NETWARS Model Development Guide

Version 3.0

August 16, 2007

Prepared by: Prepared for:

Defense Information System Agency Defense Contra@ommand—
NETWARS Program Management Office Washington

5600 Columbia Pike, 5200 Army Pentagon

Falls Church, VA 22041-2717 Washington, DC 20310-5200

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

TABLE OF CONTENTS

1

EXECUTIVE OVERVIEW ...t et e e e 1-1
1.1 RURPOSE OFTHIS DOCUMENT. ...uuiittiiititeeeeeeiiie e e e e e eettia e e e e e eaa e e e e eensnn e e e eeeennnnnns 1-1
1.2 BENEFITS OFMAKING A NETWARS-COMPLIANT MODELuuiiiiiieiiiieeeciieeeeeinen 1-1
1.2.1 Leveraging a Standard Modeling Frameworkccccoooveviieiennnnnne. 1-1
1.2.2 Use of Full NETWARS Functionalitycceeeiriiiiiiiiiiieceieeees 1-2
1.3 MODELING BASICS. ...ttt ettt e et e e et e e e aa e eees 1-2
1.3.1 DefiniNg the PUIPOSEoiiiiiiiiii et eemm e 13
1.3.2 Determining Model RequiremMentsS...........oooeviiiiiiiieiiiieeeeie e 1-3
1.3.3 Surveying EXisting MOEIS.............ooiiiiii e 1-4
1.3.4 Developing the Model ... 41-
1.4 HOW TOUSETHIS DOCUMENT.....uuiitttuetitti ettt e eeeteeeeetiaeeeeaaeaesaneeeessnaeeennnaaenes 1-5
TECHNICAL OVERVIEW ..ottt e e 2-1
2.1 INTRODUCTION TONETWARSMODELS......uiiiiiiieiiiiieeeeiiie e ettt e e 2-2
2.1.1 Goals of Model DeVvelopmMENt............... e e et eeii e 2-2
2.1.2 NETWARS Application ArchiteCture............oceeemieeiiiiiiiiiiieiiiieeeeieeeees 2-3
2.1.3 NETWARS/OPNET Model Hierarchycoccceeeiiiiiiiiiiiiiieccii s 2-8
2.2 MODEL DEVELOPMENTLIFE CYCLE . ..uuuiiiiieiiiiieeeeiaeeeeiaeeeatseeeeiaeeeeaaeeeennaeeees 2-16
2.2.1 Model Development Roles and Responsibilities...ccc..........cccooveveennnnee. 2-16
2.2.2 Model Development ACLIVILIESun e e e et et eeens 2-17
NETWARS MODEL DEVELOPMENT ..ottt e e eees 3-1
3.1 TRAFFIC MODEL DEVELOPMENTPROCESS......uuiititiniaiiiiaeeeiinaeeeiieeeennneeeenneeennns 3-1
3.1.1 Development APProach...........ooeiieuiiisccem e 3-1
3.1.2 ACE Traffic MOdelcooeeii e 3-2
3.1.3 ACE Whiteboard Traffic Model...........coouuieeeriii e, 3-2
3.1.4 ACE and ACE Whiteboard Traffic Model Concerns................cccueeeeee 3-4
315 TER TEXLFIIE e e 3-4
3.1.6 Traffic Model Deploymenti i 3-6
3.2 (GOMMUNICATIONS DEVICE AND PROCESSMODEL DEVELOPMENTPROCESS............ 3-8
3.2.1 Development APProacChes.cccuuuiiiiiiicceeme e 3-8
3.2.2 Modifying the Existing OPNET Model to Be NETWARS Comiplat....... 3-9
3.2.3 Surrogating From the Existing NETWARS Model....ceeieiiiiiiiiennnn.. 3-9
3.2.4 Developing a New Model..........coooiuuiiiiee e 3-9
3.3 MODEL INTEROPERABILITY ISSUES. ... ciitiietiiieeeeiie e e et e e et eeetaeaeei e e eaenaeeeees 3-11
3.3.1 Compatibility ISSUEScccuuiiiiie e 3:11
3.3.2 INtErfacing ISSUEBScccuuuniiiiiieee ettt e et e et e e ea e e eaans 3-13
3.3.3 CoMMUNICALION ASPECES....cceetiiieiiii et eeeremm et e e e et e e e e eaa e eens 3-15
3.3.4 Self-DeSCrPlION ISSUEBSuiiiein et st e et e e et e e eaieeeeena e 3:17
3.3.5 VErSIONING ISSUEScieiiiiiiiiii et ceeee et e et e et 3:18
3.4 NETWARSCOMPLIANCE REQUIREMENTS ...uititunieeiiieeeetiaeeetinaeaesnneeeenneeeennns 3-20
3.4.1 Compliance for OE NOUES.........ooiiiuiiccceemm e 3-20
3.4.2 Compliance for Models for Non-Discrete Simulati€apacity Planning) 3-24
3.5 (OOMPLIANCE FOREND-SYSTEM DEVICES.....ccuuiiiiiiieiiiieeeeiieeeeeie e et eeea e eees 3-29
3.5 1 AUMBULES ..o e e 3-29

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.5.2 Required MOAUIESoiiiiiiiiiii ettt 3:29
3.5.3 ENd-System Devices Categori€sScc.uuuerrmemriieeeiiaeeeiiaeeeeiaeeeennnnns 3-32
3.5.4 Interfaces and Packet FOrmMAtScocceeiiiiiiiieeeei e 3-35
3.5.5 INIHAHZATION ...ceeeeeie et et eee 3-35
3.5.6 Interfacing with Other ClasSSes..........oiccccam i 3-35
3.5.7 Creating Custom Transport Protocols for End-Systems..................... 3-37
3.5.8 Handling Background IERS..........cooiiiiiiiiieeie e 3-38
3.5.9 Handling Failure/RECOVEIY..........uiiiiiiieeee e 3-38
3.5.10 ColleCting StatiStICS.......ccuuuiiiiiie e eee e 3-39
3.5.11 NETWARS Standard SE MOdEISooiiemmmeie e 3-40
3.5.12 Example: Constructing a Computer Model......ccoceeiiiiiiiiiiiiiiiiinne. 3-41
GOMPLIANCE FORLAYER 1 NETWORKING EQUIPMENTccuuniiiiiieeeiiieeeeii e eeii e 3-42
3.6.1 AMDULES ... e e 3-42
3.6.2 Required MOAUIBSoiiiiiii i et e s 3:42
3.6.3 Interfacing With DEVICES.........ccouuuiiiiicee e 43-
3.6.4 Handling Background TraffiC...........coooiiiiiiiiiiiii e 3-43
3.6.5 Handling Failure/RECOVEIY.......c.uuiiiiiiieeee e 3-43
3.6.6 Collecting StatiSTICS.......uuiieeriieiecem et 3-44
3.6.7 Example: Constructing an Encryptor Modelcccooiviiiiiiiiiininiinnnnne. 3-44
GOMPLIANCE FORLAYER 2 NETWORKING EQUIPMENTccuuniiiiiieeeiii e e e eeii e 3-45
371 AUIDULES .. e e e 3-45
3.7.2 Required MOAUIBSoiiiiiiiiiiii et ettt e e 3:45
3.7.3 INIHALZATION ...t et eee 3-46
3.7.4 Interfacing with End-System Devices and Networking Eqeig 3-47
3.7.5 Supported ProtOCOISoiiieiiiiiiii et 3-47
3.7.6 Handling Background IERS..........cooiiiiiiiiieii e 3-47
3.7.7 Handling Failure/RECOVEIY.........uuiiiiiieeee e 3-48
3.7.8 Collecting StatiStICS.......uueieeriiieecem et eaae e 3-48
3.7.9 Example: Constructing a Multi-Service SWItCh ccccce..oovvviiiiiiiiiiiiiieee. 3-48
GOMPLIANCE FORLAYER 3 NETWORKING EQUIPMENTccuuiiiiiiieeeiiieeeeiieeeeii e 3-49
.81 AUMDULES ... e e 3-49
3.8.2 Required MOAUIBSoiiiiiiiiiii ettt 3:49
3.8.3 Handling Security Classificationccoueeiiiiiiiiniei e, 3-51
3.8.4 Interfacing with End-System Devices and Networking Eqeig 3-51
3.8.5 Supported ProtOCOISoiiiiiiiiiiii e e 3-52
3.8.6 Creating Custom Routing Protocols for IP......cccccciiiiiiiiiiiii, 3-52
3.8.7 Handling Background IERS..........cooiiiiiiiiieei e 3-54
3.8.8 Handling Failure/RECOVEIY.......c..uiiiiiieeee et 3-54
3.8.9 Collecting StatiSTICS.......uuiieeriieiicemm et eaa e 3-55
GOMPLIANCE FORDEVICES WITHCIRCUIT-SWITCHED TECHNOLOGYcccvuneeeennn. 3-56
3.9 1 AUMDULES .o e e e 3-56
3.9.2 INIHAHZATION ...t et eee 3-56
3.9.3 Routing in Circuit-Switched DeVICES..........ccevuiiiiiiiiiiieiiieeeeie e 3-57
3.9.4 Circuit-SWitChed LiNKS............iiiiiiieieeei e 3:57
3.9.5 Interfacing with Packet-Switched Networks.... ccccoocoooiiiiiiiiiiiiinneennn. 3-57
3.9.6 Handling Background IERS..........cooiiuiiiiiceeie e 3-59

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.9.7 Handling Failure/RECOVEIY..........uiiiiiiieeee e 3-59
3.9.8 Collecting StatiSTICS.......uueieeriieiecem e eaae e 3-59
3.10 GOMPLIANCE FORWIRELESSINTERFACES .. .ccuuetittueetitnaaeitnaeeetnsaeeeinneeeennaaeees 3-60
3.10.1 ALIIDULES ..o et e et e e e et e e e e e e e e eees 3-60
3.10.2 Required MOAUIESuiiiii e 3:62
3.10.3 INIIANZALION ... e 3-62
3.10.4 Interfacing with Other ClasSes............ouiieeiiiiiiiii e 3-62
3.10.5 Interfacing With TIREMcooiiiiiiiiiiiii e 3-63
3.10.6 Restrictions in Building Radio DeVICEeS eieviiiiiiiiiieeiiiineeeinnn.. 3-63
3.10.7 Handling Failure/RECOVEIYc..uei e e et eeeeiiaeeeeiiaaeeeeiaeeeean e 3-64
3.10.8 ColleCting StatiStICS.......ccuuuiiiiiiie e eaie e 3-64
3.10.9 Building Custom Pipeline Stages.............. o eeerneeeeinaeeeinaeeeinaaeen 3-64
3.10.10 Satellite CONSIAEIAtiONSciieviiiieiiieeeeie e 3-64
3.10.11 NETWARS Standard Geostationary Satellite CommiumisaSystem
MOAEIS ... 3:65
3.10.12 Generic Satellite Device Model (for Bent Pipe Dinks.............cc....... 3-66
3.10.13 Generic Satellite Ground Terminal Device ModelBfemt Pipe Links)3-66
3.10.14 TSSP Satellite Terminal Device Model..........ccoooviiiiiiiiiiiiiiiieeeenn. 3-66
3.10.15 Broadcast Radio CONSIAErationscceceeemieeunnereeiieeeeinaeeeinneaeens 3-66
3.11 CGOMPLIANCE FORLINK MODELSuuiiiiiiiiaiiii e et et e e e e e ena e e eees 3-68
111 ALEIIDULES ..o ettt e et e e et e e e e e e e e eees 3-68
3.11.2 Building Custom Pipeline Stages.............. o eeerneeerineeeirnaeeeineaeen 3-69
3.11.3 Handling Background Routed TraffiC...........cccemmeiiiiiiiiiiiieeeeen, 3-70
3.11.4 Handling Failure/RECOVEIYc..u e e e e aeeeiiae e e et e eaiaeeeeanene 3-70
3.11.5 Building Simplex Links, Buses, and BUuS TapsS....cccccccvvvieiiiiiiieiinnnnns 3-70
3.11.6 ColleCting StatiStICS.......ccuuuiiiiiiie e eeae e 3-70
G700 I A To Tox 0 o T=T o = (0] [P 3-71
3.12 CGOMPLIANCE FORUTILITY NODES.....cittuuiiiiiiiaeiitaaeeiiiaeeeeiiaeeeiiaseeeneeeeanneeeennns 3-72
3.12.1 ALIDULES ..o ettt e et e e e et e e e et e e e e eees 3-72
3.12.2 Required MOAUIESuiiiii e 3:12
3.12.3 Interfacing with Other ClasSes............oviieueiiiiiiii e 3-72
3.12.4 Interfacing with the Scenario Builder GUI............cccoiiiiiiiiiiiiiiiecnn, 3-72
EXAMPLES ...ttt et era e et eae 4-1
4.1 TRAFFICMODEL EXAMPLEccottiiiiieiiiiiiie e e et e e eate e e e et e e e e e eeaanneeeeeennne 4-2
4.2 ROUTING PROTOCOLEXAMPLEcciiiiiiieeeeeiiiiie e et e e eee e e e e e e eenaaes 4-4
4.2.1 HiIgh-LeVel DeSIgNcocuuuiiiiii et et e e e e e e e e 4-4
4.2.2 Interfacing with the 1P DISCUSSIONuiiiiiiiiiiiii e 4-6
A.2.3 NS ..t e e n e 4-12
4.3 VMRED END DEVICE EXAMPLEccuuiiiiiiiieieiie ettt e e e e e e e e e enens 4-13
4.3.1 Problem Statemento i 4:13
4.3.2 High-LeVvel DeSIgNcccuuuiiiiiiiee et et e e e e eeas 4:13
4.3.3 Detailed Design: Event Response Table ceeinieiiiininiiinnnnn 4-14
4.3.4 IMPIEMENTALION ...t eaans 4-5
4.4 MREDEND DEVICE EXAMPLE 2....ciiiiiiiii ettt e e e eeeen 4-12
A 4.1 OVEIVIBW ...t e ettt e ettt s+t e e e et e e et e e e e et e e e eebaeeeennaees 4-12
A4 2 S P ettt ———— ettt e e e et a et e ea e naaeanaas 4-12

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.4.3 Process Model: SE ... 4:15
S = 11 1 1[0 J PP 4-16
4.5 LAYER 1 DEVICE EXAMPLE: BULK ENCRYPTOR....cccttuiiiiiiiaiiiiiiee et e eeii e 4:17
A.5. 1 OVEIVIEBW .ouiiiiiiiiie e e et st s+t e et e et e et e e et e e e e et e e aneeennas 4-17
A D 2 Sl it ittt ———— ettt e e e e et e ea e naaeanaas 4-17
4.5.3 Process Model.......coooiiuiiiii e 4-18
4.6 LAYER 2 DEVICE EXAMPLE: MULTI-SERVICE SWITCHuuiiiiiiieeiiiieeeeiieeeeiieeeeeanns 4-20
Rt R @ Y= V= PP 4-20
4.0.2 S P etiiiti ettt e———— et e et e e r e et e ea e enaaeanas 4-20
4.6.3 Process Models: Voice Dispatch and Voice Over ATM...............c...... 4-21
4.7 LAYER 3DEVICE EXAMPLE: CUSTOMROUTER......uuiiiiiiiiiiiii et 4-23
A R O V1= oV = PP 4-23
) (= o 1 SRR 4-23
4.7.3 Process Model: Custom Routing ProtocCol......ccccceeuviiiiiiiiiiiiiniiiiiineeens 4-26
4.8 QRCUIT-SWITCHED DEVICE EXAMPLE: END SYSTEM.....uiiiiiiiiiiiiiieeciiie et 4-27
A.8.1 OVEIVIEW ..uiiiiiiiiieeii e e e et st s+t e et e et e et e et e e e e aa e e aaeeenaes 4-27
T A) (=] o 1 S PP TRPRPT 4-27
4.8.3 Process Model: Se........i i 4-28
4.9 WMRELESSDEVICE EXAMPLEuuiiiiiiiieiiit et e et e et e e et e e et e eeeni e eaees 4-31
A.9. 1 OVEIVIEBW ..uiiiiiiiiiee et et st s+t e et e et e et e e et e e e e aa e e eneaenaes 4-31
4.0 2 SIS itiiii ettt ———— ettt e e e e e et e et enaaean s 4-31
4.9.3 SE Process MOelcoouuuiiiiiiiiiiieeee e 4:33
4.10 WRELESSDEVICE EXAMPLE 2uuniiiiiieieiie ettt e e e et e e e e eenens 4-34
4.10.1 Problem Statementooeuuiiiiiiieceeme e 4:34
4.10.2 HIgh-LeVel DESION ...ccuuiiiiiiiieeeeiie s eeemm et eaa e e eeas 4:34
4.10.3 fwd module: Detailed DeSIgN oo s eeeeeieeeeeiin e et eei e eeanns 4-35
4.10.4 MAC MOAUIEcounni et e eaas 4-38
4.10.5 SE MOUUIE ... e et e e e e eaaas 4-39
4.10.6 Addressing and Other ISSUES............... .o e eevineeeeiiieeeeaieeaeeineeaeees 4-44
4.10.7 Optimization and Efficiency Considerations. .. .cccooveeeevineeeevnnnnne. 4-44
4.11 ATELLITE TERMINAL GENERICEXAMPLE ...cocviiiiiiiieeiiii e 4-45
4.11.1 Node Model CONLENTS......ccovuuieiiiiie et 48-
4.11.2 Core Self-Description ALtrHDULESoovieiiiiiiiiie e 4-45
4.11.3 Additional AttrDULES.......ccoveiiii e 4:45
4.11.4 Antenna AiM PrOCESSc.uuiiiiiieiiie et 4:47
4.11.5 Key Code Snippets from Antenna Aim ProCess .. eeeeveeeeennnenenn 4-47
4.12 ATELLITE TERMINAL WITH TSSPEXAMPLEciiitiiiiiiiiaeeiiieeeeii e eeeie e e e 4-49
Nt R @ 1V =T Y= PP 4-49
4.12.2 Node Model CONLENTS.......coeuuiiiiiii e 49-
4.12.3 Core Self-Description AttrHDULESoovieiiiiiiiiee e 4-50
4.12.4 Additional AttrDULES.......cocvuiiii e 4:50
4.12.5 Node Model Specific Configurationo eeeeeeineeeeiineeeeiineeeenens 4-51
4.12.6 TSSP PrOCESSuiiiiiiii et ettt e e e e e e e 4-55
4.12.7 Key Code Snippets from TSSP ProCess........cccceeeiveiiiiiiiiiineeeiiineeeennn, 4-57
4.13 ATELLITE GENERICEXAMPLEiiiiiiiiiiii ettt e e e et e e e eeans 4-60
A.13.1 OVEIVIEW ..uniiiiieei et e ettt eemm et e e e et e e e et e e e e et e e e e et e e eennaees 4-60

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.13.2 Node Model CONLENES.......coeuuiiiiiie et 60-
4.13.3 Additional AttrDULES.......ccovuiiii e 4:60
4.13.4 Satellite SWItCh PrOCESS......ccvcuiiiiiiiieee e 4-63
4,14 UNK MODELEXAMPLEiiiitiiiiiiie et e ettt e e e e e e e e e e et e e et eaeann s 4-66
It R @ 1V =T Y= PP 4-66
S (=] o PP 4-66
4.14.3 Pipeline Stage: tXAdel..........o i 4:66
4.15 OBENODEEXAMPLEuuiiiiiiiee ittt ee e e e e e e et e e e et e e e eaa e eees 4-68
A.15.1 OVEIVIEW ..ovviiiiiiii e e e et mmmee et e et e e e e e et e e e et eeaaeeeaaes 4-68
O RS (=] o PP 4-68
4.15.3 ProCess MOUEL........ouiiiiiiieeei et 4-68
4.16 UMLITY NODEEXAMPLEuuiiiitiiiieiie ettt e e e et e e e et e e e et e eeee 4-71
A.16.1 OVEIVIEW ..ovviiiiiiii e e e et mmmee e e e et e et e et e et e et e e e e aaeeenaes 4-71
4.16.2 DetaAlS...ccouiiiiiiii e e 4-71
4.16.3 ProCess MOUEL.... ...t 4-71
4.17 (ONVERTING ADEVICE MODEL FROM THEOPNETSTANDARD MODEL LIBRARY ...4-73
O A R @ 1V =T Y =P 4-73
A.17.2 DELaAIlS...ccou i e e 4-73
4.18 CPMODEL EXAMPLE ...ttt ettt ettt e e e e e e et e e et 4-77
A.18.1 OVEIVIEW ..cvuiiiiiiii e e e et mmmee et e et e et e e e et e et e e e e aaeeenaes 4-77
4.18.2 CP IMPIEmMENtAtiON.......ccuuniiiiiie et e et e et e e e eennas a4-77
5 VERIFICATION AND VALIDATIONottt aeeeii et 5-1
5.1 MODELFUNCTIONAL V&V ...ttt e et e et e e et eeaanns 5-2
5.1.1 ODJECHVES ...uneieiii ettt 5-2
. S B PS it ————— et ettt ettt ann e eaa s 5-2
5.2 NETWARSCOMPLIANCE V&V ...ttt een e et e e 5-4
5.2.1 NETWARS Model Development Checklist........cccooeeeiiiiiiiiiiiiiiinieiiinnnn. 5-4
5.2.2 NETWARS StatiC TESHINGuuiiieiiieiiiaeeim et eaanns 5-4
5.2.3 NETWARS EqQUIPMENt SEHNQG .. .cccuuiiiiiiieeie et 5-5
5.2.4 Capacity PIanNeroi i eeeem e 5-6
5.2.5 DoD/Joint VV&A Documentation TOOlI (DVDT/IVDT)aeevevunreiernnanns 5-15
APPENDIX A: ACRONYMS ...ttt e eeaa s A-1
APPENDIX B: GLOSSARY ..ottt ettt e et e et e e e et e e een e e eenans B-1
APPENDIX C: ENUMERATED VALUES ...t C-1
APPENDIX D: PACKET FORMATS ..ottt e e D-1
APPENDIX E: INTERFACES AND PACKET FORMATS. ... oot i E-1
APPENDIX F: INTERFACE CONTROL INFORMATION (ICI) FOR MATS................ F-1
APPENDIX G: CONSTANTS ...ttt et e e e et e et e e e e e e eaa s G-1
APPENDIX H: OTHER FILE FORMATS ...t H-1
APPENDIX I: MEASURES OF PERFORMANCE IN NETWARScccooiiiiiieeeeeen, -1
APPENDIX J: NODE MODEL DOCUMENTATION ...ttt e J-1

Vi

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX K: MODEL NAMING CONVENTIONSccooiiiit e K-1
APPENDIX L: NETWARS SIMULATION API AND HELPER FUNCTI ONS............... L-1
APPENDIX M: ATTRIBUTE TYPE DEFINITIONS. ... i M-1
APPENDIX N: EXAMPLES OF NETWARS MODELS ..., N-1
APPENDIX O: NETWARS DOCUMENTATION SETociiiiiiiiiiiiieee e O-1
APPENDIX P: CREATING MODEL REPOSITORIES IN NETWARS, P-1
APPENDIX Q: TROUBLESHOOTING NETW ARS SIMULATIONccocvvviiiiiiiiiieeenn, Q-1
APPENDIX R: FREQUENTLY ASKED QUESTIONS ...t R-1
APPENDIX S: MIGRATION FROM EARLIER OPNET VERSIONS..cccooiiiiiiinies S-1
APPENDIX T: SUPPORTED CLASSIFICATION VALUESo, T-1
APPENDIX U: SELF-DESCRIPTION GUIDELINESccoo i U-1
APPENDIX V: IP AUTO ADDRESSING IN CUSTOM MODELS.... ..ccoiiiiiiiiiiieeeenen V-1
APPENDIX W: REFERENCESo W-1
APPENDIX X: NETWARS MODEL DEVELOPMENT GUIDE CHECKLIS T.............. X-1

Vil

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

L1ST OF FIGURES

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:

Repeatable ProCess..........o i 2-2
Model Repeatable ProCess............cceemiiiiiiieie e 2-3
NETWARS ArChiteCIUIE......c.uiiiiii it et e e 2-4
NETWARS Scenario-Network-Level Modelccooooiiiiiiiiiiiiinnnnnn. 2-5
Editing Device AttrHDULES..........oouui e e 2:6
Statistics Available INDES ... 2-7
NETWARS/OPNET Model Hierarchycciiiiiiiiiiiiiinieeiineeceie, 2-9

Figure 2-8: Editing NETWARS Cisco 2514 Router Model......cccccooooiiiiiiinnnnnnn. 2-11
Figure 2-9: Process Models Within SINCGARS Device Model.............ccccceeee. 2-12
Figure 2-10: Process Model EdItOr..........ooviuii oo 2-:13
Figure 2-11: Editing C Code in Process Model EAItOr ..ccccvvnviieiiiiiiiiiiiiiiiiees 2-14
Figure 2-12: Receive PIipeling Stagescc.uiiiiiiiiiiiiii e 13-
Figure 2-13: NETWARS Model Development Life CyCle.....ccccoovviiiiiiiiiiiiiinnenes 2-16

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:

ACE Whiteboard Screen Capture..........cccoeeeeieieiiiniieiiieeeeeiee e 3-3
ACE Whiteboard Python LOQIC........cccumueieeiiiiiiieeiiieeeee e 3-3
IER Text File Sample........coooeeniiii e 3-4
ACE and ACE Whiteboard Traffic Model Deploymeéttl...................... 3-6
IER IMpPOrt Manual............coouuiiiimmm e 3-7
High-Level Model Development ProCesscccccvvvvviiiiieiiiiiiiiieeeceeiiin 3-8
Protocol Dependency (e.g., Ethernet Computer IMode..................... 3-12

Figure 3-8: Module-Wide Memory (e.g., Ethernet Computer Maodel).................. 3-14
Figure 3-9: Default Interrupt Handlingo eeeieeiiiiiie e 3-17
Figure 3-10: Self-Description POrt ODJECTS......... e eeeriieeeiiieeeeiie e 3-18
FIQUIE 3-11: CP LAYEIS ..uuiiiiiiieeeeie et st et e et e e et e e e et e e e ean e eeaan e 3-26
Figure 3-12: Ethernet End-System Device-Node Modelc.ooooviviiiiiieinnnns 3-31
Figure 3-13: End-System Device with Frame Relay MAC TeduwNode Model.. 3-32
Figure 3-14: Valid End-System to End-System Connection..............c..cccvevveeennnn. 3-33
Figure 3-15: Circuit-Switched End-System Device-Node Mode.......................... 3-33
Figure 3-16: Circuit-Switched End-System Device-Voice Appiices and IERs....... 3-34
Figure 3-17: End-System Device Generating Voice and Datactode Model..... 3-35
Figure 3-18: Remote Interrupt from OE t0 SE.......ccocvieiiiiiiiiii e 3-36
Figure 3-19: 0e_threads Process MOdEl............ .o eeeniieiiiiiiiie e 3-40
Figure 3-20: Layer 1 Networking Equipment-Node Model.................ccoiiiiinnnnen. 3-42
Figure 3-21: Layer 2 Networking Equipment-Node Model.................coiiiiiinnnnen. 3-46
Figure 3-22: Layer 3 Networking Equipment-Node Model.............cc..coiiiiiinnnnen. 3-50
Figure 3-23: Networks with Different Security ClassificatiLevels 3-51
Figure 3-24: Circuit-Switched and Packet-Switched Network ¢otemunication 3-58
Figure 3-25: Radio End-System Device-Node Model ..., 3-62
Figure 3-26: ATM Device Radio INterfacecceeuuiiiiiiiiiiiiiiicieeiii e 3-63
Figure 3-27: Internal Representation of ATM Device andrinégliate Node............. 3-64
Figure 3-28: Channel Table...........o i 3-67

Figure 4-1:
Figure 4-2:
Figure 4-3:

Time Sequence Diagramooveeecmmmceeneeeiieeeeeie e eeeeineeeenn . 422
Layer 3 Networking EQUIPMENTo eeeetieeeeiin e eeiine e eeainee 4-5
IP Routing Parameters Attribute.........ccccevvviiiiiiiiiiiiiiiiiieereieeeeen . 429

viii

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:

Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:
Figure 4-19:
Figure 4-20:
Figure 4-21:
Figure 4-22:
Figure 4-23:
Figure 4-24:
Figure 4-25:
Figure 4-26:
Figure 4-27:
Figure 4-28:
Figure 4-29:
Figure 4-30:
Figure 4-31:
Figure 4-32:
Figure 4-33.
Figure 4-34:
Figure 4-35:
Figure 4-36:
Figure 4-37:
Figure 4-38:
Figure 4-39:
Figure 4-40:
Figure 4-41:
Figure 4-42:
Figure 4-43:
Figure 4-44:
Figure 4-45:
Figure 4-46:
Figure 4-47:
Figure 4-48:
Figure 4-49:

Interface Information Attributeccceeeviiiiiiiiii 429
Routing Protocol Attribute Properties.o, 4-10
End-Device NOde MOEL..........coouuiii s 4-14
Interfacing Modules Of “SE”o 18-
High-Level Functions of “se_tcp” ModUule .. .cevneeeiiiiiiiiiiiiiiieeen, 4-1
se_trafgen Process Model............cccoveeeeiiiiiiiiiiiiiiniieeeeeeen 455

Open Connection State............ccuecceeieeeeiiieeeeie e 42D

Receive Traffic State............. e 4-7
Process Message State.........coooeivieiiieiiiiiiiiiciiieeeeeee e 428
FaIlUre STate........ccouiiiiiii et eea e 4-10
Ethernet_wkstn_adv-Node Model ..., 4-13
Computer-Node Modelooooiiiiiie e 4-14
Workflow Diagram for SE Process Model.......cc...oooiiiiiiiiiiiiinnnnen, 4-15
Process Model for SE Module in Computercc.oovvviiiieeiiiineeeennnn. 4-16
Code 1-Inform OE of IER Failure, Will RecordtiSt@s 4-16
Encryptor-Node Model ... 4-17
Data FIOW fOr ENCIYPLOLcceuiiiieeeee e 4-18
Process Model for ENCryptor.........ooeeeeeeiieeii e 4-19
Code 2-Encrypting a Packetoveemeieeiiiiii e 4-19
Atm_uni_dest_adv Switch-Node Model..........ceeeiiineiiiiinnnnnnn.. 4-20
Multi-Service Switch-Node Model..........cccoeeiiiiiiiiiiiii, 4-21
CS 1005 1s e sl adv Router-Node Model.........ccceveeeeennnnnnnn.. 4-24
Router with Custom Routing Protocol-Node Model........................ 4-25
Process Model for Custom Routing ProtocQl............c.oocvviiiiiiinnnens 4-26
Phone-Node MOdel ... S 4-27
Data Flow for PRONe e 4229
Process Model for SE Module..........occoiiiiiii e 4-30
wlan_station_adv-Node Model............coooeiiiiiiiiii e 4-31
Radio SE model-Node Model.............uceamiiiiii e, 4-32
Radio End Device Node Model.............ummmenieeiiiieeiiiieeeeie e 4-34
fwd Module Process Model...........coouiiiiiii 4-36
SE Module INterfaCes.......oooveuuiiieeeee e 4-39
Radio SE Process Model............icoecae e 4-40
Gen_Call Stateoiiieiieeee e 4-41
ProC_PK State........oiiiiiiiiiii s eeeemme et 4-43
Generic Satellite Terminal.......... oo 4-45
ANEENNA AIM PrOCESS ...ccviiieiiiii ettt end 4-47
TSSP Satellite Terminal............ccccamm i 4-50
Configuration-TSSP Nodal Terminals........cccccccoiiiiiiiiiiiiiiniineees 4-52
Each Row Corresponding to deMUX Groupccceeeeeveeinneeennnneeennn. 4-52
Each Row Corresponding to Input Port Group..e «...oeeeeeeneeeennn... 4-53
TSSP Process MOGEl........ooiieuiii i 4-55
Uplink and Downlink Tables............ooouui e 4-62
Satellite Switch Process Model ..o 4-63
Code 3-Adding Signaling Overhead to TransmissicayDel.............. 4-66

Functions of OE Process MOAEl ...«

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Figure 4-50: OE Process Model...........oooouuiiiiiimcceiiiiiiiiieeciieeeeneeeee e 470
Figure 4-51: Promina Configuration Utility Node-Node Model.................c.......... 4-71
Figure 4-52: Promina Configuration Object-Process Model..............ccccooceeiiis 4-72
Figure 4-53: Promina Configuration Object-Sample Code......cccovivviiiiiiiiiinnenes 4-72
Figure 4-54: Sample Node MOEL...........oooiiiiiiiiiiii e 4-73
Figure 4-55: Selecting “Computer” for equipment_typeccccccceeeeeeiineeeeiinneeennnn. 4-74
Figure 4-56: Adding Se_tCP and SE_UAPeveuuunes i e e eeea e e e e e i e eennns 4-74
Figure 4-57: Addingnet_idExtended Attribute ... 4-75
Figure 4-58: Equipment type attribute l0cation.........cccceevuiiiiiiiiiiiii e 4-77
Figure 4-59: Interface Class and Machine type attributeiesat....................cc..... 4-78
Figure 4-60: Interface Class attribULe............oveie i 4-78
Figure 4-61: Machine type attribDULe................commmmmeee e 4-79
Figure 5-1: M&S Overall Problem Solving ProCess.........ooccuivviiiiiiiiiiiiiiineeeeenn, 5-3
Figure 5-2: Initiate @ StatiC teSTccuuuiiieeeeei e 5-6
Figure 5-3: Execute a static test for the nw_ethernet_vaestite................ccceeeeeennnnn. 5-7
Figure 5-4: Select component class for static teSt..........oovviviiiiiiiiiiiiieees 5-7
Figure 5-5: Select model options for StatiC teStcceuveveviiiiiiiiiiiee e 5-7
Figure 5-6: Select protocols for StatiC teSt........coeiiiiiiiiiiiii e 5-8
Figure 5-7: Select report file name and confirm answerstfdic test................c......... 5-8
Figure 5-8: Summary and completion message for static.fest.............cccceveveveneeens 5-9
Figure 5-9: StatiC teSt rEPOI ... it eeee e 5-10
Figure 5-10: StatiC teSt rEPOIT 2iieeii sttt e et e e e eeaanees 5-11
Figure 5-11: StatiC teSt rEPOIT 3iieei st e et e et e e e e eeaaa e 5-12
Figure 5-12: StatiC teSt rEPOIT 4oiivii st e e et e e e eeaanees 5-13
Figure 5-13: StatiC teSt rEPOIT Suiiiei sttt e e 5-14
Figure D-1: Packet FOrmat FileS..........oiiiiii e D-1
Figure D-2: Open Packet Fileuiiiiiin e et e e D-2
Figure D-3: Packet FOrmat LayOuULcc.uuiiicommeii et D-2
Figure D-4: Packet Format Attribute Editingcoooveuiiiiiiiiiiiii e D-3
Figure F-1: ICl FOrmat Filesoiiiiii e F-1
Figure F-2: Open [Cl FOrMaL...........ooiiiiiiiiieee et eea s F-2
Figure F-3: ICl Format AtrDULES.o e F-2
FIQUIE L-1: APT FIIES ..ttt e e e e e eaens L-1
Figure L-2: Open APL FIlEoo e L-2
Figure L-3: 0e_stat_ SUPPOIt APlcoouniiiiiiie e ceeem e eeas L-3
Figure N-1: List of Node MOdEIS............coouuimme e N-1
Figure N-2: Open NETWARS MOdEl..........uiiiiiiiieeei e N-2
Figure O-1: NETWARS DocCUMENtatioN Setcommmmmeeeerieieiiineaeiiineeeeineeeeinnnns O-1
Figure U-1: Self-Description Port ODJECtS.........cueeieiiiiiiiii e u-1
Figure V-1: Node Model CONtENTSoiiiieiiiiccemee e \.-2
Figure V-2: Custom Device Attribute Values in OPFAC Sadi.............c.oeeevvnnnn. V-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

LISTOFT

Table 2-1:
Table 2-2:
Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 3-5:
Table 3-6:
Table 3-7:
Table 3-8:
Table 3-9:

Table 3-10:
Table 3-11:
Table 3-12:
Table 3-13:
Table 3-14:
Table 3-15:
Table 3-16:
Table 3-17:
Table 3-18:
Table 3-19:
Table 3-20:
Table 3-21:
Table 3-22:
Table 3-23:
Table 3-24:
Table 3-25:
Table 3-26:
Table 3-27:
Table 3-28:

Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:
Table 4-8.
Table 4-9.

Table 4-10:
Table 4-11:
Table 4-12:
Table 4-13:
Table 4-14:

ABLES
Model Types and DeSCrIPLIONSuceerrmiiiieeeiiiee et 2-9
Model Development ACLIVILIEScoueeneeeriiieeeiir e 2-17
Attributes for OB NOUEuuiiiiiieee e 3-20
Statistics Collected by OE NOde.......ccooueiiiiiiiiiii e 3-24
Properties to Determine CP Layer .. .3-26
NETWARS Attributes for End- System DeV|ce 3-29
Higher Layer Modules for End-System Dewce 3-30
Lower Layer Modules for End-System Device...............cccevvviineeeinnnnn, 3-30
Interface Modules for End-System DeVICEe acceeecivvniiiiiieiiiiineeeiiieeeeeenn, 3-31
Statistics Information Transferred by End-Sydbevice to OE............... 3-40
NETWARS Standard SE Process Models... .o eeevnneeiiiiineniiiinnnnnn. 3-41
Attributes for Layer 1 Networking Equipment.............cccooeveveviineeennnn. 3-42
Attributes for Layer 2 Networking Equipment..............ccooevvveviineeennnn. 3-45
Modules Needed for Various Layer 2 ProtoColS.....c......cccuveeveinnen. 3-45
Modules Needed by Multi-Service SwitCh........ccccccooviiiiiiiiniinn. 3-46
Attributes for Layer 3 Networking Equipment.............cccooeveveviineeennnn. 3-49
Higher Layer Modules for Layer 3 Networking pquent..................... 3-49
Required Modules for Various Interface Technefgi......................... 3-50
Interface Modules for Layer 3 Networking Equepm..................ccco..e. 3-51
Required Attributes-Circuit-Switched End-Sysbavice 3-56
Required Attributes-Circuit-Switched Layer 2veking Equipment.... 3-56
Additional Attributes for Radio DeVICES...cccuuiviviiiiiiiiiieeiiiieeeei e 3-60
Pipeline Stage Attributes on Radio Transmitter................ccceevveereee. 3-61
Pipeline Stage Attributes on Radio Receiver.............cccccviiieeeieennnnn. 3-61
Restrictions in Building Radio Devices .. " 3-63
Required Satellite Device Attributes for MO\@'I’QI])ItS 3-65
Radio Transceiver Pipeling Stages. ... oo viieeiiiiieiiiiieeiiineeeeiineeees 3-65
Required Attributes on Link Model ... 3-68
Required Attributes for Utility NOAES ... coeeeeriiiiiiiiiiiiieiiii e 3-72
Optional Attributes for Utility NOdeS......ccc..viiiiiiiiiiiiiiieeeeeeen, 3-72
Available IP Common Route Table APl FUNCLIONS ccee..cevviniiiieeeeen. 4-10
Event Description Table e 4-2
Event Communication MechaniSmso eeeeiineeeiiinneeiiineeeeiineeeenn. 4-2
State Description Tablei e 4-3
Event Feasibility Table...........cooui e 4-3
Event Response Table ... 4-4
End-System-Model AttriDULESocummmeeeieeeeiie e 4-14
Circuit-Switched End-System Device-Model AtHd@S 4-28
Radio End-System Device-Model Attributescooeeiiiiiiinnn, 4-32
Event Response Table for “fwd” ProCess......cc.covvveviiieiiiiiieiiiiineeeennn. 4-36
Event Response Table for Radio SE Modul@.eeeeeoooiviiiiiiiiiiinnn. 4-39
Event Response Table for Radio SE Modul@.eee.eoooiiiiiiiiiiiiinnn. 4-53
Events of TSSP Process Model....... oo, 4-55
Events of Satellite Switch Process Model...c..cooviiiiiiiiiiiniiin, 4-63

Xi

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table 4-15: Utility Node-Model AttribULES...........cceeeieieeiie e 4-71
Table C-1: Attributes for Enumerated Data TYPES .oceeeeriiiiiiiiiiiiieeeiiie e C-1
Table D-1: Packet FOIMALS.........cciuiiiiiii it ceemcee e e ea e D-4
Table E-1: Interfaces and Packet FOrmats........cccccoiiiiiiiiiiiiiiiiii e E-1
Table F-1: Interfaces and Packet FOrmats.......cccooeiiiiiiiiiiiiiiiieee e F-3
Table G-1: CONSIANTS......iiiiiiiii it eee ot s e e e e e e e et e e et e e et e e et e e e e et e eeans G-1
Table G-2: Typed File AttHbULEcooiiiiiieee e G-2
Table H-1: Other File FOrMALScooviiiiiiiiiii e e H-1
Table I-1: MOPs Reported By OFcoouiiiiiii e I-1
Table [-2: StAtiStICS GrOUPS ... ieeei et eeeemme e e et e et e eea e eennns [-2
Table I-3: Modules That Write OV StatiStCS......ceeeueeeriieiiiiineeeiee e e 1-3
Table J-1: Wired Interface SPecCifiCatiOns e eereeeeerinieeiiiiee e J-2
Table J-2: Radio Device Interface Specifications............cccooevevviiiiiiiinieiiiineeeennnn. J-2
Table J-3: Process MOAEIS........coouuiiii e eea e J-2
Table J-4: External Files Needed.............ooviiiiiiiiiiiiii e J-3
Table L-1: Example of APl Function Table........coiiii e L-4
Table L-2: NETWARS APIS and LOCAtIONSccceeeem it L-4
Table N-1: List of NETWARS Models (AlphabeticC) ...ccoeiveveiiiiiiiiiiiiiieieeeei, N-3
BIE= o] Lo I A PP R-1
Table U-1: Packet Formats to Interface Types ...ccoocciiiviiiiiiiiiiiiiiciiiieeceieeeeeen. 7
Table U-2: Supporting Technologies per Port Category......cccoovuvvieiiinieiiiinneeennnn. U-3

Table X-1: NETWARS Model Development Guide Checklist

Xii

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

1 EXECUTIVE OVERVIEW
1.1 PURPOSE OF THIS DOCUMENT

The purpose of thRETWARS Model Development Guisi¢éo provide modeling guidelines and
standards for creating communications device and tratideds that are interoperable with the
Network Warfare Simulation (NETWARS) System and mauste. ThReNETWARS Model
Development Guidprovides the standards for creating NETWARS commumoicatevice and
traffic models and provides the instructions for modifyingseng OPNET commercial off-the-
shelf (COTS) models to adhere to these standards.

This document provides engineers with the information nacgss develop device and traffic
models that interoperate with existing NETWARS and OPNIEITS models within the
NETWARS modeling framework. Any device model written tosthetandards will integrate
seamlessly with the existing model libraries and wilab& to take advantage of the benefits
that the NETWARS modeling environment has to offer.

1.2 BENEFITS OF MAKING A NETWARS-COMPLIANT M ODEL

NETWARS is a communications system simulation tdslpkimary purpose is to evaluate
strategic, operational, and tactical communicationsowds before they are developed,
deployed, or modified in order to provide early feedback tissbecmakers. NETWARS
leverages COTS software that models commercial conzatimns networks and adds military-
specific device, protocol, and application models to providenaplete environment for
modeling military communications networks.

The following sections detail the benefits that thimmo@mn simulation framework provides over
traditional, stovepipe methods.

1.2.1 Leveraging a Standard Modeling Framework

Many modeling efforts throughout the Department of DeféDsd) have been undertaken in a
standalone manner, with little attempt being made to neaskels or integrate with existing
work. Part of the reason for this is a lack of stad@ation within the modeling community,
which makes it difficult to reuse existing component pdrb& use of a common simulation
framework such as NETWARS imparts some standardizatitimeese modeling efforts and
promotes model reuse.

One of the benefits of a common framework is the gueeatinat all models built to that
specification will work together in an integrated fashidhis increases efficiency and drives
down costs in multiple ways:

* Eliminates Redundant Modeling Efforts. Engineers embarking on a new modeling
project are able to reuse existing device models, knowinghéwgtare interoperable with
new models built to the same specification. This redaceéiminates the need to
produce multiple models of the same devices to work ivingusimulation
environments, thus reducing program cost and overall ctisé tGovernment.

