R
When considering not only P, but the whole function RP : (A,B,C,M) 7→ (A′, B′, C ′) de�ned by

(A′, C ′) = PM,C(A,B �M)
B′ = C �M,

no distinguisher has been presented so far. Now, when computing backwards, it is impossible
to determine some word of B from the knowledge of (A′, B′, C ′) and of some words of M only.
The reason is that P−1 is parameterized by C = B′ �M which depends on M , and this C is
used in the �nal update of A (i.e., in the �rst operation in P−1). Even if computing each B[i]
involves all words of M , it may involve fewer information words of M only. For instance, B[15]
is completely determined by M [1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15] and by M [4]�M [8]�M [12] and
M [0]�M [4]�M [12]. We have performed an exhaustive search, based on this �nal update, in order
to determine the number of information bits of M which are involved for computing each word of
B. Using the previously described technique, we obtain that only the three words B[15], B[14] or
B[11] do not depend of all information words ofM . It is worth noticing that the independencies of
these three words are di�erent, implying that computing the triple (B[11], B[14], B[15]) requires
the knowledge of all information words of M .

This type of distinguishers a�ects the resistance of the hash function to (second) preimage
attacks. As explained in [3, Ch. 12], the attacker is able, by computing backwards, to choose
several message blocks which lead to a given target value for three words of B. Therefore, a

(second)-preimage attack on Shabal with complexity 2
`a+2`m−3×32

2 , instead of 2
`a+2`m

2 , might be
mounted. However, this complexity is still much higher than for the generic attack for the largest
size of the message digest `h which is 512 bits. Since no better distinguisher of this type has been
found by an exhaustive search, this is the best attack which could be performed on Shabal using
this type of distinguishers.

3 Indi�erentiability with distinguishers: why Shabal does

not require ideal ciphers

This rest of this document considers the following question. Assume that we are given a hash
function CP which is made of an operating mode C making calls to an internal primitive P.
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Assume further that C is proven to be indi�erentiable from a random oracle, which in turn means
that CP behaves ideally assuming that P behaves ideally. Now when specifying an instantiation of
the hash construction, one has to select a functional embodiment for P and provide a full-�edge
description of the primitive P. Assume now that the speci�ed primitive does not behave ideally (or
at least not in the sense required by the indi�erentiability proof for C). This can be reformulated by
saying that there exists some non-trivial statistical relation R which connects inputs and outputs
of P. It seems at �rst sight that the indi�erentiability result on C does not constitute a security
argument anymore since the basic requirement of the proof (P behaves ideally) is obviously not
obeyed. The question we ask is whether CP can still be considered as a good hash function.

At a higher level, the question relates to a more general paradigm: can we prove that a
construction CP behaves ideally even though P does not? More generally, we may ask ourselves
to which extent CP di�ers from an ideal hash function when P di�ers from an ideal primitive.
Obviously, it is desirable that a construction C remain close to ideal even when P is far from
ideal. One may think of this notion as a form of robustness: even if a weakness is discovered on
the full-�edge primitive P in the future, the hash function CP would remain almost equally ideal.
Thus our motivation is driven by practical considerations; robust indi�erentiable constructions
answer the quest for more durable hash constructions.

We provide a proof that the hash construction Shabal is robust in the above sense. We give a
proper de�nition of robustness for Shabal and fully describe an extended proof methodology in the
indi�erentiability framework which captures this notion. Our results show that Shabal behaves
ideally even when powerful distinguishers are known on the inner keyed permutation P. We
provide a precise and quantitative security bound as a function of the statistical biases introduced
by the distinguisher on P.

3.1 Capturing distinguishers into indi�erentiability proofs

The indi�erentiability framework. We focus on the indi�erentiability proof of Shabal's mode
of operation. Recall that the concept of indi�erentiability [5] speci�es a security game played
between an oracle system Q and a distinguisher D. Q may contain several components, typically
a cryptographic construction CP which calls some inner primitive P. Construction C is said to be
indi�erentiable up to a certain security bound if the system Q = (CP ,P) can be replaced by a
second oracle system Q′ = (H,SH) with identical interface in such a way that D cannot tell the
di�erence (see Figure 2). Here H is a random oracle and S is a simulator which must behave like
P. In the case of Shabal's mode of operation, S corresponds to a simulator of both P and P−1.