1-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

* Provides a Baseline for Comparative AnalysisA repeatable set of inputs and
constraints is central to an effective modeling exerdy using a standardized set of
models, engineers can control the variables that gaaisimulation and ensure that any
measured differences in results are due to intentidr@alges in inputs. This ensures
valid comparisons of devices or other variables, whidsjecially valuable when
performing comparisons of new technologies from mudtiygndors.

1.2.2 Use of Full NETWARS Functionality

Models built according to the guidelines outlined in MiSTWARS Model Development Guide
are interoperable not only with other models developedjub&se standards but also with the
majority of the OPNET COTS device models. In this viag, models are able to take advantage
of many years of commercial development and model tebtirieveraging the OPNET COTS
Standard and Specialized model library. This library includimsic capabilities for common
communication modeling issues such as traffic generatyoramic routing, and connection
establishment. The library also contains a wealthasfdgrd protocol models such as Ethernet,
Asynchronous Transfer Mode (ATM), frame relay, Fibestibuted Data Interface (FDDI),
token ring, Digital Subscriber Line (DSL), Transmiss@aontrol Protocol (TCP)/Internet
Protocol (IP), Routing Information Protocol (RIP), Of&mortest Pathway Forwarding (OSPF),
Extended Interior Gateway Routing Protocol (EIGRP),rlateGateway Routing Protocol
(IGRP), Border Gateway Protocol (BGP), File Transfertétol (FTP), and Hypertext Transport
Protocol (HTTP); a host of wireless protocols such azM&s Fidelity (WiFi) and Worldwide
Interoperability for Microwave Access (WiMax); andaarfily of Mobile Ad Hoc Network
(MANET) protocols such as Optimized Link State Routing (B),SAd Hoc On-Demand
Distance Vector (AODV), and Temporally Oriented Routdgorithm (TORA).

In addition, NETWARS provides access to customized capabititat do not exist in COTS
products. These capabilities include a large military-sjpeddvice library, customized
reporting, and specialized traffic-handling techniques. Saoftige available models are shown
in the list below. A full, up-to-date list can be foundAppendix N.

Device models available in NETWARS include but are moitéd to the following:

* Prominas (multiple configurations)

» Tactical radio systems (Single-Channel Ground and Amb®&adio System
[SINCGARS], Enhanced Position Location Reporting Sy§teRLRS], Link-11, Link-
16, etc.)

* Encryptors (KIV and KG-series)

» Satellites and earth terminals (AN/TSC series, Stawizat Tactical Entry Point (STEP),
Teleport, Global Broadcast Service (GBS)

» Tactical voice and circuit switches (AN/TTC seri8syitch Multiplexer Unit (SMU),
Digital Non-Secure Voice Terminal (DNVT), Secure Tdlepe Units Il (STU-III).

1.3 M ODELING BASICS

NETWARS is a communications system simulation toodlenap of two primary simulation
technologies— Discrete Event Simulation (DES) and Capacity PlanG&)(CP is a

1-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

customized analytic approach, implemented specificalNE&FWARS. By convention, models
developed for the NETWARS environment support both modelingitdadies.

DES provides an explicit, packet-by-packet simulationegfvork traffic for the system being
modeled. It is extremely detailed and can provide reatisshigh level, such as time-varying
link utilizations, all the way down to very granular m@@snents such as queue lengths on
individual routers. Additionally, because NETWARS shipthwine full source code to both the
COTS and NETWARS model libraries, model developers candxhe models to add their
own statistics or other custom behaviors.

CP provides a broader look into network behavior. Itimarily used to study steady-state
network behavior, and as a result is not suitable taliess such as protocol convergence times.
However, due to the nature of the modeling technology &, usean run much more quickly
than DES. For the appropriate analyses, it will provideltesimilar to those achieved by DES
but at a fraction of the run time.

1.3.1 Defining the Purpose

The first and most critical issue to be addressed wheertaking a modeling project is
identifying the reason(s) behind the use of the model. Argeina project that begins with the
thought “l will build a model first and figure out whatvant to use it for later” is destined to fail.
The best way to determine the purpose of the model iskoyga8Vhat specificquestion(s) do |
want this model to answer for me?” Following are exaspif specific, purpose-driven
guestions:

* What will be the impact on end-to-end message delays Wieplace my existing Media
Access Control (MAC) layer with a new implementation?

* Wil the new routing protocol “X” be interoperable wibther protocols in use on my
network? Will | be able to redistribute routes betwterse networks?

Once these questions have been answered, the feattinesdelice/system to be modeled that
are pertinent to the study can be identified. This wilhtadow the identification of features or
behaviors of the device that need to be built into thdaho

1.3.2 Determining Model Requirements

To develop a model of a communications device, systeapmication, there must be a working
knowledge of the features that device or system suppottise Icase of a communications
device, this includes supported protocols, performance sgifis, and any known limitations
about, or criteria for, its interactions with othewides. For example, a radio that needs to be
part of a slot selection mechanism of a network coragref one or more radios will have
additional interoperability requirements.

Some of this material is readily available in vendwecsfication sheets or documents issued by
standards bodies such as Institute of Electrical andr&fecs Engineers (IEEE). Another useful
source of material is actual performance data fromséirigeand Evaluation (T&E) or production
environment. The use of empirical data to validate #ftebior of the model can be invaluable.

1-3

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

For example, routing convergence data from a live deviedeaised to validate a routing
protocol whose model is being developed.

It is equally important, however, that the relevantthese behaviors is known. For example,
many devices send out periodic messaging information (dek&tsato communicate with the
rest of the network. This data does not materially imgaetdevice’s behavior, and as such, if
the amount of this traffic is deemed to be small, iy i@ ignored or “abstracted away” in the
context of the model, simplifying the modeling effort with significant loss of accuracy.

Similarly, it is often not necessary to know the inmerkings of a cryptographic or other
processing algorithm, for example, to build a behavioralehof such a device. If the purpose
of the study is to measure network capacities, then ingdée overhead capacity incurred as a
result of encryption is sufficient. The exact enciyptalgorithm itself does not need to be
modeled.

1.3.3 Surveying Existing Models

Once the model requirements have been identified, tttetask is to determine whether an
existing model possesses some or all of the needed ¢agabidepending on the output of
previous modeling projects, a model may exist that hasetitessary functionality and, through
configuration and without code modification, can be madsatsfy the specific requirements.
This is known asnodelsurrogation Model surrogation is an area where the common nrogleli
framework and modeling standardization proves its wdyttommunity-wide library of models
that function in well-defined, interoperable ways caratlyereduce time and costs associated
with model development.

Even when a pre-existing model does not serve all ofébdsof a new project, in many cases it
can be used as a starting point for a new model. The NERS\environment supportaodel
derivation which is the process of using an existing model as difaset of functionalities and
adding/modifying just those that are new or different ftbmbaseline set. In this way,
improvements to the base (COTS or custom) model withberited by the derived model,
reducing configuration management (CM) costs.

Finally, even when model derivation is not an appropsgatetion, it is normally advantageous

to use existing models as a starting point. Models of #asiniass (e.g., transport devices, end
devices, routers, switches) often provide similar fumglity that can be modified through code
enhancements to meet the specified need.

All of these examples of model and code re-use arepmdyible when a set of standards is
defined and followed. This document defines that set of stdadar the NETWARS
environment and helps to determine when each of the appveathes is suitable for a specific
project.

1.3.4 Developing the Model

Sometimes there is no alternative but to develop amedel. In such cases, tiNETWARS
Model Development Guidakes on greater importance. There are a numbemgjstkhat
differentiate NETWARS models from OPNET Standard madeliew of the primary

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

differences are listed below; the rest of this docunsedevoted to explanations of how to
ensure that these differences are accounted for andnmepted in such a way that the resulting
model is truly interoperable with other models withia METWARS framework. Full
explanations of these differences, and how to intevahtthem, are provided in Section 3.

Primary differences between NETWARS models and OPN&hdard models include the
following:

* |ER Support. NETWARS provides support for handling Information Exchange
Requirements (IER), the doctrinally approved specificapibtraffic load for
communications scenarios. Those devices that are plaasnsources or sinks of traffic
must be capable of generating and receiving these constructs

* CP Support. NETWARS models must operate in both the DES and CRamient.
This analytical simulation technology is custom bialhandle the NETWARS circuit-
switched modeling construct and to allow capacity planning Wawkfthat include
wireless devices.

» Classification. NETWARS models support the notion of classification,alifenables
military network planners to build models of differeatusrity enclaves.

* Interaction with NETWARS Model Suites. Newly developed NETWARS models must
also interact smoothly with the existing device modelstaadnology frameworks that
reside within NETWARS. These include Prominas and othewitiswitched devices,
broadcast networks, Satellite Communications (SATCO&¥jices and terminals, and
message-based systems such as Link-16.

NETWARS itself does not provide a model-authoring framewblddels for use in NETWARS
are developed using the Modeler development environment, & GQffware package produced
by OPNET. This software is not available through the WARS program office; to acquire it
one must contact OPNET. Prior to beginning NETWARS modetldpment, it is important
that the developer is familiar with the following maedés:

 OPNET Modeler
» C/C++ development language
 ThisNETWARS Model Development Guide

There are many resources available to help learn ald@NED Modeler and C/C++. In
particular, the OPNET Support Center (http://www.opioet/support/homel.html) is an
excellent place to obtain a background in using the Modaerework for model development.
Look especially at the “Methodologies and Case Studiels’for more information.

1.4 How TO USE THIS DOCUMENT

The remainder of this document covers various aspettE ©¥WARS model standards and
interoperability concerns. Code examples are also mes¢éo emphasize the practical
application of the standards described. It may be reachasrative for an introduction to these
topics or used as a reference guide throughout the dexigiteaelopment process.

1-5

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

The sections and their purposes are listed below:

Section 1: Executive Overview (this section) his section provides an executive-level
overview of NETWARS model development and METWARS Model Development
Guide

Section 2: Technical OverviewThis section provides an overview of a model
development process, including information for the TexdiriManager to oversee a
model development effort.

Section 3: Model DevelopmentThis section provides the technical details of making a
model NETWARS compliant.

Section 4: Model Development Exampled his section provides additional examples of
model development that go into more detail or cover mahdit topics.

Section 5: Model Validation and Verification. This section provides detailed technical
specifications about model verification and validatio&W for all types of NETWARS
models.

Appendices.The appendices provide associated references, such as ARES Wacket
Formats, Frequently Asked Questions (FAQ), and a ModeatKliketo support model
development.

This document should be read by program managers, technicagjenanmodel developers,
subject matter experts (SME), and quality assurance engi(@AE) involved in a modeling
project. Recommended sections for each of these agdieme listed below:

Program Managers. Sections 1 and 2
Technical Managers.Sections 1 and 2 and Subsection 3.1 and 3.2

Model Developers.Sections 1 and 2, followed by Subsections 3.1, 3.2, 3.3, 4ndil8s
should be followed by Section 5, going back to cover thagmsrin Sections 3 and 4 that
are relevant to the type of device being developed. Finallgetieloper should return to
Section 5 to cover the portions that are relevatitealevice being developed.

SMES/QAEs.Sections 1, 2, and 5 and Subsection 3.2. The purpose ofdhmeot is to
allow a SME to help with the design and verificatidraanodel.

This document is based on NETWARS 2006-02

1-6

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

2 TECHNICAL OVERVIEW

To understand the details of developing communications denackels, one should be familiar
with NETWARS and modeling communications systems.

This section is an overview showing what capabilitiestexithin a device model and how reuse
is possible in NETWARS model development. It is not méa substitute as an instruction
manual for OPNET Modeler, which already has significariine documentation and technical
support available through OPNET, nor is METWARS Model Development Guideant to
replace this documentation or to teach modeling in geriRagher, it is intended to provide
additional information and guidance to enable the mdee¢loper to create models capable of
proper interaction with the rest of the NETWARS mddehry. Such models are termed
NETWARS-compliant models.

This section summarizes the following topics:

* The purpose and steps of modeling

* NETWARS software and communications network modeling

* Types of NETWARS models and the OPNET model hierarchy
* Methods for creating NETWARS device models

* The model development process.

2-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

2.1 INTRODUCTION TO NETWARS MODELS
2.1.1 Goals of Model Development

The entire modeling enterprise is based on one fundanassianption, which is much like
Newtonian determinism. We must assume that the impgstasesses governing the system to
be modeled are repeatable and, more important, obegviiseof nature. A system has inputs (or
preconditions) and a process that follows some ruidgpeoduces outputs (the post conditions).
This high-level view allows engineers to model a sygtenprocess) and predict its performance

(see Figure 2-1).

Post
Conditions

Figure 2-1: Repeatable Process

The modeling discipline involves capturing the rules d@eatable process, simulating the
process, and performing experiments on the simulateelnsystor example, to simulate the
movement of the planets around the Sun, the rules avéoNs laws of motion and gravity. To
predict the future position of the planets, a studyyasbalaptures the inputs to the system and
runs a simulation. In this case, the inputs are thes,maocity, and current position of the
planets and the Sun. The simulation will then protessnputs according to the rules and
produce the outputs (see Figure 2-2).

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Scenario

|

Simulated Process

Figure 2-2: Model Repeatable Process

Before reliance can be placed on the results of a inihdemodel must be validated. To validate
a model, the inputs and outputs of the simulation amgeoed to data collected from real-world
observations. Validation is a scientific experimestitg the hypothesis that the model faithfully
captures the salient characteristics of the realdwystem. Among other things, the experiment
measures the accuracy of the model. By measuring tpetsuif a real system and comparing
them to the outputs of a simulated system, a modelrtean determine whether the model can
answer the questions it was intended to answer andnfatr nange of inputs the model is valid.
Without this validation step, results from a simulatstwould be interpreted with skepticism.

Modeling and simulation are conceptually simple, butpitaetice of creating models that
correctly answer real-world questions is difficult. Teéstion provides guidance on building
NETWARS-compliant communications device models. It dbssra process to produce and
validate these device models so they can be integratethedNETWARS simulation
environment.

2.1.2 NETWARS Application Architecture

NETWARS is the DoD Joint Communications Modeling and Satoih tool. The NETWARS
simulation environment is a government off-the-shelf (&GP3olution based on OPNET
Technologies commercial technology. NETWARS adds fiv@nfanctions to the OPNET
COTS product:

» Military-specific models (tactical radios, Prominag\T& OM)

* A simple-to-use capacity planning engine

* A simple-to-use analytic simulation engine

* Usability enhancements (wizards, reports, PowerRoaport)

» Collaborative planning workflow for Joint Command, Coht@ommunications,
Computers, and Intelligence (C4l) planning.

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

The majority of NETWARS users are analysts. NETWARSvides a drag-and-drop graphical
user interface (GUI) to assemble a scenario. The godsdhen input to a simulation. After
creating a scenario, a NETWARS user can press a lotimulate the scenario. The results of
the simulation can be viewed within NETWARS.

NETWARS Scenario Builder

Network Diagram Traffic Miscellaneous
Devices & IERS, Topography
Links Applications & Movement
Loads Failure

NETWARS Model Library
OPNET COTS NETWARS
Models Miltary, GOTS Simulated Process
Models ES CP
User Provided Discrete Event Capacity Planner
Models Simulation NETWARS
(OPNET Engine) Analytic Engine

| Results I | Results l

Figure 2-3: NETWARS Architecture

Figure 2-3 illustrates the various NETWARS components amdthey fit into the modeling and
simulation paradigm. The major components of the NER® architecture include the
following:

e Scenario Builder

e« CP

* DES Engine

» NETWARS model library, including:
— Device models
— Process models and other modules
— Pipeline stages

Traffic models.

2121 Scenario Builder

The NETWARS Scenario Builder is the most recognizablegddd ETWARS. When most users
think of NETWARS, they think of the Scenario Builder. Wit the Scenario Builder interface,
users drag models from the pallet and place them ondHespace. Links are then made

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

between the devices, and finally traffic is added to te@ario. Figure 2-4 depicts a sample
NETWARS scenario.

1] Scenario Builder: UserGuide_CP_Scenario Scenario: UserGuide_CP_Scenario [Subnet: top.Nw_Top] g@gl
File Edit View Map Scenatio Topology Traffic Protocols Terrain Capacity Planning MetDockor DES Windows Help

= (2] 8 b B D) R B i G B

Linclassified
cg. [
_EJ J fard MDdElle Canfigure Palstte...
N EY
CDATA
Ruouter =
: g
P’elkpres_;_F’\-’C_Eonfig =
<Cizco 2514> i
i CCAMDICE
Cisco_7EOS
L4
—
Tlﬂdgﬂ rengerad g g p_IIIIW{_II FI"I’I!'JEIII‘I.”:
cogyright 2006 ManTofa Copprdt|on, Tray. Kew yark, Unclassified
4] i ;r‘

|373208N 0040944E

Figure 2-4: NETWARS Scenario-Network-Level Model

The Scenario Builder interface allows users to creat®aario using existing device models. By
clicking one of the toolbar buttons, the network casibrilated using either the capacity
planner or the DES engine.

This interface also allows editing device attributes. Adgexample of this is configuring a
router. The behavior of a router is highly dependentoahfiguration. Figure 2-5 shows some
of the detail incorporated into one of the standard NER® routers. The list of attributes
exposed is defined by the model developer, but the NETWARSIsIable to change these
values to configure the device for simulation.

2-5

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

]| (Cisco 7505) Attributes

T_l,lpe:|rn:|uter M ake: | Cizco 7205
| Attrbute " alue =
& ~name Cizco 7505
@ |model cisco?A0R
SecLrity
ARP
ATH-IF Interface
ATH

=l IF Routing Protocolz
BGP Parameters [...]
EIGRP Parameters [...]
|IGRF Parameters [...]
|5-15 Parameters [...]
[...]
[...]

D@

[=l O5SPF Parameters
=l Processes
I rowes 1
rowe O 1.Mone Default,»2
Interface |nformation
Aggregate Interfaces M one
Loopback, Interfaces M one
Tunrnel Interfaces M orne
LLAN Interfaces More
RIP Parameters [...]
RIPng Parameters [...] j

Apply changes to zelected objectz [Advanced

Find Mest kK I Cancel |

Figure 2-5: Editing Device Attributes

BEOPEQ

| L]

2122 Capacity Planner

CP is a NETWARS analytic simulation engine. It routeffic and calculates link and circuit
utilizations. CP is designed to run quickly and be easydpaml it usually requires little effort
to make models work with CP. CP uses only a handfulatdeattributes and properties.
Subsection 3.3 describes in detail how to make models witnkCP.

2.1.2.3 Discrete Event Simulation

The DES engine is COTS technology available from BPNOPNET Modeler and IT Guru use
the same DES engine. DES involves modeling all the indiViduents in the communications
network. This includes every TCP/IP packet sent, eaab patket sent, and numerous signaling
packets for voice communications. Although the DES engimighly optimized, DES takes
much longer than CP to simulate the same networkirgldeoff for the longer running times is
that a DES simulation will generate more accurateli®es

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

In addition, the results can include low-level measem@s) such as end-to-end delay (minimum,
maximum, and average), bit error rate, packets senttr iaterface on a router, and number of
packets dropped. Figure 2-6 shows some of the statisticalaleabr a NETWARS router.

i] Choose Results |:”E| [z|

Server Perfarmance - |
Server Print

Server Remate Login

SIP UALC

SIP LAS

TCP

TCF Connection

Congestion Window Size [bytes]

Delay [zec)

Flight Size [bytes]

Load [bytes]

Load [bytes/zec]

Load [packetsz)

Load [packetz/zec)

FReceived Segment Ack Number
Received Segment Sequence Murmber
Femote Receive Windomw Size [bytez)
Retransmizzion Count

Retransmizzion Timeout [zeconds]
Segment Delay [zec]

Segment Bound Trip Time [sec)

Seament Round Trip Time Dewviation
Selectively ACKed Data [bytes]
Send Delay [CWHD] [zec)

Send Delay [Magle's] [zec)

Send Delay [RCWAWHD] [zec)

Sent Segment Ack Number

Sent Segment Sequence Mumber
Traffic Received [bytes]

Traffic Received [bytes/zec]
Traffic Received [packetsz]

Traffic Received [packetz/sec) |
Wiew Description | ok I Cancel |

Figure 2-6: Statistics Available in DES

1 e e e e e e

With a user-selectable level of statistics granulaNig TWARS can provide answers to very
detailed questions. However, it is important to rementiggridad inputs can lead to bad outputs.

2-7

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Users must validate their scenarios and configuratMoslel developers are also expected to
validate their own models.

2124 NETWARSModd Library

NETWARS is supplied with a wide selection of militarydacommercial device models. This
includes the full OPNET Model Library of commercialwetk devices and the NETWARS
military model library. The military models include:

» Tactical radios

* Encryptors (bulk encryptors and Inline Network Encryptors=(iN

* Multiplexers (including Federal Communication Commisgie@C)-100 and Promina)
* Military phone systems

» Satellite terminals

* Models to process DoD Architecture Framework (DoDAHfitralER

These models include network routing behavior, priority premmpRadio Frequency (RF)
attenuation and propagation effects, and IP quality ofee(@0S). Subsection 2.1.3 provides
more information on the composition of a NETWARS model

2.1.3 NETWARS/OPNET Model Hierarchy

NETWARS is built upon OPNET COTS technology, and theSagine used by NETWARS is
the highly optimized OPNET COTS DES engine. This DESrnengses models stored in an
OPNET format, and creating new models usually involvasgyusie OPNET Modeler product.

When discussing models in NETWARS, the terminology beimportant because there are
many types of models. This section briefly descrilbessix basic types of models, shown in
Figure 2-7. These model types are identical to those ndéeé OPNET Modeler product. For
clarity, some OPNET terminology has been adopted théhexception that NETWARS uses
“device” instead of “node”. Most important, NETWARS emdperational Facility (OPFAC)
and Organization (Org) military ideas to create netvgodnarios.

2-8

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Network Model
(OPFAC,
Organizaion)
(Scenario)

Device Link Traffic
Models Models Models
Process Pipeline
Models Stages

Figure 2-7: NETWARS/OPNET Model Hierarchy

This diagram can be read as follows:

* A scenario is built with OPFACs and Org using device modials models, and traffic
models.

» Device models are built using modules, which include procesls transmitters,
receivers and antennas, and associated pipeline stages.

This hierarchy allows modelers to create building blodksh @s process models, OPFACs, and

Orgs, that can be reused, reducing the cost of model genverfd. A user who has OPNET
Modeler can see the source code for nearly all of OPNEOTS models and for all the
NETWARS models. The user can copy and modify this codeake the model development
tasks easier. For more OPFAC and Org informationspleae “NETWARS 2006-2 User

Manual”.

Model
Scenario

Table 2-1: Model Types and Descriptions

Description

A schematic of a network, including devices, links and traffic, terrain, failure scripts,
and trajectories for the movement of mobile devices. Scenarios are built with
NETWARS by NETWARS users, not model developers.

Organization

A collection of OPFACSs, devices, links, and traffic.

OPFAC

A collection of devices, links, and traffic.

Device models

Encapsulate the communications behavior of a physical device.

Process models

A collection of state machines that often model specific network protocols or layers in
the Open Systems Interconnection (OSI) protocol stack. The behavior of the process
model state machines is implemented in C or C++.

Pipeline stages

Model the communications effect of the physical layer. For wired connections this is
usually minor, but for wireless communications the pipeline stages model the effects
of radio propagation.

Link models

Model wired connections. These can introduce delay and possess bandwidth
constraints.

Traffic models

Model the traffic characteristics/patterns of a use case or scenario.

2-9

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Some of the models from Table 2-1 are described in maad otethe following subsections.

2131 Device Models

Device models, along with link models and utility nodes thesfundamental building blocks for
NETWARS scenarios. Device models embody the conceptodéls that emulate real-world
devices. Device models are called node models within ORMN&deler because they represent a
node in the network. Device models have two major funstio

» Define the external interfaces of the model, spedificeow the user and the Scenario
Builder will interact with the model.

» Define the modeling behavior of the device by assembling antecting appropriate
modules, which include process models, antennas, traessniéind receivers.

Figure 2-8 shows the node editor. The model open in thigradiNETWARS’ Cisco 2514
router. This router is based on OPNET’s COTS Cisco 25Xemwith minor changes to make
it compliant with NETWARS.

The Cisco 2514 is a simple router with two Ethernet pomtstwo serial ports. The Ethernet
ports are listed as hub_rx_3 0 (receive) and hub_tx 3 0 (ttynand hub_rx_2 0 (receive)
and hub_tx_2_0 (transmit). These ports flow into Ethevi®C process models, mac_3 and
mac_2. Further up in the model there are OPNET standardgsromdels for IP, TCP, UDP,
RIP, OSPF, IGRP, EIGRP, and BGP. These protocols (amy others, including IPv6 and
Multiprotocol Label Switching [MPLS]) come with NETWARShey do not have to be coded
for each device, but simply laid out and connected imtiue editor.

2-10

NETWARS MobDEL DEVELOPMENT GUIDE V3.0

| Node Model: cisco2514_adv
File Edit Interfaces Objects ‘Windows Help

Om ~ ~ . & B

Figure 2-8: Editing NETWARS Cisco 2514 Router Model

21.32 Process Models (.pr.c)

Device models are created from sub-models called madtiesmost important of these are
process models, including a special type of process molterl eaqueue model. Several types of
modules are shown in the sample device model in Figurev®iéh depicts the SINCGARS
device model:

* pt_0is a point-to-point transmitter.
* pr_0Ois a point-to-point receiver.
* Antenna is an antenna.

2-11

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

* tx_0is a radio transmitter.
* rx_0Ois aradio receiver.
* The remaining modules are process models.

Not shown are the queue model (which can be found in Fig8r@2-mac_2 and mac_3), bus
transmitter, bus receiver, and external system module

Also seen in the diagram are streams, representedithyas@ws, which facilitate
communication between modules; a statistic wire, reptes by a broken arrow; and an
association, depicted as a dotted double-headed arrow.

=

pplication CRU

Y T

:JJ)

pr_0 pr_0 b 0 Y ri_l0

antenna

Figure 2-9: Process Models Within SINCGARS Device Mode

Process models (including queue models) are created and esiitg the OPNET Process
Model Editor, which is a part of OPNET Modeler. Figure 20 gxample, shows the process
model being edited. The name of the instance in the denacke! is “mac,” but the name of the
process model itself is “sincgars_mac.”

The highest level view of a process model is the statehine. (It is assumed that readers of this
document are familiar with the concept of a state nmaglgo this discussion is limited to an
overview of the OPNET framework for state machinesajeStare represented by colored disks.
There must be one initial state, which is indicated bigeblack arrow. There are two types of
states, forced and unforced. Forced states are transigmtre exited immediately after entry.
Once a machine enters an unforced state, it remairesuhgt the next event.

State transitions are represented by black arrows. Sal#t bfrows indicate unconditional
transitions. Dashed arrows indicate conditionaldtaéons. The condition is shown in
parentheses. In the example, the condition is theera a C pre-processor macro.

2-12

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

i] Process Model: sincgars_mac

File Edit Interfaces FSM Code Blacks Compile Windows Help

&F+EDEEE=S

L

by
(PHCKET_TERMINATE_INTRP'I"}M\

[\IET_F'K_RC?

16110

OLIRCE_R?

23 [/CKE_SELF_INTRP

[N'-.-'OKE_SE!]
32 lIl 1} -
| f

Figure 2-10: Process Model Editor

There are three places where executable code can edhvo

* Upon entry to a state, called the Enter Execs
* Upon exit from a state, called the Exit Execs
» During state transition, set as #eecutiveattribute of the transition

If a state transition executive has been set, theill be displayed following the transition
condition, preceded by a virgule. There are none showigure 2-10. .

An optional feature of the Process Model Editor is tha number of lines of code in the Enter
Execs and the Exit Execs can be shown beneath eaehT@ta PACKET_TERMINATE state,
for example, contains 49 lines. None of the forced staés an Exit Execs. The WAIT state has
14 lines in the Exit Execs. This is used to query the simual&ernel for information to

2-13

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

determine the type of event that woke up the state macheeEnter Execs and the Exit Execs
can be edited with a text editor, as shown in Figure 2-11.

ﬂ sincgars._mac : PACKET TERMINATE : Enter Execs
File Edit Options

¢ 4[Ipi5]

1 lF* This state means the duration of the woice or data has ended. */ -

2 A* Need to se the radio back to available. =/ j—
end_trans_time = ap_sim_time (J;
set_awvailability status (nye_node_dd, 17;
is_busy = OPC_FALSE;

7 A% IT I am not the transmit radio, then send the packet to fwd., */
i iT Cintrprt_code = NW__TERMINATE_T=_INTRFT]
{

op_prg-omem_free (end_of_trans_intrpt_ptr);

1 end_of _trans_intrpt_ptr = OPC_NIL;

mw_stat write (bcast_network-_stathandle, 0J;

if Cop_prg_odb_ltrace_active ("sincgarsz") = OPC_TRUE)

printt ("AT %T Finish transmitting Packet. Set RT %5 NOT BUSY,==eswesypnll ap g

] op_pk_destroy (trans_pkt_copyl;
trans_pkt_copy = OFC_NTL;

21 else

23 /¥ Finish receiwing VOICE IER. %/

pkt = rov_pkt;

op_pk_nfd_access [(pkt, "IER", &ier_ptrl;
op_pragomem_free (end_of_rov_intrpt_ptrl;
end_of_rcw_intrpt_ptr = OPC_NIL;

if Cop_prg_odb_ltrace_actiwve (“sincgarsz')] = OPC_TRUE)

i1 printT (“AT %f Finish receiwing packet. Set RT %5 NOT BUSY.®®***+shn', op sim_
1

i if Copoprg_odb_ltrace_actiwve ('sincgars_rov') = OPC_TRUE)

i sprintf (buf, "Receiwe VOICE IER %5 at ®f.", jer_ptr-»jer_id, op_sim_time [jj;_:J

| 2+
ILine: 1 _EEJ

Figure 2-11: Editing C Code in Process Model Editor

2.1.3.3 Pip€ine Stages

The physical layer is modeled by pipeline stages, whichamphysical processes. Link models
and radio models rely on pipeline stages to implemeniutao computations and make decisions
relating to the transfer of packets between transraitied receivers. Each pipeline stage isa C
language procedure within one C file with the suffig.c There may be seven stages (including
the receiver group logic, Stage 0) for a radio trartemiand for a radio receiver, eight stages.
Refer to OPNETWORK Session 1530, Modeling Custom Wireléfests (see Figure 2-12).

2-14

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

“Ignore”: delete packet
Start of Rx Antenna Received
reception
A Interference D

End of Affects “Noise” | et '
reception Inoise, PRt Signal-to- Background
i Noise
SNR, BER,
& “Valid”
End of

reception Bit Error Error i Error
1 1

Figure 2-12: Receive Pipeline Stages

This is an illustration from OPNETWORK Session 1530, MimgeCustom Wireless Effects.

2.1.34 Link Models

Link models simulate the characteristics of transimmsmedia, such as coaxial cable or fiber-
optic cable. Links are used to wire together the deviagetaan a scenario. Important attributes
are: whether the link is simplex or duplex; the speed (wimay be selected by mnemonics such
as OC3 or T1); and the delay (which may be a constdmé wr based upon speed times
distance). There are currently no additional NETWARB&uirements for modeling links.

2.1.35 Traffic Models

NETWARS makes use of all the traffic models availabl®RNET Modeler. These include
explicit traffic (modeled by OPNET application modelsaffic flows (background routed
traffic), captured traffic Application Characterizati&nvironment (ACE), and link loads
(background loads on links). In addition, NETWARS provide$&R model, which can model
the various types of traffic that IERs specify.

Traffic modeling is performed by study analysts, and moiamation can be found in the
following sections.

2-15

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

2.2

M ODEL DEVELOPMENT LIFE CYCLE

Figure 2-13 shows the high-level NETWARS model developriifentycle. The life cycle
contains seven key activities: identify the model neefihelenodel requirements, design the
model architecture, implement the model, develop theptastand test scripts, validate and
verify the model, and document the model. The followingsections provide an overview of
activities and associated roles and responsibilitiesecitvolved parties.

221

Start Identify the Model Define Model Design the Model
Need ' Requirements 2 Architecture 3

Implement the
Model 4

Develop the Test
Plan and Test
Scripts °

Validate and Verify Document the

» " the Model © Model 7 Eod

Figure 2-13: NETWARS Model Development Life Cycle

Model Development Roles and Responsibilities

A general model development life cycle contains a progranager, a technical manager, a
model developer, SMEs, and a QAE. Their roles and redpbties are as follows:

Program Manager. The program manager has financial responsibility andiktigito
concerns outside the development process. The prograageranill take input from all
the other individuals, but is responsible for gettingatwect model developed at the
correct cost.

Technical Manager. The technical manager is responsible for the technicadidesi
such as identifying participants, resources, standards, towlobjectives. The technical
manager also provides technical oversight of the devaedapprocess, and this
individual's primary role is to match the requirementd basiness constraints with the
technical constraints.

Model Developer.This individual is a technical expert in coding modelgwi
specifications.

SMEs. There are two SMEs involved with the model developrintycle: an
operational SME who understands how the equipment isingkd field and a technical
SME who understands how the equipment works internadith Bre needed. The SMEs
are heavily involved in specifying requirements and validate model architecture.

2-16

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

* QAE. This individual insures certain steps are properly validaldeky are responsible
for developing and executing test scripts from the tesispla

222

Model Development Activities

Each life-cycle activity in the life-cycle flow depéed in Figure 2-13 is described in terms of
actions, roles, and outputs in the corresponding st&€phite 2-2. The Roles column lists the
owner of the activities for each step. The Outputsmallists the applicable outputs of each
step. The list is not meant to be exhaustive; usersighailor their actions and outputs for their

needs.
Table 2-2: Model Development Activities

Step ‘ Action Roles Outputs

1. Identify the model need. The program manager + Program * Model need
should work with the technical manager to manager * Resources
determine the reasons and the facts needed to * Technical plan
develop the model. He or she must also identify and manager
allocate resources and responsibilities for
supporting the entire model development life cycle.

2. Define model requirements. The program manager |* Program * Model
should involve relevant parties in the development manager requirements
life cycle. The program manager and technical * Technical
manager should also clearly identify the model manager
need, the individual responsibilities, and the * Model developer
expected outcomes to the team. The SMEs and * SMEs
QAE should provide information to help the team « QAE
analyze the model needs and determine the
requirements.

3. Design the model architecture. The development * Technical * Model
team is responsible for designing a model manager architecture
architecture that can fulfill the requirements. * Model developer

e SMEs

4. Implement the model. The model developer should |* Model developer | « Model
follow the model architecture to implement the
model.

5. Develop the test plan and test scripts. The QAE * QAE * Model test
should apply the defined requirements and model plan
architecture to develop the model test plan and test * Model test
scripts. Scripts

6. V&V the model. The QAE should work with the * Model developer | « V&V Report
model developer and SMEs to V&V the model. In * SMEs + Final model
addition, the QAE should document the results in « QAE
the V&V Report.

7. Document the model. The model developer is * Model developer | »+ Model user
responsible for documenting the usage of the model guide
in the model user guide.

2-17

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3 NETWARS MODEL DEVELOPMENT

This section provides the guidance and requirements faingeeaffic and communications
device models compliant with the NETWARS modeling architescand which can interoperate
with models in the NETWARS standard library. This sett®odivided into two parts: the first
part will focus on the traffic model development, avill introduce the different types of traffic
models that can be shared in NETWARS environment. Tdendepart will emphasize the
device and process model development, and will discustetads of developing
communications device and process models. These moddie caouped into three categories:
the first category provides guidance to kick off the develeqt process; the second category
introduces the common NETWARS model development coradides to the developer; and the
third category applies to specific classes of NETWARSl@hdevelopment. Each of these
specific class subsections explains how to build a NER& component model, and includes
the following:

» Defines a NETWARS component class model

* Defines minimum attribute compliance

* ldentifies required modules for a device of that class

» Identifies device model initialization steps

» Describes component class interoperability with otHeETWARS and COTS classes
* Describes the NETWARS and COTS failure and recovery

» Describes device model measures of performance (MOP)oantbhcollect statistics
* Describes the NETWARS model documentation standards

» Describes the device model construction process

Phase converters and long-haul modems are not covetigd wrersion of thdETWARS Model
Development Guidhowever, they can be modeled as link models with ap@tegatency.

3.1 TRAFFIC M ODEL DEVELOPMENT PROCESS

Traffic modeling is performed by individual analysts and dgweids, and can be a very time
consuming effort. It is beneficial, therefore, todide to share developed traffic models across
the NETWARS community. In general, two major approadan be utilized to deploy and
share defined traffic models into a NETWARS scenari® #d ACE traffic models. The
following sections will introduce the differences andhtight the areas of focus for developing
traffic models.

3.1.1 Development Approach

The first step in developing traffic models is to gathgwporting information to determine the
best approach to support the objective. Supporting informetadundes, but is not limited to,
instrumentation data, application design documents, anatapel activity logs. In general,

ACE models can be created by directly importing packducagfrom sniffer, ethereal,

NETVCR and other instrumentation equipment. Occasigdé developer can also create IER
text files directly from those captures. The use & Bhd ACE can be determined by the
availability of resources including time, funding, and p@amer.

3-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

The following sub-sections will provide highlights on ea¢hhe traffic model types, such as
ACE, ACE whiteboard, and IER. It is important to note h&E and ACE Whiteboard will
require an external license that can be purchased frdde@H echnology Inc. It is not included
with NETWARS.

3.1.2 ACE Traffic Model

NETWARS provides the same functionality as other OPIgESucts for utilizing the ACE
traffic model (atc.m) to create traffic profiles anagrate traffic load. ACE traffic models are
created directly from captured network packet data througA®@&ieimport function. In
addition, the ACE application provides capabilities to impetwork packet data from a wide
variety of popular network monitoring and instrumentationg@oid software, including:

* OPNET .appcapture

* Network Associates’ Sniffer

* Industry-standard Binary Ethernet format (.enc, .cap)

» Other analyzers (such as NetScout) can also generatdiles
* Binary Token Ring format (.trc)

* Binary FDDI format (.fdc)

* Free utilities, such as TCPdump and Windump

* Comma Separated Value file (.csv)

For detailed information on the procedures for importegtered data to ACE, please see the
“Introduction to the ACE Editors” and OPNET Modeler ACE&dview online documentation.

NETWARS can deploy the ACE traffic models directlfoim network scenario to conduct
simulations and performance analyses, providing a mechaaishare traffic models with other
developers in the community. With the use of ACE toterdae traffic models, users can re-use
the same traffic models in different network scerat@support simulations without additional
effort. Refer to “Introduction to the ACE Editors” fdetail procedures on using ACE and ACE
Whiteboard to create the traffic model (atc.m). Notd #n external ACE module license is
required to operate ACE to import packet traces and cieattresponding traffic models.

3.1.3 ACE Whiteboard Traffic Model

ACE Whiteboard is another external OPNET module thatbe used to create traffic models.
Similar to ACE, NETWARS provides the functionality to dgpACE Whiteboard traffic
models into a model scenario. ACE Whiteboard provideshility to modify existing ACE and
ACE Whiteboard models. Furthermore, the primary advardfgsing ACE Whiteboard is that
developers can use ACE Whiteboard to create traffic mdaeatsscratch.

3-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

= IR 1 1t 25 2.5
L L L . L 1 L L . L 1 L L . L 1 L . . L 1 L . . L 1

\ \ ,-?‘ Oracle App Server
H

Oracle OB Server

|&uthentication Server

K J— 0]

Mezzage Editor:

I} | Source |Destinatian |Bytes| Tag |Desctipti0n |Subtask||:0nnectian| Depends On| Processin... |L|se1 Time
11 DOracle D... Oracle Ap.. 2926 (EEagte) SOL Send 170 ve.. <Moner 2 10 10 0071871 0.000000

Figure 3-1: ACE Whiteboard Screen Capture

& [Oracle App Sererd

_..l'
<

|Oracle DB Sewerr

Figure 3-2: ACE Whiteboard Python Logic

As Figure 3-1 and Figure 3-2 show, a developer is needed to tediassociated tiers, required
transactions, transaction size, dependency, user tdggracessing time for the traffic model.
Another important feature of ACE Whiteboard is the useybhon to create logic scripts to
model the dynamic behaviors of an application. It sthdvel noted that ACE Whiteboard requires
an additional module license for use in NETWARS. Foaitet information on the usage of
ACE Whiteboard, please see the “Introduction to the &Adiors” and OPNET Modeler ACE
Whiteboard Overview online documentation.

Developers should conduct information gathering to suppdifittraodel development in the
ACE Whiteboard. The information includes, but is nottedito:

* Allrequired tiers or end-devices, such as database seweb servers, and workstations.
* Required messages and transactions associated to eacH tefine
» Transaction characteristics, such as message sizeyddgmy, processing time, etc.

ACE Whiteboard provides powerful capability and flexilydreate traffic models from scratch,
yet requires the highest level of effort.

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.1.4 ACE and ACE Whiteboard Traffic Model Concerns

In order to integrate and use the ACE traffic modeSETWARS, there are several important
concerns that include:

* Number of tiers — Traffic model developers should make sure the ACE mantitain
the correct number of tiers to support the entire apgicaransaction. Tiers refer to
different end-user network devices, such as servers, cemsputorkstations, and phones.

* NETWARS scenarios— NETWARS scenarios should contain all the associatedsnode
corresponding to each individual tier in the planneditraiodels.

* Understanding the need of discrete event traffic and bagkound traffic — ACE and
ACE Whiteboard traffic models can be deployed as eitiserete or background traffic
load. Developers and users should deploy the traffic moedealssponding to their needs.

» Validate and Verify traffic models — Developers should V&V the traffic models before
using them to conduct further simulations. During theW#&ocess, developers can
make use of the NETWARS built-in functionalities teeente simulations and capture
the packet traces. The capture results are comparedtad@ioriginal packet capture to
V&YV the traffic models. In general, the developers gae the following values to
conduct the comparison:

Transaction dependency
Number of transactions
Dependency delay
Message size.

3.1.5 IER Text File

One of the critical features of NETWARS is the uséd® and thread to define traffic flow.

Traffic models based on IER text files can be credtezttly by using operational missions and
existing IER databases. In addition, the traffic modafs be easily modified and created through
the use of text editors or Microsoft Excel spreadsheétn Excel spreadsheet is used, users can
export the IER test file into plain text format withah column delimited by a tab character.

Figure 3-3 shows an example of the IER text file. Tileecbntains the required general attributes
for each IER, and each line represents one IER. Timerglattributes include:

B IER_Text_Sample_2.txt - Notepad EE
File Edt Format Yiew Help

For the toolkit to read the IER text files, they should be placed in the following directory:
<Installed WETWARS Directorys:“User_Data“IER_Text_Files
#

The following IERs are provided as examples. vou may modify this file or create
additional text files for Eour own IERs. Each Tline specifies one IER, and each
field s delimited by a tab character.

#

MOTE: These example IERs may be included din wour scenarios, unless this file is
modified or remowved from the IER_Text_Files directory.

#

#IER Prod cons URC Security Class Perish- Precedence Traffic avg. Equipment Dist Type Dist start Time Stop Time
#ID Func Func abiTity Type size Mean

Mame Mame

#

Figure 3-3: IER Text File Sample

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

IER ID — Identifies an IER in the database. IDs for IERs #natcreated by a user start
with the prefix USER, as to not conflict with IER IDsthe database. Background IERs
start with the prefix BKGD.

Producer Functional Name —dentifies OPFAC Producer Functional Name of the IER.
Consumer Functional Name ddentifies OPFAC consumer of the IER.

URC - Identifies the relationship between the Producer OPFRAConsumer OPFAC.
Please see “NETWARS User Manuel’ for detailed infanora

Classification —Specifies the security classification of an IER. $heurity classification
of an IER is one criterion that determines the systment through which the IER is
transmitted.

Perishability — Specifies the time in seconds during which the IER \eali

Priority (Precedence) —Determines the number of transmission retries and #itetime
between successive retries.

Traffic Type — Specifies the type of IER traffic, such as data andevoic
Average Size -Indicates the average size of the IER in bytes.

Equipment — Specifies the system element, such as computer and cagiowhich the
IER can be transmitted.

Distribution Type — Indicates the inter-arrival distribution for the IERs

Interarrival (Distribution Mean) — Represents the time, in seconds, between IER
firings.

Start Time — Identifies the time, in seconds, in which the IER Wwelin firing after a
simulation begins.

Stop Time —Identifies the time, in seconds, in which the IER wiibhp firing after the
simulation begins.

Producer DeviceandConsumer Device -ndicates the devices transmitting and
receiving the IER.

Transport Protocol — Identifies the protocol used for transporting the IER.

Other than the above general attributes, the link-16(IE®eries message) needs an additional
attribute for entering the Network Participation Gr¢M®G) number of the IER. Detailed
information can be found in the “Link-16 Model User Guide.”

The IER Text File should be placed in the “<install ds\RETWARS\User_Data\lER_Text__
Files” directory. It is important to note that users/mmestall NETWARS in different folders.

3-5

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.1.6 Traffic Model Deployment

The purpose of this section is to highlight the importssues while deploying the traffic models
into NETWARS scenarios, and therefore does not costap-by-step procedures. The
following sub-sections will provide the information amderence necessary for developers to
deploy the traffic models into NETWARS scenarios.

3.16.1 ACE and ACE Whiteboard Traffic Model

MAMET Scenario: UAV_AQDY [Subnet: top.Mw_Top]
Traffic

Capacity Planning DES ‘Windows Help

|| BB E ipplications Deploy ACE Application on Existing Mekwork. .. as Discreke Traffic. ..
et Servers k Convert ACE Traffic (Flows <-= Discrete). .. as Traffic Flows. ..
Mainframes * Deploy Defined Applications. .. Chrl+Alk+a
Clear Deployments. ..
TCP 4 -
- R Deploy DES Application Demands. ..
Link1 ¥ Woice Codec Conversion,..
BGP ¥ Model User Guide
EIGRP 3
IGRP » =] Configure ACE Application @
J 1515 3
OSPF » Specify: ﬂ
F RIP ¥ b Repeat: |1 times per hour uging the following limit: 1. Application name J
@ Infirite 2. application repetition per user,
MPLS] ™ Count: 3. Maximurn number of repetitions ﬂ
LDP d Contained tasks
RSVR d T PR e Tier~| [click 'add Task' to select the ACE |
trace file(s) to be contained as
ATM * part of this application.
]
Frame Relay Note:
Ethernet 4 1. &l contained tasks must have the name first
FODI ¥ talker (i.e.'client. The first talker is the tier
that sends the first packet in the trace.
WLAN 4 2. The file list popup is filtered based on the
STP b ‘client' tier,
3. By default, tasks are executed in a serial
order, You can edit the 'Application Config'
MANET r object to change this order,
UMTS ’ H
Wireless LAN > Add Task | =
MNext > I LCancel |

T T 5

Figure 3-4: ACE and ACE Whiteboard Traffic Model Deployment GUI

As shown in Figure 3-4, NETWARS employs the same tdolgzydrom OPNET Modeler and

IT Guru to import ACE and ACE Whiteboard traffic model®isimulation scenarios. The
function bar of NETWARS supports the importation officamodels to applications as discrete
event or traffic flow formats. After the models habeen imported, the users can deploy the
applications to corresponding nodes in the scenarios thitbaegise of the “Deploy Defined
Applications” function. Please see “Introduction te thCE Editors” for further information.

3-6

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3162 |IERTextFile

ogy Protocols Capacity Planning DES Windows Help
ﬂ Traffic Wizard el | E @
e [et optos AEG
Flows 3 Specify IERs
Device,Link Loads 4 I S———— v Use implicit [ERs
. Traffi . Emport IrETi‘\mR tepor I~ Import IER s from database I~ Set Background
onvert Traffic por] Epar] .
P g [~ Import IERs from files [~ Set Background
X Expart IERs fo sML
Generate Traffic Web Report
Set Aggregate Traffic Preferences |ER Database Selection... Cancel

Show Aggregate Traffic
Hide Aggreqgate Traffic

Import Mode Aliases 3
Export Mode aliases »

Fac

Figure 3-5: IER Import Manual

NETWARS provides a function to import IER directly fraext files, as demonstrated in Figure
3-5. By selecting “Import IERs from files,” NETWARS Mgenerate IER traffic from IER text
files during simulations. If “Set Background” is checked, ItBR traffic will act as background
traffic during simulations. In order to import the 1B the text files, users need to store the
IER text files in a specific directory (i.e., <Inbta NETWARS
Directory>\User_Data\lER_Text_Files). NETWARS wilackall the files in this directory, and
the IER with corresponding functional name will be gatexd during the simulations.
Therefore, users need to make sure the directory ontpios the IER text files that will be
required to support the simulations. Other IER texs fdan be stored in another directory
created by the users. Please read “NETWARS User Gaie"NETWARS Code of Best
Practice” for further information.

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.2 COMMUNICATIONS DEVICE AND PROCESSM ODEL DEVELOPMENT PROCESS

The development process is the second of three phasesNETWARS communication device
model life cycle. At this point, the developer has ao$ehodel development requirements that
can be used to define the development approach. Figure 3-6 g#iewgh-level development
process that consists of three individual developrapptoaches which guide the developer to
kick off the model implementation with appropriate piaaoes.

Determine the
development case
by using the defined
model requirements

Modify the model
Identify class with NETWARS
Yes>| component requirements corresponding
to specific class component

Modify the existing
OPNET model?

pd
o
Reuse the similar . .
NETWARS Yes> Determine the required changes Implement the
to the current NETWARS model changes
model?
pd
i
Identify the class component
and Implement the new models
determine the in OPNET Modeler
interface requirements

Figure 3-6: High-Level Model Development Process
3.2.1 Development Approaches

In order to determine the most efficient way to implatrtbe model, the developer needs to
match the development effort to appropriate developnmgbaches, such as:

* Modifying the existing OPNET model to be NETWARS compatible
» Surrogating from the existing NETWARS model
* Developing a new model

The following subsections introduce the key consideratdesach specific development case.

3-8

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.2.2

Modifying the Existing OPNET Model to Be NETWARS Compatible

In this case, the scope is to convert an existing OPM&del into a NETWARS model. The
goal of this subsection is to provide the basic approatdhkeyfocuses for the developer to kick
off the modification process. They are as follows:

3.2.3

Identify the component class of the device and the OPWSion that was used to
implement the model.

If the model is implemented in an older version, thienust be upgraded and matched to
the version of NETWARS.

If the device used a COTS traffic model, then it williwas-is in NETWARS using DES
only.

If the device “wants” to use the NETWARS IER traffic siheation infrastructure, then
ensure it has required attributes (specific for each capmcalass).

If the device is an end device, it needs the additioneofdlevant “se” module.

For interoperability with specific NETWARS componerdsd devices, refer to Section
3, which has a compliance subsection for each compaiast.

To get proper device functionality in CP/logical viewskemaure the device has the
required attributes (specific for each component cl&snario Builder may still require
CP routing/logical view code enhancements to support fflogical view functionality.
The link deployment wizard will ONLY work if it has elant self-description (and a
matching link name in the LinkTypeMap.gdf file).

If it has complex attribute specification, then ScenBuilder may require a wizard-like
functionality to ease the device deployment.

Surrogating From the Existing NETWARS Model

In this step, the developer re-uses a similar NETWARS8eahas the foundation to construct the
new model. The key considerations while surrogating fimerekisting NETWARS model
include the following:

3.24

If surrogating ONLY involves attribute default changegntifNO modification would be
required.

If surrogating involves new attribute addition or changimgliehavior of contained
modules, then it may need device model functionality ecdraents.

— In DES, process models/external files/pipeline stages mo be enhanced.

— In CP, CP routing changes need to be determined.

If surrogating involves changing physical layer charactesigtike changing radio
transceiver frequency, power, etc.), then NO modificatiould be required.

If surrogating involves adding new interfaces (ports), thiavaat self-descriptions for
the new interfaces (ports) need to be added.

Developing a New Model

In this case, the developer is required to construct anmedel from scratch.

Identify the component class of the device and its imterfequirements.

3-9

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

If the characteristics of the device include protocal$ chnologies available in the
OPNET COTS offering, then use device creator to crea¢gevamodel with required
interfaces and technologies.

If device creator cannot be used, then build the new nodPNET Modeler according
to device specification (building process models/exteiles/pipeline stages).

Perform all the steps in the “Modifying the Existing OPNHE®del to Be NETWARS
Compatible” subsection.

3-10

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.3 M ODEL INTEROPERABILITY |SSUES

Before development of any device models in the NETWAR&enment; the developer needs
to pay attention to the interoperability issues thaiaasmciated with the interactions between
different device models. This subsection in particuiscukses the interoperability concerns that
users must have before starting the model design/ingpitation. Based on the objective of the
model development and the final modeling environment in winsens will deploy their models,
interoperability can be separated into four main categori

* Compatibility issues

» Interfacing issues

» Self-description issues
» Versioning issues.

The following provides some of the common concerns awksamong those four categories
that a developer will face. In addition, examples aeslus address the detail of those concerns.

3.3.1 Compatibility Issues

Compatibility issues include functionality, protocols, an@ifo-addressing issues. The
following subsections discuss these in detalil.

3311 Functionality I ssues

A particular device model’s intended behavior determinessafms compatibility with respect
to other models. The model developer should give due attetatinteroperability, starting at the
high-level design of the device. At this point the depetoalso needs to give attention to the
high-level function of the models with which it wititerface.

For example, when building a radio device model thathsbility to generate IER traffic, the
user needs to know the functions of the operationaleief®E) at a high level. (The OE
coordinates sending and receiving IER-based traffic.) fEasces or ideally eliminates work
duplication and code overlap between the radio and thémQkis example the user should
know the following?

e The radio does not need to write IER statistics.

e The radio does not need to read the IER information.

e The radio does not need to schedule IERs.

* The availability of the radio for transmission andielay will be dependent on the OE
implementation.

This example merely covers, at a high level, intenfathe radio with the OE. During the high-
level design, the developer needs to make a list of defpeedayer) that will interface directly
(wired/wireless connection) or indirectly (using othemenunication mechanisms). Usually,
model specifications clarify device functions, but this guibheck should be performed to
discover any functionality-related overlaps in advance

! Assuming that the behavior of the OE is similar todhe present in the NETWARS standard model library.

3-11

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.3.12 Protocol-Related | ssues

In addition to functionality, the developer should makesghat the model under development
interfaces with the correct protocols and/or techneldror example, the current NETWARS
modelnw_ethernet_wkstn.nd.has two specialized interfaces—one that supports Ta&lBgort
protocol and one that supports User Datagram Protocol \UDiRas a separate implementation
of the system element (SE) for either of these podsoc

-~
application CPU
E=——=E
rp tpal
D‘—Ig _h; i E Implementation of this module iz
se_udp udp tcp zE_top ;
[—— dependent on the supporting
— E D transport protocol (in NETWARS
e standard model)

Transport layer protocal

Figure 3-7: Protocol Dependency (e.g., Ethernet Compert Model)

Based on the supporting protocol layer stack, the devel@eeisriio do some custom model
development. Also, in some cases protocols (upper- ariayer protocols) have
interdependency upon one another, and the developer msglearothis while performing the
high-level design for the device model.

3.3.1.3 |IP Auto-Addressing Enhancements

Every IP interface that has a link connected to it néztiave an IP address. If the network is
huge, then assigning addresses manually to every interfecenes cumbersome. To make it
easy for the user, OPNET Standard (COTS) models htaswae called “IP Auto-Addressing.”
By default, device model instances have auto-addressing enalaletiwork, and the first IP
process to initiate in the simulation automaticallyigiss IP addresses to the interfaces that have
their value set to “Auto Assigned.” To accommodate newetsoodeveloped, model developers
need to enhance this COTS utility, typically (but not pifdy Layer 2 custom models. Currently,
support exists for the NETWARS standard models such asifapaircuit switches, satellite
terminals, and the like.

3-12

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.3.2 Interfacing Issues

One of the key steps in development involves takingactmunt the model integration issues (in
the case of a single model, integration of diffementules/process8s The model developer
needs to realize that not all of the model developmmgresses in seclusion (i.e., the various
modules of a device model need to interface with eadr oglven during development).
Recognizing the integration issues sooner rather thanbdanefits the model integration process.
Initial designs for model development should address ths.various components of this
category are information-sharing and communication aspect

3.3.21 Information Sharing

Through the interfaces, information can be shared lagtwlee two process models that belong to
the same module, different modules of the same dewaclnor two completely different

device models. This can be done in a variety of wayesesaf which are discussed in the
following subsections.

3.3.22 Process Registry

The OPNET simulation kernel allows any number of OPNEOICess instances to register
themselves in a global (i.e., accessible to any procdke scenario) process registry. The
processes register themselves with the required attsilouig once during simulation (typically
upon creation); however, processes can add new attrbesesiptors whenever required. Other
processes can later access these attributes duringntiatgon’s execution. Model developers
should consider what information, in the form of prssceegistry attributes, processes should
publish via the process registry upon their creation or neatiibn. It is necessary that the new
processes written realize what information (attribupeslished by previous processes could be
of use.

An example of process registnyse can be seen in the NETWARS satellite modelstenthe
satellite space segment registers its attributdseiptocess registry and then the earth terminals
discover (retrieve) this information during their initzaltion.

3.3.23 Module-Wide Memory

Module memory is the most permanent and widely scoped mygmovided in OPNET

modeling (except for global variables). A single block eihmory can be installed for a module
by any process that is owned by that module. Installaiperformed by calling the Kernel
Process (KPpp_pro_modmem_install@nd passing the address of the memory block. Any
process owned by the module can then obtain the edtadldress by calling the KP
op_pro_modmem_access(he structure and contents of the memory block areegnthe
responsibility of the model developer, as is memorglteation of previously installed blocks
when a new installation occurs. Initially the addr@§sC_NILis installed to indicate the absence
of any module memory.

2 Processes are instances of a process model. For exgmgigpatch.pr.nis a process model that can be instantiated a

number of times in a simulation of a network that contaiasy routers and workstations.

3 Refer to the OPNET Product documentation for detailf@mpitocess registry and its use.

3-13

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Again if the developer is adding the new process models ¢zisting module in the node
model, this would be a place to look for some alraatiialized information.

CPU
| _.,;_ Information stored in the
58 \maduie wide memary of
Eq mmodule 1z acccesthle to all itz
e Process models.
udp
B
ip_encap
NS
i
[
-.
arp
s
]

hub_rs_0_0 hub_t< 0 0

Figure 3-8: Module-Wide Memory (e.g., Ethernet ComputeiModel)
3324 StateVariables

State variables are analogous to the global file andsm@ciated with each process model. Other
processes can access these variables through the heekéfdp_ima_obj_svar_get()

3.3.25 Global Variables

Global variables are the regular global variables dedlar the header block of one process and
can be used by other processes. Use of these variabléd e minimal. The developer should
declare the variable in the header block of one procesdemtare the variable as an extern in
the header block of all other process models. Note tliddriey a variable in the header block
also makes it global to all instances of the processinohit is declared, as opposed to state
variables where the information remains local to thegss instance.

Following is an example of using a global variable:

If the global variable is named foo_var and is of tygedeclare the variable in foo.h:
extern int foo_var;

Then define it in foo.ex.c (or alternatively foo.pr.m):
#include <foo.h>

3-14

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

int foo_var;

Now to access or set it in bar.pr.m:
#include <foo.h>
foo_var = 10;

3.3.3 Communication Aspects

This subsection introduce the key aspects of communicatimh as packet formats,
transceivers, process models, link models, the link typefieafpe., LinkTypeMap.gdf), packet
encapsulation, interrupt types, and interface contformation (ICI).

3.3.31 Packet Formats

Packets are the units of transfer of information inta datwork. In OPNET/NETWARS
terminology, there are two basic types of packetsnédted and unformatted. The formatted
packets are the most commonly used mode of data traesfeude formats can easily act as a
constraint on the transmitter and the receiver efdévice model. Packet formats define the
internal structure of packets as a set of fields. Refé&ppendix D for a list of packet formats
used in NETWARS standard models. The packet format caristeae placed at transceivers,
process models, link models, and the LinkTypeMap.gdf file.example, a Promina device and
the associated link that connects two of its Wide Aretavbigk (WAN) ports,
Promina_wan_linkBecause the packet format affects multiple modeheites, it can be a
significant issue when integrating different device msdel

3.3.32 Transceivers

Each pair of transceivers in a device node model has& fisicket formats it can support. In the
case of Promina, the packet formats supported by the Wkaisrhitter and receiver are
pro_cx_pk, pro_hello_pk, and pro_wan_pk, which are packet formatppoi the Promina

Cell Express packets, Promina Hello packets, and Promiagdakets from neighboring
Prominas.

3.3.3.3 Process Models

This is the place where the packets are actually ateaeeived and/or passed on by the
modules above or below using the stream or forcedrupts. A process model can be said to be
supporting a packet format if the stream interrupt recdyetthis process model with this stream
interrupt is properly handled. In the case of Promimaptiocess model that handles (processes)
the above-mentioned packet formats is pro_wan_port_comtrole packet format supported

on a pair of transceivers is decided based on the defsige process models.

3.3.34 Link Models

Every link also supports a list of packet formats; if tryiagonnect a link between two devices
and the packet formats supported by the transceivers areppairged by the link model itself,
then the connection between the two devices will be ishv@bntinuing with the Promina
example, the promina_wan_link used to connect the two WA gsapports promina_hello_pk
and promina_wan_pk.

3-15

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.3.35 Link TypeMap File

This is a text file that contains information about ¥aeious link types used in the NETWARS
environment that is primarily used by the NETWARS Scerutder to determine if an
external link connected between two devices supports tlghaedsports (transceivers). Refer to
the NETWARS Interface Control Documémt details on this file, including its format and
content.

3.3.3.6 Packet Encapsulation

Additional information, such as header informatiorgdsled to the packets as they are forwarded
from one module to the other. One of the common metisadsuse packet encapsulation, where
the original packet is wrapped in a new packet format anceteéeant packet fields are

populated (the original packet now being a packet field of¢wepacket). For example, as a
TCP packet goes down the protocol layer stack, it getspsalated into an IP datagram, which
then gets encapsulated into the data link layer techpplagkets (e.g., Ethernet), and so on.
Later, on the receiving end the same packet gets de-cigus(ila., the information is stripped),
and the de-capsulated packet is then sent up the protackl $he correct encapsulation and de-
capsulation processes are necessary at each layE{Omodule), and one of the
interoperability concerns that developers should hatanslling it appropriately in their models
and forwarding packets of formats as expected by thébeighg modules.

3.3.3.7 Interrupt Types

When a process is invoked by an interrupt, it usually isstate in which it expects a limited set
of interrupts. The first concern of the process idetermine the type of the incoming interrupt,
So it can tailor subsequent processing appropriately. PhapKintrpt_type(provides the
process with an integer code that represents the ftyghe current interrupt.

Apart from the packets (stream interrupts) that carebeived by a process from other
processes, there are other interrupts that can #fiectehavior of a model. It is imperative that
caution be taken in the handling and scheduling of théseupts because they are the primary
means of communication in a simulation.

Each interrupt type can have many different purposesnBtarice, a single process might
schedule self-interrupts to model various kinds of proogs#elays and time-out intervals. To
distinguish the purpose of such interrupts, and hence prthadeceiving process with context-
sensitive processing ability, an integer code is assatiaith self-, remote, and multicast
interrupts. The code of the current incoming interrupt islavia from the KRop_intrpt_code()

It is important that the process model under developtmeneady to handle all the interrupts it is
designed to handle. For example, if the process madigruquestion is development of a new
SE that supports both TCP and UDP transport protocol, bieeapplication module (SE)
generates the traffic based on the information recdreed the OE. In this case, the SE module
should be aware of the communication mechanism teaD# will be using to transfer this
information (e.g., remote/stream/forced interrupt) simoluld be able to handle that particular
interrupt in a desired fashion (generate the traffic basdthis information).

3-16

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

A less preferred approach is to have a default handliagyfnterrupts that model is not defined
to handle (using the interrupt steering mechanism). Shdsme by defining a state transition
with its conditionattribute set to “default,” as shown in Figure 3-9. Thisapply to interrupts
received at the source state of the transition tleaptocess does not know how to handle.

|
|
| [defauilt]
|

Figure 3-9: Default Interrupt Handling

3.3.3.8 I nterface Control Information

An ICl is a structured collection of data that is tfan®d between processes, as a form of inter-
process communication. An ICI becomes associatedanithterrupt if a process installs the IClI
prior to taking the action that causes the interruptetey protocol interfacing is the main
application of IClIs, but they can also be used to assmformation with sophisticated self-
interrupts or peer-to-peer remote interrupts.

Because ICls are associated with interrupts, handlmgtbrmation in the ICls is as important
as handling the interrupts themselves. In case ofutrert NETWARS standard models, the
communication between the OE and the SE is establishexireimote interrupt. There is an ICI
associated with this remote interrupt that has thenmion about the IER that this SE needs to
generate. The KBp_intrpt_ici()is used to get the ICI associated with the recent inteand
op_ici_format()to get the format of the associated ICI.

Another example of the use of ICIs is in thee_threadgrocess model (of the OE). In this
process model, all the thread instances are scheduleel start of the simulation, and the ICIs
are associated with self-interrupts. These ICIs cortte actual information regarding the thread
that needs to be fired. Once the process receivesdékseterrupts it retrieves the ICI
information and then actually fires the thread segméitie KPop _ici_create()is used to create
an ICl andop_ici_install()to install it with the interrupt.

The most important interfacing issue that can be ast®atwith ICIs is their formats. The
interfacing process needs to know what ICI format to ex@ed what information is available in
that ICI format (ICl files are stored as *.ic.m). Retie Appendix E for the list of ICIs currently
used in the NETWARS standard models.

3.3.4 Self-Description Issues

Every model produced in NETWARS holds some informatégarding how it can interface
with other model types. NETWARS refers to this part efitiodel definition as the self-
description. This subsection plays a key role in defidiegice interoperability and provides
guidelines for how to define the self-description of thstam model.

3-17

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

The self-description information for each model wiliydepending on the class component of
the model (e.g., a network layer device versus a datalyek tevice), supporting technologies,
and so on. The port information is one of the most compieces of information that is looked
for within the self-description. Following discussiguant out how this information is specified
for the NETWARS models. If the custom models do not sugphersame packet format
information as NETWARS models, then self-descriptidnrmation based on the developed
models will have to be developed.

3.34.1 Port and Port Groups

The NETWARS Link Deployment Wizard depends on the infdiongpresent in devices’ and
links’ Port Self-Descriptions. The Port Self-Descriptt@m be accessed by selecting “Interfaces
| Self-Description” from within OPNET Modeler's Node Modsditor or Link Model Editor.

For all the NETWARS models, each port category muege laeself-description port object. For
example, MRC-142 (NETWARS standard device model) has tlesviag ports:

* Point-to-Point Ports. ptp_pt_O, ptp_pt_1
* Radio Ports.radio_tx_0, radio_tx_1

Two port objects (ptp_pt_<n> and radio_tx_<n>) will be adatith a range from 0 to 1 (see
Figure 3-5).

+]self-Description: MRC-142
Fricrity; IIj Add Port Delete

"rl "rl o B

R =15 7 1 R

radio_tx <07 fradio_me <073 ptp_pt_<0.1: / ptp_pr_<0.73

i K R

A FORTSL)

core

Figure 3-10: Self-Description Port Objects

Each port category needs an “interface type” charatitedefined for it. This interface type
defines the technologies that the set of ports supports: tRef@pendix V for details.

3.3.5 Versioning Issues

To upgrade the models to a new NETWARS standard modehljuraers need to force-compile
all their models with the new header files. NETWARS sufgpbackward compatibility. For
example, models developed on Version 11.5 can be appliedreioivé2.0, but not vice versa.

3.35.1 Force Compilation

This is one of the easiest but very vital steps in dgweémt of models that are interoperable. It

is necessary to compile all the models with the cbiieaders. During the development efforts,

it is possible that the developer may have had to modignhance the current headers in either
the NETWARS or OPNET standard model library.

3-18

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

To force-compile the models used in a particular sinaatheck the force model
recompilation checkbox under “Execution|Advanced|Compifati

To force-compile all the models in directories liskedhe mod_dirs attribute of the
Sim_Domain\op_admin\env_dbX.Y file, the user needs to ape@PNET console. Force
compilation can be done from this console as follows:

* set opnet_user_home=<Netwars_Install_Dir>\Scenario_Builder
* op_mko —all >comp_info.txt

This will compile all the models and put the compilatioformation in the comp_info.txt file.

3-19

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.4 NETWARS COMPLIANCE REQUIREMENTS

To develop a NETWARS-compliant model, the OE and CP &Gange requirements should be
noted. NETWARS architecture involves the use of both QEGI, which are the key
differences in using OPNET Modeler. The developer shibaNg a basic knowledge of creating:

* An OE compliance model
A CP compliance model.

3.4.1 Compliance for OE Nodes

The OE node is the brain behind the OPFAC. It is resptenfr traffic generation and node
movement. This subsection explains how to build amGde.

3411 Attributes

Table 3-1 lists the minimum set of attributes an OE nudst have.

Table 3-1: Attributes for OE Node

Attribute Name Attribute Type Description
Name String Specifies name of OE—must be “OF”
Model String Specifies name of model
equipment_type Enumerated Identifies device type—must be “OE”
opfacCondition Toggle Specifies current condition of OE node

In standard NETWARS models, the OE parent proa@ssnigr.pr.mis used to declare external
files that are required in the simulation. The file mgr.pr.m in the process editor must be
opened to find the list of the external files that haaenbincluded. The model developer may
choose to declare these files in the OE or any otbelemThey have been included in the OE
because every simulation has at least a single @ENot including all the required external
files may result in bind errors while running the simulation

34.12 Initialization

The OE initializes files for writing the statisticBhe ‘initialize()” function is called in the
NETWARS standard models; refer to Appendix M for morerimi@tion. It opens the files in
write mode and writes the header row in all the filése header row has the names of the fields
in the file, separated by tabs. The following are tles fihat need to be initialized:

» <file_name>.ier_sent
o <file_name>.ier_rcvd

o <file_name>.ier_fail

» <file_name>.ier_block

Following is sample code (see_mgr.pr.c / oe_mgr.pr.process model files and the external
file netwars_support.ex.c for further reference) for opgtihe <scenario_name>.ier_sent file in
write mode and writing the header row:

3-20

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

A% @t the name of the scenario &7

op_dma_sim_attr_get (OPC_IMA_STRIMG, “ret_name", scenario_namel;
S¥ Get the file name to which the statistics must %/

A% e written to i

sprintf { file_name, "%s. der_sent’, scenario_namel;

A opan Tile <scenario_names.ier_sent */
sent_fptr = fopen (F11e name, B

A owrdte the header in the 1J| :mnT file *;
fprintf (sent_fptr, "1E¢ L IER
IER_Dest_Pf %t IER Type \t IER C1ass \I IER S12e \I
IER_Start %t IER_Sent “T SE_Cwer St Blocks Nt
IER_prioritysn’

The initialization of the statistic files can be hkeatby provided NETWARS standard
Applications Programming Interface (API) functions. ReteAppendix L for more details
about the functions available.

The OE parses an Extended Markup Language (XML) file irstk@ario’s folder, titled in the
format <project name>-<scenario name>_traffic.xml, tatigetraffic information about its
parent OPFAC. This includes:

* |ER Information. The size of the IER, name of the consumer OPFE®, ID, IER
start/stop time, etc.

» Threaded IER Information. The thread start/stop time, thread ID, thread segment
information, etc.

The model builder can use a series of NETWARS-provideld APgather this information from
the XML file. The parsed IER should be stored locallydocess during the simulation, such as
during IER generation. The OE is also responsible fooparhg initialization procedures for
handling of threaded IERs. The OE is required to buildrmé&ion regarding the threads that the
OPFAC is part of. In the standard NETWARS model, thebDitls the Threaded IER Table,
which contains information regarding the incoming caadg condition_ier$ and associated
outgoing eventsréaction_ier3. The OE will use this information for every incoming tpaira
thread (an IER) and to fire a reaction IER if required.

Additionally, the NETWARS standard OE creates two gléélles during initialization: the

global information per thread and the information pezdl instance. These tables contain
information regarding the destination list, source ®€Fand destination reference count. The
destination list contains the list of destination no@dsch have “critical” IERs destined to

them) for the thread (because a thread can have raudggtinations), and the destination
reference count is the total count of these destimatibimreads can have segments (IERS)
marked as critical or non-critical. If all of the IERharked as critical reach their destinations, the
simulation will mark that thread as successful evenghaany number of the non-critical IERs
failed to reach their destination.

The NETWARS standard OE also allows IERs to be spddifivarious “modes”: as being part
of a thread only, being independently fired based on intarahtimes, or being part of both. For
a standard NETWARS OE, this is determined based on theista of the IER—If it is set to

3-21

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

“THREAD,” then the OE fires the IER as part of aats@n to some thread condition; otherwise,
it is scheduled to fire independently (based on the ertéval times)and potentially as part of a
reaction.

3.4.13 Traffic Generation

IERs can be assigned to OPFACs in the Scenario Buildéri@cluding import from the IER
database, import from text files, or manually creatirgglERs. Scenario Builder writes these
IERs out to the traffic XML file. The OE parses thaffic XML file and maintains a list of IERs
to send by its containing OPFAC.

When it is time for this OPFAC to send an IER, thei@Ehe producer OPFAC finds a pair of
devices in the consumer OPFAC and producer OPFAC. kalant these devices at random
according to some definable constraints, or the IER diefncan specify them. Then it sends a
forced remote interrupt to the SE modules of the seledtgice in the producer OPFAC with an
oe_se ICI. The SE module in the chosen producer devicghesaggormation in the ICI to
construct the IER and sends it to the consumer device.

The OE in the producer OPFAC uses the following inforomato find devices in the producer
and consumer that can generate and accept a certaioftipR:

* |ER Classification. The producer and consumer devices must be able to suppdatel
of security classification required by this IER.

* |ER Traffic Type. The producer and consumer devices must be able to support t
required type of IER traffic.

* availability_status. The producer and consumer devices must be able to Hthadiew
call and must not be in a “failed” state or busy witlother call/transmission.

» transport_protocol. Depending on the transport layer specification in Ef, lthe
producer OE associates the IER to the correct “SH.’ekample, if data is to be sent
over TCP from a workstation, the OE will inform tleavant se module (determined by
name se_tcp) to fire this IER.

To handle threaded IERs, the NETWARS standard OE masépending_reactionist. This

list consists of all the IERs that have been recef{f@da particular thread instance) and for
which a reaction is pending. Upon the receipt of an IERdwbelongs to a thread), the thread
ID and associated thread instance are determined by thEl@EER information is then
inserted into th@ending_reactiorlist.

The OE will match theondition_iersof this thread with th@ending_reactiotist. If it finds a
match, then theeaction_ierslist for this particular thread in the OPFAC is assgsand the
IERSs are fired. The steps for the generation (e.g.cdesglection, blocking) of the reaction IER
are carried out as if the IER were fired independently.

If this OPFAC is one of the destinations for the éldrand the incoming IER is critical, then the
destination reference count for this thread instandedsemented. If the count is down to zero,
then the thread is logged as being received.

3-22

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

34.1.4 Handling Background |ERs

The OE is also responsible for the initialization pohges for background IER firing. Only

IERSs that have the traffic type set to “data” canmagked as background IERs. IERs marked as
background have the IER ID starting with “BKGD.” Backgrouk&R$ may have explicit end
devices specified on the source and destination platformmey be left as “Auto Assigned.” In
case of the latter, the OE will perform the devices®n procedure as it would for explicit
IERS.

After the end devices are established (by one of the twiooaie stated here) for all background
IERs being fired from this OPFAC, the OE builds whaeigrred to as “profile” information for
background IERs to fire from all the end devices in the &R profile represents values of
packets per second and bits per second versus time. periatls of constant utilization in the
profile, the OE sends remote interrupts to the IP madulee end device to generate tracer
packets. Further information regarding background traffoRNET can be obtained from
“OPNET Online Documentation | Modeling Concepts | SimmtaHroject Strategies | Scalability
Issues—Working with Background Traffic.”

In the NETWARS standard OE model, the background tradport file (for the flows created

for the explicit IERS) is produced in the scenario cwey. The OE module is required to invoke,
through an API call, the IP module to generate the tiaaeket. The API functions for
interfacing with the IP module can be foundapp_bgutil_support.ifin the <OPNET
DIR>/<OPNET Version>/models/std/include folder in thenstard OPNET installation). In
particular, the function that can be used to invokdRhmodule isapp_bgutil traf gen()One of
the parameters that this API call accepts is the tole—that is, the amount of time for which
the specified background load is valid. The standard IP madidenatically generates multiple
(according to the simulation attribute, “tracer packstsinterval”) tracer packets during this
hold time.

34.15 Interfacing with End-System Devices

The SE module in the end-system device interacts WlOE to generate the IER traffic.

The producer OE chooses a pair of producer/consumer erasgsivices, based on the
equipment typattribute on nodes. The producer OE gets the address obtisumer device and
sends a remote interrupt to the chosen end-system deviee producer OPFAC, with the code
set toOE_SE_IER_SENDVith this remote interrupt, the OE also installs ahv@h format
oe_se The OE must fill all the fields in this ICI befosending the remote interrupt. The format
of this ICI is specified in Appendix E.

The study analyst specifies movement for OPFACs bgaisg) them trajectories in the
Scenario Builder of the Scenario Builder GUI. Theetreory information is converted to
bearing ground speedandascentvalues and written out to the SDF file. The OE reads th
values pertaining to its OPFAC from the Simulation Dipsion File (SDF) file. Whenever there
is a change in these values, the OE changdsetdieng ground speedandascentvalue
attributes of its parent subnet.

3-23

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Sample code for changing thearing ground speedandascentvalue attributes can be found in
the oe_status process model.

34.16 Collecting Statistics
The OE node records the statistics shown in Table 3-2.

Table 3-2: Statistics Collected by OE Node

File Name ‘ When the File Is Updated
<scenario_name>.ier_sent The OE has found a producer device to transmit an IER.

The OE tries to send an IER and cannot find an end-system device in

<scenario_name>.ier_block the OPFAC that can transmit this IER.

The OE fails to send an IER because of an inability to transmit (e.g.,

<scenario_name>.ier_fail out of retries, no SEs of appropriate type, no Decision Table, etc.).

<scenario_name>.ier_rcvd A device receives an IER; the receiving OE records this statistic.

The OE in the source OPFAC has found a producer device to transmit

<scenario_name>.th_sent a threaded IER.

All the critical IERs of a thread have been received at the destination

<scenario_name>.th_rcvd devices

Some of the critical IERs of a thread have not been received at the

<scenario_name>.th_fail destination devices

3.4.1.7 Example: Constructing an OE Node

For an example, refer to Section 4, “OE Node Example.”
3.4.2 Compliance for Models for Non-Discrete Simulation (CapacityPlanning)

CP in NETWARS applies analytical techniques to rapidlgdrine the bandwidth requirements
to support specific traffic profiles and patterns. CP graphsr@ated in layers, and traffic is
applied and performs shortest-hop routing in the ordestitited in Figure 3-6. This subsection
is of interest when:

* Analytical modeling is being performed using the Deploynt&titor/CP/Resource
Planner

* Models are required to be built at minimum cost

» Adecision regarding the “closest match” to models atel in the NETWARS standard
suite needs to be made

34.21 Factorsof Interest during Analytical Modeling in Capacity Planning

The following properties of a model are of interest dgdiicance when a model is used in the
CP:

* How does the device affect routing of messages indreasio? Does it perform shortest
path routing? Does it treat voice and data messadeseadiifly (as far as routing is
concerned)? For example, for a particular device, doesitie voice messages differently

3-24

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

than data? Does it require circuits to be set up? Whyar oes it belong to in the CP
routing layer (see Figure 3-6)7?

* How does the device affect the size of the messageiafirocesses it? That is, does the
message size differ when it receives on an in-pattsamds on an out-port?

* What special connectivity restrictions are there ferdavice? Are there particular ports
that connect to particular devices/device types? Docpéatiports have specific message
type handling capability (e.g., only data, only voice)?

3.4.22 Handling CP Routing

CP generates graphs in layers in the order specifiedjuneé=3-6. Edges belonging to the layer
above are abstracted away in the current layer.

By default, all new device models encountered by the dPe&assumed to perform shortest-
hop routing without the need for circuits. If circugie required by the device being modeled,
then the use of a surrogate is warranted. Possible stesog@ ATM, Tactical Satellite Signal
Processing (TSSP), Promina, Multiplexer, and framey mrddevices. Routing is performed in the
order illustrated in Figure 3-11. For example, TSSP d¢&arne built and routed prior to Promina
circuits. Properties to determine which layer a deviderggs to are listed in Table 3-3.

3-25

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table 3-3: Properties to Determine CP Layer

Multiplexer

A 4

Frame Relay

Figure 3-11: CP Layers

Layer Attribute Attrlb_ute Acceptable Value
Location
equipment type on device generic
interface type self- contains atm:
description
ATM machine type self- router or switch
description
interface type self- contains atm:
description
equipment_type on device Promina
equipment type on device generic
TSSP solf
nodal mode description contains TSSP

3-26

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Attribute Att”b.Ute Acceptable Value
Location
Promina equipment type on device generic or Promina
Multiplexer equipment type on device generic or Promina or Multiplexer
generic or radio or Joint Tactical
equipment type on device Information Distribution System (JTIDS) or
computer
P self- router or workstation or server or Local
machine type _— Area Network (LAN) or Accelerator 4000
description A
or application proxy
. self-
interface class description IP
equibment tvoe on device generic or phone or radio or JTIDS or
quip yp Media Gateway
interface type self-) L) .
Voice description contains circuit_switched:Voice_LAN or
contains circuit_switched:Voice. WAN
. ('t on device is not Promina and is not Encryptor and is
equipment type not Multiplexer
equipment type on device generic or VTC Terminal
Video interface type self-) o))
Teleconfere description contains circuit_switched:Voice_LAN or
. contains circuit_switched:Voice_ WAN
ncing (VTC)))))
. ('t on device is not Promina and is not Encryptor and is
equipment type not Multiplexer

At least one row must be satisfied to place the deviteainparticular layer. For example, a
device belongs to the ATM layer if it is a generic devaef its interface type contains “atm:”
and it is a router or a switch; or if its interfagpé contains “atm:” and it is a Promina device.
Misconfiguration of the attributes in Table 3-3 will causeoutable demands.

3.4.23 Handling Models Modifying Message Sizes

By default, all new device models encountered by the facallyools will be assumed to have no
effect on message size. If this is not the caseeXample, if the device adds a certain amount of
overhead, then the use of a surrogate is warrantedblRomsirogates are KG-84, KG-194, KG-
175, KIV-7, KIV-19, IP_ATM_TACLANE, and NES. Each of the desgchas a user-specified
overhead attribute that will increase the messagebgizecertain percentage. There are different
connectivity restrictions enforced by these devices, segkeific properties of each should be
researched when choosing the “closest match.”

3.4.24 Handling Specific Port Selection for Alternate Links Selection in the CP

When suggesting alternate links between devices, the CBondider the following properties
of the device:

3-27

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

* Does the device support the demand’s traffic type™Phis is determined by examining
the device’s packet formats and comparing them to a lesll tife voice or data packet
formats. These two packet format lists are built ftbmset of voice and data packet
formats defined by the link entries in the LinkTypeMap.gd.fif, for example, an
alternate link is being suggested to help the routing ofadkihand and the device does
not support any of the entries in the data packet fornsat$hen no link will be created
to that device.

* Does the device have a free port? all of the ports on a device already have links
connected to them, then no new links will be creavediat device.

* Is there a link that supports the device’s packet format®nce the two endpoint
devices and ports are chosen, a common packet format seghpgrthe ports on both
devices will be chosen. (If there is no common paakehét, then the devices cannot
talk to each other and a new pair will be chosen.) teenat will then be made to create
a link that supports the common packet format. No link vglcreated if there is no entry
in the LinkTypeMap.gdf file that supports the common patkahat. For example, if the
port on device A supports “ckswpkt” and “custompk” and the podeuice B supports
“phone_switch” and “custompk,” an attempt will be madertate a link that supports
“custompk.” If no such link type is defined in the LinkTypedigdf file, no link will be
created.

Any connectivity rules beyond these are handled for eifsgpeet of devices only. These devices
are Mobile Subscriber Equipment (MSE), Promina, ProminbExpress, and Internet
Controller (INC). In each case, finding free ports veitbommon packet format is not sufficient
when connecting those devices. Two MSE devices can becmahvia their Digital
Transmission Group (DTG) ports only. Promina is a sinudese, because two Prominas can be
connected via WAN ports only, not LAN ports. Two Prom@ell Express nodes cannot be
connected directly because they require intermediatd ddvices, and two INCs can be
connected via their ip_dgram_v4 ports only. If the new dewisethese types of restrictions,
then the use of a surrogate from the above list isanted.

3425 Sdf-Description Changes

The CP requires self-description information to buildos topology graphs. This is
determined based on the interface class and machine tigoe tide packet format information
will no longer be retrieved from the devices node modetty, but from the self-descriptions.

An example of some of the information that the CP wge in 2006-2 is as follows:

» “Radio_Wired:EPLRS INC Interface” interface type oRLIRS ports

» “Radio_Wired:Sincgars INC Interface” interface typeSINCGARS ports
o “atm:*” interface type on ATM ports

« “frame relay:*” interface type on frame relay ports

» “Circuit_Switched:*” interface type on voice-capable jgort

* “router” machine type on layer 3 crypto devices and any ofheouter

» “IP” interface class on router IP ports

3-28

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.5 COMPLIANCE FOR END-SYSTEM DEVICES

This subsection expects the reader to be familiar thiéthconcepts of circuit switching. For more
details on circuit switching, refer to the Subsection 3@fl-system devices can act as sources
or sinks for traffic. For IERs, the end-system dewoes not generate IER traffic on its own; it
relies on the OE for IER generation. When the tim@es to send an IER, the OE sends remote
interrupts with the IER information, such as size, comsr OPFAC, etc., to the SE, using the
oe_sdCl. Every end-system device that can send and redéRe imust include an SE module
to act as the source and sink for IER traffic.

Note: A remote interrupt provides a means of inter-procesgsmanication in OPNET modeling,
especially useful when two modules are not connectedttyir In this case, because OE and SE
modules are not connected directly, remote intersipsed for communication between their
process models.

The SE module generates packets and forwards them to lyees. The layers below it
(underneath Layer 7) are responsible for routing the Efid-system devices can also fire non-
IER (COTYS) traffic. The COT&pplicationandtpal modules implement this as the Application
Layer and Transport Layer, respectively.

Note: Although there are devices (multi-homed workstations aneess) that do perform the
dual tasks of serving application traffic and doing routihgsé devices are excluded from the
current discussion.

3.5.1 Attributes

Table 3-4 gives the minimum set of attributes that ansystem device must have.

Table 3-4: NETWARS Attributes for End-System Device

Attribute Name Attribute Type Description
name String Specifies name of device
model String Specifies node model (e.g., computer, DNVT)
classification String Specifies security classification for device;

NETWARS ships with a classification.ad.m file
which developers can use for their models.

equipment_type Enumerated Specifies type of equipment
availability status Toggle Indicates if device is available for communication

3.5.2 Required Modules

The modules needed by devices of certain types are prowidied following tables. If one of

the given protocol types is being modeled, then its correlpgpmodules are required. In
addition, end-system devices must have at least an Sklenand transmitter/receiver modules.
Table 3-5 specifies the higher layer modules for a cetéahnology, and Table 3-6 specifies the
lower layer modules. A device is built by combining tleeessary modules from the two tables
as specified. The SE module must haventdimeattribute set to “SE.” The OE uses the module
name to identify which module/process receives the HEgtrupts.

3-29

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.5.21 Higher Layer Modules

All end-system devices capable of sending and receivingridfctwill have an SE module to
generate the IER traffic. In addition, it may have peotespecific modules such as the OPNET
Standard (COTS) models shown in Table 3-5.

Table 3-5: Higher Layer Modules for End-System Device

Protocol Type ‘ Required Modules
TCP tcp (_tcp_manager_v3), ip_encap (ip_encap_v4), ip (ip_dispatch, version
7.0:ip_rte_v4)
UDP udp (rip_udp_v3), ip_encap, ip (ip_dispatch, version 7.0: ip_rte_v4)
IP Ip (ip_dispatch, version 7.0: ip_rte_v4), ip_encap

3.5.22 Lower Layer Modules

The OPNET Standard (COTS) protocols shown in Table 3ibeaised as lower layer modules.
The process model in a module is specified in parentimese¢do the name of the module.