CP

SH

P

H

D

Figure 2: The cryptographic construction CP has oracle access to P. The simulator SH has oracle
access to the random oracle H. The distinguisher interacts either with Q = (CP ,P) or with
Q′ = (H,SH) and has to tell them apart.

In its interaction with the system Q or Q′, the distinguisher makes left calls to either CP or H
and right calls to either P or SH. We will call N the total number of right calls i.e., the number
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of calls received by P when D interacts with Q � regardless of their origin which may be either
CP or D. We de�ne the advantage of distinguisher D as

Adv(D) =
∣∣Pr
[
DQ = 1 | Q = (CP ,P)

]
− Pr

[
DQ = 1 | Q = (H,SH)

]∣∣
where probabilities are taken over the random coins of all parties. Obviously Adv(D) is a function
of N . The indi�erentiability proof therefore consists in constructing an appropriate simulator of
P and P−1 and in estimating the advantage of the corresponding distinguisher.

Capturing distinguishers in the indi�erentiability framework. In our extended indi�er-
entiability framework, the distinguishing algorithm D is also submitted to a random experiment
where D interacts with the oracle system Q. However, the ideal primitive P is not considered as be-
ing ideal anymore: instead of being a keyed permutation uniformly selected from the space PERM
of all keyed permutations, P is now randomly selected from some subspace PERM[R] ⊆ PERM.
The subspace PERM[R] is de�ned as the collection of all keyed permutations (k, x) 7→ P(k, x) = y
such that

R(k, x, y) = 1

holds for any tuple (k, x, y), for some explicitly given relation R. It is understood that R is some
formula that relates inputs, parameters and outputs of P and that R has nothing to do with an
oracle: it is an explicit predicate that D knows and which can be "hardwired" in the code of D.
We comment that R provides a test to decide whether a given function P ← PERM belongs or
not to PERM[R]; one simply evaluates P or P−1 once on random values to get a tuple (k, x, y)
and tests whether the predicate holds for these values. Hence we view R as a distinguishing
algorithm for PERM[R] and we alternately refer to R as a distinguisher on P. Remind that this
distinguisher has nothing to do with the distinguisher D: D tells apart the two oracle systems Q
and Q′, whereas R captures a statistical constraint (i.e., a bias) on the input-output behavior of
P.

Let us now assume that the relation R is �xed and given. We consider the above security game
where instead of de�ning a "perfect" ideal cipher for P, P is replaced with a "biased" ideal cipher
in the sense that P is drawn uniformly at random from PERM[R] (instead of PERM) during the
game. This de�nes a new security game where the advantage of D becomes

Adv(D,R) =
∣∣Pr
[
DQ = 1 | Q = (CP ,P)

]
− Pr

[
DQ = 1 | Q = (H,SH)

]∣∣
where probabilities are taken over the random coins of all parties (this is again some function of
N but which now depends on R as well). We say that C is indi�erentiable with respect to R when
D's advantage remains negligibly small.

It is important to note that distinguishers arising from a known input-output relation R are
a special class of distinguishers on P. In the general case, a distinguisher on P is a probabilistic
algorithm which adaptively interacts with an oracle instantiated with either P or an ideal version
of P and eventually outputs a guess on the instantiation. To do so, the distinguisher attempts to
detect that a relation holds (with some extra probability) over a series of input-output data, parts
of which have been chosen adaptively. Here, we consider a class of particularly strong distinguishers
on P which are based on a direct and explicit relation which always holds on any input-output
tuple. Although we feel that indi�erentiability can be extended to take general distinguishers on
P into account, we are mostly interested in strong distinguishers since we actually know examples
of such relations R preserved by the speci�c primitive P of Shabal. We therefore focus on this
only case, noting that our extension of indi�erentiability is also simpler to de�ne.