Table 3-6: Lower Layer Modules for End-System Device

i Protocol Type T Required Modules]

Ethernet arp (ip_arp_v4), mac (ethernet_mac_v2), point-to-point receiver module, point-to-
point transmitter module
ATM_Call_Control (ams_atm_call_control), ATM_rte (ams_atm_rte), ATM_sig

ATM (ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer (ams_atm_layer_v3),
ATM_trans (ams_atm_trans_v3), ATM_switch (ams_atm_sw_v3), point-to-point
receiver module, point-to-point transmitter module
FRAD (frms_frad_mgr_v2), point-to-point receiver module, point-to-point transmitter

Frame relay
module

Circuit switch point-to-point receiver module, point-to-point transmitter module

FDDI arp, mac (fddi_mac_v4), point-to-point receiver module, point-to-point transmitter
module

Token ring arp, mac (tr_mac_op_v2), point-to-point receiver module, point-to-point transmitter
module

Serial Line Internet oint-to-point receiver module, point-to-point transmitter module

Proctocol (SLIP) b b P b

Devices can be built by combining modules from the higdngerlmodules table with modules
from the lower layer modules table. For example,rafigystem device using TCP/IP over
Ethernet can be built by combining the SE module and medchdeded for TCP from Table 3-5
and the modules needed for Ethernet from Table 3-6.yjles bf transmitters and receivers to
be used depend on the physical layer of the device. Traessyaind receivers can be one of
three types:

* Point-to-point
» Bus
* Radio

3-30

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Such an end-system device with TCP/IP over Ethernat-pmpoint transceivers would appear
as illustrated in Figure 3-12.

application CPU:

. : C SE modules
i e
se_uu:lé:u tcp ze_tcp

Higher layer
module:

«——— Lower layer
: modules

Figure 3-12: Ethernet End-System Device-Node Model
For endsystem devices with radio interfaces, refer to Sulusedt9.

It is possible to create devices with a certain trartgprotocol and another lower layer
technology. Such an end-system device can be createxdriyring the modules from Table 3-5
and Table 3-6. When combining modules from the two tablesetsmes it is necessary to
connect them by an interface module, shown in Table 3-7.

Table 3-7: Interface Modules for End-System Device

Higher Layer Protocol Lower Layer Protocol

Stack Stack Interface Module Needed

TCP, UDP, IP ATM IPAL (ams_ipif_v4)

. arp (ip_arp_v4), LANE_IF
TCP, UDP, IP ATM (with LANE) (Ims lane if v3), LANE (Ims._ lec v3)
TCP, UDP, IP Frame relay FRIPIF (frms_fr_ipif v3)

For example, an end-system device using TCP as th@tramsotocol can have frame relay as
the MAC technology. Such an end-system device is showigure 3-13.

3-31

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

()

se_kcp

-

tcp

.

Figure 3-13: End-System Device with Frame Relay MAC Techhaogy-Node Model

Two end-system devices that talk to each other must hav&ine type of transport protocol. If
one of the two participating devices does not have apoanprotocol, then the other must not
have it either. For example, if one of them uses WBkhe transport protocol, then the other
device must also use UDP as the transport protocol. Anggeof a valid end-system to end-
system connection is shown in Figure 3-14. The connedtiowrs between the various
transmitters and receiverslagically bi-directional, just a way of representing bi-directiona
connection between the involved transmitters and verei

3.5.3 End-System Devices Categories

3.5.31 DataTraffic Only

If the end-system device supports only data traffic, thenust have the network protocol stack
with the SE module, the Applications module coupled withTransport Protocol Adaption
Layer (TPAL) and Central Processing Unit (CPU) moduesyoth, as explained with examples
above. The SE module should have the naenécpor se_udp depending on to which transport
layer module each connects. For COTS traffic, the [T R&er should be connected to the TCP
and UDP modules and then to the Application module &bittserves as a go-between for the
Application and transport layer modules.

3-32

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

O

CPU

TCPio TCP
Valid end-to-end connection

hub_ts_0_0 hub = 00 hub_tx_ 0.0

___|'____..ﬂmT _____

Figure 3-14: Valid End-System to End-System Connection

3.5.32 Circuit-Switched Voice Traffic Only

If the device supports only voice calls, it does not needhetwork protocol stack. In
NETWARS end-system circuit-switched devices (e.g., phahs¢nds out a call-setup packet
(packet formatktswpk} that may cause intermediate network devices tovesmndwidth on
the links and intermediate devices for the durationeftdl. Refer to Subsection 3.9.

If such a purely circuit-switched device connects to othekgtaswitched devices, such a
configuration requires use of multi-service switches [8gare 3-15). Again, refer to Subsection
3.9 for more details.

pr_0 pt_0

Figure 3-15: Circuit-Switched End-System Device-Node Ma

However, if the voice end-system device can handlstdradard voice application instead of just
voice IERs, then it must include also Application, tpald CPU modules (see Figure 3-16).

3-33

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

applicati

pr_1_se_receiver pt_1_=e_transmnitter
Figure 3-16: Circuit-Switched End-System Device-Voice Agications and IERs

3533 Data and Circuit-Switched Voice Traffic

There are two ways of handling circuit switched end-systevices that handle voice
applications and IERs.

If the device has only packet-switched interfaces, theeviaffic also has to be in the form of
packets. The SE module generates packets at the ratiesplegithe OE in that OPFAC. For
example, if the OE asks the end-system device to gereicall of 5-second duration every 10
seconds, the SE module in the end-system device requessetee the bandwidth (currently 16
Kbps fixed value for the NETWARS models) to the conimgctircuit switch. These packets
have to go through the entire network protocol stack likeroflata packets. Such a device can
only be connected to other packet-switched devices. It isrtanidor the model developer to
understand the implications of developing a new end-sydéasme like this one, including the
device selection process. A new device type has to lmlinted for this type of end device.
Only then will the OE be able to match device type aadsilication and choose the end device
with correct equipment type and classification. If & m&d-system device type is not
introduced, then the OE may try to select other devicdsasicomputer/phone as the sink of an
IER originating from this new device.

If the device has both packet-switched and circuit-switaéheerfaces as in Figure 3-17, one of
the approaches shows that the data SE modules can semmhdkets over the packet-switched
interfaces and the voice calls over the circuit-skaad interfaces. Again, the model developer
will have to introduce a new equipment type for suchrahsystem device for the reasons stated
in the previous paragraph.

To ensure interoperability, the correct self-descriptidormation must be entered. Features
such as GUI auto-addressing and port selection using Edist dRepend on this information.
Refer to the “Model Interoperability Issues” subsectind Appendix V for more information.

3-34

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

¥

hb_rs_0_ 0 hub_tw_0_0 pr_1_se_receiver pt_1_se_transmitter

Figure 3-17: End-System Device Generating Voice and Data TratNode Model
3.5.4 Interfaces and Packet Formats

When building a node model with interfaces of certges, it is important to specify the packet
formats supported on that interface. The packet fornugisosted by an interface depend on the
MAC technology on that interface. If the created endadeis to interface with a NETWARS
standard model, then the developer needs to adhere to et flamats on the MAC of the
NETWARS standard model. Refer to “Appendix D: Packet Ftsthiar a list of the packet
formats in the NETWARS standard models. Interfacesatemsupport custom packet formats
created by a model developer.

355 Initialization

The developer must obtain handles to the statistis fdr later use. This can be done through
function calls documented in Appendix L: NETWARS Sintiola API and Helper Functions.

3.5.6 Interfacing with Other Classes
The end-system device interfaces with other device dass®llows:

3.5.6.1 Interfacing with the OE

The SE module is responsible for all interfacing with OE inside the OPFAC. Upon receipt of
a remote interrupt from the OE with a codeD&f SE_IER_SENBNd an ICI of typ®@e_se(see

3-35

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Appendix E: Interfaces and Packet Formats), the SEetrieve the IER information from the

ICI and create an appropriate packet to send to the lewersl. For details about interrupts, refer
to OPNET Modeler online documentation, Simulation Kernahual, and the Interrupt Package
chapter.

Figure 3-18 shows how the OE sends a remote interrupé t8Eh

oF OPFAC END SYSTEM DEVICE

=]

’ \\
S OE N
’ Y
’ i
¢ MNode Model ¥
/ \ il ph0
P M ’f 5
s N + MNode Model v
¥ LY i i
F A LY :
’ % 7 X
P %
5 X) LY
.\
; % r \
[m.c-\.-ement @d | @ver _.

o &

[|
[HEED_{NTHPT]

|

|

(MOVE_OPFAC)

—————

fird_devi [SEMD IEFi]I
//4 |r.1 |_device |

A= (THREAD_START)
(T

i ./ = - e

- g e
| (0 penoIE NERREL =7 |
[END_DF_SIM]i S_erjd_ie' | T To SENDIER [FS_IER) !
* y |
@_upl_ M‘
OE Process Model SE Process Model

Figure 3-18: Remote Interrupt from OE to SE

3.5.6.2 Interfacing with TPAL

If the end-system device supports standard voice or VTC apiphs over circuit-switched
environment, then it must interface with TPAL to leautmen to generate application calls. Upon
receipt of a remote interrupt from TPAL with a coddr®AL_SE_APP_SENB&Nd an ICI of

type tpal_se (see Appendix E: Interfaces and Packet E9trtfze SE will generate a call for the
duration specified in the ICI.

3.5.6.3 Interfacing with Networking Equipment

The end-system device is not responsible for specifyingptite taken by the IER. Routing is
taken care of by the networking equipment to which thesgstem device is connected. The SE

3-36

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

module in the end-system device sends the packet dowwa teetwork protocol stack, which
may encapsulate the data and sends it out on the ontigdace.

Thedata rateattribute on the end-system device’s interfaces isally set as “unspecified.”

The data rate is determined by the data rate of the latkdltonnected to this interface. If the
data rateattribute is set on the interfaces, it will requine user to connect a link that has the
same data rate as the value set on the interfasalidrlink connection. Also, the device on the
other end of the link has to have either an unspecifiedrdega@r the same data rate as specified
on the interface of the first device.

3.5.7 Creating Custom Transport Protocols for End-Systems

The developer can create custom transport protocol mdaelsdn be integrated into the end-
systems device model. As shown in Figure 3-17, the trangpmiocol models require
interfacing with the other models, such as IP_Encap, TRfblication, OE, and SE. The
custom transport protocol model can interface with théiggimn model directly. However, it
is recommended to have the transport protocol modefants with the application model
through the TPAL model, as the primary objective of iRAL is to provide a basic, uniform
interface between application and transport layer modelisase see the “TPAL Model User
Guide” for more information.

3.5.7.1 Creating Custom Transport Concerns

In order to creating a custom transport model that eantbgrated into NETWARS device
models, there are several concerns that developeugisiware of. First, the developers must
modified current SE models or develop a new SE modetéoface with the new transport
model. Currently, NETWARS only contains SE_udp and SE_tugets to interface with
transport protocol models. Second, new packet formatsbewtfined for the new transport.
Developers must make sure the new formats can be abkettace with other required models.
On the other hand, the new models also need to relaézeacket formats that are used by other
models. Lastly, developers should also need to pay iattestt the ICI format. Similar to
packet format, the ICI format is the most importantimen for the model to communicating
with each other. All newly developed and currently exgstiCI format should be able to
support all required models. Please see the “TCP Modgl®Ggide” for more information.

Lastly, the OE is required to be modified to pass the tikcthe newly defined transport model.

In NETWARS, each IER is mapped to a corresponding trahppatocol, such as TCP and

UDP. The OE uses the information to pass the IERa@dinresponding transport model and the
associated SE model. Therefore, the OE should be ieddif realize the new transport
protocol.

IMPORTANT: The consequence of modifying the standard OE is serioydease consult the
NETWARS PMO before modification! Also, it is a goprhctice to backup the current OE
model before modification.

3-37

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.5.8 Handling Background IERs

The OE node in the OPFAC sends a remote interruphégeneration of the background IER to
the IP module in the end device. Only IERs with “trafas’ “data” may be specified as
background IERs. The IP module in the end node automatgaigrates multiple tracer packets
(per the “tracer packets per interval’ simulation httte) during a period of constant hold time.

3.5.9 Handling Failure/Recovery
There are two ways of handling failure/recovery interrgptaplicitly and explicitly.

Failure/recovery can be explicitly handled by enablirefaiiure interruptsandrecovery
interruptsprocess attributes of the SE module’s process modeledtidg them to “local only.”
By doing this, the SE module will receive failure/recgveterrupts whenever trmondition
attribute of the node is changed. The SE module can ese ifiterrupts to update the
availability statusattribute of the end-system device, preventing the Qi frying to use the
failed end-system device to send IERs.

If failure/recovery is implicitly handled, once thenditionattribute is set to “disabled,” the
modules in the end-system device can no longer regameupts. Because the modules do not
get the failure/recovery interrupts, theailability statusattribute of the end-system device is
not updated, and the OE might try to send IERs using titesl fdevice. In this case, the OE
registers the IERs as sent, and because the end-gystsa is failed, it does not register these
IERSs as failed. If choosing this approach, additionattienality might be necessary to mark the
IERs as being failed. For documentation on settingrtbéel attributes, refer to OPNET
Modeler online documentation, Modeling Concepts manual, @bDomain” chapter, “Process
Model Attributes” section. For information about handlfailure/recovery, refer to Modeling
Concepts manual, “Network Domain” chapter, “Modeling Noae kink Failure/Recovery”
section. During failure of a device, the device flushescqampes and initiates the termination of
any calls set up through it during the time of failure. @aeice also informs the OE to record
the IER failure statistic for affected IERS during ttwse. The device is also required to tear
down any connections it might have initiated for transiois of data IERs.

3.5.9.1 Handling Failure of Self
When the SE module in the end-system device receifaige interrupt, it will:

» Stop transmitting and receiving IERs
* Update theavailability statusattribute to “disabled”
* Inform the OE about the failure of the IERs generateiisieyf

3.5.9.2 Handling Recovery of Self

When the SE module in the end-system device receirasoaery interrupt, it must update the
availability statusattribute to “enabled.”

3-38

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.5.10 Collecting Statistics

IER statistics are written in the Output Vector (Gdmat. To enable the OE to do so, the
source OE (OE of the producer OPFAC of IER) will bgpogssible for reporting all the IER
statistics.

In the pre-2004-1 modeling architecture, the OE of the destm@PFAC (OE of the

destination OPFAC of IER) reports the IER statistidse OE used to receive a remote interrupt
from either the SE of the receiving OPFAC or the OEhefsource OPFAC. To write the
statistics in the OV format, the OE of the sourcd-8€ needs to know about the reception of
the IER at the destination to report the local IERstes.

To enable this, the destination OE reports the IER 8tatsnd the source OE is informed with a
remote interrupt about the reception of the IER ftbenSE. This is true for the failure of an IER
as well. Because the IER can be determined as failetthext locations (e.g., radio pipeline
stages), this remote interrupt is generated at the sQiEaghen an IER is either failed or
received. Various interrupt codes are used (same asrppamentation) to distinguish between
IER reception versus failure.

The SEs that inform their own OE about the recepi@nupdated. For example, the “rcv_pkt”
state of the se_udp process model sends a remote interitgpOE (destination OE) as follows:

op_intrpt_force_remote (NWC_INFORM_DEST_OE_RCVD, oe_id);

This was modified to send the interrupt to the sour€elfy retrieving the source OE object ID
from the IER parameters (from the source OPFAC ID).

The oe_threads process model (see Figure 3-14) is enharsigaptt the threaded IER
paradigm, as well as the new IER statistics architeclThe RCV_IER_INTRPT transition will
occur under the following conditions:

* Interrupt sent by the destination SE (on IER recejtion
* Interrupt sent by pipeline stages (on IER failure).

The process_ier state will have the same respomgbiis the current “ier_destn”, but it will not
perform any thread handling. If the IER belongs to a thréeen a remote interrupt to the
destination OE will be sent. This interrupt will be RE€V_RXN_AT_DEST transition, which
will update the thread reception statistics, if needed pancess the received reaction.

3-39

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

: .
|process_reaction)

J M
fire_rxn |

[FIRE_FiN)

[RCW_Rx=MN_AT_DEST]

[HE‘U_IEFI_INTFIPT]_‘A
|process ier

[START_THD

| start_thread

Figure 3-19: oe_threads Process Model

Table 3-8: Statistics Information Transferred by End-Systen Device to OE

File Name

<scenario_name>.ier_falil

When the File Is Updated
When the end-system device tries to transmit an IER and fails—

* For Voice IERs, when the Acknowledgement (ACK) for a flood
search is not received within a specified time-out period or when

the source is busy when the ACK is received
* For Data IERs, when the connection is aborted by TCP
* When the end-system device fails

<scenario_name>.ier_rcvd

When a Data IER over a TCP connection or a Voice IER sent by it is
received—
* Whenitreceives a Data IER over a UDP connection

* When it did not get a teardown message for a voice call during the

duration of the call

3.5.11 NETWARS Standard SE Models

The NETWARS standard models include seven SE modelsahdiecused as a basis for any
required device modeling, shown in Table 3-9. They providef #itleorequired functionality and
make use of the provided APIs. Development of a new Séepsamodel may not be required.

3-40

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table 3-9: NETWARS Standard SE Process Models

Process Model ‘ Description

Generates data packets in response to DATA IERSs. Interfaces to TCP as
the transport protocol, relying on TCP connection close messages as an
acknowledgement of successful IER transmission. The parent module of
this process should have the name “se_tcp.”

Generates data packets in response to DATA IERSs. Interfaces to UDP as
se_udp the transport protocol. The parent module of this process should have the
name “se_udp.”

Generates radio_packet packets in response to both VOICE and DATA
se_sincgars IERs and voice standard applications. The parent module of this process
should have the name “se.”

Generates radio_packet packets in response to VOICE IERs and voice

se_trafgen

se_havequick standard applications. The parent module of this process should have the
name “se.”
Generates the various circuit-switched signaling packets in response to
dnvt_se VOICE IERs and voice standard applications. The parent module of this

process should have the name “se.”

Generates the various circuit-switched signaling packets in response to
vitc_se VTC IERs and video-conferencing standard applications. The parent
module of this process should have the name “se.”

Generates data packets in response to DATA IERs for the JTIDS radio. The
parent module of this process should have the name “se.”

se_proc_mod

If a new end-system model is expected to interface wittieg NETWARS standard end-
system models, the matching SE process model should be usedpoehsible. If required, a
new SE process model can be developed which provides therdanfeces.

3.5.12 Example: Constructing a Computer Model

Refer to the subsection 4.4. Wired End Device Example arf@xample.

3-41

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.6 COMPLIANCE FOR LAYER 1 NETWORKING EQUIPMENT

Layer 1 networking equipment is physical layer devices usetbttel repeaters, encryptors, or
simply as delay elements in the network. This subseetipiains how to build Layer 1
networking equipment.

There are three different types of networking equigmdgpending on their functionality. The
following sections explain how to build Layer 1 netwaikiequipment.

3.6.1 Attributes

Table 3-10 describes the minimum set of attributes thatyar 1 networking device must have.

Table 3-10: Attributes for Layer 1 Networking Equipment

Attribute Name AUleLE Default Value Description
Type

name String -- Inherent -- Specifies name of device

model String -- Inherent -- Specifies device model, for
example, CS_1005 1s e fr

availability _status Toggle Enabled Specifies whether the device is
available for communication

classification String Unclassified Specifies security classification

for device; NETWARS ships
with a classification.ad.m file
that developers can use for
their models.

equipment_type Enumerated Switch, router Identifies the device type

3.6.2 Required Modules

Layer 1 networking equipment has a processor module ¢bepes the packet from the receiver
module, processes the packet (adds a delay, encrypts)itaad sends it to the transmitter of the
output interface. The type of transmitter and recenedules will depend on the type of
physical medium to which the device will be connected—buso rar point-to-point.

Figure 3-20: Layer 1 Networking Equipment-Node Model

3-42

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.6.3 Interfacing with Devices

Networking equipment accepts data from end-system devicem@rfaces with other
networking equipment to transmit it to the destinaticaydr 1 networking equipment accepts
packets from a device (an end-system device or other netga§inpment), processes them,
and sends them to the device connected on the other b&le. i$ no routing or switching logic
in these devices.

3.6.4 Handling Background Traffic

The OE module in the OPFAC and the Application mode¢hefend workstation invoke the IP
module through an API function call to generate thestrpackets. The tracer packets generated
by IP are routed over the network to the IP layahendestination SE node. In the intermediate
devices in the network, the nodes may read and interpritatieepresented by the tracer
packet before forwarding it further in the network. Théfitraepresented by the tracer packet is
used to artificially load the device (the queues, for exa@pmpso explicit packets arriving at this
device are processed with the load in consideration. Ref@ePNET Modeler online
documentation (Modeling Concepts Modeling Network Traffic> Working with Background
Traffic) for further information.

In the NETWARS standard models that have undergone esimamt to interpret the

information carried in the tracer packets, this loadhftbe tracer packet is induced iniaput
gueue The input queue delays the explicit packet arriving befamgdrding to theutput queue
The model developer may choose to implement a siagiproach to handle tracer packet loads,
or to implement in some other variation, for instamaintaining both loads (due to tracer
packets and the explicit packets) in the same queuehbr @y, the objective is to introduce
processing delays for the explicit packets. Physical ldgtays, such as transmission and
propagation delays, are accounted for in the standard pistdiges. The developer may use the
TRC 170 node model as an example of a Layer 1 device cagfdidedling background traffic.

3.6.5 Handling Failure/Recovery
The model developer has the option of handling failurelrexy explicitly or implicitly.

If failure/recovery is handled implicitly, the OPNETa8dard (COTS) failure/recovery node sets
the conditionattribute to “disabled” when the Layer 1 networking equipinfi@ils and the device
stops processing any interrupts. How this device failureyesy is propagated to the other
devices in the network depends on the routing protocols indtveork. The model developer

can handle the failure/recovery explicitly. By enaglthefailure interruptsandrecover
interruptsattributes of the process model and setting them tal‘lmaly,” the process model

gets an interrupt when the device fails/recovers. thewing are some ways to handle
failure/recovery.

3.6.5.1 Handling Failure of Self

Processing of packets should be stopped. If voice callseaig through the Layer 1 networking
device, then some cleanup might be necessary. Inwhses the concept of logical links is not
used, the Layer 1 networking device can do the cleanupsés eehere the logical links are

3-43

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

viewed by the network (like in NETWARS), the edge devicevices at the ends of a logical
link) can do the cleanup. The edge devices, such as MSE eB89B@itches, send keep-alive
messages at regular intervals to detect the failureedbthical link. When a process running
inside a device detects failure, that process (or anotieethat it triggers) terminates the voice
calls (if any) set up over that logical link. For dataksds, the process flushes the queues on the
Layer 1 networking equipment.

3.6.5.2 Handling Recovery of Self

The device should re-initialize itself and prepare for pgsitg packets again.
3.6.6 Collecting Statistics

Throughput and channel utilization statistics are writthen the Layer 1 networking equipment
sends out a packet. These statistics are to be wiatt@Vv using OPNET’s standard Statistic
package. Refer to “Appendix I: Measures of Performan®dEmWARS” and “Appendix L:
NETWARS Simulation APl and Helper Functions” for soawailable function calls to write out
these statistics for voice and data. These statistagsbe recorded by either the edge devices or
the Layer 1 networking device, depending on whether theepbiod logical links is used or not.
In NETWARS the concept of logical links is used, whittk Well in cases where explicit

packets are not modeled, for instance, during the duratiavaite call. For such cases, in
NETWARS the edge devices collect these statisticsaseswhere explicit packets are sent over
the link through the Layer 1 networking device, for instadeg¢a communication in

NETWARS, it might be more appropriate to record thésgssics at the Layer 1 device itself.
For reporting statistics on the links connected (inclgdire load represented due to background
traffic), the OPNET standard pipeline stages may be ubkeg &ccount for the tracer packet
information received automatically). However, if tiekk are wireless, then the node (either
edge devices in case of logical links or the Layer 1 detgse#, if done otherwise) writes the
statistics and accounts for the background traffic load.

3.6.7 Example: Constructing an Encryptor Model

For an example of building a Layer 1 encryptor modétrre the “4.5. Layer 1 Device
Example: Bulk Encryptor” subsection.

3-44

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.7 COMPLIANCE FOR LAYER 2 NETWORKING EQUIPMENT

Layer 2 networking equipment is devices that run a Layeo®gol. Switches and hubs are
classified as Layer 2 networking equipment. This subseetiplains how to build Layer 2
networking equipment. There are three different typewtkorking equipment, depending on
their functionality. The following sections explain hoovbuild Layer 2 networking equipment.

3.7.1 Attributes

Table 3-11 lists the minimum set of attributes that yek@ networking device requires.

Table 3-11: Attributes for Layer 2 Networking Equipment

Attribute Name Attribute Type | Default Value Description
name String -- Inherent -- Specifies name of device
model String -- Inherent -- Specifies device model, for example,
CS 1005 1s e fr
availability _status Toggle Enabled Specifies if device is available for
communication or not
equipment_type Enumerated Switch, router | Identifies device type

3.7.2 Required Modules

Table 3-12 specifies the modules required for building Layaetworking equipment with
various interface technologies. The process modehodaule is specified in parentheses next to
the name of the module.

Table 3-12: Modules Needed for Various Layer 2 Protocols

Protocol Type ‘ Required Modules

Ethernet eth_switch (bridge_dispatch_v2), mac (ethernet_mac_v?2), rx, tx

ATM_Call_Control (ams_atm_call_control), ATM_rte (ams_atm_rte) (not
required for end edge devices such as ATM routers or ATM traffic sources),
ATM ATM_sig (ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer
(ams_atm_layer_v3), ATM_trans (ams_atm_trans_v3), ATM_switch
(ams_atm_sw v3), rx, tx

FR_mgmt (frms_mngmt_v2), FR_trans (frms_trans_v?2), FR_switch
(frms_switch_v2), rx, tx

Frame relay

Circuit-switched circuit_switch (circuit_switch), rx, tx

(NETWARS)
FDDI fddi_switch (bridge dispatch_v2), mac (fddi_mac_v4), rx, tx
Token ring stb_bridge_functions (bridge_dispatch_v?2), mac (tr_mac_op_v2), rx, tx

3-45

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

hb_rs_00 bab_ts_0 hb_rs_1 hb_ts_1

eth_zwitch

Figure 3-21: Layer 2 Networking Equipment-Node Model

Multi-service switches that have circuit-switched ifdees and packet-switched interfaces can
be constructed. Table 3-13 specifies the modules needed fodeuces. The process model in
a module is specified in parentheses next to the nathe onodule.

Table 3-13: Modules Needed by Multi-Service Switch

Interface Modules Needed for a Switch with Circuit-Switched Interfaces and Packet-

Technology Switched Interfaces with the Specified Interface Technology

SLIP voice_dispatch, voip, udp (rip_udp_v3), ip_encap (ip_encap_v4), ip (ip_dispatch,
version 7.0: ip_rte_v4), SLIP interfaces

Ethernet voice_dispatch, voip, udp, ip_encap, ip, Ethernet interfaces

Frame relay voice_dispatch, voip, udp, ip_encap, ip, FRIPIF (frms_fr_ipif_v3), FRAD
(frms_frad_mgr_v2), frame relay interfaces
voice_dispatch, voatm, ATM_Call_Control (ams_atm_call_control), ATM_sig

ATM (ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer (ams_atm_layer_v3),
ATM_trans (ams_atm_trans_v3), ATM_switch (ams_atm_sw_v3), circuit-switch
interfaces, ATM interfaces

. voice_dispatch, voip, udp, ip_encap, ip, arp (ip_arp_v4), mac (tr_mac_op_v2), token
Token ring ring interfaces
FDDI voice_dispatch, voip, udp, ip_encap, ip, arp, mac (fddi_mac_v4), FDDI interfaces

3.7.3 Initialization

The switch module in the Layer 2 networking equipmefitperform the following initialization
steps:

* The switch module will register itself in the procesgistry with the following attributes:
— Location (string)
— Protocol (string)

3-46

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

» The switch module must build switch tables with entciesesponding to its neighboring
switches. One way of building such tables is by using spamtrgeg. The code for
building spanning trees can be re-used from the OPNET Sth(@&TS) models.

3.7.4 Interfacing with End-System Devices and Networking Equipmet

Networking equipment accepts data from end-system devicksemds the data to the
destination end-system devices. The routing informatianabie to the networking equipment

is local; it includes information only about devices that@nnected to it directly and through
other lower layer (Layer 1) networking equipment. If Liagrer 2 networking device provides
circuit capabilities, additional attributes will be us#gd. These are documented in Subsection 8.

3.7.5 Supported Protocols

Depending on the MAC layer technology needed by the devieendldel builder must use the
corresponding protocol stack. For creating an Etherngttswwhe model builder must have the
OPNET Ethernet protocol stack so that the switch lvalinteroperable with OPNET Standard
(COTS) Ethernet device models. OPNET provides support foceeviinning the following
MAC layer protocols:

* Ethernet

* Tokenring
 FDDI

* Frame relay
 SLIP

« DSL

* Integrated Services Digital Network (ISDN)
* 802.11 wireless LAN.

3.7.6 Handling Background IERs

The OE node in the end OPFAC invokes the IP layer torgentracer packets for the
background IERs. The tracer packet is routed over theonetw the destination end device. The
intermediate network devices can read information fromrdwer packet and load the device for
the explicit packets arriving at the node. The NETWAR®S&&ard nodes perform this loading on
an input queue before forwarding the packet to the output ques@uld be noted that
background traffic could be enabled only for IERs withfizdf/pe as data. Examples of Layer 2
devices handling background IERs in the NETWARS standard madeMSE/TTC-39

switches and the Promina switch.

One issue the model developer needs to be aware ofrsgiieement to appropriately modify
the packets/second information in the tracer packet é@erforming an en-queue on the
background aware buffer. The reason this may be reqgsitédt if the Layer 2 device performs
segmentation and reassemblihyen the packets/second information in the tracer packeb be
appropriately modified, because by default the informatammied is the IP datagram packets/
second information.

3-47

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Additionally, the model developer may be required to ifgatie bits/second information (for

the processing rate from the buffer). This might lwpiired, for example, if the device is capable
of handling both voice and data—in which case the availdhdwidth is dependent on the
number of voice calls in progress. For this, the funatims_buffer_bgutil_modify _average rate
(...) may be used, which is definedams_buffer_bgutil.ex.c

3.7.7 Handling Failure/Recovery

The manner in which Layer 2 networking equipment harfdiege/recovery depends on the
type of protocol it is running. The model developer hasfit®n of handling failure/recovery
explicitly or implicitly.

If failure/recovery is handled implicitly, the failuretovery utility sets theonditionattribute to
“disabled” when the Layer 2 networking equipment fails dreddevice stops processing any
interrupts. How this device failure/recovery is propagabeti¢ other devices in the network

depends on the routing protocols in the network.

If handled explicitly, by enabling tHailure interruptsandrecover interruptsattributes of the
process model and setting them to “local only,” the pogsdel gets an interrupt when the
device fails/recovers. The following are some ways talleafailure/recovery.

3.7.71 Handling Failure of Self

* Flush the queue modules (if the Layer 2 networking equiphenany).
* Write out failure statistics for the voice IERsdifly).

3.7.7.2 Handling Recovery of Self

* Send update messages to the neighboring Layer 2 netwodkirgreent.
* Rebuild the spanning tree.

3.7.8 Collecting Statistics

Throughput statistics are written when a packet is seéntod queue size statistics are collected
when a packet arrives or leaves a queue module in Laysmdiking equipment. The traffic-
dropped statistics are written out every time a paskdtopped from a queue of Layer 2
networking equipment. These statistics are to beemritd vector files using OPNET’s standard
Statistic package. Refer to “Appendix L: NETWARS SimwatAP| and Helper Functions” for
some available function calls to write out data anidesthroughput statistics.

3.7.9 Example: Constructing a Multi-Service Switch

For an example, refer to the “4.6. Layer 2 Device Examydulti-Service Switch” subsection.

3-48

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.8 COMPLIANCE FOR LAYER 3 NETWORKING EQUIPMENT

Layer 3 networking equipment is devices that run a netlaged protocol. Routers are
classified as Layer 3 networking equipment. Every iatarfof this device has a different
network address. This subsection explains how to buil@iaynetworking equipment. The
current NETWARS standard device models support only IPv4.agex 3 network protocol. All
of the subsections of thSuidedealing with Layer 3 protocols document the usage of IP.

There are three different types of networking equigmdgpending on their functionality. The
following sections explain how to build Layer 3 netwarkiequipment.

3.8.1 Attributes

Table 3-14 lists the minimum set of attributes that k&yeetworking equipment must have.

Table 3-14: Attributes for Layer 3 Networking Equipment

Attribute Name Attribute Type Default Value ‘ Description
name String -- Inherent -- Specifies name of device
model String -- Inherent -- Specifies device model, for
example, CS_1005 1s e fr
availability _status Toggle Enabled Describes if equipment is available
or has failed
equipment_type Enumerated Switch, router Describes device type

Index used for IP addressing and
dynamic routing. This attribute is set
on the streams into and out from
the IP module.

ip addr index Integer 0

3.8.2 Required Modules

The only higher layer protocols supported by Layer 3 networkgngpment are TCP, UDP,
Resource Reservation Protocol (RSVP), and various gpptmtocols over IP. But the
networking equipment can have interfaces running diffdv&X€ layer technologies. Table 3-15
specifies the higher layer modules required for Layest@orking equipment.

Table 3-15: Higher Layer Modules for Layer 3 Networking Equpment

Protocol Type Required Modules

tcp (tcp_manager_v3), udp (rip_ud_v3), rip (rip_v3), eigrp (eigrp), igrp
TCP/UDP/routing protocols (igrp), bgp (bgp), ospf (ospf_v2), rsvp(rsvp), ip_encap (ip_encap_v4),
ip (ip_dispatch, version 7.0: ip_rte_v4)

All OPNET Standard (COTS) router models support a seduiing protocols—BGP, EIGRP,
IGRP, OSPF, and RIP. It is possible to have differeating protocols running on different
interfaces in the network. To make sure that al@QRNET Standard (COTS) routing protocols
are supported, it is necessary to have all the routmigpqel modules in Layer 3 networking
equipment. The required modules specified above are imeected as shown in Figure 3-22.

3-49

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

eth_port_r_0_0 eth_port_ts 0 0 pr_2 0

Figure 3-22: Layer 3 Networking Equipment-Node Model

Table 3-16 specifies the possible types of interfacedhénétworking equipment and the
modules needed for each interface technology. The gsanedel in a module is specified in
parentheses next to the name of the module.

Table 3-16: Required Modules for Various Interface Technlmgies

Protocol Type ‘ Required Modules

Ethernet arp (ip_arp_v4), mac (ethernet_mac v2), rx, tx
ATM_Call_Control (ams_atm_call_control), ATM_rte (ams_atm_rte), ATM_sig

ATM (ams_atm_signaling), AAL (ams_aal_disp_v3), ATM_Layer _
(ams_atm_layer_v3), ATM_trans (ams_atm_trans_v3), ATM_switch
(ams_atm_sw v3), rx, tx

Frame relay FRAD (frms_frad_mgr_v2), rx, tx

FDDI arp, mac (fddi_mac_v4), rx, tx

Token ring arp, mac (tr_mac_op _v2), rx, tx

SLIP rx, tx

It is possible to create devices with a certain trartgprotocol and another lower layer
technology. Such networking equipment can be createdrbinong the modules from Table
3-15and Table 3-16. When combining modules from the two tablesstsaes it is necessary to
connect them by an interface module, as shown in Takle

3-50

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table 3-17: Interface Modules for Layer 3 Networking Eqipment

Higher Layer Protocol Stack ‘ Interface Technology ‘ Interface Module Needed
TCP, UDP, IP ATM IPAL (ams_ipif_v4)
TCP, UDP, IP Frame relay FRIPIF (frms_fr_ipif v3)

3.8.3 Handling Security Classification

When connecting devices with different security clasaifon levels, it is the responsibility of
the study analyst to connect them in such a way thesages traverse only networks with the
proper level of security classification (see Figure 3-2Bpther option is to use encryption
devices. For example, when passing classified data owerdassified network, the message
must be encrypted end to end. Lack of these encryption deaasss the simulation to assume
that the encryption is present implicitly. The advgetaf actually modeling the encryption
devices would be increased fidelity for delay and throughptisSts.

Secret Camputer 1 Router 1 Encryptor

Decryptor

Router 2 Secret Computer 2

nilazsified Metwark,

Figure 3-23: Networks with Different Security Classificaton Levels
3.8.4 Interfacing with End-System Devices and Networking Equipmeet

Networking equipment accepts data from end-system devicesoates the data to the
destination end-system devices. Taa rateattribute on the networking equipment’s interfaces
is typically set as “unspecified.” The data rate ised®ained by the data rate of the link that is
connected to this interface.

Networking equipment builds the routing information frooating updates sent by other
networking equipment in the network that are directly ected to it. If the model developer
uses custom IP routing protocols in the Layer 3 networkgqgpment, then when the
networking equipment receives routing update messagestitupdate entries in the IP common
route table using calls to the following functions:

* Ip_Cmn_Rte_Table_Entry Add ()
* Ip_Cmn_Rte_Table_Entry Delete ()

3-51

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.8.5 Supported Protocols

Depending on the MAC layer technology needed by the devieendldel builder must use the
corresponding protocol stack. For creating an ATM switiel,model builder must have the
OPNET ATM protocol stack so that the switch will intpeoate with OPNET Standard (COTS)
ATM device models. OPNET provides support for devices runnidaifowing protocols:

* Ethernet

e ATM
 FDDI

* Frame relay
 SLIP

* Tokenring

« DSL

* ISDN

 |EEE 802.11 wireless LAN.

The following routing protocols are supported by OPNET Stah(@©TS) networking
equipment:

« RIP
. IGRP
. EIGRP
.+ BGP
. OSPF

» Static routing.

Additional routing protocols can be added; see the follgvgubsection for more information on
this process.

3.8.6 Creating Custom Routing Protocols for IP

This subsection enumerates the required steps for gvatisatom IP routing protocols and the
issues involved with their use in a network with ottwarting protocols.

3.8.6.1 Implementing a Custom Routing Protocol

The custom routing protocol must register itself asPahigher layer protocol with a call to the
function Ip_Higher_Layer_Protocol_Register () using the nahtkee protocol and an integer
with a value above 500.

During its initialization, the custom routing protocol matso call the function
Ip_Cmn_Rte_Table Custom_Rte Protocol Register (), passingitine of the routing protocol
as a string. This will return a routing protocol ID toused in subsequent route table function
calls. The protocol ID for a custom routing protocol haalae greater than 100.

3-52

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

The custom routing protocol will receive a remote intermiphh a code
“IPC_EXT_RTE_REMOTE_INTRPT_COD#pon initialization of the IP process model. At this
time the interface table and routing table can be aededa the process registry.

The custom routing protocols access the IP commomgptable using calls to the following
functions:

* Ip_Cmn_Rte_Table Entry_Add()
* Ip_Cmn_Rte_Table Entry Delete()
 Ip_Cmn_Rte Table Entry Update()

Entries to the route table will be made through calthécfunction

Ip_Cmn_Rte_Table_ Entry_Add{ith updates provided through the functions
Ip_Cmn_Rte_Table Entry Updateaf)dip_ Cmn_Rte Table Entry Delete{he existing
entries can be queried through calls toltheCmn_Rte_Table Entry Existgf)d
ip_cmn_rte_table _lookupunctions.

These functions are defined in the external file
<opnet_dir>\<rel_dir>\models\std\ip\ip_cmn_rte_table.ex.c, hadunction prototypes are in
<opnet_dir>\<rel_dir>\models\std\include\ip_cmn_rte_table.hrevkepnet_dir> is the folder
where OPNET is installed and <rel_dir> is the relehsstory (e.g., 12.0.A).

3.8.6.2 Issueswith Using Custom Routing Protocols

There are some issues involved with using the custonmgoptotocols thathe model developer
may address in the following suggested manner.

3.8.6.3 Lack of Route Redistribution Capability

Some routing protocols might have a lack of route tedigion capability. This means that
routes determined by these protocols cannot be used byrotii@g protocols and vice versa.
Route redistribution is the process by which routes adeted by all routing protocols running
within a router node can be shared among each other.

This issue can be avoided in two ways:

* Modifying functions in the following files to include theapability:
— Ip_dispatch.pr.n{version 7.0ip_rte_v4.pr.m
— ip_rte_v4.h
— ip_cmn_rte_table.ex.c
— ip_cmn_rte_table.h
* Running the custom routing protocol on all interfaces im#tavork.

3.8.6.4 Lack of Route Table Import/Export Capability

The OPNET Standard (COTS) routing protocols allow thee®to be exported at the end of a
simulation and to be re-imported into the network for sgbset simulations. This reduces the
simulation run time. The model developer can add this fomality to the custom routing
protocol if desired.

3-53

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.8.7 Handling Background IERs

Tracer packets (for the background IERS) are generatedtfe IP module of the end data
systems. Intermediate network devices could read and leatkthice queues as per the traffic
information specified in the tracer packet. If the Liayelevice is an IP device, then no
modification to the standard IP process model is reduivecause the standard IP module is
capable of loading the device as per information represemtde tracer packet.

3.8.8 Handling Failure/Recovery

The manner in which Layer 3 networking equipment harfdiege/recovery depends on the
type of routing protocol it is running. The model developertha option of handling
failure/recovery explicitly or implicitly.

If failure/recovery is handled implicitly, this seteitonditionattribute to “disabled” when the
Layer 3 networking equipment fails and the device stopsepsirtg any interrupts. How this
device failure/recovery is propagated to the other device®inetwork depends on the routing
protocol.

If handled explicitly, by enabling tHailure interruptsandrecover interruptsattributes of the
relevant modules and setting them to “local only,” gh@cess model gets an interrupt when the
device fails/recovers. The following are some possilagsio handle failure/recovery.

3.8.81 Handling Device Failure

If the failure of the device itself is to be handled lexy, then on receiving the failure interrupt,
the appropriate module may flush the queues.

3.8.8.2 Handling Device Recovery

If the recovery of the device itself is to be handleglieitly, then on receiving the recovery
interrupt, update messages may be sent to the neighboutegs to indicate that this networking
equipment has recovered.

3.8.83 Handling Failure of Neighboring Layer 3 Equipment

This failure may be handled implicitly by the routing j@il, which may update the routing
table entries that have routes via this failed ro(teis can be done by the routing protocol.

3.8.84 Handling Recovery of Neighboring Layer 3 Equipment

Similarly, this is also handled implicitly. On receig update messages from the neighboring
networking equipment that recovered, the networking egerpmmay recompute routes to all
destinations through the recovered node and update the rtalilag if the new route is better
than the existing routes.

3-54

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.8.9 Collecting Statistics

Throughput statistics are written when a packet is seéntod queue size statistics are collected
when a packet arrives or leaves a queue module in Laysm®irking equipment. The traffic-
dropped statistics are written out every time a paskatopped from a queue of Layer 3
networking equipment. These statistics are to beemritd vector files using OPNET’s standard
Statistic package. Refer to “Appendix L: NETWARS SimwatAP| and Helper Functions” for
some available function calls to write out data anidesthroughput statistics.

3-55

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.9 COMPLIANCE FOR DEVICES WITH CIRCUIT -SWITCHED TECHNOLOGY

Circuit-switched voice devices are capable only of geimgyatr handling voice calls. In general,
this Guideoffers a great deal of latitude to the model developéningsto develop circuit-
switched data models. To promote interoperability withenwéry generic notion of circuit-
switched voice communications, however, Gw@de has developed the following standards for
circuit-switched voice components. There are no compsribat are classified purely as circuit-
switched devices. Circuit-switched devices can be en@sydevices, generating and receiving
calls, or they can be networking equipment, switchinty tetween source and destination.
Depending on whether they are end-system devices or h@tg@quipment, the model
developer must refer to the appropriate subsections, akel suee the device performs the
necessary functions specified in those subsections.

Note that the circuit-switched models employed in tBEEWARS standard models contain
additional functionality beyond the OPNET Specialize®{S) Circuit-Switched model library.
As such, the Specialized Circuit-Switched model cannatskd in NETWARS.

3.9.1 Attributes

Table 3-18 lists the minimum set of attributes thatradr®/stem device capable of generating
circuit-switched calls should have.

Table 3-18: Required Attributes-Circuit-Switched End-Sysem Device

Attribute Name ‘ Attribute Type ‘ Description

Call bandwidth Double Specifies the call bit rate originating
from this end system

Specifies the maximum number of
Integer voice calls the device can support
simultaneously

Maximum calls
allowed

If Layer 2 networking equipment is to be capable of handlwayit-switched calls, it requires
the attributes listed in Table 3-19.

Table 3-19: Required Attributes-Circuit-Switched Layer 2 Networking Equipment

Attribute Name Attribute Type Description

Differentiates a Layer 2 circuit-switched

MSE topology mask | String device from a Layer 3 router

3.9.2 Initialization

The switch model will construct a list of end-systemides connected to it. The switch model
also constructs logical links with its neighboring swwés. These logical links are used while
performing voice call routing. Logical links are an aastion for the path between two
neighboring circuit-switched devices. They do not exishéreal world, but are NETWARS-
specific internal data constructs that keep track afatMa voice channels and/or available
bandwidth on the entire route between two neighborirmyitiswitched devices.

3-56

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.9.3 Routing in Circuit-Switched Devices

This subsection describes the NETWARS standard impletemn of routing, using a Flood
Search Routing protocol. When a circuit-switched devickesa call to a destination, it initially
sends a query packet to the switch to which it is condectee switch checks if the destination
device is connected to it. If not, it forwards the querykpato all the connected switches in the
route to the destination. The query packet is forwardéldetoext hop until it reaches the switch
to which the destination is connected. A timer is sclestiah the switch to wait for the ACK.

When the query packet arrives at the switch to whicldéstination is connected, the switch
sends an ACK back to the source end-system device. Tiégpen by the ACK is the chosen
path. As soon as the source gets the acknowledgment pagets the link where the call ACK
came from. If bandwidth is available on the link, thea $witch reserves it, otherwise it bumps a
lower priority call and writes an IER failure statisti It also schedules an interrupt to free
bandwidth after the call duration and sends a TEARDOVé#Ssage. If there is no bandwidth
available or calls to bump, the packet is dropped.

The ACK packet reserves bandwidth on the links from tlvecgoto the destination. Once the
call is set up, no other packets are sent for the duratithe call. The call is released and the
reserved bandwidth is freed as the call duration timeirex

Functions for route structure handling have to betecea hese functions allow for route
copying, route destroying, creating pooled memory for reutectures, and route reversing. The
external fileflood_search_routing.ex@ontains functions for route structure handling, whid t
function prototypes included in a header fiteod_search_routing.h

3.9.4 Circuit-Switched Links

NETWARS standard circuit-switched models conceptualideslover Layer 1 transmission
devices as being “logical links.” One of the reasons danglso is that there are no actual
packets that are sent over the network to model the wailt. These circuit-switched devices
maintain information about the links (which may be eith@ed or wireless) between the
intermediate Layer 1 devices. This information is hugltduring initialization by the edge
circuit-switched devices through a topology walk. This infation is used when link voice
throughput and channel utilization statistics are writtety as well as during the call setup
process.

3.9.5 Interfacing with Packet-Switched Networks

When a circuit-switched device has to connect to a paskiethed network, it has to go through
an intermediate device that is capable of interfacin oth circuit-switched and packet-
switched networks. Such intermediate devices are callgtservice switches (e.g., media
gateways).

When a multi-service switch receives a request to @amecuit-switched voice call over a
packet-switched network, it performs the following operatito interface with an IP network:

3-57

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

* These multi-service switches publish their loopbackdé@ss in the process registry;
every other multi-service switch can use this IP addeessach this gateway.

* When doing flood search routing, an ingress multi-sersveiéch looks at all the multi-
service switches in the network and will pick only thtise have advertised having a
route to the destination phone, as shown in Figure 3-2de @ knows the gateways that
have a route to the destination phone, the multi-sersiwvitch opens UDP connections to
the loopback IP addresses of these multi-service swit@di#ained from the process
registry) and sends the call query packet (encapsulatdliP packet) to them. It also
records its loopback IP address in the call query packet.

* An egress multi-service switch should record its ovapliack IP address, de-capsulate
the IP packet, and flood the query in the circuit-switichetwork.

* Only the ingress and egress loopback IP addresses are needied; in the data
network will be done as usual by IP with routing protocol

* ACK follows the reverse path.
» “Call estab” follows the recorded path by query packet.

* Once the call is established, bandwidth is reserved @dmhtibn numbers are updated in
the circuit-switched network only (no bandwidth reseoratr link utilization update
will happen in IP and ATM networks). Once bandwidtheiserved and link utilization
numbers are updated in the circuit-switched network, tha-serlvice switch starts
generating voice packets according to the codec informetinfigured to load the IP
network.

* Once the call is completed, multi-service switchetheroute are notified to stop
generating voice packets.

In case of call failure/bumping, bandwidth is releasetilgk utilization numbers are updated in
the circuit-switched network, and multi-service switlhethe route are notified to stop
generating voice packets.

ATML AW 2

ATH Wetwork

Circuit Netwark

Circuit Hetwork

Figure 3-24: Circuit-Switched and Packet-Switched Networkntercommunication

3-58

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.9.6 Handling Background IERs

Because explicit packets are not generated for a voicm @atircuit-switched network,
background IERs are handled similarly to explicit IERa pure circuit-switched network.
However, if a voice IER is going through multi-serviegtshes (through an IP/ATM network),
background IERs are handled differently than explidR$EMulti-service switches generate
packets to load the IP/ATM network for voice IERs. Egplicit IERS, multi-service switches
generate explicit voice packets. However, for backgrda/s, multi-service switches generate
tracer packets to load the IP/ATM network (OPNET hybinausation model).

3.9.7 Handling Failure/Recovery

To be able to handle failure/recovery, the processor lasduthe circuit-switched devices must
have theirfailure interruptsandrecovery interruptsttributes “enabled” and set to “local only.”

3.9.7.1 Handling Failure of a Circuit-Switched Device in the Network

When a circuit-switched device fails, it should cleatlad calls and release the channel
(bandwidth) for the call. The IER statistics have tavotten out and the IERs have to be
marked as failed. When a NETWARS Layer 2 networking dewitte circuit-switched
capabilities handling voice calls fails, it informsitsighboring devices, which in turn write out
the IER statistics. For voice calls, in NETWARSIabgl list of bumped IERs is maintained to
avoid race conditions like multiple switches trying tarknhe same IER as failed.

3.9.7.2 Handling Recovery of a Circuit-Switched Device in the Network

The device does not do anything special on receiving this ngcowerrupt.
3.9.8 Collecting Statistics
The following statistics are relevant to circuit-swagd models:

e Link level
— Link statistics are updated for the voice traffic also
e Channel level
— Voice channel utilization
e Circuit level
— Circuit throughput (also updated for voice)
— Circuit utilization (also updated for voice)
e Circuit-switched node-level statistics
— Bandwidth reserved (bits per second)
— Total calls blocked
— Total calls switched
— Active calls
— Lowe-priority calls dropped
* End-system node level statistics
— Call setup time (seconds)
— Active calls

3-59

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

— Total calls connected
— Total calls disconnected
— Total calls generated.

3.10 COMPLIANCE FOR WIRELESS INTERFACES

The end-system or network equipment devices in NETWARS@pport both wired and RF
radio interfaces. In addition to the requirementgterclass of device being built, radio
interfaces require additional requirements, which acohented in this subsection.

3.10.1 Attributes

A radio device needs the attributes shown in Table 3-20.

Table 3-20: Additional Attributes for Radio Devices

Attribute Name ‘ Attribute Type Default Value Description

Specifies the antenna pattern to be used on the

antenna_pattern | Typed file Isotropic radio device.
. Specifies the modulation table to be used to
Modulation (per ' : .
channel) Typed file — look up the bit error rate as a function of the
signal-to-noise ratio.
Specifies the transmitting power for the radio
Power (per Double o transmitter; this attribute will be promoted from
channel) the channel attribute of the transmitter to the
node level.
Specifies the processing gain for the radio
Processing gain Double o receiver; this attribute will be promoted from the
(per channel) channel attribute of the receiver to the node
level.
Specifies the base transmitter/receiver
min_frequency Double o frequency for a channel; this attribute will be

(per channel) promoted from the channel attribute of the
transmitter/receiver to the node level.

Specifies the transmitter/receiver bandwidth for
Bandwidth (per Double o a channel; this attribute will be promoted from
channel) the channel attribute of the transmitter/receiver
to the node level.

Specifies the data rate on the channel in the

data_rate (per

channel) Double B node; this attribute must be promoted.

net_id* (per When two radios share the same net_id, they
radio tx and rx Integer -1 are in the same radio network. This extended
module) attribute must be promoted.

Spreading code Double 0 Specifies the frequency hop group to which the
(per channel) radio belongs.

Apart from these attributes, the pipeline staaftributes shown in Table 3-21 and Table 3-22
also must be set on the radio transmitter and receigdules. The pipeline stage attributes are

4 This attribute is particularly important in radio broadcasworks where all the radios in the same broadcasbriewill

have the same net_id. Also, radios connected by the LinghufIBk will have the same net_id.

3-60

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

required by OPNET’s radio pipeline stages. Most of tiréates defined in Table 3-20 are
available on the radio transmitters and receiversy $heuld be promoted to the node level to
use the Scenario Builder features to create radio dinksbroadcast networks.

3.10.1.1 Transmitter Pipeline Stage Attributes
All of the attributes shown in Table 3-21 are of typ@dd File.

Table 3-21: Pipeline Stage Attributes on Radio Transmitter

Pipeline Stage

Attribute Name ‘ Default Value ‘ Description

Computes the transmission delay associated with the
transmission of a packet.

Determines the possibility of radio interaction between a
transmitter channel and a receiver channel.

Characterizes the type of interaction between a
transmitter channel and a receiver channel.

Dynamically determines the ability of a transmitter

txdel model dra_txdel

rxgroup model dra_rxgroup

chanmatch model dra_chanmatch

closure model dra_closure channel to reach a receiver channel.
. . Computes the antenna gain provided by the transmitter’s
tagain model dra_tagain : e : .
antenna module in the direction of a particular receiver.
propdel model dra_propdel Computes the propagation delay associated with the

transmission of a packet.

3.10.1.2 Receiver Pipeline Stage Attributes
All of the attributes shown in Table 3-22 are of typ@dd File.

Table 3-22: Pipeline Stage Attributes on Radio Receiver

Pipeline Stage
Attribute Name

‘ Default Value ‘ Description

. . Computes the antenna gain associated with the
ragain model dra_ragain - . . o
receiver’s antenna for an incoming transmission.
ower model dra power Computes the received power for an incoming
P P transmission.
. . Computes background noise affecting the incoming
bkgnoise model dra_bkgnoise transmission.
Inoise model dra inoise Computes interference noise affecting the incoming
= transmission.
Computes the signal-to-noise ratio for the incoming
snr model dra_snr o
- transmission.
Computes the bit error rate for the incoming
ber model dra_ber transmission.
error model dra error Computes the number of bit errors in a segment of the
- incoming transmission.

® OPNET models packet transmission across communicatiammel using a special mechanism called the Transceiver

Pipeline. For more details on Pipeline stages, ref@RNET Modeler online documentation, Modeling Concepts Manual,
Chapter 6: Communication Mechanisms, topic Comec.4: Commuoridatik Models

3-61

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Pipeline Stage

Attribute Name Default Value Description

Determines the acceptability of an incoming

ecc model dra_ecc transmission.

3.10.2 Required Modules

A radio device requires a radio transmitter and a regtieiver for transmitting and receiving
data. An antenna module may be used if the modeling enguaews to specify the antenna
pattern. If an antenna module is not present, the pasteaonsidered to be “isotropic” by default.

wilan_port_rs_0_0 wilan_port_tx_0_0

Figure 3-25: Radio End-System Device-Node Model
3.10.3 Initialization

There are no initialization steps specific to a radio @i this is an end-system device with
radio interfaces, look for the initialization steps un8absection “3.5. Compliance for End-
System Devices” that deals with building end-system dsvice

3.10.4 Interfacing with Other Classes

A radio device can talk to another radio device or algatdevice if the two devices are within
range and have matching frequencies, modulation, and dagaCaisure between the two
devices is computed by tlsbosurepipeline stage.

The OPNET Simulation kernel manages the transfpaokets from the source to the destination
as a series of computations, each of which models plartiaspects of the link behavior. These

3-62

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

computations are performed using pipeline stages. Eachtradgmitter and receiver has a set
of pipeline stage attributes that can be changed to yntddifbehavior of the link.

A model developer building a radio device can specify tbgssine stages on the transmitter
and receiver to model the desired behavior. For more infaymabout the transceiver pipeline
stages, refer to the OPNET Modeler online documentaylodeling Concepts»
Communication Mechanisms Communication Link Models section.

3.10.5 Interfacing with TIREM

Terrain Integrated Rough Earth Model (TIREM) is a sditoéries that facilitate modeling radio
interference due to terrain. This feature is enabled throalighfrom the transceiver pipeline
stages. (Files with the extension .ps.c implementlipgpstages.)

3.10.6 Restrictions in Building Radio Devices
There are some restrictions in building radio deviced.d point-to-point interface types can

be replaced by radio interfaces. Table 3-23 enumeraeagsltrictions and changes needed to
build ports of different types with radio interfaces.

Table 3-23: Restrictions in Building Radio Devices

AT EEE Restrictions Involved in Building Ports with Radio Interfaces
Technology
SLIP No restrictions. The point-to-point interfaces can be replaced by radio interfaces.
The point-to-point interfaces can be replaced by radio interfaces, and the behavior of
Ethernet the Ethernet MAC module has to be changed. Refer to OPNET’s 802.11 (wireless

LAN) models for more information.

An ATM port’s point-to-point interfaces cannot be replaced by radio interfaces. A
ATM node with just radio and point-to-point interfaces is created, and the ATM node is
connected by a point-to-point link to this node.

Frame relay This combination is currently not supported.
FDDI This combination is currently not supported.
Token ring This combination is currently not supported.

ATM device with radio interface

&
L | temediste node
ATH device

Figure 3-26: ATM Device Radio Interface

3-63

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

ATM dewvice Tl
O
ATM dewvice with radio interface
traf_src
ol = =
; o
ATh_zig ATM_cal_contral AT _rte

Intermediate node

Foint-to-point 1ink [‘E

t

E

pr_ _

B

=]
Y
[}

-

L]

Figure 3-27: Internal Representation of ATM Device and Itermediate Node
3.10.7 Handling Failure/Recovery

There are no failure/recovery handling procedures spécifiadio devices, although, if standard
interface technology is not used, the appropriate modolgiéflush out the queues inside. In
NETWARS models, currently the devices connected to the dmlimes perform the IER
cleanup operations in case the radio device falils.

3.10.8 Collecting Statistics

Broadcast network utilization statistics are colledtacdbroadcast radios.

3.10.9 Building Custom Pipeline Stages

When building a radio device, the model developer can @s@BNET Standard (COTS)
pipeline stages on the radio transmitters and receiverdel developers wishing to customize
them to better suit their needs, may do so by creatisgpm pipeline stages. Custom pipeline
stages can be built based on the OPNET Standard (COIé&inpistages. For more information
about the stages, refer to the OPNET Modeler onlinerdentation, General Models manual,
“Pipeline Stages/Radio Link” chapter.

3.10.10 Satellite Considerations

A satellite device can be modeled as a networking deviceradib interfaces, as documented
above. The current NETWARS standard device model librertydes geosynchronous

3-64

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

(geostationary) satellites, together with various groenchinals. A geosynchronous satellite is
modeled using a radio device with an altitude set at 35,786 diitrm

If the satellite device to be modeled is not geosynaustbut has another type of orbit, it must
be built as an OPNET satellite node. Designating acdeas a satellite node type creates an
additional attribute that must be set, as shown ineTai4.

Table 3-24: Required Satellite Device Attributes for Moing Orbits

Attribute Name Type
Orbit Typed file None The orbit for the satellite device

Satellite Device ‘ Attribute

‘ Default Value Description

When an orbit is specified, the node position infornrat®ignored and the position at any point
in time is determined from the orbit.

3.10.11 NETWARS Standard Geostationary Satellite Communications System btels

A satellite communications system can be modeled anviiays, either based on the NETWARS
Standard Geostationary satellite model or built asvastand-alone satellite communications
system. If a new stand-alone satellite communicatigstem is developed, no additional
requirements beyond those listed above are required.

If satellite communications interoperability is reqdingith the NETWARS Standard
Geostationary satellite models, additional attribatresrequired. These additional attributes will
provide a mechanism for the configuration of communicattbnough the Scenario Builder
GUL.

A ground terminal device model that can communicate weINBTWARS Standard
Geostationary satellite models.

In addition to the attributes described below, the groandihal model must have its
equipment_typattribute set to “Satellite terminal”’ in order for 8aeio Builder to discover it
during link deployment and for the CP to recognize it durgguns.

The satellite and satellite terminal models employ#ako transceiver pipeline stages shown in
Table 3-25.

Table 3-25: Radio Transceiver Pipeline Stages

Stage ‘ Function ‘ Module ‘ File
0 Receiver Group TX dra_rxgroup.ps.c
1 Transmission Delay TX dra_txdel.ps.c
2 Link Closure TX dra_closure.ps.c
3 Channel Match TX dra_chanmatch.ps.c
4 Transmission Antenna Gain TX dra_tagain.ps.c
5 Propagation Delay TX dra_propdel.ps.c
6 Receiver Antenna Gain Rx dra_ragain.ps.c

3-65

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Stage ‘ Function ‘ Module ‘ File
7 Power Calculation Rx nwra_power_tirem.ps.c
8 Interference Noise Rx dra_bkgnoise.ps.c
9 Background Noise Rx dra_inoise.ps.c
10 Signal to Noise Ratio Rx dra_snr.pr.c
11 Bit Error Rate Rx dra_ber.ps.c
12 Error Allocation Rx dra_error.ps.c
13 Error Correction Rx dra_ecc.ps.c

For an example, refer to subsection 4.11, Satellite ihatr®eneric Example.
3.10.12 Generic Satellite Device Model (for Bent Pipe Links)

To learn how to create a device of this type, refer toestlos 4.11, Satellite Terminal Generic
Example.

3.10.13 Generic Satellite Ground Terminal Device Model (for BentPipe Links)

To learn how to create a device of this type, refer toestlos 4.11, Satellite Terminal Generic
Example”.

3.10.14 TSSP Satellite Terminal Device Model

To learn how to create a device of this type, refer toesatlos 4.12, Satellite Terminal with
TSSP Example.

3.10.15 Broadcast Radio Considerations

Integrating a custom radio with the broadcast netwankéwork involves modifying some files
that define this framework. NETWARS refers to broadcagios as those that share a medium
access via a protocol, such as a Time Division Multigdeess (TDMA)-based protocol.

The file<NW DIR>\Scenario_Builder\<OPNET Rel>\netwars\rules\net_configBnes the
types of networks supported by the broadcast network filhimust have an entry for the
custom radio technology to identify its—

* Radio type (just a unique string)
» Classification by default

» Data rate by default

* MOP probe status by default

» Supported capacities

» Supported data packet formats
» Supported voice packet formats.

The radio device model must also have properly named pattsat self-description. The port
names should conform to the formats—

“<technology name>_tx_<n>" (for radio transmitters)

3-66

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

“<technology name>_rx_<n>" (for radio receivers)

This will require a port description with the name of—

“<technology name>_tx_<start..n>/ <technology_name > rx_<start..n>"

The port self-description will require iisterface typeattribute value set to—

“radio_rt:<technology name>"

Lastly, the radio transmitter and receiver channdlsnwed to support the packet formats
specified in thanet_configs

e :. E _I
-} :"?| - i i foure

'E:' r
@k

fdalamrbm |packetTomats | bardeadibikHz)

premaled i costom pi el

Figure 3-28: Channel Table

Each channel of the device to participate in broadcastonks$ will need to have the following
attributes promoted to the node level:

 Data rate

e Minimum frequency

» Spreading code

* Power (transmitter only).

3-67

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.11 COMPLIANCE FOR LINK M ODELS

Links connect devices in a network. NETWARS supportsdifferent kinds of links: physical
links that represent actual links that physically contwotdevices, and links that only serve as
logical entities that represent a physical connectanh as two radio interfaces configured to
operate over the same frequency.

Both link types, physical and logical, display in the scen@lthough model developers can
develop devices that work with the existing framework efldgical links, such as satellite
terminals and Line of Site (LOS) radios, model developatside of the NETWARS program,
the target audience of this document, can only creatdimewodels for physical links.
Creating logical links requires access to a layer of WBRS implementation not exposed as
open source.

This subsection explains generically how to build a fimddel that represents a physical link
connecting two devices. An important concept to note Bateat OPNET models packet
transmission across communication channels using a kpegaanism called the transceiver
pipeline. Typically, model developers refer to this in¢beatext of radio transmission, but
OPNET has a set of stages for point-to-point and lanstnission as well. This subsection
explains the use of the point-to-point pipeline.

Note: “Point-to-point,” in the context of the transcaiy@peline, simply means two endpoints of
a link, not necessarily the technology serial or RmrRoint Protocol (PPP).

For more details on the transceiver pipeline mechansier, to OPNET Modeler online
documentation, Modeling Concepts Manual, “Communicationideisms” chapter, “Comec.4:
Communication Link Models” subsection.

3.11.1 Attributes

This subsection describes the minimum set of attribatink must have, as shown in Table
3-26.

Table 3-26: Required Attributes on Link Model

Attribute Name | Attribute Type Default Value Description
name String -- Inherent -- Specifies name of link
. B _ Specifies link model, for example,
model String Inherent 100BaseT
_ Specifies combined speed of data
data rate Double transmission over all channels in link
channel count Integer Specifies number of channels in link
packet formats String All ﬁrﬁ)kecn‘les packet formats supported by
. Determines connectivity between
closure model Typed file dpt_closure transmitter and receiver
. Used to determine if a collision has
coll model Typed file dpt_coll oceurred on a link

3-68

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Attribute Name | Attribute Type Default Value Description

Determines whether a packet can be

ecc model Typed file dpt_ecc accepted
] Determines number of errorsin a
error model Typed file dpt_error packet
propdel model Typed file dpt_propdel anomtior o aaaer Y between @

transmitter and a receiver

Calculates transmission delay
txdel model Typed file dpt_txdel associated with transmission of a
packet. Default value is dpt_txdel.

The attributes closure model, coll model, ecc modedrenodel, propdel model, and txdel
model correspond to various pipeline stages.

3.11.1.1 Dependencies

* The link model must support all packet formats supported byahemitters and
receivers in the devices to which it will connect.

* The link model must match the data rate supported by themiars and receivers in
the devices to which it will connect.

* Failure to satisfy the above constraints will resullinconsistent links, and traffic cannot
flow over inconsistent links.

* When creating a new link type, the LinkTypeMap.gdf filedsean entry for that new
link type for it to function with NETWARS'’ Link Deployméizard (LDW). The
LDW uses this file to match links to appropriate ports. MEARS maintains this file
under <NETWARS DIR>\User_Data\Rules.

Usually the data rates on the transceivers are léttrepecified,” which means the data rate
taken by the transceivers during the simulation will leedéta rate of the link.

3.11.2 Building Custom Pipeline Stages

When building a link model, model developers can use tiéEIPStandard (COTS) pipeline
stages. If model developers wish to customize themtterlmuit their needs, they may do so by
creating custom pipeline stages. Custom pipeline stagdsedault based on the OPNET
Standard (COTYS) pipeline stages. For more information ahePNET Standard (COTS)
pipeline stages, refer to the OPNET Modeler online doctatien, General Models manual.
Note that if a pipeline stage drops a packet where a ndtH#gSed protocol, such as UDP,
serves as the transport protocol, the pipeline stagevwmitistout the failure statistic for the IER.

A link model can have model attributes, and the model dpgelcan write code in the pipeline
stages to deal with these. An example of a model at¢riisbackground utilizationwhich

allows the user to specify utilization on the link gseacentage of the total link bandwidth. This
is a way of loading the link with traffic in additioa the IER traffic, and it allows the user to
study the link performance under varying loads. The pipelamgesdpt_propdel_bgutil

uses théackground utilizatiorattribute. Thébackground utilizatiorattribute can be imported in

3-69

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

NETWARS using the COTS Traffic import of the Cisco elde Traffic. For further details,
refer to theNETWARS User Manual

3.11.3 Handling Background Routed Traffic

The model developer has to specify pipeline stages dmkhmodels that can handle tracer
packets generated from the end-system IP module. OPNda#@i&8d models have pipeline stages
that can handle the load represented in a tracer pauketcaordingly subject explicit packets to
appropriate transmission and propagation delays. Thedapiptages record the statistics on
the links with the appropriate background load specified emtliRefer to the

dpt_propdel_bgutil anddpt_txdel bgutil pipeline stage models with the OPNET
Standard models as a baseline for creating custom pifs¢diges that support background routed
traffic.

3.11.4 Handling Failure/Recovery

A link model does not do anything itself to handle its faltecovery. The devices to which the
links are connected handle a link’s failure/recovery.

3.11.5 Building Simplex Links, Buses, and Bus Taps

The process of building simplex links, buses, and busisaps same as building duplex links.
In the Link Model editor, there is a field called “Lifikypes.” Depending on what type of link is
needed, one of the available link types is chosen. Tésilde types of links that can be created
are—

ptsimp (point-to-point simplex)
ptdup (point-to-point duplex)
bus

bus tap.

The radio links (including the satellite links and broaticeetworks) created in the Scenario
Builder do not have an associated link model. They aiemadtlinks where the communication
is established using correct settings for the radio denaxel| attributes.

3.11.6 Collecting Statistics

A link model cannot be programmed to collect statisticORNET, strictly speaking, there is no
process model (code) within a link model (Ik.m). The sitorekernel collects statistics on the
link model.

Although a user can define statistic handles in a pranedggl and write to them in a link model
(pipeline stage), the pipeline stage needs to get a reéetenhe handle, and this can be done via
theoms_pr_* kernel procedures. Other ways exist, but most model desrslause this
mechanism.

3-70

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.11.7 Documentation

To document a link model, the following information musibevided in theCommentsection
of theInterfacesoption in the Link Model Editor:

General Description of the Link Model. Provides a brief description of the link model.
Link Interfaces. Documents the types of devices to which this link connects.

Data Rate.Specifies the data rate for this link.

Packet Formats.Specifies the packet formats supported by this link.

Comments.Gives any additional comments or restrictions on usirglitik.

The self-description information must be set on thie thodels. This information, although
currently not used by the Scenario Builder, may be used intgeface typenformation
(equivalent to packet formats).

3-71

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3.12 COMPLIANCE FOR UTILITY NODES

Utility nodes provide a simplified and unified location foformation about a network. They do
not represent actual devices in the network; rathey,rémresent information about a network.

3.12.1 Attributes

Table 3-27 and Table 3-28 give the minimum required and optionaLi>s for utility nodes.

Table 3-27: Required Attributes for Utility Nodes

Attribute Name ‘ Attribute Type ‘ Description
name String Specifies name of utility node
model String Specifies device model

Table 3-28: Optional Attributes for Utility Nodes

Attribute Name ‘ Attribute Type ‘ Description
utility_technologies String A list of packet formats supported by models
using utility node
End node (N)6 String Specifies full hierarchical name of an end

node, where ‘N’ is an integer value (1, 2,
etc.) These attributes are only mandatory if
needed by the utility node. Attributes named
as such can be placed within compound
attributes to build a table.

3.12.2 Required Modules

The required modules depend on the purpose of the modelshbeaid be designed to work
with multiple instances of the same models so a st will not be confused by the presence
of several of the same utility modules.

3.12.3 Interfacing with Other Classes

A utility node interfaces with other classes using any EBP{dupported techniques, including
the OPNET process registry, which allows for the publisbingformation that is available to
other models, global variables, and structures or direetlyng attributes of other objects. The
models using the utility nodes should be designed to work wittipie instances of the utility
node.

3.12.4 Interfacing with the Scenario Builder GUI

Theutility _technologiesttribute is used for objects that will be settamyl node (Nattributes.
Theutility _technologiesttribute must contain a listing of all supported packeh#&bs that are
used by the end nodes. The Scenario Builder GUI will tleenthis information to create a pop-

® For example, if a Promina utility node contains infoioraabout one Promina circuit connected between edge dedtes

anded2 then it will have attributesnd node (1xndend node (2)The values of these attributes will be the full hidranal
names oedlanded2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

up list of devices within the scenario that also suppastgacket format. This mechanism is for
the convenience of the user. The user can then $edecthis list to fill in allend node (N)
attributes. A good example of this would be a circuitfiguration utility with an attribute called
circuit_configand subattributes calleshd node (1), end node (andbandwidth (bps)With a
utility_technologiesttribute set to “cs_special” and ttiecuit_configattribute promoted, the
NETWARS Scenario Builder user of this model would seegaNin menu options under the
circuit_configattribute for theend node (Ngttributes of every device in the NETWARS
Scenario that supports packet format “cs_special.” By, the user would have an easy way
to set up “cs_special’ circuits.

3-73

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4 EXAMPLES

This section discusses the approach a model developdd sake to build a device model, a
networking protocol, and so forth. Each step in the appreaidustrated using an example
device or protocol. These examples serve as a codeneéefor the developer to develop other
models and include a detailed discussion at the codettetrelp developers understand the
underlying concepts and methodology to develop similar, neders.

Please note that this is not a discussion on thefitbe ©PNET Modeler’s various editdrand
model hierarchies. The OPNET Modeler development environimeised to develop the
models.

The discussion is based on certain assumptions al®detice model or the protocol in hand.
These assumptions are discussed in the “High-LevegBesubsection of the corresponding
code example.

Supplemental files for each of these examples, incfuthia relevant node models, process
models, external C code, and header files are providedaselydor reference.

7 Please refer to the OPNET Modeler’s online documemntaticthe Node Editor and Process Editor in the Editor Beder

section.

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.1 TRAFFIC M ODEL EXAMPLE

The basic ideas behind creating traffic models wereidgsd in section 3.1. The purpose of this
section is to introduce the major steps that were ussapjoort the Net-Centric Enterprise
Service (NCES) application models development with ACiietkoard.

NCES applications are based on Service-Oriented Archiee(B®A). In order to model the
dynamic interaction characteristic of NCES applmadi the following approach was applied.
First, the developers defined the scope of the model ahdrgdtthe corresponding architectural
information and testing data from the application dgvets and associated programs. Second,
the developers analyzed the collected data and identifipdssible dynamic interactions/cases
of the applications. Third, the developers created @ $equence diagram, as shown in Figure
4-1, to document the dynamic interactions.

Client
econdary o Returmed

Fequest Fequest Results

Web
Service

Web
Service

Validation

Web
Service

Web
Service

4

Database Query

Figure 4-1: Time Sequence Diagram

The next step was to apply the time sequence diagransigndee traffic model architecture.
The architecture included the following information: numtietiers, tier names, reusable
interactions, message sizes, message interaravalds, and interaction logics. In the final step,
the developer used the architecture to create the apmticabdels in ACE whiteboard and

apply Python scripts to implement interactions logietease refer to “ACE Whiteboard

Tutorial: Modeling an Application using Logic Scripts (Advady’ in OPNET documentation

for more examples.

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Please contact Defense Information Systems Agency (DGE84 for detailed NCES Modeling
and Simulation (M&S) information.

Other than SOA applications, ACE Whiteboard can aésaded to model the dynamic
interactions of operational scenarios that includéecidglecisions, such as the following
Communities of Interest (COIl) publish and subscribe operatscenario:

1.

ok

An intelligence cue of type X arrives at a command ceribata is posted on the X-
Community of Interest (COIl) web site.

2. An alert is sent to all members of the X-COIl who stibscto that kind of cue.
3.

Some members of the X-COI are available, others are(&ame are off-shift; some are
already involved in other incidents, perhaps of the sgpedr perhaps of different
types.) The ones who are available say so (e.g.,medsages in the X Chat Group).
The available X-COIl members download material from the swe.

The X-COlI has a teleconference.

4-3

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.2 ROUTING PROTOCOL EXAMPLE

The following subsection discusses the issues thatelageer confronts when interfacing a
custom routing protocol with standard protocol stagkcode-level discussion is presented on
the various steps a developer needs to take to creatkeng device model that includes
custom routing.

4.2.1 High-Level Design

Although a developer can select from a range of algorithihen developing the routing
protocol itself, the following discussion deals with htmamake this algorithm interoperate with
other standard technologies such as the IP and tratepens, which are already modeled in the
standard model library that comes with the OPNET Modeler

The following are the design decisidmsade for the protocol under discussion:

» Protocol Type. The routing protocol is a distance-vector protocol.
* Routing Metric. The routing metric is hop counts.

* Routing Updates.The routing updates are sent at regular intervals and thleenetwork
topology changes. When a router receives a routing ugdtentludes changes to an
entry, it updates its routing table to reflect the neute.

» Timers. Route timers are implemented for this routing protoocluding the Route
Timeout Timer and the Garbage Collection Timer.

» Layer 3 Technology.The Layer 3 technology used here is IP.

The Routing Elemeft “RE” represents this custom routing layer for the deuicger
discussion. This is interfaced with the IP layer. TgbLayer 3 networking equipment is shown
in Figure 4-2.

8 For more information on the OSI layer (protocol stapldase refer to Section 2, Prerequisites for DesigaidgBuilding
NETWARS Models of Model Development Guide v.1.4 for shggested networking references.

® These design decisions give the reader ideas on wHadstuetenets are on which the custom routing protocol under
discussion is based on and may not be included in the follaisngssion.

10 Routing Element “RE” is just an arbitrary name chdsemliscussion here and should not be misinterpreted as being a
routing protocol for NETWARS. Also, the user should neivwdany analogy between the NETWARS’ SE or OE.

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Module of interest houst¢
the process model for the
custom routing under
discussion.

Cpu

nub s 1.0 bub_ts 10

This module houses the
implementation for the
device. It is referred as
“IP” or “IP module” in the
following discussion.

Figure 4-2: Layer 3 Networking Equipment

In this figure, isis, rip, ospf, igrp, eigrp, and bgp represamiactual routing protocols. The RE
module can be added at the location of the “rip” modulaunee this routing protocol closely
resembles our RE based on the high-level design desis&an earlier. The intention is to look
closely at the process model inside this module th&bymes the various interfacing functions in
which we are interested.

» Register the Routing Protocol.This is required because the custom routing protocol
requires a distinctive 1D that it will later use wheodifying the route entries in the IP

Common Route TablE.

» Make the Routing Protocol Available.The routing protocol should be available to be

configured on the interfaces of the router.

11

IP Common Routing Table refers to the routing table irdétion that the routing device (e.g. router) has. Thisnaom

routing table is populated by one or more routing protocols.

4-5

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

* Initialization. The routing protocol must access the IP module of thuter and retrieve
the information stored by the IP in the process regtstfhis gives the routing protocol
information regarding the gateway status of the devterface information, and so
forth. Here, the routing protocol can initialize tloeiting tables for the first time.

* Routing updates.The IP common route must be updated with the entiagstie routing
protocol may want to add or delete.

The following subsections provide detailed discussion otoghies listed above. At the end of
following discussion, the reader should have developad ariderstanding on how interfacing
with the IP is done for a routing (custom) protocol.

4.2.2 Interfacing with the IP Discussion

4221 Registering the Protocol

The protocol needs to register itself in the OPNET Modep®rt (OMS) process registry and
also with IP. Both these steps need to be performed ngeiving the “begin sim"begsint®)
interrupt.

The function that is used to register the routing protaadl IP is—
int Ip_Cmn_Rte_Table_Custom_Rte_Protocol Register (char* custenprotocol label ptr).

This function returns a unique integer that is used aothieng protocol ID. This unique routing
protocol ID is used for all calls to Ip_Cmn_Rte_Table ARinctions.

A% Register the Routing Protocol with IP and get the unque Routing Protocal ID =/
A% In the actual implementation the deweloper is suggested to use the name of 7
A% Routing Protocol itself as the argument to the following function call. *
Custom_routing_protocol_id = Ip_<mn_Rte_Table_Custom Rte_Frotocol_Register ("Custom Routing Frotocol®l;

4.2.2.2 Initialization of the Routing Protocol

After registering the protocol with the IP as discusseBlubsection 4.2.2.1, the IP sends remote
interrupts to all the routing protocols registered with it

The remote interrupt received from the IP is as fodlow

While registering in the OMS process registhe attribute named protocol of the process handle
must be set to same string used for registering witA TRe following section of the code is an

12 The information stored in the process registry caretsieved by the other process models. Please refee ©RPNET

Modeler documentation on the Process Registry under Génedals | OPNET Model Support package for details on how
to use process registry.

Please refer to OPNET Modeler documentation on Evdradite Simulation under Modeling Concepts | Modeling
Framework for more information on thegsiminterrupt.

Details on the API are provided in Section 4.2.2.4.

Code where IP does the OMS process registry not shown.

13

14
15

4-6

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

example of how to register the routing protocol in@GdS process registry. The start time
attribute in the following code refers to the startetifar the routing protocol; this could be an
attribute on the custom routing protocol process model.

A% 0Obtain the object id of the "RE" module. Ly
own_id = ap_id_self (J;

/¥ obtain the surrounding node's aobjid. i
own_node_objid = op_topo_parent (own_idl;

A% 0Obtain the RE process's prohandle. w5
own_prohandle = op_pro_self (J;

S Initially the route table s empty. Ly
route_table = OPC_MWIL;

S* obtain the name of the process -- the "process model" 4
S* attribute of the surrounding module. *
op_ima_obj_attr_get (own_id, "process model', proc_model_name];

S% Register the Custom Routing processin the model-wide process registry.®/
own_process_record_handle = (OmsT_Fr_Handlel oms_pr_process_register [(own_node_obiid,
own_id, own_prohandle, proc_model_namel;

S* Register any other attributes that may be of interest to other processes *
/¥ The Tahel passed in the actual routing prtocol implementation may be the name of the protocol itself +/7
oms_pr_attr_set (own_process_record_handle,

"protocaol', OMSC_PR_STRING, "Zustom Routing Protocal',
"Zustom Routing start Time', OMSC_PR_NUMEER., start_time,
OPC_MILY;

To perform some other functions, including the processdirfg which interfaces have this
routing protocol enabled, the module needs to get the prosggsty information of the IP. The
string “ip” needs to be used to discover IP-registered peoistries.

A% 0Obtain the process record handle of the ip process residing in the local node. = F

proc_record_handle_list_ptr = op_prg_list_create(]l;
oms_pr_process_discover [OPC_OBJID_INVALID, proc_record_handle_list_ptr,
"node abjid", OMSC_PR_OEBI1ID, own_node_objid,
"protocol”, OMSC_PR_STRING, Yipt,
OPC_MIL]:

The information retrieved above includes gateway/rotiéus of the node, interface
information, IP route table, and so forth. From tRefocess registry, the custom routing
protocol can then identify the interfaces on whids gnabled. This is a two-step process:

* Get a pointer to the data structure storing the IP mnébion and retrieve information
such as interface information, IP common route tHbéc.

process_record_handle = (OmsT_Pr_Handle) op_prg_list_access (proc_record_handle_list_ptr, OPC_LISTRPOS_HEAD]D;

A* Obtain a pointer to the shared module memory of IFP +/7
oms _pr_attr_get (process_record_handle, "module data", OMSC_PR_ADDRESS, &1 p_mod_mew_pte];

A% 0Obtain the interface information from the IF process_record_handle. */f
oms_pr_attr_get (process_record_handle, "interface information”, OMSC_PR_ADDRESS, &ip_info_ptrl;

A* Obtain a reference to the IpT_Cmn_Rte_Table object L
A* for this node. This object is created and registered by IP., */7
A* This is a reference to the "common route table" that Ly

A% will be updaredsmodified by all routing protocols running+ys
A% on this node. *
oms_pr_attr_get (process_record_handle, "ip route table', OMSC_PR_ADDRESS, &ip_route_tahlel;

% This ip_route_table pointer is needed every timedhéng protocol needs to modify the IP common route tabigsity

entries.

4-7

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

* Loop through the list of interfaces maintained by IRhé& routing protocol was enabled
on a particular interface, then its protocol ID is presn the “routing_protocols_Iptr” list
of that interface. For each entry access, entemarnuté’ (of “0” cost) into the IP
common routing table.

A% Get the pointer to the ip interface table from the Interface *,n‘
S¥ information retriewved from the Process Registry.
iface_tahle_ptr = ip_info_ptr-=ip_iface_tahle_ptr;

S* obtain the size of the ip interface table. *
ip_iface_table_size = op_prg_list_size (iface_table_ptrl;

A% Loop ower each element in the IP interface 11st published by */

A% by IF and if this interface has been assigned "Custom Ru:uutmg Frotocol'" as its 7
A% routing protocol, create a corresponding entry in the
A% routing tabhle. *,n‘

for (i =0; 1 = ip_iface_table_size; i+t)

S¥ 0Obtain a handle on the i_th interface. *
ip_iface_elem_ptr = (IpT_Interface_Info*) cp_prg_list_access (iface_table_ptr, iJ;

it (ip_interface_routing_protocols_contains (ip_iface_elew_ptr-=routing_protocals_lptr,
IpC_REte_Custom) = OFC_TRUE]

% 0Obtain the internal ip address corresponding to the full *f
A IF network address
ip_internal_address = ip_rtab_network_convert (ip_iface_slem_ptr-=network_address];

% 0Obtain the Custom Routing Frotocol's dinterface pointer in order to read user configuration +/

crp_intf_ptr = (RipT_Interface_Table_Elem *] op_prg_list_access ([crp_intf_table_lptr,il;

A% Add an entry in the routing table with a cost of 0. i

custom_rte_new_entry_add (&route_table, ip_iface_elem_ptr, ip_internal_address,
ip_iface_elem_ptr->network_address, ip_iface_elem_ptr-=addr_range_ptr-»subnet_mask,
ip_iface_elem_ptr-=addr_range_ptr-»address, 0, ROUTING_FROTOCOL_WERSIOMW_CONSTANT,
crp_intf_ptr-=triggered_mode, wersionl;

1

Note that the “IpC_Rte_Custom”constant is used to check wh#th interface is using Custom
Routing Protocol. This enumerated value comes from IpT_HRt#ocol enumeration defined in
the ip_rte_v4.hheader file of the OPNET standard model library.

4.2.2.3 Support for Routing Protocol Configuration

All the router devices in OPNET/NETWARS have paransetsailable for configuration (as
part of thelP Routing Parameterdevice attribute). To change any of this attribute’s progser
as is done in this section, open tpedispatch.pr.nfile in OPNET Modeler and open its model
attributes (Interfaces -> Model Attributes). This parae attribute includes information such as
router ID, loop-back information, interface informati@md so on (as shown in Figure 4-3).

Y Please refer to the function rip_rte_new_entry_add() of/&process model of the OPNET standard model library for

details on how to add a new route entry to the IP CommateRi@ble. Also refer to Section 4.2.2.4 for detailshenAPIs
for the IP common route table.

4-8

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

—+](1P Routing Parameters) Table O] x|
Attribute |Walue -
Fouter 1D Ao Az zigned
Autonomous Systern Murmber Auto Azzigned
|nterface Infarmation [...]

Loopback, Interfaces [...] —
Default Route 1920122

Static Routing T able Mone

Load Balancing Options Destination-B ased

Routing Table Export Dizabled ;I

Details Bromate LCancel | ok I

Figure 4-3: IP Routing Parameters Attribute

Certain parameters can be at higher levels of gratyjlan an interface basis. This information
includes parameters such as the IP address informateomuting protocol, and the QoS
profile. This is where the user can configure which rgupirotocol to use for that interface (as
shown in Figure 4-4).

i—](lnterface Information) Table ' 0O =
M ame | Status | Address | Subnst Mask [MTU (bytes] | Metric Information || Routing Pratocal(s) || |
IF0 Active 1920121 255.255.255.0 ATH Diefault QO5FF
IF1 Active Auto Azzigned Auto Azzigned ATHM Default Q5FF
IF2 Active Auto Azzigned Auto Agzzigned ATHM Default Q5FF
IF3 Active Auto Azzigned Auto Agzzigned ATHM Default O5FF
IF4 Active Auta Azzigned Auto Azzigned ATHM Drefault O5FF

Figure 4-4: Interface Information Attribute

In order to use the custom routing protocol, the IP mdsiplecess modelf dispatch must be
updated. The model attribute “Routing Protocol” must beedito include the custom routing
protocol (IP Routing Parameters | Interface InformatiBouting Protocol(s)). A new symbol
map must be added for this attributéas shown in Figure 4-5).

18

. Adding a new attribute to the process model does notresting developer to compile the process model.
1

To make this change available during the simulatf@ptocess model must be saved. No recompilation is aegess

4-9

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

i] Attribute: Routing Protocol{s) El

&ttiibute Properties (% Private Public

ETS Handlers |

Data Tupe Istring j Default ' alue Irits I

[Auto. assign value

Symbol Map Fange

Symbaol |"-.r"a|ue ;I Frarm I Inpen j

RIP RIP

IGRP IGRP To | [open El

0sFF USPF Comments

EIGRP EIGRP

1515 1545 specifies the dynamic routing =]
< 5 MPLS protocolis) running an this J

Cuztom Routin interface.
-

Figure 4-5: Routing Protocol Attribute Properties

The “loop-back interfaces” attribute must also be updatedsimilar way to include the custom
routing protocol.