De�ning the bias of R. We need a metric to tell "how severe" is the constraint imposed on
P by the given relation R, as opposed to an arbitrary, unconstrained choice of P in the space
PERM. There may be several ways to de�ne such a metric; we adopt two that are strong enough
for our purposes. In Shabal, the keyed permutation P takes an input (A,B) ∈ {0, 1}`a × {0, 1}`m
and parameter (M,C) ∈ {0, 1}`m ×{0, 1}`m and outputs a pair (A′, B′) ∈ {0, 1}`a ×{0, 1}`m . Let
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R(M,A,B,C,A′, B′) be an input-output relation for P and consider thatM,A,B,C,B′ are �xed.
Let us consider the set

PERM[R,M,A,B,C,B′] ⊆ PERM[R]

of all keyed permutations P such that PM,C(A,B) = (A′, B′) for some A′ ∈ {0, 1}`a . We will say
that ForSampR is a (forward) sampling algorithm for R when on any input tuple (M,A,B,C,B′),
ForSampR(M,A,B,C,B′) selects a keyed permutation P ← PERM[R,M,A,B,C,B′] uniformly
at random and outputs A′. We will assume wlog that given a relation R, one can construct such
a sampling algorithm ForSampR and that ForSampR can be implemented e�ciently. We view
ForSampR as an algorithmic representation of R and the related-key distinguishers discussed in
the previous sections can be reformulated by making their sampling algorithm explicit.

De�nition 1 (Forward bias of R). R is said to have forward bias τ ∈ (0, `a) if for any choice of
M,A,B,C and A′, it holds that

Pr
[
B′ ← {0, 1}`m : ForSampR(M,A,B,C,B′) = A′

]
≤ 2−(`a−τ)

where the probability is taken over the uniform choice of B′ ← {0, 1}`m and the internal coins of
the algorithm ForSampR in the random selection of P ← PERM[R,M,A,B,C,B′].

As soon to be discussed, we also need to de�ne a backward bias for R. However in this case,
the bias is simpler to de�ne. We consider a second sampling algorithm BacSampR which, taking
as input a tuple (M,A′, B′, C), randomly selects a keyed permutation P ← PERM[R] (with
uniform distribution) and outputs the pair (A,B) = P−1

M,C(A′, B′). Again, algorithm BacSampR
is a reformulation of the Boolean relation R and we assume that it can always be made explicit.
The backward bias is de�ned as the statistical bias of BacSampR:

De�nition 2 (Backward bias of R). R is said to have backward bias λ ∈ (0, `a + `m) if for any
choice of M,A′, B′, C and A,B it holds that

Pr [BacSampR(M,A′, B′, C) = (A,B)] ≤ 2−(`a+`m−λ)

where the probability is taken over the internal random choice of P ← PERM[R].

We leave it as an open problem to analytically link the two biases τ and λ in the general
case. However, we comment that a careful study of a given relation R (e.g., the related-key
distinguishers discussed above) should provide at least numerical values for τ and λ. We then give
a quantitative security bound that tells how far from a random oracle the mode of operation of
Shabal behaves as a function of the two biases introduced by the relation R. The following sections
expose the original security proof [3] of Shabal and extend the proof to encompass distinguishers
on P. This can be seen as a generalization of the original proof to distinguishing relations with
non-zero bias τ and λ. We end up with a simple extension of the indi�erentiability bound that
includes non-zero forward and backward bias and which we state as a Theorem.

3.2 The original security proof in the plain ideal cipher model

A general game-based indi�erentiability proof technique is presented in [3]. In order to analyze the
mode of operation in a more �uent fashion within the proof, we view the current message block as
a part of the current internal state. The set of all possible internal states, which we denote by X
contains all the (3`m+`a)-bit strings. In this presentation, we simplify Shabal's mode of operation
by removing the in�uence of the counter and the three �nal rounds (all these features are taken
into account in the original proof). It is easily seen that the proof can be extended to take these
into account and that they have little in�uence on the security bound. Thus, we assume that the
i-th message round executes two subroutines: message insertion Insert[Mi] de�ned as

Insert[Mi](Mi−1, A,B,C) = (Mi, A,C �Mi−1 �Mi, B)
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and P. The initial internal state is the initialization vector x0 = (0, A0, B0, C0). We will sketch
the proof and rely on [3] for a detailed exposition of the methodology. The simulator of (P,P−1)
is obtained by dynamically constructing a graph G = (X,Y, Z) ⊆ X × X × X 2 where X ∪ Y is
the set of nodes and Z the set of edges. Y is the set of queries to P received by S and X the
set of responses returned by S (completed with the M -part and the C-part of their preimage to
yield a proper internal state ∈ X ). X also contains the input queries to P−1 in which case their

outputs are appended to Y . An edge between y and x in the graph is denoted by y
P→ x. A

path from the initial state x0 to x ∈ X in the graph is a non-empty list of `m-bit message blocks

µ = 〈M1, . . . ,Mk〉 such that there exist k edges in the graph of the form yi
P→ xi, 1 ≤ i < k, and

yk−1
P→ x satisfying

Insert[Mi+1](xi) = yi+1 , 0 ≤ ∀i < k .

A path to y ∈ Y is de�ned in a similar fashion, the path of y being de�ned as the path of the only

x ∈ X such that y
P→ x. We use the simulator S de�ned in Figure 3. The goal of S consists in

keeping generating associations y 7→ P(y) and x 7→ P−1(x) for inputs x, y ∈ X chosen by D which
are consistent with the values output by H. Again we refer to [3] for details on the overall proof
technique.

The following result holds:

Theorem 1. Assume P is an ideal cipher and let H be a random oracle. Then, the simulator S
de�ned as per Figure 3 is such that for any distinguisher D totalling at most N right calls to P
and P−1,

Adv(D) ≤ Pr [Abort1] + Pr [Abort2] + Pr [Abort4] + Pr [Abort5] +N · 2−(`a+`m) .

Moreover, all four probabilities Pr [Aborti] are upper-bounded by N(N−1)
2 2−(`a+`m).

We now discuss the above result in more detail. The original proof, taken away the �nal rounds
and the counter W , shows that

Pr [Abort1] ≤ N(N − 1)
2

· p1 , Pr [Abort2] ≤ N(N − 1)
2

· p2 , (3)

Pr [Abort4] ≤ N(N − 1)
2

· p4 , Pr [Abort5] ≤ N(N − 1)
2

· p5 , (4)

where p1, p2, p4, p5 are probability bounds de�ned as follows.

Probability bound p1. Let us �x x̃ = (M̃, Ã, B̃, C̃) ∈ X as well as y = (M,A,B,C) ∈ X , and
let us consider the distribution

D(y) = {(M,A′, B′, C) | (A′, B′)← {0, 1}`a × {0, 1}`m} .

Then, taking probabilities over the uniformly random selection x← D(y) we de�ne

p1(x̃, y) = Pr
[
∃ m, m̃ ∈ {0, 1}`m : Insert[m](x) = Insert[m̃](x̃)

]
= Pr

∃ m, m̃ ∈ {0, 1}`m :

m = m̃

A′ = Ã

B′ = B̃

C �M �m = C̃ � M̃ � m̃


= Pr

[
(A′, B′) = (Ã, B̃)

]
· δ
[
C �M = C̃ � M̃

]
We then upper bound p1(x̃, y) by

p1 = max
Ã,B̃

Pr
[
(A′, B′) = (Ã, B̃)

]
and it is obvious that p1 = 2−(`a+`m). We remind that δ [E] returns 1 when event E is realized
and 0 otherwise.
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Initialization of S
No input, no output

1. set X = Y = Z = ∅

Simulation of P
Input: y = (M,A,B,C) ∈ X
Output: (A′, B′)

1. add node y to Y

2. if there exists an edge y
P→ x ∈ Z

(a) return (A′, B′) where x = (M,A′, B′, C)

3. if y has a path µ in graph G

(a) compute M = unpad(µ)

(b) call H to get h = H(M)

(c) set B′ = h

(d) randomly select A′ ← {0, 1}`a

4. else

(a) randomly select B′ ← {0, 1}`m

(b) randomly select A′ ← {0, 1}`a

5. add node x = (M,A′, B′, C) to X and edge y
P→ x to Z

6. if for some x̃ ∈ X one has Insert[M̃ ](x̃) = Insert[M ](x) for some M and M̃
(event Abort1), then abort.

7. if x admits a path in G and ∃ỹ ∈ Y such that Insert[M ](x) = ỹ for some M
(event Abort2), then abort.