4224 | P Common Route Table APl Functions

These API functions can be used by the custom routing pitdtonderact with the IP common
routing table and modify the entries when the protaodisfa change in the route entry. The

functions shown in Table 4-1 can be used to insert andveenoaites into/from the common
route table.

Table 4-1: Available IP Common Route Table API Functions

Route Management API ‘ Description
Ip_Cmn_Rte_Table Custom_Protocol_Register Registers the custom routing protocol with the
(char* custom_rte_protocol_label_ptr) common route table. A unique protocol_id is

returned for accessing the route table.
Ip_Cmn_Rte_Table Entry Add Adds a route entry to the common route table.
(IpT_Cmn_Rte_Table* route_table, This function checks for an already existing
void* src_obj_ptr, entry.

IpT_Address dest,
IpT_Address mask,
IpT_Address next_hop,
IpT_Port_Info® port_info,
int metric,

2 The port_info structure tells IP which outgoing interfaeeds to be used to reach the specified next_hop.tlinituse

contains two fields: intf_index and intf_name. The intf_indethie index of the interface in the interface table raaiat
by IP, and the intf_name is the name of the correspondieidane. This structure can be populated using the

ip_rte_addr_local_network function. Please refer to the “im_cte_table.h* and “ip_rte_support.h” for the definition of the
structure and the declaration of the function, respectively.

4-10

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Route Management API

int proto,
int admin_distance)

Description

Ip_Cmn_Rte_Table Route Delete (
IpT_Cmn_Rte_Table* route_table,
IpT_Address dest,

IpT_Address mask,

int proto)

This function is used to delete an entire
destination entry from the IP Route Table. This
deletes all the route table entries that this
destination may have.

Ip_Cmn_Rte_Table Entry Delete
(IpT_Cmn_Rte_Table* route_table,

IpT_Address dest,
IpT_Address mask,
IpT_Address next_hop,
int proto)

This function is used to delete a next hop from
the entry from the IP Route Table.

Ip_Cmn_Rte_Table Entry Exists
(IpT_Cmn_Rte_Table* route_table, IpT_Address
dest, IpT_Address mask, int admin_distance)

This function determines whether a route exists
in the common route table.

Ip_Cmn_Rte_Table Entry Update
(IpT_Cmn_Rte_Table* route_table,

IpT_Address dest,
IpT_Address mask,
IpT_Address next_hop,
int proto,

int new_metric)

This function is used to change the metric
associated with a current route table entry. The
entry for the given destination is searched for
the next hop given, assuming a matching
protocol ID, and then the metric associated with
the given next hop is changed.

4.2.25 Function Arguments:

The arguments for these functions are discussed below:

* route_table. Pointer to the IP common route table

* src_obj_ptr. Pointer to the entry in the source routing protocol;lmaset as OPC_NIL

for custom protocols

* dest.IP Address of the destination network

* mask. Subnet mask of the destination network

* next_hop.IP address of the interface that should be used asxhaomfor the

destination addressed entered

» port_info. Contains the “addr_index” of the interface used to rélaemext hop

* metric. Metric value assigned to this next hop; this is the assbciated with the next

hop™*

21

The custom routing protocol may implement its own metiie way of determining cost (e.g., hop count, link bandhjidt

4-11

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

« proto. The unique protocol that entered this rétjtehe protocol ID, obtained from

Ip_Cmn_Rte_Table Custom_Rte_ Protocol Register, in caseust@nc routing
protocol

* admin_distance.The preference associated with this entry.

4.2.3 Notes

Following are some other useful notes that may helpé¢keloper of the custom routing
protocol.

4231 Simulation Attributes®®

« IP Routing Table Export/Import. >* This attribute can be used to export the routes

developed by the routing protocol; a text file (*.gdf) is gateut in the primary
mod_dirs®® To use the already existing routes, this attribute shoellset to “2” (as
opposed to “1,” for the export).

* |IP Dynamic Routing Protocol. This simulation attribute can be set if the custounting

protocol needs to be run over the complete networls pildference set here takes
precedence over the local specification.

23

24

25

Because this APl is entering the route to the IP cormmate table where more than one routing protocol may ertaute
to the desired destination, this protocol ID distinguishesoutes added by different routing protocols.

Please refer to the OPNET Modeler online documentétladeling Concepts—» Process Domain) for details on the
simulation attributes.

The simulation attribute can be added in the “start_satchifile (located at Sim_Domain\bin) where the simrun
executable is called (e.g., IP Routing Table Export/Impprt

This is the mod_dirs attribute for the env_db file ofdimeulation domain. For details on the mod_dirs preferende a
setting environment attributes, please refer to OPNET odboementation (Modeling Concepts External Interfaces>
System Environment).

4-12

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.3 WIRED END DEVICE EXAMPLE
4.3.1 Problem Statement

The objective is to buifd an end node model that generates and receives dataTlfRs.
following subsection discusses in length with the hela obde example how the process model
implementation works for such a node model.

4.3.2 High-Level Design

4321 Node Model Discussion

In this particular example, the following high-level dgans (assumptions) are made for the end
device.

» Transport Protocol. TCP is the supported protocol for the transport layeheQoptions
are UDP or a custom transport protocol.

» Layer 3 Protocol. P is used as the Layer 3 protocol.

* Routing. Routing is not performed by the end device, thereforeputng protocol
decisions have to be made.

* Lower Layers. Ethernet is the supported data-link layer technology.

An application layer must be designed to interfacé whie transport layer. The System Element
“SE” represents the application layer in the NETWAEE-device models.

With this information, the high-level node model repreagoih would be similar to the one
represented in Figure 4-6.

% Pplease refer to the Model Development Guide v3.0, $tibse8, Compliance for End System Devices, on the appraad

methodology for creating an end-device model.

4-13

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

CPU

ze_tep

hub_rz_0_0 hub_tx_0_0

Figure 4-6: End-Device Node Model

The node model in Figure 4-6 is the actual node modekdlEiT WARS standard node
models; “NW_ethernet_wkstn_adV(NETWARS 2006-2.1).

For details on how to design the node model for an end:elevodel, please refer to the “3.5.
Compliance for End-System Devices” subsection. THeviing discussion about the process
model development assumes that the minimum requitebiiae$® for the end-device are set.

4.3.3 Detailed Design: Event Response Table

The process model is designed to satisfy the functigrafithe device node discussed above. A
functional process model diagram is presented at thefehis subsection.

4331 Module Context and Functionality
Context:

In almost all cases, process models describe the belwdacsingle module within a node
model, consisting of many modul&sThe role of the process model can then generally be
described by the interactions that it has with the atfedlules in the node model. From the point

27 please refer to Figure 3-7 (Ethernet_wkstn_adv—Node Moty dModel Development Guide v3.0.
2 please refer to Section 3, Compliance with End-Systevit&e for the set of minimum attributes required foead-

device model.
2 please refer to tNeETWARS Model Development Guide, SectiS6NBTWARS Component Classes,” for discussion on
the top level component classes and “interfaces.”

4-14

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

of view of other modules in the node model, only therwl “black-box” behavior of their
process model(s) is of concern, not their interng@l@mentation. It is therefore an important first
step in the development of a process model to idengfpther system components (modules)
with which it must interact.

In case of an end-device node model, the “se” modulé imiesact with the following other
modules (refer to Figure 4-7):

* oe (of the OE node model)
» tcp (Transport Layer Protocol of the end device node model

OE Model End Device Mode

|

. I | System :
Operational |!: :: Element - ~ Transport ;
I

1

|

I

1

|

I Element (oe) Protocol
I I ! (se) e
I 1

Figure 4-7: Interfacing Modules of “se”
Functionality:

Because the development of the process model faeth®dule is discussed in the following
subsections, the functions of a “System Element” atenerated below so that it can be related
to the event response table developed for the process.mibdahain function of thee module

is to interact with th®©E and thecp module and perform the following functions:

» End-device selection (OE)

» Traffic generation

» Handling of TCP connections
» Traffic reception

» Handling of failure/recovery.

4-15

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

This high-level functionality is represented in

Figure 4-8%°
Receive OE message * Open/close TCP connections
generate traffic e Send traffic
Operational System Transport
Element (OE) Element Protocol
Acknowledge IER was receiv * Handle TCP signaling messages
Inform OE of IER reception » Receive traffic (IERs

Figure 4-8: High-Level Functions of “se_tcp” Module

The “se_tcp” module uses a single process model calledré&égem” which is developed in the
following subsections (although it is possible to havétipla process models to perform the
same function). For further details, refer to the @®PMNnline documentation (see the section
titled “Process Domain” under the Modeling Concepts menu).

4.3.3.2 Events

The Simulation Kernel (e.g., Failure/Recovery intetsyipr another process within the same
process hierarchy may call upon e trafgerprocess model to respond to an interrupt. In both
cases, however, an event must first occur foséheécpmodule that encompasses the process
model. Logical events may be generated from three tjpssurces:

1. modules outside the node model
2. other process models within the same node model
3. the process model itself

There is no general method for determining the interrafpésprocess model; however, the
activities of the encompassing module (in this Esdcp as a whole and the interactions of the
module are a good starting point. The first goal of ttages is simply to determine which logical
events this process model must be prepared to receive.

%0 Pplease refer to Figure 4-16: Workflow Diagram for $&cEss Model of the Model Development Guide v3.0.

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table 4-2 lists all the possible events thatdbetrafgerprocess model can receive, their source,
and the communication mechanism.

Table 4-2: Event Description Table

Logical Event Event Name Event Description
Generate traffic OE_INT This event describes the OEs informing the se_tcp to fire
an IER.
IER Acknowledgement | IER_ACK This event is the acknowledgement of an IER
Receive traffic INCOMING_PKT | This event is the reception of the packet from the lower
layers.

Receive TCP signaling | TCP_MESSAGE | These are the tcp handshake messages that are sent from
the tcp module.

Device failure FAILURE This is the failure information sent to the se_tcp module
from the simulation kernel.
Device recovery RECOVERY This is the recovery information sent to the se_tcp module

from the simulation kernel.

The following table lists the events identified in theléaabove, with their source and the
interrupt type used by the source to inform the “se_tcph@&vent.

Table 4-3: Event Communication Mechanisms

Communication

Event Name

Module VEIEU .
OE_INT OE oe Remote Interrupt
IER_ACK Current tcp Stream interrupts
INCOMING_PKT Current tcp Stream Interrupt
TCP_MESSAGE Current tcp Stream interrupt
FAILURE Failure Recovery n/a Failure Interrupt
RECOVERY Failure Recovery n/a Recovery interrupt

4333 States

Now, the state decomposition must be performed thatsfonenbasis of a state transition
diagram (STD) that is represented by a process modd?NMED. The goal here is to define a set

3L This s not the only possible way that this communicationbe executed; there might be other ways, althougtathayot

discussed here. For further details, please refeet@BNET online documentation (i.e., the section titledri@ainication
Mechanisms” under the Modeling Concepts menu).

4-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

of discrete states that will later be connected trdhsitions to form an STD. At this point, only
the states need be identified.

The guidelines are those mentioned in the OPNET onlinerdestatior’”> The following table
lists all the states this process model may havatawscription. All these states are “Un-
forced” or red states where the process rests. TdweéB” or the green states are incorporated
for convenience and clarity of execution.

Table 4-4: State Description Table

State Name ‘ State Type ‘ Description
wait Un-forced Waiting for an interrupt from interfacing
module(s) or from simulation kernel.
failed Un-forced Waiting for an interrupt from the
simulation kernel to recover the node.

4334 Event Response Table

For most process models, it is only possible for aedutisthe logical events to occur while the
process is located in a given state. This is gendrattpuse the involvement of the process itself
is required in the interactions that result in thenevEor example, in this process, a “recovery”
event in the “wait” state is not possible because theddas not failed as yet. The following
table enumerates which events are possible/desirabeidh states.

Table 4-5: Event Feasibility Table

State Name Logical Event Feasibility

wait Generate traffic Feasible
Receive traffic Feasible
Receive TCP signaling Feasible
Failure Feasible
Recovery Not feasible

failed Generate traffic Not feasible
Receive traffic Not feasible
Receive TCP signaling Not feasible
Failure Not feasible
Recovery Feasible

In addition to “wait” and “failed,” other forced statedl be introduced in this process model to
act as the placeholder for the code, and to handkeethteafgeis functionality. Theséorced
(green)states are:

82 See the subsection titled Process Modeling Methodolotieisection titled Process Domain, under the Modeling Camcept

menu.

4-3

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

open_conn.This state performs the function of opening the TCP ection for every

IER to be sent by the se_tcp.

rcv_pkt. This state handles the reception of packets from therltayers.

process_messagdhis state handles the T@Rndshakeackets received from the tcp

module.

init. This state creates lists to store the client andehesconnection handles and also
creates segmentation and reassembly buffers.

In addition to these states, there is a precursag\stat_for_tcpthat ensures that the TCP
protocol has been initialized before the code innlfiestate is executed.

Once the feasible events associated with eachfetatee process model are determined, the
next step is to develop an event response table thatlssthe process’ possible courses of
action for each feasible state-event pair. The ¥ahg table lists every feasible state-event pair
in the two left columns. For each such pair, at leasttoansition is defined.

Current ‘

State

Event

Logical

Table 4-6: Event Response Table

Condition

Action

Interim State
(Forced State)

Next
State

wait

Generate
traffic

None

Open TCP
connection

open_conn

wait

Receive
traffic

None

Put the packet in
the reassembly
buffer and close
the TCP
connection

rcv_pkt

wait

Receive
TCP
signaling

To open a new connection

Open a new
server connection

process_messag
e

wait

Informing
the status of
an existing
connection

established

Send the packet
and then close
the connection

process_messag
e

wait

close

Inform the OE
that the IER is
received
successfully

process_messag
e

wait

aborted

Inform OE of the
IER failure that
the connection
aborted

process_messag
e

wait

Device
Failure

None

Free up the IER
and TCP
connection
related memory.
Set the
availability of the
device as non-
available.

None

failed

failed

Device

None

Set the

None

wait

4-4

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Current Logical - Interim State Next
State ‘ Event ‘ Comneliter (Forced State) State
Recovery availability status
of the device
available.

The process model based on the previous table should md&rdio that in Figure 4-9:

io_ock |

#[wait_fu:ur_tu:p

S
/Jrr
o

s
[F.-'-‘-.ILLIFEEJ//«://

|

|
[defiault] //
" |[RECOVERY)

Figure 4-9: se_trafgen Process Model
4.3.4 Implementation

The following sections discuss functions that eacte staust perform and associated code
snippets. This subsection touches upon the code foraliortant functions of this end-
device, but does not include all code that may be writteth@®end-device model to be
complete.

The code is written for individual states of the prea@®del, the compilation of which produces
the “C” code representation of the process model.

4341 Open Connection State mplementation

__jl:upen_cnnn
(OE_INT] 4

Figure 4-10: Open Connection State

4-5

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

The execution should come to this state from the “vgiite, on reception of a stream interrupt
from the tcp module. The transition for this statdNSCOMING_PKT,” which is defined in the
header block (of the OPNET Modeler process editor) as—

#define DE_INWT [fintrpt = OPC_IWTRPT_REMOTE] && Istromp (icitype, "oe_se'"]]
In the enter execs of this state, the following funtsiare performed:

1. Creating a Packet.The information regarding the IER is retrieved from G|
associated with the interrupt; after that, a packdt feitmat “data” is created. In this
packet, information related to the IER as well as threent node is set as follows:

Eode = ap_incrprt_codef]);
J* oremotée TATErrUpEs aré recelved Trom the QE " f
F* GeT the interrupt code =/
J* the code should ©ell us what to do =/
if [Enne == OE_SE_TIER_SEND])
op_1ci_attr_gec(iciptr, er_pErametars_ptr”, sderp);
1 f Ci_serompl (lerp-=1er_desc, ATAYYY
{
A= read informacien from the fci =f
op_ici_arter_get(iciptr, "conswmer_pf_addr”, Adest_mode];
A evaluate priorit

priormity = precedence_ewvaluate(ierp->1er_priorityl;
17 [Cconninto = getfonnection(desc_node, priority)) = QPC_NIL)

connInfo = createconnection(dest_node, priority, CONMACTIVE];

iarInfo = createlerInfolierp, priority,connInfo-»connectionId);
it {connInfo->state = CONNRGQSTOPEN]

L
ﬁchedmuer{cann:nfo. 1erIntTol;
else

{

scheduleandsendIer(connInfo, ierInfol;
setconnTimer(connInto);
1

#/* Hote - don't deleére the 1ci from the OE - 1¢ expects 1t $till to be ok =/

]

2. Registering with TCP API Package® When an application registers itself with the API
package, it is returned as a handle that contains reéldatanto accomplish all
subsequent interaction with TCP. The registration protgssself, discovers the TCP
layer to which the application is connected and stord @t Object ID in the interface
handle. Also registered in the same handle is agmiatthe next available local port on
the TCP layer. This procedure does not facilitate reysamgvalues but always
increments the next available local port. This is penéd by calling the OPNET tcp api
in the following code snippet:

clientConnInfo->tcp_handle = tcp_app_reqgister [op_id_selT (J7;

% Pplease refer to the OPNET Modeler online documentatemtion on Model Library> Standard— TCP Model User

Guide— Model Interfaces— Application Layer Interfacing for details on the use osth&PIs.

4-6

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

3. Open a TCP connectionln this state, it opens a TCP connection to the nodeseviP
address equals the given remote address on given lacegiaote ports. TCP
connections must be opened in acthmode. “Command” passed as an argument to this
function is used to distinguish between the active andyeas®des. Because this is a
client connection, it is opened in an active mode. N TCP_PORT is the default
local port on which the connection could be opened; thecasedefine its value. The
connection id returned is then stored in a list witkeoitconnection information. This is
performed in the following code snippet using the TCP API:

A® DPEN 4 Néw pastive Conmeceiogn =7

connInfo->Connectlonid = TCp_connecti on_open

(&f{connInfo->tcp_handle), 0, -1, WW_TCP_FORT, TOCRC_COMMAMD_OPEN_PASSIVE, 0J:
currentra = connInto;

]
connInfo->s5tate = CONMROSTOPEN;
pp_prg_list_insert (connection_ir

fo, connInfo, OPC_LISTPOS_TAIL)Y;

43.4.2 Recelve Traffic State |mplementation

Figure 4-11: Receive Traffic State

The execution should come to tlee _pktstate from thaevait state, on reception of a stream
interrupt from the tcp module. The transition for tstiate IINCOMING_PKT which the header
block defines as—

#defTine IMCOMING_FET [intrpt = OPC_INTRFT_STRM]
Thercv_pktstate performs the following functions:

First, it puts the packet received into the reassemlfgrband then tries to remove a complete
packet from this buffer. If this state cannot reasseralppacket completely, it destroys the
packet. TheOE then reports the IER as received after it receivdes®e connection message.

34 Please refer to the OPNET Modeler online documentatémtion on Model Library> Standard— TCP Model User

Guide— TCP Commands and Indications for details.

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

F* Discard incoming dats packsar and send ISR Ackndw]adgemént Interrupt back to
sending node =)

£ We put the packet tm the reassembly buffer. IT & Twll IER has been -
F* reagsembled, we Take the packet our and destroy 1T. *f
gp_sar_rsmbuf_seg_insert [rambuf_handlie, pktl;
kT = ap_pk_gec{codel;
A Bmnds new while joop for gecting more Chan one packet from stream =f
S Ialefalize the poInteEr £o the packer, Ufed larer .o decErmine 17 & -y

J* packer hat been reasssmbied. "

£* not needed bécauses we have 4 separate Temp packet® To handie The
packer Trom the Sar buffers/
pkT = OPC_NIL;*/

£* Only ene packet &t most c&n get resssemblied 4 & result of & s9ngle =f

F* insercion, Therefore, we do rn:ur u‘u:n‘ to check the complete pk count. =/

sar_pkt = ap_Sar_rimbuT_pk_remir (rs W

S* winle Toop added o handie r!-.'ll& rIh:ﬂ n_né -\.uI"[.'I ared packet 10 che reassembly buffer 1
while (sar_pkt |s OFC_NIL)

17 (sar_pkr f= OPC_NIL) {

/¥ get the needed 1nformation "rc-n 'l'-: packet anmd destroy the packet +F
op_pk_nfd_get Esur PkE, "AFFL woInT, ader_ id);
op_pk_ntd_get(sar_pkt, " ECEDENCE", aprioricyl;

PRICIP = op_ph_ 161 :*"[sar-n*tj.
p_ici_atcr_ger(pkIci_p, “sol Hode” asourcatade]) ;
op_1C1_atcr r'=|:Eph:I.c1_D. YsourceConnId” Asourceconnid);
destroyTerPacket(sar_pktl;

After this, the server connection is closed, as shoviine code snippet below:

‘Ifl
= LTose 4 CORRECET OGN
.l-’.l'
wizd d
cleseConnection{TrafgenT_Connection *connInfo)

FIN(closeConnection{connInfol};
connInfo->-ctare = CONMROSTCLOSE;
tcp_connection_close (connInfo->cep_handlel;
EOIUTS

]

4343 Process Message State | mplementation

[TCP_MESSAGE) ‘
TJ[DCESS_ITIEj

Figure 4-12: Process Message State

The execution should come to fhcess messagtate from thevait state, on reception of a
stream interrupt from theep module. The transitio for this state i§CP_MESSAGHlefined
in the header block as—

#define TCP_MESSAGE (fintrpt = OPC_INTRPT_REMOTE] && stromp (icitype, "oe_se") && stromp Cicitype, "ier_ack"))
The following functions are performed in this state:

1. A new server connection is opened if the associatedthtiicated a new connection to be
opened. It calls a functiose_open_server_tcp_codefined in the function block.

% We have defined this transition as one in which therimereceived is a remote interrupt, and the sourcaéfrtterrupt is

an IER (by checking that the ici type is “ier_ack”).

4-8

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

if ('strcmp (icitype, "tcp_open_ind"1d {

S*This machine is acting as a serwver for an incoming IER *F

S* the current passiwe connection is now bound to an actiwe connection *+fF
S¥spawn a new passive connection to receiwve futher requests 7

S¥indicate £o TCF that we are ready tao *f

SFreceiwve data. *

S uninstall the ici before we use the TCP API or else we get an error later =/
op_ici_install{OFC_NIL];

SFwe will receiwve ane packet because data IERS consist of a sole packert. L
tcp_receiwve_command_send [(currentFassivelonnection-=tcp_handle, 17;

S*because the TCP api uses forced interrupts to open a connection 7

Sewe hawve to schedule a procedure interrupt to open the new passiwve */7
SEcaonnectiaon. L

op_intrpt_schedule_call (op_sim_time (1, 0, Se_open_serwer_tcp_cann, 0];

S* Ideally we would Tike to find the destHode objId and the priority of the
S* connection here and specify it in the new bound connection info
bindrassiwveCannection(destnade, priorityl;

until we Tigure out how to do this, we will retriewe this inTo from the ici
accampanying the incaming packets.

*

i

S* Wote - do not destroy the open indicator ICI or else TCP complains /7

1

This function opens a TCP connection to the node widseldress equals the given remote
address on given local and remote ports. TCP connectiassbe opened in passive mode.
“Command” passed as an argument to this function is esédtinguish between these two
modes. Because this is a server connection, it is operegassive mode. The connection id
returned is then stored in a list with other conneandormation. This is performed in the
following code snippet:

b

* Jpen a new Fassive connection
"

static waid

Se_open_server_tcp_conn [(vartype * ptr, int codel {
FIM(Se_open_server_tcp_conn [ptr, codell;
createConnection(-1, -1, COWWNPASSIWVE];
FOUT;

Finally, after the connection is open and the transpmrhection is established, the application
processes are ready to receive messages from peersmfdhmation must be passed on to TCP,
and the following tcp api accomplishes that operation.

SEwe will receiwe one packet because data IERS consist of a sale packet. L
LCp_receive_cammand_send (currentPassiwveConnection-=tcp_handle, 11;

2. This state handles the TCP control messages asBaskd on the type of message, it is
switched(using the C switch/case statements) to the approcass

For the tcp message indicating the successful establisloh#e connection, the data is sent
and the connection is closed (see below):

4-9

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

switch [(status) {
case TCPZ_IMD_ESTAE:
S* Send any scheduled IERs and also set up to receiwve *f
J* an IER from the far end */
connInfo-=state = COMMOFEN;
sendscheduledIers (connIntol;
tcp_receive_cammand_send [(connInfo-=tcp_handle, 17;

break;

Once the TCP close control message is received, thig @Brmed that the IER®

received,
and related memory for the connection is freed up (sksvip.

case TCPCZ_IND_CLOSED:
S* Check for any IERs that were ngt acknowledged or sent
before the cnnnect1un was C1y Ed *f
while [([ierInfo =te - =
noti fHoE [Ter i [, MR INFDRM SRC DE
destrDyIEPInfD[1erInfnj,

a1l e to transmit TCP message??77'");
1
destroyConnectionconnIndex];

break;

For the connections that are aborted, the OE isnméd of the IER failure, and related memory
is freed up.

case TCPC_IMD_ABORTED:
S¥Connection failed. Record IER fTailure and Tree memory.*/

while [(ierInfo = removeNextIer(connInfol)] != OPC_NIL]) f{
notifHyOE(ierInfo->=ier_p, W _INFORM_SRC_OE_FAIL," Unable to transmit TCF message?777" ;G
destroyIerInfolierInfol;

1

destroyConnection{connIndex’;

break;

4344 Failure State |mplementation

[FAILURE)

(RECOVERY)

Figure 4-13: Failure State
The execution should come to fiadled state from thevait state upon reception of a failure
interrupt from the kernel. The transition for this stateAILURE, defined in the header block
as—

#define FAILURE [intrpt = OFC_INTRFT_FAIL]

% Please refer to “Appendix G: Constants” of the Model Dmpraknt Guide v3.0 on details on the codes used by the OE to

communicate with SE and vice-versa.

4-10

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

In this state, the first thing that is done is to betavailability status attribute as disabled, as
shown below:

A7 Computer not available now /7
op_ima_obj_attr_set (mmy_nd_id, "awvailability_status", OPC_BOOLINT_DISAELED]:

The next important action in this state is to fad tERs for which the connection is open.
Because the supporting transport protocol is TCP, thedERid to be “not received” until a

TCP close acknowledgement is received, meaning the |IERr@dgthave reached the destination
but may still be marked as failed. The following code fidnés IERs with open connections and
frees up any related memory:

for (index = 0; index < num conxns_open; index++) o
connInfo = (TrafgenT_Connection *Jop_prg_list_remowve (connection_info, OPC_LISTPOS_HEAD];

A* Inform the 0E about the device failure and it will be responsible for the updating of the thread and IER statistics =/
while((ierInfo = removeNextIer({connInfol) = OFPC_NIL) {

notifyOE(ierInfo-=ier_p, MW _DEVICE_FAILURE,"TCFP unable to tranmsit the message due o dewice Tailure.'lj
destroyIerInfolierInfol;

A% Free up the associated memory */
destroyZonnInfolconnIntol;

The execution goes back to the “wait” state when thevexy interrupt is received in this state.

4-11

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.4 WIRED END DEVICE EXAMPLE 2
441 Overview

This subsection explains the construction of an estesydevice using an example. The
example end-system device is a computer that generasek=éRe over TCP/IP with Ethernet as
the MAC technology. The computer is built from an ergiOPNET Standard (COTS) device—
an ethernet_wkstn_adv model.

442 Steps

Because this is an end-system device, it needs a moduethenunicates with the OE to get
the IER information—the SE module. The SE module geesi@dta IERs upon receiving
remote interrupts from the OE in its OPFAC. It getesdhe IERs and forwards them to the
network protocol stack, where they are sent out ohgméetwork through the Ethernet
interfaces. Because TCP is an acknowledgement-basexhecthe end-system device sending
the IER marks it as received when the connectiorealeguest, for the connection over which
IER was sent, is received. The SE module also hartidefailure/recovery of the computer.
Because it transmits only data IERs and uses TCPAtkeasderlying protocol, it needs the
TCP/IP protocol stack. It also uses Ethernet as th€NeEhnology.

Rather than assembling all the modules needed for comatiemdn the OPNET simulation
environment, begin by modifying an OPNET Standard (COTS) med@ ethernet_wkstn_adv
model. Not all components need to be built by modifyingx@sting model; components can be
built from scratch as well. The ethernet_wkstn_adv noddel is shown below:

4-12

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

hub_re_0_0 hub_tx_0_0

Figure 4-14: Ethernet_wkstn_adv-Node Model

Step 1.From the ethernet_wkstn_adv node, the CPU, applic&iNP, UDP, RIP, Dynamic
Host Configuration Protocol (DHCP) and TPAL modules mustlneoved:

* In anode editor window, open the ethernet_wkstn_adv nodelm
» Select the mentioned modules and hit CTRL-X.

Note that the packet streams connected to and from the esoahal deleted automatically.

Step 2.Add the SE module on top of the TCP module and conheuot to the incoming and
outgoing packet streams:

» Left-click the “create processor” toolbar button.

» Left-click the area above the TCP module. This creat@®cessor module on top of the
TCP module.

* Right-click the created module and name the moskllécpby modifying the module
attributes.

» Left-click the “create packet stream” toolbar button.

» Create an incoming packet stream by first left-cligkinetcp module and then thee_tcp
module.

» Create an outgoing packet stream by first left-clickimgse_tcpmodule and then thep
module.

4-13

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

The node model for the computer should look like Figure 4-15.

a

hub_me_0_0 hub_ts_0 0O
Figure 4-15: Computer-Node Model
Step 3.The “Model Attributes” for this node must be set dbos:

* Under the “Interfaces” menu, choose the “Model Att@itoption.

* Set the following attributes and their types in the “Mofl¢ributes” table. The
NETWARS program suggests that you use the already existinlic®’ definitions of
these attributes, which we have named the same asttibeite names themselves.

Table 4-7: End-System-Model Attributes

Attribute Name ‘ Attribute Type
classification String
equipment_type Enumerated
availability status Toggle

Step 4.The SE module now should house the process modeldreatse following subsection:

* Right-click on these_tcpmodule and change the “process model” attribute to be the
name of the process mods¢_trafgencreated in the next subsection.

87 Please refer to the OPNET Product documentation, MoBelrmentation» OPNET Editors Reference Process Editor
section, for further details.

4-14

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.4.3 Process Model: SE

Figure 4-16 contains a workflow diagram of a simple SE @®oadel.

IDLE

Receives an interrupt

at type o Femote interrupt
interrupt is it indicating failure

Remote interrupt
from CE

Stream interrupt indicating
IER packet reception

FAILEL:
Zend a remate
Senc AnER 1o interrupt to OF
e Hestnalion indicating an IER
Record statistics) g Receives an interrupt Mo

reception

=it & recaver
inclication’

Take steps for
recovery

Figure 4-16: Workflow Diagram for SE Process Model

During initialization, the process reads in attributeigaland creates any necessary structures, as
well as obtaining pointers to the statistic files.

Referring to Figure 4-16, above, when the computer receivegearupt from the OE to
generate an IER, it transitions to $endstate, sends the IER to the protocol stack, and goes
back to thedle state. When it receives a failure interrupt, it $iaons to thedail state and stays
there until it receives a recovery interrupt, at wipolmt it transitions to theecoverstate and
performs the steps needed for recovery. Then it transiback to thélle state.

These_tcpmodule uses the following APIs to interface with TP module:

* tcp_connection_open (). Toopena TCP connection with the destination

4-15

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

* tcp_receive_commnd_send () Used by the receiving SE module to indicate to the
TCP module to forward the IERs to itself

* tcp_data_send (). To send IERs.

handle_ier| ier_ack ql

[TEP_MESSAGE]

[wait_fur_tcp

| &

[deliault] [FAILURE] -~
|

-
process_Message

//

i
/} g

i /" [RECOVERY)
-

B, I

end_sim

Figure 4-17: Process Model for SE Module in Computer
4.4.4 Statistics

These_tcpprocess model is responsible for informing the OE ofdhed IERs. There could be
several reasons for failure in data communication, asdhe TCP socket failure or congestion
in networks. These_tcpprocess model informs the OE (using the codes descril#ggpendix

F). The IER is “received” only when the source of tladfic (IER) receives a tcp
acknowledgement (connection close indication) and code NWEKDRM_SRC_OE_RCVD is
used (in the remote interrupt) to inform the OE atsthherce OPFAC to collect the IER Received
statistics. In the following sample code, the procesdahrecords the statistics due to TCP
socket open failure (for a more detailed example, plessese_trafgen.pr.¢ se_trafgen.pr.m
files).

case TCPC_IMD_ABORTED:
S¥Connection failed. Record IER fTailure and Tree memory.*/

while [(ierInfo = removeNesx 5 O =
NZ_TINFORM_SRC_OE_

notifHyOECierInto-=1ier_§
destroyIerInfolierInfol;

BReMIL] {
FAIL,"Dmabhle to transmit TCF message?? 77");

destroyConnection{connIndex’;

break;
Figure 4-18: Code 1-Inform OE of IER Failure, Will Record Statistics

Interfacing with the statistics, such as writing sucegskfailure statistics, is normally
accomplished through the APIs. Refer to “Appendix L: NEAR®% Simulation APl and Helper
Functions”

4-16

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.5 LAYER 1 DEVICE EXAMPLE : BULK ENCRYPTOR
45.1 Overview

This subsection explains the construction of Layertivokking equipment using an example.
The objective is to construct an encryptor device. Thenplanetworking equipment is an
encryptor with two ports. It accepts packets from asifeed network, encrypts the packet, and
sends it over an unclassified network. When it acoegtkets from the unclassified network, it
decrypts the packet and forwards it on to the classifiaglani. It encrypts only the payload of
the packet. The header is left intact. The encryptor med@enstructed from scratch.

4.5.2 Steps
Step 1.Two transceiver pairs are created:

* In a new node editor window, using “create point-to-po#ceiver,” place two point-to-
point receiver and transmitter pairs and “create poupetiot transmitter” toolbar
buttons.

* Once the transceiver modules are in place, createalogpnnections between them by
using the “create logical tx/rx association” toolbartbnt

Step 2.A processor to house the encryptor process model iedread connected to the
transceiver pair:

» Left-click the “create processor” toolbar button.

» Left-click the area above the transceiver modules.

* Right-click the created module and name the module “ptaryby modifying the
module attributes.

» Left-click the “create packet stream” toolbar button.

» Create incoming packet streams by first left-clickinglmreceiver modules and then on
the encryptor module.

» Create outgoing packet streams by first left-clickingleencryptor module and then on
the transmitter modules.

The resulting encryptor device looks like Figure 4-19.

Figure 4-19: Encryptor-Node Model

4-17

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

45.3 Process Model

Step 1.A workflow diagram of a simple encryptor model is destyne

IDLE

Packet arrival

From clazssified

di
to unclassified *

Encrypt

From unclas=sified
to clazsified

Decrypt

Figure 4-20: Data Flow for Encryptor

Step 2.The encryptor performs its initialization functionghinit state and transitions to the
idle state, where it waits for a packet. When the packefestrit checks the direction from
which the packet is coming. If the packet is from a digsknetwork and going to an
unclassified network, it encrypts the packet and sendstheappropriate output interface. It
decrypts the packet for a packet going in the oppositetiire

4-18

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

[TO_UNCLASSIFIED] . | encrypt

-

0
., H\
-
.

(TO_CLASSIFIED) ™, Gocmpt |

| i |

Figure 4-21: Process Model for Encryptor

Figure 4-22 shows a sample code block frometheryptstate:

<% Gt the index of the stream on which the *®.
<% packet wasz received. *®.
strean = op_intrpt_strm ()

<% Gt the packet #*7
pkptr = op_plk_get (stream);

<% Encrvpt the packet's pavload *
enc_pkptr = get_encrypted packet {(pkptr., encryption_info ptr);

<% Sgnd the encrvpted packet on the output interface *®,
op_pk_=end {(enc_plptr, {1 — =streamn)):

Figure 4-22: Code 2-Encrypting a Packet

The model developer must write the functget_encrypted_packet () that takes in a
packet and encrypts it. All other functions are OPNET Kemroecedures. It is important to note
that the code listed above uses the expregiestream,) which only works if all stream
numbers are zero and one, and both the incoming andimgitggoeam connected to a particular
rx/tx pair are given the same stream number (i.er, B is connected by incoming stream zero,
thenpt_0 must be connected by outgoing stream zero). Similariyi andpt_1 should both use
stream number one. An example cryptographic device, whidbrpes similar functionality, is
the KG-194 node model; the process model is crypto.pr.regttigyptographic device models
are available with NETWARS version 3.0).

4-19

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.6 LAYER 2 DEVICE EXAMPLE : MULTI -SERVICE SWITCH
46.1 Overview

The example considered here is a multi-service switathhis circuit-switched and ATM
interfaces. The objective is to explain the constouctif Layer 2 networking equipment using an
example. The example networking equipment is a multikseiswitch that is used for

interfacing a circuit-switched voice network with amM data network. This is a switch with
one ATM and two circuit-switched interfaces. It neagls pairs of circuit-switched transceivers
and one pair of ATM transceiver. It also has the ATlt@col stack. In addition to these
modules, a module for switching is needed. This device reaeal&TM port and the ATM
protocol stack. Therefore, this node is built by modifyamgOPNET Standard (COTS) model—
atm_uni_dest_advihe atm_uni_dest_adv node model is shown in Figure 4-23:

S
traf_sink, |
E—r
AT _zig AT _cal_contral
;—. =
AaL
M_layer-

—i=

ATH trans ATHL switch
= 22

pr_00 pt_00
Figure 4-23: Atm_uni_dest_adv Switch-Node Model
4.6.2 Steps
Step 1.From the atm_uni_dest_adv node model, the traf_sink mosludenioved:

* Inthe node editor window, open the atm_uni_dest_adv model.
» Select the module mentioned above and hit Ctrl-X to rentbem from the workspace.

Step 2.This device has two circuit-switched ports. Therefome, transmitters and receivers are
added:

» Left-click the create point-to-point receiver tooltaun.

» Left-click in the node editor workspace to create tweainses of the point-to-point
receiver.

* In a similar way, create two transmitter objects.

* Associate the transceiver pairs with a transmitteelieer association object.

4-20

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Step 3.Two processor modules are created, and the circuitised ports are connected to one
of them:

Place a processor module in the workspace and nameset dispatch.
Connect the transmitters and receivers to the voigeaitis module.
* Create another processor and call it voatm.

Step 4:Connect the circuit-switched ports to the ATM stacktigh the voatm and
voice_dispatch modules using packet streams.

The completed node model looks like Figure 4-24.

transmitte\ tranzmitter_0
FaEs

L
vniceEpatch
E] C
receiver x@n receiver_0
C——=
AT _sig .ﬂ.TPE_caII_c:J‘rtml
[
o
[l
BT h_laye
5
AT _trans AThLzwitch
]
pr_(0 pt_0

Figure 4-24: Multi-Service Switch-Node Model

Step 6.Create process models for the voatm and voice_dispatdbles and set throcess
modelattributes for these two modules appropriately.

Step 7.Add the required NETWARS attributes. Refer to Step 3 uBdésection 4.4.2.

4.6.3 Process Models: Voice Dispatch and Voice Over ATM
» voice_dispatch.Takes the ckswpkt packet and passes it to the appropriatergent
module. A multi-service switch like this can potentidigve additional types of
interfaces like IP and Frame Relay. There are difecenvergent modules depending on
the protocol stack desired. In the example, there isamyconvergent module, the
voatm module. So, the voice_dispatch module forwariseap packets to the voatm

4-21

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

module.

Similarly, when the voice_dispatch module receives padkeim the voatm module, it
must determine which one of the circuit-switched intez$ato send the packet on.

voatm. When the voice_dispatch module forwards the packet teddien module, the
voatm module generates ATM cells at a rate that dependhe call generation rate and
forwards the packets to the ATM stack. When the voatdule gets data packets from
the ATM stack destined to one of the circuit-switch&énfaces, it destroys the data
packets and sends the appropriate control packets (call-aetQpp the voice_dispatch
module.

The voice module is responsible for informing ATM of thkeuit setup. The voice call
setup message must be translated to the appropriate ATbetgl message for circuit
reservation. Likewise, on the other end, the ATM demaesst inform the voatm module
of the call setup message and forward it on. On the ¢sdwide, there needs to be
flooding on the other circuit switch interface.

4-22

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.7 LAYER 3 DEVICE EXAMPLE : CUSTOM ROUTER
4.7.1 Overview

This subsection explains the construction of Layert&oiking equipment using an example.
The example considered is an IP router with one gawid) one Ethernet port, and a custom
routing protocol (called MRP,for Military Routing Protoralinning over TCP. The router is
built from an existing OPNET Standard (COTS) device—aXi®5 1s e sl adv router model.

4.7.2 Steps

This router has a custom routing protocol, MRP, running profd CP. The router has two
ports—one Ethernet port and one SLIP port. The rasiteonstructed from an existing OPNET
Standard (COTS) model—a CS_1005 1s e_sl adv router model. BRath@ssembling all the
modules needed for communication in the OPNET simulamvironment, begin by modifying
an OPNET Standard (COTS) model— a CS_1005 1s e sl adv router iualel

CS 1005 _1s e sl adv node model is shown below, in Figure 4-25:

4-23

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

([

cpu

O

1
o
c
=

-2

[

v
=
e}
=
=

0

Figure 4-25: CS_1005_1s_e_sl_adv Router-Node Model

Step 1.The custom routing protocol module is added on top of @R module and is connected
to it with an incoming and outgoing packet stream:

» Left-click the create processor toolbar button.

» Left-click the area above the tcp module. This creat@®cessor module on top of the
tcp module.

* Right-click the created module and name the module “mrphogtifying the module
attributes.

» Left-click the create packet stream toolbar button.

» Create an incoming packet stream by first left-cligkine tcp module and then the mrp
module.

» Create an outgoing packet stream by first left-clickimgmrp module and then the tcp
module.

4-24

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

After the changes have been made, the node modekfootiter looks like Figure 4-26.

Figure 4-26: Router with Custom Routing Protocol-Node Moél

Step 2.Add the required NETWARS attributes. Refer to Step 3 uBdésection 4.4.2.

4-25

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.7.3 Process Model: Custom Routing Protocol

The process model that implements the custom routinggoblboks like Figure 4-27.

[mpon_ne_ta;h

#(0
(IMPORT_TABLE)

i
|
|
1
|
|

_MOTIFICATION)

——————————— “init_tte_table [~— ===~ === == i ExtRoute
(NG _IPve)

11

21z in

[deFaulf)
(NGO _TPwd)

I
|
|
|
|
|
|
|
|
|
|
|

7
ode_FaiI_re

2210

4
(defaul) "7 -

Figure 4-27: Process Model for Custom Routing Protocol

In theinit state, the custom routing protocol registers itseffrad® higher-layer protocol using a
call to the functiorip_Higher_Layer_ Protocol_Register() . It must also register
itself in the IP common routing table with a call te finction
Ip_Cmn_Rte_Table_Custom_Rte_Protocol_Register()

When the IP process mode has been initialized, theraustating protocol module receives a
remote interrupt with code’C_EXT_RTE_REMOTE_INTRPT_CODBn receiving this
remote interrupt, it transitions to thet_rte_table statewhere it can start accessing the routing
table via the process registry. Then it transitionfiéwiait state.

When the custom routing protocol receives route updateages, it makes or changes entries in
the common routing table using calls to the functions:

* Inet Cmn_Rte Table Entry Add()
* Inet Cmn_Rte Table Entry Delete()
* Inet Cmn_Rte Table Entry Update()

These functions are defined in the external file OPNES\ dir>\models\std\
ip\ip_cmn_rte_table.ex.c and the prototypes for these furscéiosnin OPNET\<rel_dir>\
models\std\include\ip_cmn_rte_table.h, where <rel_dir>ag¢lease directory (e.g., 12.0.A).

4-26

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.8 CIRCUIT -SWITCHED DEVICE EXAMPLE : END SYSTEM
4.8.1 Overview

This subsection explains the construction of a cikswitched device using an example. The
example used here is a phone (a circuit-switched endmydevice) that generates calls based
on its interaction with the OE. This example shdwe to build the device from scratch.

4.8.2 Steps
The phone has three modules, as shown in Figure 4-28:

* An SE module that generates calls in response to uptsrirom the OE
* A transmitter that supports only packets of type cktswpkt
» Avreceiver that supports only packets of type cktswpkt.

pr 00 pt_0

Figure 4-28: Phone-Node Model

The transmitter and the receiver are connected t8Ehmodule by packet streams, as shown in
Figure 4-28. The transmitter and receiver are logicatpeaiated with each other.

Note that in order to generate calls initiated by thedsrd voice application in addition to voice
IERSs, the device would require additional application, [Pa#d CPU modules.

Step 1.A transceiver pair is created:

* Inanew node editor window, a point-to-point recemed transmitter pair is created by
using the “create point-to-point receiver” and “cregawent-to-point transmitter” options.

* Once the transceiver modules are in place, logicadections between them are created
using the “create logical tx/rx association” option.

Step 2.A processor to house tBeprocess model is created and connected to the transceiver
pair:

» Left-click the “create processor” toolbar button.

» Left-click the area above the transceiver modules.

* Right-click the created module and name the module “sefdifying the module
attributes.

» Left-click the “create packet stream” toolbar button.

4-27

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

» Create an incoming packet stream by first left-cligkihe receiver module and then on
the SE module.

» Create an outgoing packet stream by first left-clickimg $E module and then the
transmitter module.

Step 3.The “Model Attributes” for this node must be set dbos:

* Under the “Interfaces” menu, choose the “Model Att@itoption.
» Set the attributes and their types shown in Table 4H&eiriModel Attributes” table.

Table 4-8. Circuit-Switched End-System Device-Model Atibutes

Attribute Name ‘ Attribute Type
equipment_type Enumerated
availability status Toggle
Call Bandwidth Double
Max Calls Allowed Integer

Step 4.The SE module to house the process model is creatid fallowing subsection:

* Right-click the SE module and change the “process madtibute to be the name of
the process model created in the following subsection.

4.8.3 Process Model: se
Thesemodule is responsible for interacting with the OE toegate calls.

Step 1.A workflow diagram of a simple SE process model is design

4-28

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

IDLE

Receives an interrupt

Failure indication

at type o
irterrupt is 7

Remate interrugpt
from QOE

—Self interrupt

Stream interrupt
indicating packet arrival

Send the
call-teardown
packet

Send the call-
zetup packet

FAIL

Receives aninterrupt Mo

at type o

packet is it? cal-teardovwn packet

call-zetup packet

indication’?

Cortral message (MAKbusy)

Process packet Process packet
Process packet

Yes

Figure 4-29: Data Flow for Phone

4-29

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Step 2.The process model for tisemodule might look like that shown in Figure 4-30.

[TODO_UPDATE] //’

A

backet_arwl call_zetup

Figure 4-30: Process Model for SE Module

The initialization steps are performed in th_1 state. When the phone receives an interrupt
from the OE requesting a call setup, the process modsiticans to thecall _setupstate, gets the
necessary information from tlee_se_iciCl, creates a call-setup packet, and sends it to the
transmitter module.

When the phone receives a packet, the process modatidrasso thepacket arrivalstate and
processes the packet. This packet could be an ACK packeatingdji that the call was
successfully set up, a Negative Acknowledgement (NACHicating that the call setup failed,
or a request for a call setup from a remote phonepabket_arrivalstate takes the necessary
action, depending on the type of packet.

When the phone receives a failure interrupt, it transstto thefailure state and takes the
necessary steps to handle the interrupt. It recoviees it receives a recovery interrupt.

4-30

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.9 WIRELESS DEVICE EXAMPLE
49.1 Overview

This subsection explains the construction of a radiocdeysing an example. This end-system
device uses the OPNET standard wireless LAN MAC modebtomunicate voice or non-1P
data IERs. Start with the OPNET Standard (COTS) metiel_station_adwode model. The
wlan_station_advs a simple radio device that sends out a packet to gtmaléon specified in
thewlan_mac_intimodule using IEEE 802.11 interface. By adding an SE modirgetdace to
the OE and setting the destination address to be thia¢ glateway radio device, we have a
simple radio end-system device. Thian_station_adwode model is shown below in Figure
4-31.

SouRce sink

wlan Jhdsc_intf

wilan_port_rx0 wilan_port_tx0

Figure 4-31: wlan_station_adv-Node Model
49.2 Steps
Step 1.The source and sink modules are replaced wigeamdule:

* In a node editor window, open the wlan_station_adv noalein
* Select the mentioned modules and press CTRL-X.

Note that the packet streams connected to and from the @sodwdeleted automatically.

Step 2.The SE module is added on top of the wlan_mac_intf neoalodl is connected to it with
an incoming and outgoing packet stream:

» Left-click the create processor toolbar button.

» Left-click the area above the wlan_mac_intf module.

* Right-click the created module and name the mosiellyy modifying the module
attributes.

» Left-click the create packet stream toolbar button.

4-31

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

» Create an incoming packet stream by first left-cligkinewlan_mac_intimodule and

then thesemodule.
» Create an outgoing packet stream by first left-clickimgse module and then the
wlan_mac_intimodule.

Step 3.Because this is an end-system device, itchassification equipment_typeand
availability _statusas model attributes. Set the model attributes fominite as follows:

* Under the “Interfaces” menu, choose the “Model Att@itoption.

Set the attributes and their types shown in Table 4H8iMModel Attributes table.

Table 4-9. Radio End-System Device-Model Attributes

Attribute Name ‘ Attribute Type
classification String
equipment_type Enumerated
availability status Toggle

The node model looks like Figure 4-32.

wilan_paort_pe0 wlan_port_tx0

Figure 4-32: Radio SE model-Node Model
Step 4. Thesemodule now houses the process model created in tbeving subsection:

* Right-click thesemodule and change the process model attribute to havethe of the
process model.

4-32

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

49.3 SE Process Model

The process model for this device is similar to the @rstructing a computer model process
model except that packets are sent to the lower layentlglingithout using the TCP interface.
Refer to the Process Model section of the examplednend device for more information.

4-33

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.10 WIRELESS DEVICE EXAMPLE 2
4.10.1 Problem Statement

The following discussion provides implementation-levetiglines for developing a radio end-
device NETWARS model. Relevant aspects, such as OEt&fadtion, are presented in detail;
however, other aspects of the radio itsel—such asm#dgium access control—are left out
because the details are specific to the type of rading lmeodeled.

The discussion aims to provide details for an radio enc:deliat is capable of generating both
voice and data IERs.

4.10.2 High-Level Design

4.10.21 Node Mode Development

CPU
h J k 4
L)
giry ars_ing:ma h/ mac

pt_00 pr_0 k=_0 \f 0

antennia

Figure 4-33. Radio End Device Node Model

The node model in Figure 4-33 above is a NETWARS sincganedd model and it shows a
device with two interfaces—a wired interface and a raderface. The node is also capable of
generating NETWARS IER traffic from tleemodule.

Thesemodule is responsible for generating the IER and rempthie IER receptions through
interaction with the OE in the OPFAC.

Thefwd module is responsible for performing appropriate forwardegsions—either to and
from thesemodule or to and from thmacmodule.

4-34

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Themacmodule is responsible for the medium access cotatiitle wireless interface. The
functions of this module depend on the technology agodeiti device uses. Hence, the
implementation details for this module are not discussed.

4.10.3 fwd module: Detailed Design

4.10.3.1 Module Context and Functionality

This module is responsible for handling the packets thiataeither from the se module (which
generates the traffic) or from the wired interfacéhis device. The se module is responsible for
generating the traffic. The fwd module is an interfgamodule between the mac and the
se/wired_mac module. Based on the packets received ftben ef these modules, it determines
the destination module and forwards it on. It is neargs® provide any required encapsulation
or decapsulation so that the packet format of the packie¢ one supported at the destined
module.

4.10.3.2 Events
There are three different events that can happdnsatnbdule. They are:

* Receive packet from SE
* Receive packet from INC (wired interface)
* Receive packet from the MAC (radio mac).

4.10.3.3 States

Based on the packet this module receives, it forwatdslite relevant destination module and
waits for the arrival of the next packet. Thus, the el state this module can be in is WMait
state, although there can be a few transitory staiesidule can go to, where it performs the
forwarding functions.

4.10.34 Event Response Table

The detailed design approach followed in this subsectigerissimilar to that followed in the
wired end device code example (see Subsection 4.3).

4-35

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table 4-10: Event Response Table for “fwd” Process

Current State Logical Event Condition Action Next State
Init Simulation start Perform Wait
initialization

steps, initialize
state variables.

Packet arrived Forward packet Wait
from se or to the mac
. 38
Wait Packet arrival wired_mac module
Packet arrived If packet is Wait
from mac designated to se,
send the packet
to se.
Otherwise,

forward the
packet to the
wired_mac
interface.

__~—INC_SE_PK_RCV

- —

2
!
[FFEEIM_INI:_SEI]I.F

- OM_MAC]
™

i
!
I

Figure 4-34: fwd Module Process Model

% Note that this is an example—in this node, packets fromitieel interface are just forwarded to the wireless fater.
Equivalently, we could consider forwarding the packets t63E8 module,or some split in between based on other logic
considerations.

4-36

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.10.3.5 Implementation Details
Init State Implementation:

In this state, the radio availability is set to enabitis not a part of any broadcast network, and
other state variables are also initialized, includingothwer, fec-comsec, and the module ids like
themacmodule id and theemodule id.

MAC_PK_RCYV State Implementation:

The execution reaches this state when the fwd modcdgvies a packet from the mac layer.

In this state, we are receiving the packet from the angr| Depending on the destination of the
packet, the packet is sent to the transmitter or the se.

op_pk_nfd_get (pkt, "packet type", &packet_typel;
if (packet_twpe = PACKET_FROM_INC]

A¥ it's a ip dgram, send it to the inc. /7

¥ Decapuslate and get the ip_dgram_w4 packet. */
op_pk_ntd_get (pkt, "data', &out_pktl;

op_pk_send (out_pkt, strm_tCo_sincgars_inc_macl;
op_pk_destroy (pktl;

1
else it (packet_type = PACKET_FROM_SE]

{
op_pk_send [(pkt, strm_to_se];
1

INC_SE PK_RCV State Implementation:

The execution reaches this state if the fwd moduleves& packet from either tesemodule or
the INC device connected to the radio.

In this state, packets are received from either thedNtbesemodule. If the packet is from the
INC, then it is an ip_dgram_v4 format, and needs to be enledpd and a radio_packet created
to forward to themac If the packet is from theemodule, then it is already in tihedio _packet
format and can be sent to tmac

Please note that in the following piece of code, Hi® parameter structure is reallocated, and
some of the information is populated. This is done to erssgmrect IER statistics update. In
the case of a radio transmission device, the furgtidmeliable transmission control protocol
(e.g., TCP) are not implemented; therefore, if andfagram is lost, it basically means the
failure of the IER. Therefore, if, during the radionsanission, a packet is marked as “noise,”
this means the associated IER has failed and needsepdnted. The memory associated with
IER parameters must be freed at the receiving end or lel&R is marked failed.

4-37

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

op_pk_Tormat (pkt, formatl;
it (stromp [(format,"ip_dogram_w4'"1 == 0]

A% Receiwve packet Trom Inc. *f

/¥ Encapsulate the packet to radio_packet. */
op_pk_nfd_access (pkt, "fields", adgram_ptrl;
data_size = op_pk_total_size_get(pkt];
out_pkt = op_pk_create_fint (“radio_packet'];

ierp = nw_oe_ier_create [];

A% 0nly data can be coming from the Inc. *f
strepy (ierp->ier_desc, "DaTa''l;
A% tos is the priaority lewel of an IER. *f
priority = get_precedence_str [(dgram_ptr->tos];
it [priority]

strncpy [ierp-=ier_priority, priarity, &47;

/¥ The rest of the IER information is not needed for the radio to proceed, so
S just initialize it to 0 or null string. *=/f
ierp-=thread_id = OPC_HWIL;

ierp-=thread_start_time = 0;

ierp-=thread_src_platform = 0;

pid = op_pk_id (pktl;

A% Set the id to the packet id for debugging purpose. *f
sprintt [(temp_name, OPC_FPAZKET_ID_FMT, pidl:

strncpy (ierp-=ier_id, temp_name, &47;

ierp-=ier_class = 0;

ierp-=ier_perish = 0;

ierp-=ier_src_platform = 0;

S¥ der_start_time is set to current time for debugging purpose */
ierp-=ier_start_time = op_sim_time [1;

ierp-=ier_equipment = 0}

A% Encapulate the ip_dgram to the radio_packet in data field. *f

op_pk_nfd_set (out_pkt, "data", pktl;

op_pk_nfd_set(out_pkt, "IER', ierp, nw_oe_ier_copy,

mw_oe_djer_destroy, sizeof (IER_Parameters]]:

op_pk_nfd_set ({out_pkt, "packet type", PACKET_FROM_INC];

op_pk_nfd_set [out_pkt, “"destination', NwbI_To_aAll_Destinationl;

ifllsincgars_is_routing_pkt (dgram_ptrl)]
op_pk_total_size_set(out_pkt, data_sizel;

else

{
A% Trom SE. ®F
out_pkt = pkt;
1

op_pk_send_delayed (out_pkt, strm_to_mac, fec_comsec];
1

4.10.4 mac Module

No specific MAC is detailed here because the mediumsaamentrol for the broadcast medium
is specific to the type of radio being modeled. Typichksses might be TDMA or Frequency
Division Multiple Access (FDMA), for example, to providecess to the shared broadcast
medium. The NETWARS model suite has radio models gyg#tific MAC implementations;
please refer to SINCGARS and EPLRS as example radios.

The MAC module should essentially guarantee that thkgpgarriving from the “fwd” module
(in the example node above) are sent over the wgddeoadcast medium using an access control
mechanism.

4-38

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.10.5 se Module

4.105.1 Module Context and Functionality

Thesemodule is responsible for generating traffic basechenrtformation received fro@E.
This module also acts as the traffic destinationifd)sAll the traffic destined for a particular
device reaches tremodule, which writes the IER statistics.

The two modules with which se interfaces are oe antbtisarding module (shown in Figure
4-35.)

OE Mode End Devce Mode
: L i
I | Operational ! '] System Forwarding I
| | Element (oe) <———> Element <———> Module !
I I 1| (se) e
| ! ! |

Figure 4-35: SE Module Interfaces

4.105.2 Events

Two events can occur at this module:

» Packet arrival from the forwarding module. This packgtifies the reception of the IER
for which this device is destined.
* Reception of information from theE to start a new IER.

4.10.5.3 States

The only true state this module can be in isWrat state, in which the module’s process model
executes after processing either of the above-memntievents. However, there can be two
transitory states where the processes execute to ipatiernecessary functions based on the
events.

4.10.5.4 Event Response Table

Table 4-11: Event Response Table for Radio SE Module

Current State Logical Event Condition Next State
Init Simulation start None Perform initialization. Wait
Wait Remote interrupt | None Generate IER, send IER Wait
out to “fwd” module.
Stream interrupt None Process incoming packet. | Wait
Inform OE, which records
the IER statistics.

4-39

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.10.5.5 Radio SE Process Modd

|
|
[INEDMING_PK]
|

F'F!EIE_F'IT

Figure 4-36: Radio SE Process Model

Transitory
» States

4.10.5.6 Implementation Details

Init State Implementation:

In this state, some of the state variables, includieghtide id, process id, and oe id for the
OPFAC are set.

S* Determine object I0s af self, RT and platform =/
my_id = op_id_self(l;
my_nd_id = op_topa_parent{my_id]l;
my_platform_id = aop_topo_parent(mn_nd_idl;
A¥ Inmitialize Tlags and get the walue of the trace attribute *F
A* use the globally defined trace flags */
A% in combination with the node speciftic Tlag every time a message is to be printed. =
read_local_Tlags(my_id, nw_nd_id, mv_platTorm_id,
Liynet, &mynode, pTname, nodename, procrnamel;

A Initialize to idle =/
call_in_progress = 0;

A*¥ get object ID of OE */
oe_nd_id = nw_oe_Tindmy_platform_id);

if (oe_nd_id '= OPC_OEBEIID_INWALIO])
oe_id = op_id_from_name(oe_nd_id, OPC_OEBITYFE_PROCZ, "OE'"];
else

S* Flag a message to user about missing OE *f
op_sim_message [''Unable to find OE in the OFFACZ, IERs from this OFFAZ will be igno

4-40

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Gen_Call State Implementation:

Figure 4-37: Gen_Call State

The control reaches this state if the se receivesiate interrupt from the OE:

#define OE_INT [(intrpt = OPC_INTRFT_REMOTE]

First retrieve the IER parameters from the ICI asgedi with the remote interrupt. Make sure
that the interrupt code used by the OE is “OE_SE_IER_SENDEn determine whether the
IER to be generated is a “voice” or a “data” IER.

code = op_intrpt_code(];

A* remote interrupts are receiwed from the OE */
S* aet the interrupt code =7

S* the code should tell us what to do *=f

it (code = OE_SE_IER_SEND)

oe_ici = op_intrpt_ici(];
op_ici_attr_get(oe_ici, "ier_parameters_ptr', &ierpl;

If the IER to be generated is of type “voice,” then—

1. Create the packet—set the fields on the packet, suctsaasad®n radio ID, flag to
indicate that the IER was generated by a radio devices@iforth.

2. Set the radio as “being busy” for the duration of thé Ealr the radio, “being busy” can
be set by marking the radio as “not availatfe.”

3. Send the packet out to the “fwd” module.

%9 The “being busy” flag may be reset after the calbimplete to signal to the OE that the radio is avail@iléuture IER

generation. The reset may be performed, for example, bynéde® module—after the call is complete. The attributbeo
reset for availability is a node-level attribute—"avhilay_status.”

4-41

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

it (' _strompi(ierp-=ier_desc, "WOICE'"])]

it ('call_in_progress)

1

S% make a copy of the IER paramaters */
ier_copy = nmw_oe_ijer_copy (ierp, sizeof (IER_Parameters]l;

S¥ Generate woice packet /7
pkt = op_pk_create_fmt("radio_packet"];
op_pk_nfd_set (pkt, "packet type', PACKET_FROM_SE];

S% set destination address information and precedence in packet =7
op_pk_nfd_set(pkt, "IER", ier_copy,

nw_oe_ier_copy,

mw_oe_ier_destroy,

sizeof (IER_Farameters]l;
op_pk_nfd_set (pkt, "destination'", dest_pT_addr);

S* Stamp woice packet for statistic reports %/
op_pk_stamp(pkt);

S% send woice packet *f
op_pk_send(pkt, MOD_PROC_OUT);

call_in_progress = 1;

current_frsino = jerp->fr_serial_number;
op_ima_obj_attr_set (my_nd_id, "awvailability_status'", 0J;

op_intrpt_schedule_callfop_sim_time() + ierp-=ier_size, 0, call_status_reset, 0];

If the IER is of type “data,” then—

1.

2.
3.

Create the packet—set the fields on the packet, suctsaisad®n radio ID, flag to
indicate that the IER was generated by a radio devices@iforth.

Set the size of the packet in bits to the IER sizecatdd.

Send the packet out to the “fwd” module.

else i [!_strocmpi(ierp-=ier_desc, "0aTA"]]

J* make a copy of the IER paramaters %/
ier_copy = nw oe_ier_copy (ierp, sizeof (IER_FParameters)];

J¥ Generate data packet ®f

pkt = op_pk_create_fmt("radio_packet"];
op_pk_nfd_set (pkt, "packet type', PACKET_FROM_SE];

S* set destination address information and precedence in packet =7

op_pk_nfd_set(pkt, "IER", ier_copy, HwW_oe_ier_copy,
mw_oe_djer_destroy, sizeof (IER_Farameters]l;

op_pk_nfd_set (pkt, "destination', dest_pf_addr];

A* Set size of data packet */

op_pk_total_size_set(pkt, ierp-=ier_size * 8],

¥ Stamp data packet for statistic reports */
op_pk_stamp(pktl;

A% Zend data packet *f
op_pk_send(pkt, MOD_FROZ_OUT];

4-42

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Note here that if the IER is to be “multicast” to mahan one destination, then the destination
list should be filled when the IER is creaf@d:his destination list should be checked when

processing the IER at the reception end.

Proc_Pk State Implementation:

|
|
!INEDMING_F‘K]
|

PROC_PE

Figure 4-38: Proc_Pk State

The execution reaches this state when the radio end decEees an IER (stream interrupt).

The following factors are to be considered:

1. Determine whether this radio is an intended recipétie IER.

2. Process the received IER, and send interrupt to the @t ®PFAC about the
received IER. The remote interrupt to the OE shouidain the code =
NWC_INFORM_SRC_OE_RCVD. The interrupt should also haviChmassociated
with it (of format “oe_se”) containing information of¢hER received.

40" This function is performed by the OE.

4-43

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

A% dinform OE of arriwing IER */7
pkt = op_pk_get (op_intrpt_strm (J0;

A*oget source jer ¥/
op_pk_nfd_getipkt, "IER", &ierpl;

if [(stromp (ierp-=ier_id, Nw _app_TER_IDO) 1= 0]
{
/¥ Receiwed an IER packet. Infarm the 0OE. */
S we do not need to do this for application calls. *=F
S Get the consumer index. *F
cons_idx = nw_consumer_index_get [ierp, pfnamel;
if (cans_id« == 0]

A* inform the oe *f
ce_ici = op_ici_create("oe_se'"7;

A% Make a copy of the IER parameters. */
copy_ier_ptr = rw_oe_ier_copy (ierp, sizeof [IER_Farameters]l;
op_ici_attr_set(oe_jici, "ier_parameters_ptr', copy_ier_ptrl;
op_ici_attr_set(oe_ici, "consumer_id=", cons_jid=];
op_ici_installfoe_icil;
op_intrpt_force_remote (MWW _INFORM_SRC_OE_RCWD, ierp-=ier_src_oe_idl;
1

else

S¥ An application call has completed. =/
it Cop_prg_odb_ltrace_actiwve (["ckisw_app'"l = OPC_TRUE]

op_prg_odb_print_major ("destination se_sincgars: application call completed."", PRGC_WNIL];
1
1
mw_oe_ier_destroy [ierpl;

S¥ Discard incoming woice packet */
op_pk_destroy Cpktl;

4.10.5.7 ICl and Packet Formats

Relevant ICI and packet formats are as follows:

1. “oe_se” ICl is used for interaction between the OE @Ednodules.

2. A new packet format for the IER is to be generated byakio. This packet format
has packet format fields for the IER information,agfto indicate that the packet is
from a radio SE, and so forth. For example, the SINRG radio creates a packet of
format “radio_packet.”

4.10.6 Addressing and Other Issues

For radio devices that have IP devices attached to tagm (he wired interface in the radio
above may have an IP device such as a router attazht@¢datoaddressing modifications are
necessary. Please refer to the discussion on autositddresanges in Appendix W for further

details.
4.10.7 Optimization and Efficiency Considerations

Some high-level efficiency considerations include—

» For the radio model, dynamic receiver groups are an mgaiation option to modify the
list of potential receivers during the course of a sitmuta

4-44

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

411 SATELLITE TERMINAL GENERIC EXAMPLE
4.11.1 Node Model Contents

A generic satellite terminal, as it is termed in thatext of NETWARS, has only a direct
mapping of a wired input port of a particular index to an upiné downlink channel pair of the
same index. It does not need to contain any process nibdelsrocess packets received.

It must have a module to house the antenna aiming pradasglays an important role in
pointing a directionalized antenna at the terminal's éngatellite, and it plays a role in
simulation efficiency. This module should house the @sssat_term_antenna_aim

It must have its radio transmitter receiver pair ndfisat_tx/rx_0”, and it must have its wired
input ports named as “uplink_pt/pr_<n>* where the <n> correspinde wired input port
index and the associated uplink and downlink channel pair index.

antenna_aim

[
uplink_pt_0
(=
uplink_pt_1 uplink_pr_1
(B, {(E=)

uplink_pt_2
(it

|up|ink_|:ur_2
1 | peo

Figure 4-39: Generic Satellite Terminal
4.11.2 Core Self-Description Attributes

* Nodal Modeshould have the value “Generic.”
» Supported Bandsshould have the value “Ku,X,C,Ka.”

4.11.3 Additional Attributes

* Home Satellite (string).This attribute contains the dotted hierarchical nameeohtime
satellite node in the scenario for this satellite teat It should have the initial value
“Unspecified,” and active attributes should prevent divser modification.

* Channel <n> Function (integer).This helps the Wired Link Deployment Wizard
determine what types of links to consider during link deploynfemt theNodal Mode

4-45

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

attribute, it should always have the symbol map valuen*N8SP.” The <n> of the
attribute name corresponds to a wired port index. A separstance of this attribute
must exist for each wired input port.

Port <n> Mapping (compound). This node model must have N instances of this
attribute, where each instance corresponds to a singdd wput port. The peer satellite
terminal on the other end of the link has values thabmihose on the local device for
this attribute.

— Input Port (integer). Corresponds to a wired input port index on this satellite
terminal device instance; it should have only one possilile that equals the <n>
of the name of its parent compound attribute.

— Remote Satellite Terminal (string).ldentifies the peer satellite terminal to which
this terminal will connect via the channel index by whictomnects.

— Remote Input Port (integer).Corresponds to a wired input port index on the peer
satellite terminal. As of version 2006-2, a remote gerterminal can have up to
eight wired input ports, so this attribute must support vaides’.

Downlink <n> Bandwidth (double, kHz),
Downlink <n> Data Rate (double, bps),
Downlink <n> Frequency (double, MHz),
Uplink <n> Bandwidth (double, kHz),
Uplink <n> Data Rate (double, bps),
Uplink <n> Frequency (double, MHz),
Uplink <n> Power (double, W)

Together, these attributes define the properties of chanre The node model
should include an instance of each of these attribatesvery wired input port
channel. The user should not have the ability to direotdgify them in the Scenario
Builder editor. Only the Satellite Link Deployment Widashould assign these
attribute values. Active attribute definitions shouldyant the user from modifying
them directly.

Modulation Downlink (string),
Modulation Uplink (string)

These attributes define the modulation used for all chamiehis satellite terminal
in the uplink and downlink directions. The user should not haeebility to directly
modify them in the Scenario Builder editor. Insteauydhe Satellite Link
Deployment Wizard should assign these attributes vahets/e attribute definitions
should prevent the user from modifying them directly.

4-46

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.11.4 Antenna Aim Process

-
-

[MODE_MOVE]

Figure 4-40: Antenna Aim Process

This process serves two purposes. It repoints thiiteaterminal’'s antenna every time the
satellite moves. It also sets up simulation efficjefar satellite terminals that do not have any
process models besides this one. When running in SATCOMeeffiz mode, a simulation-level
attribute defined in theatellite_switclprocess model, each satellite has the responsibility o
establishing the receiver group of its own channels avekthf its home satellite. TSSP satellite
terminals, for example, do this in ttespprocess model, but generic satellite terminals do that i
thesat_term_antenna_aiprocess model.

4.11.5 Key Code Snippets from Antenna Aim Process

"'-.__I EEEEEEEEEEEEEEEy

(NODE_MOVE]

|
|
|
|
|
|
i
|

<IIIIIIIIIII

A5 Ant Mowe Enter Execs

A5 Point the antenna of the satterm in which this process runs at the location
S coordinates of the home satellite.

op_ima_ohj_attr_get (sv_sat_id, "Tongitude", &sv_lon);
op_ima_ohj_attr_get (sv_sat_id, "latitude", &swv_lat);
op_ima_obj_attr_get {sv_sat_i1d, "altitude", &sv_alt);

op_ima_obi_attr_set {sv_ant_id, "target Tatitude", sv_lat);
op_ima_ohj_attr_set (sv_ant_id, "taraget Tongitude", sv_lon);
op_ima_ohj_attr_set (sv_ant_id, "target altitude", sw_alt);

it ({op_pro_odb_ltrace_actiwve ("sat_term_antenna_aim"))
op_prg_odb_print_minor ("', GPC_MWIL);

printt ("'Antenna aimed at lat=%1f, lon=%1f, alt=%1f“n", sv_lat, sv_lon, sv_alt);
op_prg_odb_bkpt ("sat_term_antenna_aim');

4-47

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

This code executes when the kernel notifies the prodemsswement on the part of the home
satellite device of the satellite terminal via the OFNdrnel procedure
op_ima_obj_pos_natification_register ().

4.....

A4 uplink channel

A4 Build Tists of receiwer channels on satellite to include 1n the rxgroups
A4 of the satterm transmitter channels.
if (freq == bypass_ul_freguency)

1

op_ima_nhi_attr_get (row_attr_id, "Transponder', transp_name];
op_ima_obi_attr_get (row_attr_id, "Channel"”, &chnl_1dx);
sat_rx_id = op_i1d_from_name (sv_sat_id, OPC_OBITYPE_REARX, transp_name);
if (OPC_OBITYPE_IMvALID != sat_rx_id)

{

op_ima_obj_attr_get (sat_rx_id, "channel", &chnl_id);

chnl_row_id = op_topo_child {chnl_1d, OPC_OBIT¥FE_RARXCH, chnl_idx);
rx_group_set [r=_group_set_size] = chnl_row_id;

re_group_set_size++;

1t {op_pro_odb_ltrace_actiwe ("sat_term_antenna_aim'))

op_prg_odb_print_minor (""", OPC_MIL);
printt ("Added ®d (¥1f MHz) to satterm rxgroup.n', {(1mt) chnl_row_id, freg);
op_prg_odb_bkpt ("sat_term_antenna_aim');

h
A4 downlink channel

S Aadd satterm receiwer channels to satellite transmitter channel's rxgroup.
1t (freq == bypass_dl_frequencyl
{

op_ima_obj_attr_get {row_attr_id, "Transponder', transp_namel;
op_ima_obi_attr_get (row_attr_id, "Channel"”, &chnl_idx);

sat_tx_id = op_1d_from_name (sv_sat_id, OPC_OBITYPE_EATX, transp_name];
1f (OPC_OBITYPE_IMNWALID |= sat_rx_1d)

{
op_ima_obij_attr_get (sat_t=x_id, "channel", &chnl_id);

sat_chnl_row_id = op_topo_child (chnl_id, OPC_OBITYPE_EATXCH, chnl_id<);

op_ima_obj_attr_get {my_rx_id, "channel", &chnl_id);
chnl_row_id = op_topo_child {chnl_id, OPC_OBIT¥FE_RARXCH, 33;:

op_radio_txch_r=ch_add (sat_chnl_row_id, chnl_row_id);
1t {op_pro_odb_ltrace_actiwe ("sat_term_antenna_aim'))
1
op_prg_odb_print_minor (""", OPC_MIL);

printt ("Added ®d (¥1f MHz) to satellite r=grouphn', {(imt) chnl_row_id, freg);
op_prg_odb_bkpt ("sat_term_antenna_aim');

This code executes at simulation startup if the simariatins with the6sATCOM Efficiency
Modeset to “Enabled.” It configures its uplink channels’ rxgroapd its home satellite’s
downlink transponders channels’ rxgroups.

4-48

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.12 SATELLITE TERMINAL WITH TSSPEXAMPLE
4.12.1 Overview

TSSP serves as a multiplexing scheme used in Super Highdhey (SHF) satellite systems. It
performs multiplexing and de-multiplexing at the sateliiik endpoints on the terminals. TSSP
employs the concept of a nodal terminal versus a ndairterminal. A non-nodal terminal
simply has one uplink channel for its multiplexed tafbr transmission and a single downlink
channel for receiving multiplexed traffic that it decodes #orwards to its wired input ports. A
nodal terminal has one uplink signal that it transmith @il of its multiplexed traffic; however,
it can support multiple downlink channels where each downlinkradacan carry a different
multiplexed signal. For more information about TS&& aodal versus non-nodal, consult
Chairman of the Joint Chiefs of Staff Manual (CJCSM) 6&3d Military Standard (MIL-STD)-
188-168.

4.12.2 Node Model Contents

A non-nodal TSSP satellite terminal has two wired ingarts on the landline side, but the model
can accommodate up to eight for those who would likeddahit in that manner. Each wired
transmitter/receiver pair must have the naming fornmgiut_pt/pr_<n>" where <n> represents
the port index. It has exactly one radio interface@a “sat_tx/rx_0” that has a single uplink and
a single downlink channel. The uplink channel carries thgoang multiplexed signal, while the
downlink channel receives the incoming multiplexed signdlth® interfaces connect to the
central processing unit, the module named “tssp.” This faqukrforms the multiplexing of the
outgoing bitstream and the demultiplexing of the incomingtigiam. Lastly, it has a module
named “antenna_aim” that aims the device’s directianggnna at the home satellite.

A nodal TSSP satellite has the same properties asntsiodal counterpart with two exceptions.
It must have exactly eight inputs, no more and no leséso can support up to four incoming
bitstreams to demultiplex, which means it has four downli@naels rather than just one.

To develop second- and third-generation TSSP models, singpgase the number of wired
input ports to 12, increase the nodal terminal’'s number whtiok de-multiplexing channels,
and make the appropriate data rate values supported omattneet attributes. The subsections
below discuss attributes. Their values have a grehbfl@apact on how the model behaves.

4-49

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

ML

h

|n|:uut pr 0 { zat_m 0 zat_tw 0

|n|:uut pr_1 /n [antenna_0 antenna_aim

Input A

Input B

Input ——DEMU Group O
|nput pr_. 2 DEMUX Sroup 1
DEMLU: Group 2
Input D 7 DEMU: Group 3
|n|:uut pr_a
Input E

input_ ir 4 /

Input F

IhpLt_pi
Input & i

|n|:uut pi_ E |n|:uut pt_E
Input H

|n|:|ut pr_7 mput pt_7

Figure 4-41: TSSP Satellite Terminal
4.12.3 Core Self-Description Attributes
Nodal modeshould have the following values under the following diooaks:

* “Non-Nodal TSSP” for first-generation non-nodal terntsna

* “Nodal TSSP” for first-generation nodal terminals

* “Non-Nodal ETSSP” for second-generation (enhanced) tetsnina
* “Nodal ETSSP” for second-generation (enhanced) terminals

* “Non-Nodal ETSSP G3” for third-generation non-nodal terisina
* “Nodal ETSSP G3” for third-generation nodal terminals.

Supported bandshould have the value “Ku,X,C,Ka”.
4.12.4 Additional Attributes

The TSSP module contains several attributes, but hovgegttine values of some affects which
others the model reads during simulation.

* Nodal Mode.This attribute plays a pivotal role in how the proaessls other attributes.
This attribute should have the same value as specifig kodal ModeCore Self.

» Description attribute. The node should always have this attribute promotedarset,
hidden. It should have these values under the followingmistances.

4-50

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

— “Non-Nodal TSSP” for first-generation non-nodal ternténa

— “Nodal TSSP” for first-generation nodal terminals

— “Non-Nodal ETSSP” for second-generation (enhanced) tefsnina
— “Nodal ETSSP” for second-generation (enhanced) terminals

— “Non-Nodal ETSSP G3” for third-generation non-nodal terigina
— “Nodal ETSSP G3” for third-generation nodal terminals.

* Home Satellite (string).This attribute contains the dotted hierarchical nameeohttme
satellite node in the scenario for this satellite teat It should have the initial value
“Unspecified,” and active attributes should prevent divsetr modification.

* Modulation Downlink (string),
Modulation Uplink (string)

These attributes define the modulation used for all chamriehis satellite terminal in
the uplink and downlink directions. The user should not haxvability to directly
modify them in the Scenario Builder editor. Insteaty dhe Satellite Link Deployment
Wizard should assign these attributes values. Activibati definitions should prevent
the user from modifying them directly.

4.12.5 Node Model Specific Configuration

41251 General

Each node model that represents a particular genegtdnodal or non-nodal implementation
requires some attribute characterization. This suiosedescribes that for each type of terminal.

Each TSSP node model additionally has two compound s that must be uniquely
configured for each type of TSSP satellite termi@dannel ConfigandGroups Memberships
Channel Confighas the attributes that characterize a channelGamgp Membershipbas the
attributes that define TSSP group configurations, alsoregféo as TSSP circuits.

Make these modifications in OPNET Modeler's or ODKIgde Model editor. The default
attributes’ symbol maps must have the value “Unset.” &@@Builder’'s Satellite Link
Deployment Wizard expects to find these attributesostitet symbol map value “Unset”
initially. It also expects these attributes to havedbrrect number of rows. Each row
corresponds to the index of an aggregate side radio chamaelinput side wired port.

Refer to the Figure 4-42 below for an example of how tdigare these attributes of a nodal
TSSP satellite terminal.

4-51

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

:ﬁNude Model: sat_term_etssp_nodal

E dit | Inteifaces Objects Windows

Help

e |

Mode Interfaces

todel Attributes l =

E— ﬂNode Interfaces: sat_ter
> —

i Comments

Description

This node model implements

It conforms to the standards:

ﬁAﬂrihute: Channel Config
" [rata type — — Attibute properties

compound

— Symbol rap

& Private " Public e

ﬁAﬂrihute: Group Memberships

[rata type —

— Attribute properties
1% Prvate Public

Saye Hulilic ‘

Load Public...

Attrbute Mame | Status
E
Group Membershi E

Llnset

| [ritial Yalue Bename/Merge. .
Hpget Edit Properties...

Syrmbol | Gtatus — Symbal map | Drefault value

Ports Unset I8 Symbiol | Stahid | ('Jnss‘l v lnherit
gg,,,, ot Mot Applicable |nhent [...] Unsst ey i

roup Inp Mot Applicable inherit [] :
1 MU /eI ‘ | ¥ lnhet

1 MUK channe! e

4 deMUK channels IR

TSSP circuit definition &l
Protocols
______________ o artive attribute Handlers:
ETSSP tssp_active_attribute_handler
tesp_disallow_edit click_handler
References ¥ Ao other valies v = tosp_disallow_new_value_handler
P u R symbok I I: - _ ***This atribute only appliss to node
et Move Lip | Move Down Hew symbol I : models with the following nodal
ETSSP b e
Mawe Up Mowe Do Dielete .
SATCOM ETS Handlers... I | | B Inherit
Satelite
ET§ Handlers... 0k Cance|
ML j satellite _J —I _I
— AltribLtes.

Figure 4-42: Configuration-TSSP Nodal Terminals

Example Configuration: TSSP Nodal Terminals

Channel Config | Downlink (compound)

This should have exactly four rows. Each row correspandsdeMUX group.

—#|(Channel Config) Table

Aittribute ‘ Walue =]

Liplink (]

Diowrlink: L]

—#|(Downlink) Table
deMLiX Giroup (shoul...| debfLi D ata Rate [b.. deMUX Frequency (... | debU Bandwidth (kHz)
i 1544 Kbps 10 100,000
1 1544 Kbps 1.0 100,000
z 1544 Kbps 1.0 100,000
E 1544 Kbps 10 100,000
_. q

4[Mod.. Rows [ElEtE | Irizert Diplicate I Tovelly | [l Eve Bawn |

il

[Ietais | Eramte |

LCancel

Figure 4-43: Each Row Corresponding to deMUX Group

4-52

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Group Configuration (compound)

This should have exactly eight rows. Each row corregpom an input port group.

i"](Group Memberzhips) Table [x]
Circuit M ame ‘ Input Port | detdLlx Group | Fiemate ML [dott...| Femaote Input Paort | Fiole =
Unspecified A finput_pt_01] DEMUE Group O Unspecified A finput_pt_01] Unzet
Unspecified B [input_pt_1] DEMUK Group O Unspecified A finput_pt_01] Unzet
Unspecified C [input_pt_2] DEMUE Group O Unspecified A finput_pt_01] Unzet
Unspecified [[input_pt_3] DEMUK Group O Unspecified A finput_pt_01] Unzet
Unspecified E [input_pt_4] DEMUE Group O Unspecified A finput_pt_01] Unzet
Unspecified F [input_pt_5] DEMUE Group O Unspecified A finput_pt_01] Unzet
Unspecified G [input_pt_£] DEMUE Group O Unspecified A finput_pt_01] Unzet
Unspecified H [input_pt_7] DEMUE Group O Unspecified A finput_pt_01] Unzet =
ot ol
’m Rows LelEte | Irzert [uplicate ave g [mve Davr |
etz | Eramote | (]9 I LCancel |

Figure 4-44: Each Row Corresponding to Input Port Group.

Table 4-12: Event Response Table for Radio SE Module

Configuration ‘ Attribute Settings

TSSP Nodal Terminals Channel Config | Downlink (compound)

This should have exactly four rows.

Each row corresponds to a deMUX group.
Group Configuration (compound)

This should have exactly eight rows.

Each row corresponds to an input port group.
TSSP Non-Nodal Terminals (8 Channel Config | Downlink (compound)
Inputs) This should have exactly one row.

The row corresponds to the single available deMUX group.
Group Configuration (compound)

This should have exactly eight rows.

Each row corresponds to an input port group.
ETSSP Nodal Terminals Channel Config | Downlink (compound)

This should have exactly six rows.

Each row corresponds to a deMUX group.
Group Configuration (compound)

This should have exactly twelve rows.

Each row corresponds to an input port group.
ETSSP Non-Nodal Terminals w/ 8 | Channel Config | Downlink (compound)
Inputs This should have exactly one row.

The row corresponds to the single available deMUX group.
Group Configuration (compound)

This should have exactly 12 rows.

Each row corresponds to an input port group.

4-53

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Configuration
ETSSP 3G Nodal Terminals

Attribute Settings

Channel Config | Downlink (compound)

This should have exactly six rows.

Each row corresponds to a deMUX group.
Group Configuration (compound)

This should have exactly 12 rows.

Each row corresponds to an input port group.

ETSSP 3G Non-Nodal Terminals
w/ 8 Inputs

Channel Config | Downlink (compound)
This should have exactly one row.

The row corresponds to the single available deMUX group.

Group Configuration (compound)
This should have exactly 12 rows.
Each row corresponds to an input port group.

All Non-Nodal Terminals w/ 2
Inputs

Channel Config | Downlink (compound)
This should have exactly one row.

The row corresponds to the single available deMUX group.

Group Configuration (compound)
This should have exactly two rows.
Each row corresponds to an input port group.

4-54

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.12.6 TSSP Process

| y nt
| (GEMERATE_WOTCE_PK) |

ZFain
1

1
[EFFICIENCY)

,
[deFault) “._\ ,FE 7

froiceStatUip

Z1/0

Figure 4-45: TSSP Process Model

Table 4-13: Events of TSSP Process Model

Current State ‘ Event ‘ Condition

Init Simulation None Perform initialization Idle
start
Idle Self Interrupt code = Set rxgroups of terminal | SatEff
Interrupt TsspC_Intrpt_SatEf | and satellite channels
f
SatEff O None None Idle
Idle Stream Interrupt stream Place incoming packet in | Queue
Interrupt from an input port correct transmission
gueue
Queue O None None Idle
Idle Self Interrupt code = Construct frame with Xmt
Interrupt TsspC_Intrpt_Send | payload of transmission
Frame gueues and send
Xmt O None None Idle

4-55

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Current State Event Condition Action A2
State
Idle Stream Interrupt stream Deconstruct the deMUX
Interrupt from an radio incoming frame, extract
(satellite) port payload, and forward it
to appropriate inputs
deMUX O None None Idle
Idle Fail None Flush queues, cancel all | Failed
Interrupt scheduled frame
transmissions
Failed Recover None Schedule next frame Idle
Interrupt transmission
Failed Stream None Destroy incoming packet | Failed
Interrupt

4-56

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.12.7 Key Code Snippets from TSSP Process

Xmt Enter Execs:

-

HEJSEND_FHﬂME]

-

A Canstruct a TSSP frame and transmit it 1n efficiency mode.
else 1T (have_data_to_send &8 sv_efficiency_mode_enahled)

A5 If I hawe efficiency mode turned on, then I won't build the T33P frame
A4 as detailed. This will use far fewer packets {OPMET packets) and sawe
A me a lot of processing time. In thise mode, I'11 just place all the hits
A of an entire T33P major frame for one input in a single packet field.