8. return (A′, B′)

Simulation of P−1

Input: x = (M,A,B,C) ∈ X
Output: (A′, B′)

1. add node x to X

2. if there exists an edge y
P→ x ∈ Z

(a) return (A′, B′) where y = (M,A′, B′, C)

3. randomly select A′ ← {0, 1}`a and B′ ← {0, 1}`m

4. add node y = (M,A′, B′, C) to X and edge y
P→ x to Z

5. if ∃x̃ ∈ X, x̃ 6= x such that y
P→ x̃ ∈ Z (event Abort4), then abort

6. if ∃x̃ ∈ X such that Insert[M ](x̃) = y for some M (event Abort5), then abort

7. return (A′, B′)

Figure 3: Original simulator S for P and P−1 in the plain ideal cipher model.

Probability bound p2. Let us now �x ỹ = (M̃, Ã, B̃, C̃) ∈ X as well as y = (M,A,B,C) ∈ X .
Then, taking probabilities over the uniformly random selection x← D(y) we de�ne

p2(ỹ, y) = Pr
[
∃ m ∈ {0, 1}`m : Insert[m](x) = ỹ

]
= Pr

∃ m ∈ {0, 1}`m :

m = M̃

A′ = Ã

C �M �m = B̃

B′ = C̃


= Pr

[
(A′, B′) = (Ã, C̃)

]
· δ
[
C �M � M̃ = B̃

]
10



An upper bound for p2(ỹ,M,C) is then

p2 = max
Ã,C̃

Pr
[
(A′, B′) = (Ã, C̃)

]
and again it is obvious that p2 = 2−(`a+`m).

Probability bound p4. Let us �x x̃ = (M̃, Ã, B̃, C̃) ∈ X and y = (M,A,B,C) ∈ X . Taking
probabilities over the random selection x← D(y) we set

p4(ỹ, y) = Pr [x = x̃]

= Pr


M = M̃

A′ = Ã

B′ = B̃

C = C̃


= Pr

[
(A′, B′) = (Ã, B̃)

]
· δ
[
M = M̃ ∧ C = C̃

]
and an upper bound for p4(ỹ, y) is then

p4 = max
Ã,B̃

Pr
[
(A′, B′) = (Ã, B̃)

]
= 2−(`a+`m) .

Probability bound p5. Again we �x x̃ = (M̃, Ã, B̃, C̃) ∈ X and x = (M,A,B,C) ∈ X , and
consider the following probability taken over the random selection y ← D(x):

p5(ỹ, x) = Pr
[
∃ m ∈ {0, 1}`m : Insert[m](x̃) = y

]
= Pr

∃ m ∈ {0, 1}`m :

m = M

Ã = A′

C̃ � M̃ �m = B′

B̃ = C


= Pr

[
(A′, B′) = (Ã, C̃ � M̃ �M)

]
· δ
[
B̃ = C

]
Then we bound p5(ỹ, x) again by

p5 = max
Ã,C̃,M̃,M

Pr
[
(A′, B′) = (Ã, C̃ � M̃ �M)

]
= 2−(`a+`m) .

Combining these results, we get an indi�erentiability bound of

Adv(D) ≤ N(2N − 1) · 2−(`a+`m)

which shows that the mode of operations of Shabal (in this simpli�ed version) behaves like a

random oracle up to roughly 2
(`a+`m)

2 = 2448 calls to its primitive P, since `m = 512 and `a = 384.

3.3 Extending the proof to biased permutations P
We now assume that P is not an ideal cipher anymore i.e., randomly selected from PERM but
that there exists some biased relation R for P. In particular, there exists a set of known Boolean
relations which hold for all pairs ((M,A,B,C), (A′, B′)) with (A′, B′) = PM,C(A,B) and which
can be computed without any call to P. In the following, Im(R) denotes the set of all tuples
(M,A,B,C,A′, B′) satisfying the predicate R. As discussed above, we assume that we are given
e�cient subroutines comprising
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• a sampling algorithm ForSampR which samples all possible outputsA′ such that (M,A,B,C,A′, B′) ∈
Im(R) over a random choice of P ← PERM[R,M,A,B,C,B′], for any inputs (M,A,B,C,B′);

• a sampling algorithm BacSampR which samples all possible inputs (A,B) such that (M,A,B,C,A′, B′) ∈
Im(R) over a random choice of P ← PERM[R] for any inputs (M,A′, B′, C).

We then consider the second simulator S for P and P−1 as depicted on Fig. 3. The new
simulator is similar to the one given in the plain ideal cipher model, excepted that we apply the
three following modi�cations:

• Line 3(d) in the simulation of P, A′ is sampled by ForSampR instead of taking a uniformly
random `a-bit string;

• Line 4(b) in the simulation of P, A′ is also sampled by ForSampR;

• Line 3 in the simulation of P−1, (A′, B′) are sampled by BacSampR.

These modi�cations lead to the new simulator de�ned on Figure 4.
Using the sampling algorithms to get A′ or (A′, B′) modi�es the probability that an adversary

succeeds in making our simulator abort during the game. Even though the above Theorem is still
applicable, the probabilities of events Aborti for i ∈ [1, 5] must be analyzed with greater care here.

It is easily seen that the inequalities Pr [Aborti] ≤ N(N−1)
2 · pi still hold; however the bounds pi

must be recomputed. We now reevaluate these one by one.

New probability bound p1. Remind that we �xed x̃ = (M̃, Ã, B̃, C̃) ∈ X as well as y =
(M,A,B,C) ∈ X . We now consider the distribution of outputs x of P(y) as generated by the new
simulator

D(y) = {x = (M,A′, B′, C) | B′ ← {0, 1}`m , A′ ← ForSampR(M,A,B,C,B′)} .

Then, taking probabilities over the uniformly random selection x← D(y) we connect Abort1 to

p1(x̃, y) = Pr
[
∃ m, m̃ ∈ {0, 1}`m : Insert[m](x) = Insert[m̃](x̃)

]
= Pr

∃ m, m̃ ∈ {0, 1}`m :

m = m̃

A′ = Ã

B′ = B̃

C �M �m = C̃ � M̃ � m̃


= Pr

[
A′ = Ã

]
· Pr

[
B′ = B̃

]
· δ
[
C �M = C̃ � M̃

]
We then upper bound p1(x̃, y) by

p1 = max
Ã,B̃

Pr
[
A′ = Ã

]
· Pr

[
B′ = B̃

]
≤ 2−(`a−τ) · 2−`m .

New probability bound p2. We now �x ỹ = (M̃, Ã, B̃, C̃) ∈ X as well as y = (M,A,B,C) ∈
X . Taking probabilities over the selection x← D(y), expressing Abort2 boils down to evaluating

p2(ỹ, y) = Pr
[
∃ m ∈ {0, 1}`m : Insert[m](x) = ỹ

]
= Pr

∃ m ∈ {0, 1}`m :

m = M̃

A′ = Ã

C �M �m = B̃

B′ = C̃


= Pr

[
A′ = Ã

]
· Pr

[
B′ = C̃

]
· δ
[
C �M � M̃ = B̃

]
An upper bound for p2(ỹ, y) is then

p2 = max
Ã,C̃

Pr
[
A′ = Ã

]
· Pr

[
B′ = C̃

]
≤ 2−(`a−τ) · 2−`m .
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Initialization of S
No input, no output

1. set X = Y = Z = ∅

Simulation of P
Input: y = (M,A,B,C) ∈ X
Output: (A′, B′)

1. add node y to Y

2. if there exists an edge y
P→ x ∈ Z

(a) return (A′, B′) where x = (M,A′, B′, C)

3. if y has a path µ in graph G

(a) compute M = unpad(µ)

(b) call H to get h = H(M)

(c) set B′ = h

(d) run ForSampR(M,A,B,C,B′) to get A′

4. else

(a) randomly select B′ ← {0, 1}`m

(b) run ForSampR(M,A,B,C,B′) to get A′

5. add node x = (M,A′, B′, C) to X and edge y
P→ x to Z

6. if for some x̃ ∈ X one has Insert[M̃ ](x̃) = Insert[M ](x) for some M and M̃
(event Abort1), then abort.

7. if x admits a path in G and ∃ỹ ∈ Y such that Insert[M ](x) = ỹ for some M
(event Abort2), then abort.

8. return (A′, B′)

Simulation of P−1

Input: x = (M,A,B,C) ∈ X
Output: (A′, B′)

1. add node x to X

2. if there exists an edge y
P→ x ∈ Z

(a) return (A′, B′) where y = (M,A′, B′, C)

3. run BacSampR(M,A,B,C) to get (A′, B′)

4. add node y = (M,A′, B′, C) to X and edge y
P→ x to Z

5. if ∃x̃ ∈ X, x̃ 6= x such that y
P→ x̃ ∈ Z (event Abort4), then abort

6. if ∃x̃ ∈ X such that Insert[M ](x̃) = y for some M (event Abort5), then abort

7. return (A′, B′)

Figure 4: New simulator S for P and P−1 in the "biased" ideal cipher model. The simulator
makes calls to an internal subroutine ForSampR that samples the relation R with a certain bias
τ ≥ 0. When τ = 0, the sampling algorithm is reduced to a uniform selection over `a-bit strings
and we recover the original simulator.
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New probability bound p4. We now �x x̃ = (M̃, Ã, B̃, C̃) ∈ X and y = (M,A,B,C) ∈ X .
Taking probabilities over x← D(y) we get

p4(ỹ, y) = Pr [x = x̃]

= Pr


M = M̃

A′ = Ã

B′ = B̃

C = C̃


= Pr

[
A′ = Ã

]
· Pr

[
B′ = B̃

]
· δ
[
M = M̃ ∧ C = C̃

]
which gives an upper bound for p4(ỹ, y) as

p4 = max
Ã,B̃

Pr
[
A′ = Ã

]
· Pr

[
B′ = B̃

]
≤ 2−(`a−τ) · 2−`m .

New probability bound p5. Here we �x x̃ = (M̃, Ã, B̃, C̃) ∈ X and x = (M,A,B,C) ∈ X
and consider the following probability taken over the random selection y ← D(x):

p5(ỹ, x) = Pr
[
∃ m ∈ {0, 1}`m : Insert[m](x̃) = y

]
= Pr

∃ m ∈ {0, 1}`m :

m = M

Ã = A′

C̃ � M̃ �m = B′

B̃ = C


= Pr

[
(A′, B′) = (Ã, C̃ � M̃ �M)

]
· δ
[
B̃ = C

]
.

Then we bound p5(ỹ, x) by

p5 = max
Ã,C̃,M̃,M

Pr
[
(A′, B′) = (Ã, C̃ � M̃ �M)

]
≤ 2−(`a+`m−λ) .

Wrapping it up. Putting it altogether, we �nally get the following security bound.

Theorem 2. Assume that the keyed permutation P is taken uniformly at random in the space
PERM[R] of all keyed permutations which observe a certain Boolean relation R holding with
probability one on their input, parameter and output. Assume further that R has a forward bias
τ ∈ (0, `a) and backward bias λ ∈ (0, `a + `m). Then the (simpli�ed) mode of operation of Shabal
is indi�erentiable from a random oracle. More precisely,

Adv(D,R) ≤ 3N(N − 1)
2

2−(`a+`m−τ) +
N(N − 1)

2
2−(`a+`m−λ) +N2−(`a+`m) .

We see that one of the two terms N22−(`a+`m−τ) and N22−(`a+`m−λ) must dominate the
adversary's advantage when τ, λ > 0. If one assumes to always have λ < τ , the security bound (in
bits) decreases linearly as τ ranges from 0 to `a. Ultimately when τ = `a, we reach the limit of

N = O(2
`m
2 ) adversarial observations and the mode of operation of Shabal has no security margin

anymore (but remains ideal). Conversely if λ > τ then the term N22−(`a+`m−λ) dominates and
the mode of operation does not behave ideally anymore if `a + `m − λ ≤ `h (recall that Shabal

truncates the B-part of the last internal state to its `h leftmost bits). We therefore con�rm that
distinguishing relations can indeed be used to break Shabal, but at the condition that

λ > `a + `m − `h = 384

in the most favorable case (`h = 512). We leave it as an open challenge to come up with a
related-key distinguisher for p = 3 that features a backward bias at least equal to 384.
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