A5 Input A's data will go into packet f1eld ¥, Input E's data will go into
A packet field *+1. Input C's data will go into field *+2, and so forth.

major_frame_pkptr = op_pk_create_fmt {"tssp_frame");

A4 Iterate through each of the inputs and insert data into the TSSP frame
A that I'11 send.
for (i = 0; 1 ¢ sv_num_inputs; 1++)

it (Isw_input_port [1].actiwve ||
0 »= op_sar_bhuf_size (swv_input_port [1].segbuf_hndl))
1
cormti nue;

h
hawve_data_to_send = OPC_TEUE;

A Calculate the number of bits to put into a single minor frame for

A this Input.

seQ_s51Ze =
sv_input_port [].num_bits_subf_1 + A5 # bits subframe 1
Csw_input_port [1].num_bits_subf_2_to_5 * 43; /¢ # bits subframes 2-5

A5owe have 60 minor frames in a single T55P frame, so multiply the
A4 number of bits for one frame by that.
SE]_S1ZE = Sseg_size ¥ R0;

A4 Get a segement from this Input's SAR buffer.
seq_pkptr = op_sar_srchuf_seg_remove (sv_input_port [1].segbuf_hndl,
seg_size)d;

A Insert that segment into the T55P frame. Also, I'11 offset the
A4 packet field index by 10 to avoild conflicting with the formatted
A fields.

pkt_fd_idx = 1 + 10;

fd_size = seg_size;

op_pk_fd_set_pkt (major_frame_pkptr, pkt_fd_id«, seg_pkptr, fd_size);

This code snippet shows how the TSSP process construicgsnies in efficiency mode. It
places data from each input port into a slot index reddnueonly one input port. In efficiency
mode, each frame slot holds all the data of a TSSRefraith respect to one input port. In

4-57

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

regular mode, the TSSP frame has many slots of snsakeispread out across the entire frame
for each input.

deMUX Enter Execs:

S Extract the contents of the reciewed TsSsP frame in efficiency mode
else iT (lignaore_this_frame && sv_efficiency_mode_enabled)
{

for (1 =03 1 < sw_num_inputs; i++]

if (sv_input_port [i].active &
swv_input_port [1].demux_group = demu=_1id=]

A4 Determine the packet field index of this remote MUx's data
S for this remote Input. HNote that in efficiency mode, it

A has an offset of 10 to avoid conflict with the standard mode
4 packet fields.

pkt_fd_idx = swv_input_port [i].neighbor_port + 103

A2 0nly continue with this iteration of the loop if the part
S of the Tssp frame for this input has some data in it to

S4 send fo this input.

it (lop_pk_fd_is_set (major_frame_pkptr, pkt_fd_id=3)

continue;

op_pk_Td_get_pkt (major_frame_pkptr, pkt_fd_idx, a&seg_pkptr);

S Print some trace information.
it (op_prg_odb_ltrace_actiwe ("tssp'"J)

op_prg_odb_print_minor ("', WULLJ;

printf ("'[deMUx] extracting packet %d of slot %d (efficiency model™n",
(intl) op_pk_id (seg_pkptrl), pkt_fd_id=];

op_sar_rsmbuf_seg_insert (sv_input_port [1].rsmbuf_hndl, seg_pkptrl;
seg_pkptr = NULL;

S8 Check the reassembly buffer for fully reassembled packets.
while (NULL !'= [(grp_input_pkptr = op_sar_rsmbuf_pk_remove (swv_input_port [1].rsmbut_hndl133)
{

A4 Print some trace information.
if (op_prg_odb_ltrace_actiwve ("tssp'"l)
op_prg_odb_print_minor (", NULLJ;
printf ('"[deMux] sending packet #d to input #d (efficiency madelsn",
(int) op_pk_id Cgrp_input_pkptrl, il;
op_prg_odb_bkpt ("tssp'l;
ap_prg_odb_bkpt ("tssp_demu="7;
1

A4 Check the packet format and deal with circuift switch packets if the dewice is a multiplexer
op_pk_format{grp_input_pkptr, pk_formatl;
if (Istrcmp (pk_format, CIRCUIT_SWITCH_PACKET) || !'strcmp ([(pk_format, ISON_CKESwW_PACKET))
A4 Handle woice packets here before sending out
tssp_handle_wvoice_packets (grp_input_pkptr, 1il;
1
if (tstromp (pk_format, “dummn_woice_pk" 30
ap_pk_destroy [grp_input_pkptrl;
1
else

A4 send the packet
op_pk_send (grp_input_pkptr, sw_input_port [i].strm_tol;
1

4-58

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

This code snippet shows how the TSSP process deconsti@&&Raframe when running with
the global simulation attribufESSP Efficiency Modget to “Enabled.” Notice how particular
parts of the frame apply to different individual landlinput ports, also called group members.

4-59

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.13 SATELLITE GENERIC EXAMPLE
4.13.1 Overview

This subsection provides an example of how to createdite that can support the deployment
of bent-pipe links running through it. Creating a satellddenin NETWARS requires following
some basic conventions. Before reading this subsebgosyre to read the subsection “Building
Wireless Interfaces” in Section 3, Building NETWARS dléds.

The following subsection details what a satellite moae$t have implemented if it is to
function with Scenario Builder’s functionality, suah its Link Deployment Wizard, and is to
interoperate with other device models of the NETWARS\&ied Model Library.

4.13.2 Node Model Contents

A satellite device model must have one or more uplink andhtilmvtransponders, each with
some number of channels. Each transponder must caoriescbwn antenna module. Uplink
transponders (radio receiver modules) should follownd#maing convention
uplink_transponder_rx_<n> where <n> is an integer that identifies each uplink
transponder with a unique index. Similarly, the downlinkgpamders should follow the naming
convention downlink_transponder_tx_<n>. Each transponder’sramtghould follow the
naming convention antenna_tx/rx_<n>.

The satellite model must have éguipment_typattribute set to “Satellite.” It can discover the
possible ground terminals by checking for devices witegnpment_typset to “Satellite
terminal.”

4.13.3 Additional Attributes

At its most fundamental level, b a satellite model niaste some basic attributes that define that
model as a satellite node in NETWARS. These attribfutéiser characterize how the satellite
device handles the traffic that passes through it.

* Channel Config (compound).This compound attribute defines the properties of each
channel on the satellite device. Each row of the compottindute applies to one
channel.

— Transponder (string). Identifies the transponder on which this channel resitles
should have a locked value via active attributes thatiskee cannot modify in
Scenario Builder.

— Channel (integer).Identifies the index of this channel on the transpontshould
have a locked value via active attributes that the eesamot modify in Scenario
Builder. Together, th&ranspondeandChannelattributes provide a unique way to
identify any channel of the satellite.

— Frequency (double).Minimum frequency value assigned to this channel (MHz).

— Bandwidth (double). Bandwidth value assigned to this channel (kHz).

— Data Rate (double) Data rate value assigned to this channel (bps).

— Power (double).Transmission power assigned to this channel (W); onllicaiye to
downlink channels.

4-60

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Switching Table (compound).This compound attribute defines how the device forwards

traffic received on uplink channels to downlink channels. Eashrepresents a mapping

of an uplink channel to a downlink channel.

— Uplink Transponder (index with symbol map). Identifies the transponder of the
uplink channel to map to some other downlink transponder; itidh@ve a locked
value via active attributes that the user cannot modi§cianario Builder.

— Uplink Chnl Idx (integer). Identifies the channel index of the uplink channel to map
to some other downlink transponder; it should have a lockee wah active
attributes that the user cannot modify in ScenariddBui

— --maps to --> (string).Serves no purpose beyond visualization.

— Downlink Transponder (index with symbol map).Identifies the transponder of the
downlink channel to which the satellite forwards all icaffom the uplink channel
identified byUplink TranspondeandUplink Chnl Idx.

— Downlink Chnl Idx (integer). Identifies the channel index of the downlink channel
to which the satellite forwards all traffic from theling channel identified byplink
TranspondeandUplink Chnl Idx.

Current Number of Links (integer). This integer value represents the current number of

links deployed through this satellite. This attribute shalikhys have a value of “0”

upon instantiation of this model and an active attribatelker to prevent its direct

modification by a user.

Only Scenario Builder should update this value upon theioreahd removal of satellite
links running through the satellite.

Uplink Modulation (compound),
Downlink Modulation (compound)

The satellite process reads these attributes to deeemhiat modulation to use for each
of the uplink and downlink transponders. The satellite suwntodule maintains these two
attributes as extended attributes defined on the modalg its

Both of these compound attributes haver@ansponder Index (integeand aModulation
Scheme (string3ubattributes. The number of rows in thalink Modulationand
Downlink Modulationcompound attributes should equal the number of uplink and
downlink transponders, respectively.

4-61

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

antenna_uplink_1 e ' ownlink_transponder_tx_‘l antenna_downlink_1

zatellite_swikt

antenna_uplink_2 uplink_tranzponder_rs_2 antenna_downlink_2

antenna_downlink_3

downlink_tranzponder_ts_4 antenna_downlink_4
i the K
|Transp0nder [number should equal the br... | Modulation Scheme J
Uplink. Transponder 0 bpzk
Uplink, Trangponder 1 bpsk
Uplirk. Transponder 2 bpzk

|Transp0nder [row number should equal the br... | Modulation Scheme J
Downlink. Tranzponder 0 bpsk
Dawnlink Tranzponder 1 bRk
Dawnlink Tranzponder 2 bpsk.
Downlink, Transponder 3 bpsk
Downlink Tranzponder 4 bpgk

4 o

5 Rows | | | |

| |] I LCancel |

Figure 4-46: Uplink and Downlink Tables

4-62

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.13.4 Satellite Switch Process

[PET_ARVL)

—m,
T

 Suich |

Figure 4-47: Satellite Switch Process Model

Table 4-14: Events of Satellite Switch Process Model

Current State ez Condition Action Next State
Event
Init Simulation | None Perform initialization. Idle
start
Idle Stream None None Switch
Interrupt
Idle Failure None Flush transmission and receiver Failed
Interrupt queues
Idle Self None None Xmt
Interrupt
Switch N/A None Transmit immediately or Idle
En queue the packet in the service
gueue, which depends on the
packet switching rate having
INFINITE for its value
Xmt Self None Transmit next packet in transmit Idle
Interrupt queue
Failed Recover None None Idle
Interrupt
Failed Stream None Destroy incoming packet Failed
Interrupt
Failed Fail None None Failed
Interrupt

4-63

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Key Code Snippets from Satellite Switch Process

Init Enter Execs:

/¢ Read the switching table from the local node's attributes
op_ima_obj_attr_get {sv_module_id, "Switching Table", &comp_attr_id);
n = op_topo_child_count (comp_attr_id, OPC_OBJTYPE_GEMERIZ);
for {1 =0; 1 < n; 1++)

{

A4 Get the next row of the switching table attribute.
row_attr_id = op_topo_child (comp_attr_id, OPC_OBITYPE_GEMERIC, 1i);

A The incoming stream index from the radio receiwver object should egual

A the uplink transponder index + the channel index.

op_ima_obi_attr_get {row_attr_id, "Uplink Transponder', &sw_thl_entry.ul_transpl;
op_ima_obi_attr_get {row_attr_id, "Uplink Chnl Idx", &sw_tbhl_entry.ul_chnl);

A4 The outgoing stream index to the radio transmitter object should egual

A4 the downlinkg transponder index + the channel index.

op_ima_obj_attr_get (row_attr_id, "Downlink Transponder', &sw _thl_entry.dl_transp);
op_ima_obj_attr_get {row_attr_id, "Downlink Chnl Tdx", &sw_thl_entry.dl_chnl);

A4 Get the uplink incoming stream.

stropy (transp_name, "uplink_transponder_rx«_"7;

_itoa {sw _tbl_entry.ul_transp, idw_str, 103;

strcat (transp_name, idx_str);

ramod_i1d = op_id_from_name (sv_node_id, OPC_OBITYPE_RARX, transp_name);

strm_1d = op_topo_assoc {ra mod_id, OPC_TOPD_ASS0C_OUT, OPC_OEITYPE_STREM, sw_thl_entry.ul_chnll;
op_ima_obj_attr_get (strm_id, "dest stream”, &sw thl_entry.ul_strm);

A4 Get the uplink channle Ohjid.

op_ima_obj_attr_get {ra_mod_id, "channel", &chnl_id);

chnl_row_id = op_topo_child (chnl_id, OPC_OBIMTYPE_ALL, sw_thl_entry.ul_chnl);
op_ima_obi_attr_get {chnl_row_id, "min frequency", &sw_tbl_entry.ul_freq);

A aet the downlink outgoing stream.

stropy (transp_name, "downlink_transponder_tx_"J;

_itoa (sw_tbl_entry.dl_transp, id<_str, 10);

strcat (transp_name, idx_str);

ramod_id = op_id_from_name (sv_node_id, OPC_OBITYPE_RATX, transp_name);

strm_id = op_topo_assoc (ra_mod_id, OPC_TOPO_ASSOC_TWN, OPC_OBITYPE_STREM, sw_thl_entry.dl_chnl);
op_ima_obj_attr_get {strm_id, "src stream'’, &sw_thl_entry.dl_strm);

A aet the uplink channle Objqid.

op_ima_obi_attr_get {(ra_mod_1d, "channel", &chnl_i1d);

chnl_row_id = op_topo_child {chnl_id, OPC_OBIMTYPE_ALL, sw_thl_entry.dl_chnl);
op_ima_obj_attr_get {chnl_row_id, "min freguency", &sw_tbl_entry.dl_freq);

A4 The index of this switching table entry in the switching table, an array,

A4 w11l depend on two things: {1) the uplink transponder stream index and

A4 (22 the channel index.

sw_thl_idx = (sw_thl_entry.ul_transp * NUM_CHNLS_PER_TRANSP) + sw_thl_entry.ul_chnl;
if {UNSET == sv_switching_table [sw_thl_id<].ul_transp)

{
A4 Aadd this entry to the switching table.
sv_switching_table [sw_tbl_i1dx] = sw_tbhl_entry;

This code from thénit state reads th®witching Tablattribute to determine how an uplink
channel maps to a downlink channel. A two-dimensional arragegethe switching table in
such a manner that any packet received on any single ugmkeincy has a predetermined
downlink frequency on which the satellite transmits it.

4-64

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Switch Enter Execs:

[PET_ARWL)

e

v

pkptr = op_pk_get (intrpt_strm = op_intrpt_strm (J));
op_pk_stamp [pkptrl;

A Get the switching table index of this uplink channel based on the
A dincoming stream.
sw_thl_idx = sv_strm_map [intrpt_strm].sw_thl_idx;

it (0.0 = sv_processing_delay_per_Trame)
A2 I have infinite packet switching rate, so just send the packet.
pkt_size = op_pk_total_size_get ([(pkptrl;
S4 write uplink channel stats.
stat_jd« = swv_switching_table [sw_thl_id=].ul_strm;
op_stat_write (sv_ul_bps_stathndl [stat_idx], pkt_sizel:;
op_stat_write (sv_ul_bps_stathnd]l [stat_idx], 0.07;
Afowrite downlink channel stats.
stat_jd« = swv_switching_table [sw_thl_idx].dl_strm;
op_stat_write (sv_dl_bps_stathndl [stat_id=x], pkt_size);
op_stat_write (sv_dl_bps_stathnd]l [stat_idx], 0.0);

A4 Print same trace information.
if (op_prg_odb_ltrace_actiwe (('satcom']]

op_prg_odb_print_minaor ("', OPC_MIL];

printt (“[Switch] ul transp %d ch #d (%.11fMHzZ) --» packet #d --» dl trasnp

sv_switching_table [sw_thl_idx]
swv_switching_table [sw_tbl_idx]
sw_switching_table [sw_thl_idx]
Cint) op_pk_id (pkptrl,

sv_switching_table [sw_tbl_idx]
sw_switching_table [sw_thl_idx]

Wl_transp,
.ul_chnl,
.u1_freq,

.d1_transp,
.d1_chnl,

sv_switching_table [sw_thl_idx].d1_Treql:
op_prg_odb_bkpt (“satcom'];
1

ap_pk_send (pkptr, sw_strr_map [intrpt_strm].dl_strml;
I

wd ch #d (%.11fMHzIWN",

In the packet arrival state, the process reads thelsagf table to determine to which downlink
stream to forward the received uplink packet. This snippetshae process set to an infinite
switching speed, whereby it sends the packet immediapely receiving it rather than storing it
in a queue and sending it at a specified rate. The infwitelsng speed setting defines a more
realistic scenario because bent pipe links typicallyel@rcuits running through them, which
means it never needs to store and forward bits; isprstls them without waiting to detect the
trailing edge of a packet. Also, note how the interruptistrealue and the first dimension

indexes of the switching table correspond.

4-65

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.14 LINK M ODEL EXAMPLE
4.14.1 Overview

This subsection explains the construction of a link madelg an example. The example link
considered is a duplex link with two channels, each at 1 Mips link also has an additional
signaling overhead. The delay due to the signaling overhepedsfied as a model attribute.

4.14.2 Steps

Step 1:Because this is a duplex link, in the Link Types field psedtipas the supported link
type. In a new link editor window, set the link type optddupas “yes” and leave the other
options as “no.”

Step 2:In the Attributes field, specifghannel counas 2. There are two channels supporting
data rates of 1 Mbps each. Therefore, setihia rateas 2,000,000.

Step 3:0n the Link menu, choose Model Attributes. In the Metwvibute field, enter “signaling
overhead” and click Add. Thgpefor this attribute is specified as “double.”

Step 4:Save the link model.
4.14.3 Pipeline Stage: txdel

The newly created link has a model attribute cadigdaling overheadThe signaling overhead
for a packet causes a delay in the packet transmisssoaccdount for this, the transmission delay
pipeline stage must be customized.

Sample code for this customization is provided below @ is derived from
dpt_txdel.ps.c):

A Zompute transmission delay associated with a kS
S¥% packet tCransmission on a point-to-point link. TS
FIN_MT (dpt_txdel (pkptrll;

A% Obtain object id of transmitter channel Torwarding transmission.
tx_ch_obid = op_td_get_int (pkptr, OPZ_TDA_PT_T=_CH_OEJ1ID]);

A* 0Obtain the transmission rate of that channel. *f
if (op_ima_obj_attr_get (tx_ch_obid, "data rate', &tx_drate] = OPC_ZOMPCODE_FAILURE)
op_sim_end ["Erraor in point-to-point transmission delay pipeline stage [(dpt_t=del]):",
"Unable to get transmission rate from channel attribute.', OPC_NIL, OPC_MIL];

A% 0Obtain length of packet. =/
pklen = op_pk_total_size_get [(pkptr];

AF Compute TCime reguired to complete transmission of packet. *7
tx_delay = pklen / tx_drate;

A¥ Place transmission delay in packet transmission data attribute. *7F
op_td_set_dbl (pkptr, OPC_TDA_PT_Tx_DELAY, tx_delawy);

FOUT
1

Figure 4-48: Code 3-Adding Signaling Overhead to Transmissin Delay

4-66

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Please refer to the pipeline stage dpt_txdel.ps.c in tidEDrel dir>\models\ std\links folder
for more information. FIN/FOUT/FRET (FIN and FOUT arged in the sample code above) are
macros representing Function-IN, Function-OUT, and FandRETurn. OPNET recommends
that developers incorporate these macros in their dddeis useful while generating stack
traces and function profiling. Further information on tas be found in the OPNET Online
Documentation> Programmers Referene® Discrete Event Simulatio® Introduction—>

Kernel Procedure Names.

4-67

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.15 OE NODE EXAMPLE
4.15.1 Overview

This subsection explains how to build an OE model usirgxample. The OE node does not
have to be connected to other devices via links. Thus, & wotieneed to have any physical
interfaces. It contains one module that performdhelitecessary functions. The SDF file is
parsed and the IER, movement, and failure/recoverynrdtion pertaining to this OPFAC are
obtained in thénit state. Depending on what the next event is, the proeedsl transitions to
the appropriate state—movement or IER transmission.

Important: a justified change to the OE Node is rare and shoudtkénined closely, due to its
effects on the entire OPFAC. Be advised, before madjfthe OE Node it is highly suggested
that you contact the NETWARS Office to determine @rthis a better method of accomplishing
your objective. After talking with the NETWARS Offici it is still appropriate to modify the
OE Node, then be careful to make backups and have @npidace to rollback any changes you
are about to make.

The OE node model requires a single module in the node.
4.15.2 Steps
Step 1.

* Inthe node editor, click the “create processor” button.
» Click the workspace to place the processor module.

Step 2.

» Left-click the module and right-click to edit the attribsit

» Choose the “process module” attribute and changelitetprocess model name as
created below.

* Choose the “name” attribute and name the module a% “oe

4.15.3 Process Model

Step 1.The functions of the OE are defined using a data flogrdra.

4-68

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Initiali ze
FParss xML

Initialize Statz Files
lderitify IER=
Schedule Inttial IER Transmisszion
|dertify OPFAC Movement
Schedule Initial OPFAC Movement

L A

¥

lclle

[o)
&

Selfd nermpt

IER Tranamission h-1 ovemert
|ER Start ‘] (Movemert

Fimd Producer SE
Find Conzumer SE

Record IER
Send | ntermipt t

Change Bearing
Change Speed

Start Stats Change Ascent

o P roducer ZE

Figure 4-49: Functions of OE Process Model

Step 2.The process model must be built.

The OE process model consists of the states showiguneF4-50. Thenit state parses the SDF
file to obtain the IER and
state. If the OE is required to send an IER, it transstto theDevice Findstate. If the device is
found, it generates the IER in th& IERstate.

movement information. Thies process model transitions to ttke

If the OE is required to move, it transitions to thevemenstate and sets the ndåand
ground speedalues for the OPFAC.

4-69

NETWARS MobDEL DEVELOPMENT GUIDE V3.0

The process model for the OE looks like Figure 4-50.

rmovernent

|
I[M OWE_OPFALC)

1
|
|

(THREAD_START]

#find_device

Figure 4-50: OE Process Model

4-70

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.16 UTILITY NODE EXAMPLE
4.16.1 Overview

This subsection explains the construction of a UtNlbde using an example. The example
utility model is the Promina Configuration Utility Nodehieh is used to define circuits between
Promina nodes in a network. Only a high-level overviegiven below. For further details,
consult the NETWARS Standard model calgd _portmap_utility.nd.nand its process model
pro_portmap_process.pr.m

4.16.2 Details

Because Utility Nodes are highly specific, begin witheav node model. Because the object will
be a repository of information, a single processor rf@duall that is needed. This processor
requires a custom process model that performs the folipfunctions:

* Read in attribute values
* Parse information
e Publish information.

Once the node model is created and a processor module Hugladgde model looks like Figure
4-51 below.

portmap

Figure 4-51: Promina Configuration Utility Node-Node Model

The model attributes for the node model must contaiattinkute below. The other detailed
configuration attributes can be part of the procesself.its

Table 4-15: Utility Node-Model Attributes

Attribute Name Attribute Type

utility _technologies String

4.16.3 Process Model

The Utility Node reads in attributes, parses them, bhed publishes them, making the
information available to other models. The Promina @unétion utility does all of this using a
singleBEGSIMinterrupt.

4-71

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

[defau/lt/l.» -

Figure 4-52: Promina Configuration Object-Process Model

The “DONE?” state is used to ensure errors are not incufrtbid device sees an event. The code
in the Enter Executives of the “PARSE” state perfolimfahe actions of this object, as seen in
the following code sample:

A% 0Obtain commonly used identification information and store them into the wf
S* corresponding state wariables. v
my_objid = op_id_self(]);

op_ima_obj_attr_get(my_objid, "process model', proc_model_name];
own_node_objid = op_topo_parentimy_objidl;
own_subnet_objid = op_topo_parent(own_node_objidl;

A* Procedure to get to the top subnet. =f
top_subnet_objid = nw_sup_top_id_get(own_subnet_objidl;

A% Farse the process model attributes. */f
pro_portmap_parse(;

A¥ Print out some basic trace statements. */

it Cop_prg_odb_ltrace_actiwve ("pro_paortmap") || TRACZE_FROMINA)
sprintf (msgo, "Total number of partmap entries to(wd)", op_prg_list_size (portm
sprintf (msgl, "Total number of selected path entries rowdl", op_prg_list_size

op_prg_odb_print_major ("Promina Circuit Prowision has finished parsing port map us
1

A% Publish the result through process registry 50 the Fromina processes Can access them
pro_portmap_publishil;

Figure 4-53: Promina Configuration Object-Sample Code

4-72

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.17 CONVERTING A DEVICE M ODEL FROM THE OPNET STANDARD M ODEL LIBRARY
4.17.1 Overview

The OPNET Standard Model Library contains the node meldel _server_advThe following
example demonstrates how to make this model functiolPNEX COTS products such that it is
compliant with this guide.

C
plication CPU
D
tpal
] [
Lcp rswp
L=
Ip_encap
=
ip
k=
arp j
el
L

. »
wirglezz_lan “mac -

wlan_part_rs_0_0 wlarn_poart_tx_0_0
Figure 4-54: Sample Node Model
4.17.2 Details

Step 1.Determine which subsections of Section 3 apply to thiscdanodel.

This has the application layer, so it has the charatits of an end system. It has a radio
transmitter and receiver pair, so it also has theacieristic of wireless interfaces.

Step 2.Add required attributeslassification equipment_typeandavailability status Use
public attribute definitions for each. Because it iad-system with the full stack, select
“Computer” forequpment_type

[End-System Compliance]

4-73

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

IﬂNnde Model: nw_wlan_wkstn
File Edit Interffaces Objects ndows Help

b odel Attributes o
B Bl

Mode [nterfaces
Mode Statigtics

Self Description
Attnibutes: nw_wlan_wkstn

attribute Mames |I3r|:|up Tvpe | Urite) Defaul Y alue

equipment_ype mieger Computer
[clazzification string Unclazsified
[availability_stabus toogle enabled

Figure 4-55: Selecting “Computer” for equipment_type

Step 3.Give it the functionality of firing TCP and UDP IERyg addingse modules to generate
traffic via TCP and another to generate traffic via UB€_tcpandse_udp.

[End-System Compliance]

AR

N

I
=

zE_udp

3
i
o

wilan_port_rs_0_0 wlarn_paort_ta_0_0

Figure 4-56: Adding se_tcp and se_udp

Step 4.Promote the radio channel properties on the transnaitigreceiver and add thet_id
extended attribute so that the broadcast network otgecinterface with it.

[Wireless Interface Compliance]

4-74

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

t] (wlan_port_tc_0_0) Attributes

| Attribute | W alue L]
@ - hame wilan_port_ts_0_0
@ =l channel [...]
] F rows 1

[Bowd |
® |— data rate [bps] promoted
® |— packet formatz wilan_control, wlan_mac
) I bandwidth [kHz] 22,000
® |—min frequency (MHz] promoted
® |—spleading code promoted
) F power (W] 0.005
) I bit capacity [bits) infinity
] L pk capasity [pks] 1.000
& | modulation dpsk.
@ |— rAgroup model wilan_rsgroup
| trdel model wilam_trdel
& | closure model dra_closure
& | chanmatch modsl wilan_chanmatch
|- tagain model HOME
@ |— propdel model wilan_propdel
& |icon name 1a_ty
@ |— channel [0].data rate promoted
@ |— channel [0]. min frequency promoted
@ |— channel [0]. spreading code promoted
@ L net_id promoted

ol

Estended Attrs.

i

[Apply changes o selected objects

I Find Mext

| o]

LCancel |

Figure 4-57: Addingnet_id Extended Attribute

Step 5.Remove the lines of code that set the channel frequ&htynow happens via the

broadcast network object.
[Wireless Interface Compliance]

wlan_mac Function Block
static void
alan_transceiver_channel_init (void)

A% Configure the transmitter channel based on selected/assigned

F% frequency band.
op_ima_obj_attr_set (txch_objid, "bandwidth",
Afop_ima_obj_attr_set ({txch_objid,

A% similarly configure the receiver channel.
op_ima_obj_attr_set (rxch_objid, "bandwidth",

o

*

bandwidth_mhz * 1000.0);
"min frequency", freguencyl;

*

bandwidth_mhz * 1000.0);

Afop_ima_obij_attr_set {rxch_objid, "min frequency", frequency);

FOUT;
H

4-75

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

wlan_mac_hcf Function Block
static void
+N'I an_hcf_transceiver_channel_init {woid)

/% Configure the transmitter channel based on selected/assigned w7
A% frequency band. L2
op_ima_obj_attr_set (txch_objid, "bandwidth", bandwidth_mhz * 1000.0);
Afop_ima_obj_attr_set (txch_objid, "min frequency", frequency);

A% Simlarly configure the receiwver channel. =
op_ima_obj_attr_set {rxch_objid, "bandwidth", bandwidth_mhz * 1000.0);
Afop_ima_obj_attr_set (rxch_objid, "min freguency", frequency);

FOUT;

Step 6.Add a line to the net_configs file to have a Wirelessdl@decea Network (WLAN) entry.

WLAN:;Unclassified;11000;2401;"Include™;
5000,3000,2000,1000;wlan_control, wlan_mac;wlan_con trol,wlan_mac

4-76

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4.18 CP MODEL EXAMPLE
4.18.1 Overview

This subsection provides an example on the implementafia CP compliance model. As
mentioned, NETWARS applies analytical techniques to rapidtermine the bandwidth
requirements to support specific traffic profiles and paste NETWARS will require three basic
attributes from the model to determine the CP layex secific device: equipment type,
interface class, and machine type. These attributes otepecific locations within the model.

4.18.2 CP Implementation

In order to use the CP function in NETWARS, model deve®gde not have to insert or modify
any code within the node model. It is vital, however,dd the three required attributes into the
device model to their associated location. The folhgvgubsections will describe the location
by using the SINCGARS INC radio model in NETWARS.

4.18.2.1 Equipment Type Attribute

First, the equipment type attribute is used to defineyibe of the device, such as radio,
computer, and router. Figure 4-58 shows the locationecédttinibute and a list of available
types. Model developers should define the equipment_typleustin the model attributes
windows as show in the Figure 4-58.

i] Model Attributes: sincgars_inc_adv

|Attribute M ame Group| Tepe | Units| Default Value J

avallability_status togale enabled
clazszification string Unclazsified

equipment_type integer CDmEuler |
Phore
JTIDS
Switch Router
S ateliite
LS radio
Promina
S atellite terminal
0OE

Cell<press
Encryptar
Multiplexer
Patch Panel
Layer 1 Radio
Layer 1 5 atelite
Acceleratar
4| D
Mew attribwte: |
Add Delete | Move Up | | Edit Properties| ok | Lancel |

Figure 4-58: Equipment type attribute location

4.18.2.2 Interface Class and Machine Type Attributes

The interface class and machine type attributes areldted in the self-description section of
the device model as shown in the Figure 4-59.

4-77

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

:] Self Description: sincgars_inc_ady

Priarity; |0

Aidd Port

pt_<0.0x A pr_<0.0x pt_<1.1: Apr_<]. 1 pt<2 .3 fpr_<2 3

Figure 4-59: Interface Class and Machine type attribute locatins

The interface class is defined within the ports descri@gshown in the following Figure 4-60.
In this example, the interface class of the SINCGARS device model is IP.

i] pt_=0..0=f pr_=0..0= Self Description

Transceiver:

stmit: | p_<n]
Ficw: |PI_<n>

Characteristics that are uged for matching™ :

W alue

Equals ane-of zerial 050, zerial 051, zenialDS...
Equalz ip

| Characteristic Comnparator

interface type
interface class

Iv Display trct matching requirements

* HP Opentiew always uzes stict matching.
“Ignored’ means that this characteristic iz not used in strict matching.

Aszzighments applied after matching ocours:

IP Routing Parameters [O]Interf...

IGRP Parameters [O]Interface |...
O5PF Parameters [0 Interface ...

__peee |

EIGRP Parameters [0].Interface...

Characteristic
Characteristic
Characteristic
Characteristic

Attribute Tupe Yalue j
IP Routing Parameters [O]Interf... Characteristic IP Address
IP Routing Parameters [O]Interf... Characteristic IP Subnet Mask,

Interface Mame
Interface Mame
Interface Mame
Interface Mame

LCancel

Figure 4-60: Interface Class attribute

4-78

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Finally, the Machine type attribute is defined within theecgection of the self-description. The
following Figure 4-61 shows the example of the machine tiypeis assigned to the SINCGARS
INC device model, and the value is router.

| core Self Description

Characteristics that are uzed for matching® :

| Characteristic: Camparatar W alue J
machine type Equals roLker
todel Attributes |gnored™ 10.5.4-) an30-2004
IF Routing Speed |ghared™ 150000
Axvailable Attributes |gnored™ All
=i

Iv Display strict matching requirements

* HP Opertfiew alwaps uzes stict matching.

**'|gnored’ meansz that thiz characteristic is not used in stict matching.

Agzighments applied after matching ocours:

Attribute Tupe Y alue J

=l
ok LCancel ‘

Figure 4-61: Machine type attribute

4-79

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

5 VERIFICATION AND VALIDATION

Verification and Validation (V&V) is important to theeditability of a model that is being used
to solve a real world problem. Without that credabiiitys extremely difficult to gain buy-in on
simulation results.

The importance of V&V is recognized by the DepartmeriDefense in DoD Directive (DoDD)
5000.59 and DoD Instruction (DoDI) 5000.61. These policies desdterification, Validation,
and Accreditation (VV&A) from the standpoint of Poljdgoles, Responsibilities, Processes and
Procedures. DoDI 5000.61 established the Defense Modeling S8onulifice (DMSO) as the
“DoD VV&A focal point” and the central source of DoDVWRA information. Most of the
information from DMSO is addressed in it's VV&A Reconmmded Practices Guide (RPG),
Build 3.0 dated September 2006. There is also a DoD VV&AuDentation Tool that is being
developed to assist Model Developers. These referencdedaund at:

* DoDD 5000.59 — DoD Modeling and Simulation (M&S) Management
http://www.dtic.mil/whs/directives/corres/html/500059.Hm

* DoDI 5000.61 — DoD Modeling and Simulation (M&S) Verificatiofalidation, and
Accreditation (VV&A) http://www.dtic.mil/whs/directives/corres/html/500061.htn

* VV&A Recommended Practices Guide — Build 3.0 / Septer2b66http://vva.dmso.mil/

The accreditation portion may or may not be significiar the NETWARS Model Developer.
According to the DoD Policy, all models should go tilgh V&V, however, not all models need
to be accredited. DoDD 5000.59 discusses two primary ingawbtere accreditation is
required; when the model is going to be reused by anretterganization, or results will be
used in the acquisition process. In addition, all Dobn@onents should have their own set of
policies and procedures that a Model Developer should atther¢heir development process.

The RPG provides guidance on VV&A for general purpose M&Y&A is about establishing
the relationship between the problem and the model beinbtas®lve that problem. There are
not any definitive steps that apply to V&V, since V&V nedd<e tailored to match the nature
of the problem that is being addressed by the M&S apmitatsome of the factors involved in
tailoring V&V to a general purpose M&S application are:

» Situations being simulated

» Types of decisions driving the employment of the simulation
e Nature of the simulation

e Level of risk

e Technical or resource limitations

The scope of the following discussion within the Model &egment Guide (MDG) will limit
itself to V&V of NETWARS-compliant models within the NBVARS product environment.
The focus is to provide high level guidance for V&V of thesign and functions of a model and
for ensuring the newly developed model will integrate MESTWARS. Since accreditation may
or may not be required, dependent on the specific DoDpGoent policies, the MDG will not
discuss accreditation any further.

5-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

The following sub-sections are grouped into two prima&\bbjectives: first is to V&V the
functionality of the models, and second is to V&V thedel that can be integrated to
NETWARS.

5.1 M ODEL FUNCTIONAL V&V

This section will focus on introducing the basic V&Vsteand references to test and examine
the basic required functionalities and accuracies oifribael.

5.1.1 Objectives

The primary objective for V&V on models is to provide difelity and believability to the
results that those models generate, so that thegesay be used in solving real world problems.
It is also important to note that the data used to dheemodel should be evaluated together
with the model, as the model depends on the data to preadistic simulation. Data V&V is
well documented in the DMSO RPG.

The definitions for verification and validation ard¢esf confused:

» Verification - The process of determining that a model implementatmhits associated
data accurately represent the developer's conceptualpdesteand specifications.

» Validation - The process of determining the degree to which a modetsaassociated
data provide an accurate representation of the readirorh the perspective of the
intended uses of the model.

Verification seeks to answer the question, “Did | build thing right?” while validation seeks to

answer the question “Did | build the right thing?” Ansing these questions positively with

sufficient explanation will create believability ihe results generated or the validity of the
model for those seeking to reuse it.

5.1.2 Steps

The Model Developer should follow the applicable DoD Congpr's policies and procedures in
accordance with DoD Directives and Instructions. RRG has very detailed guidelines
regarding V&V for new models, modification of modelsedacy), and federated models by the
different types of user views. The following RPG Prabl8olving Process demonstrates the
standpoint that VV&A is an integral part of the M&S deymhent process. The focus in the
MDG will be on the box entitled “Perform V&V Activiteappropriate for M&S Category”.

5-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Fuocept S

Define |[Estabiish || Record |[A0ehz=
Problem ||Objactves|[f Solution || Besults

ey :
; Fi=positorny T
Select g 5 T | Apply
Approaches Non-M&S Methods I r— | EEulE

M&S DEVELOPMENT | PREPARATION PROCESS |

L

N
ME&S
Method

" Frepare Legacy ME&S
Define
hZS

i Rewiza Evaluate & [Impl hiods | Execute
[Refine |dertify Critical Conczptual hbadify 2 Conduct and
M2S Deficiencies Padel Die=ign Tasts g
ik 3 & Plan Frepan
A Ramits | paodificgtions | Test fe-ls hi2E i l— Results
Rgmts

i = | Prepare —
[T velop Hew MES y. 5 b 25 for yes
Refine b5 || Plan g Heyglep, Develop ||| implement Lse
Fiqmits] [Deuelopmerl] [Coﬁﬁual Design | £Test ! B \
Flan -
Approdch

i .“.\.;\I‘ID
Construct Federation / Ma!{e i,
ACCI’EdI‘tatIOI')I/J_
i Fefine b5 E:EnegeFeEal Diesign Develop || |Integrate & \Decisio r
Rqrits m.ﬁ Fedaration Faderation fj | Test Fed J /W
A
- V&V PROCESS
Werify
Fgmts 0
Ferform WEL" Adiviies Appropriate for M&S Categony | B
[Drevelop
WENPlan t

FE Collect and Evaluate Accreditation Infommation

ACCREDITATION PROCESS

The Overall Problem Solving Process

51501
Figure 5-1: M&S Overall Problem Solving Process

The steps to augment the Model Developer’'s DoD Companpaticies and procedures specific
to NETWARS Compliance V&V are included in Appendix X: NETW8 Model Development
Guide Checklist. The steps that will be discussed thdurdetail in the next section are:

* Following the NETWARS Model Development Guide Checkilist
» Static Testing

* Equipment String

» Capacity Planner

An important reference regarding V&V is the “NETWAR®m@munications Model Verification
and Validation Plan.” This document defines the NETWASRSctured, repeatable process for
ensuring that all communications device models included in WERS are reasonable
representations of the intended actual systems. THigdg® constraints on how those modules
should be employed. The document describes severalspludsehich the final phase focuses
on model integration into NETWARS.

Another document that can be referenced is the DolBA/YDocumentation Tool developed by
Space & Naval Warfare Systems Command (SPAWAR).

5-3

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

It is a good practice to add a brief validation time gtaand the model development Point of
Contact information in the self-description of the mosielthat users can contact the model
developers or corresponding individual to resolve any issues

5.2 NETWARS COMPLIANCE V&V

The primary objective of this NETWARS MDG is to enstlrat newly developed models can be
integrated to NETWARS and shared with the NETWARS comityu The NETWARS
compliance V&V is important, therefore, to both thedabdevelopers and the model users.
This section will introduce the resources that can bieediby the developer to perform
NETWARS compliance V&V. These resources include th@WRBRS Model Development
Checklist, NETWARS Static Testing, NETWARS Equipmemtrgt and Capacity Planner
Attributes.

5.2.1 NETWARS Model Development Checklist

The NETWARS Model Development Guide Checklist is thstftool to ensure that newly
developed models can be integrated to the NETWARS standzatdl dibrary. The Checklist
can be found in Appendix X. The checklist is used to proaitbasic development check for the
developers to ensure NETWARS compliance; however, ctiecklist cannot provide full
coverage to ensure the compliance.

The checklist can be used for new development or matdn of existing OPNET COTS
models for NETWARS Compliance, and covers the follgpareas:

» General Questions regarding the model goals and attributes
» Traffic-generation mechanisms

» Static Testing

* Equipment Strings

» Capacity Planner

* Model Documentation

* Model interfaces to the NETWARS standard pallet of devices
* Model node modules and port conventions

* Model modules included for end systems

* Model attributes for radio broadcast and point-to-pop#rations
* Model custom links

If the user submits a model for development, the develspeuld leave contact information
inside the self description, such that other organizaticmg cantact them for more information
about the model they have developed.

5.2.2 NETWARS Static Testing

The NETWARS Static Testing Tool comes with NETWARSatic Testing will perform checks
of the syntax of a model. The Static Testing docuatent should be consulted for further
detail on its functionality. Some of the items thdt lae checked by Static Testing include:

« Minimum Attributes Test

5-4

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

» Check for Tx/Rx naming conventions

» Check for the presence of required modules

» Check for supported packet formats

» Check for interface capability with other equipment
» Check for handling of failure and recovery

» Check for pipeline stage transmitter attributes

» Check for pipeline stage receiver attributes

If a model fails Static Testing, then those point&dére should raise flags. It is important that
those flags be addressed even though they do not neélyesgahemselves indicate that a model
is not NETWARS compliant. The important questions teswer are; “Does the Model
Developer care about the raised flag?” and “Whatlewebnsequences of the raised flag?” It is
possible that mitigation of a raised flag might haveldowith different attributes for different
equipment types.

Refer to the “NETWARS 2006-2 Communications Device Moddidétion and Verification
Plan” for further information.

5.2.3 NETWARS Equipment String

In order to ensure that new models are NETWARS-comipltaey should be tested using some
basic equipment strings that are relevant to the ntbdewas developed. NETWARS Program
Management Office (DISA GE344) has a “NETWARS Equipmsirings Version 1.1, June
2006” document. This living document contains valid equipms&nings that involve
NETWARS models. This document breaks the equipmentgstrtown into the following
categories:

* Transmission Network
— Pure Transmission Devices
— Prominas
— Other Multiplexers

* Routers— devices that can go over any of the transmissionankteevices

» Circuit Switched Voice — voice circuits that go over all the transmissietwork
devices and can flow over IP or ATM network

» Layer-1 Encryptors — paired up on either WAN or LAN side, if follows a raytden
decryption must occur before the next router

* Tactical Radios— include havequick, jtids, sincgars and eplrs

* Invalid Equipment Strings — illogical and unsupported

Another important reference is the “NETWARS 2006-2 Equignietnings Final Test Plan,
OPNET 3.4.4, delivered August 25, 2006.” This document providesfeeSNETWARS model
feature requirements. Some examples of test procequossded are; SATCOM device
equipment strings, Terrestrial Radio equipment strifgemina to Promina equipment strings,
etc.

5-5

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Most important, developers should determine the equipstengs associated with their models
and develop corresponding testing of the strings withntbdels in the NETWARS standard
library.

5.2.4 Capacity Planner

The NETWARS network analytical engine is importantgooviding network capacity planning
support to the network planner. It has the ability to gereshortest-hop routing, calculations of
link and circuit utilization, and bandwidth requirements $upport of specific traffic profiles
and patterns. CP is a NETWARS-specific capacity, tbezemodels developed for OPNET
Modeler and IT-Guru cannot be applied in CP. In ordernsur models are NETWARS-
compliant with regards to CP and routing, device attew@ind properties should be correctly
developed. They include:

* Equipment Type
» Self Description

The static test software is a good tool for verifying edhattributes used by CP are available in
the model for the specific model type under the minimattnibutes test in the static test
software.

The static test may be run from the NETWARS Consdie.order to open the NETWARS

Console; Go to Start” — “All Programs” — “NETWARS” — “NETWARS Consol€.
Once the NETWARS Console is opened, from the “C:\»shmpt, type in indgtest’

£ NETWARS Console - mdgtest

wmdgtest

The program provides testing for NETWARS model developers to ensure that
their models meet the basic interface and attribute reguirements as
gspecified by the HETWARS Model Development Guide <(MDG)>, version 1.2.

Figure 5-2: Initiate a static test

5-6

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

After providing some helpful text, the “mdgtest” prograuti stop and wait for the name of the
device model that should be validated. In the example, étivernet_wkstn” was typed in
following the prompt for “Model name: .

% NETWARS Console - mdgtest

The program provides testing for WETWARS model developers to ensure that
their models meet the hasic interface and attribute requirements as
specified by the METWARS Model Development Guide (MDG), wersion 1.2.

Enter the name of the device model to validate (without file extensions):
Model name: nw_ethernet_uwkstn_

Figure 5-3: Execute a static test for the nw_ethernet_vetn device

The “mdgtest” program will stop and wait for the compdngass name. In the example, “4”
was typed in following the prompt for “Component Classndicated the “End System”.

% NETWARS Console - mdgtest

Choose the component class Cuse the index>:
1) Layer 1 Hetworking Device
Layer 2 Hetworking Device
Layer 3 Metworking Device
End System
QE
Utility Mode
Link

Component Class: 4

Figure 5-4: Select component class for static test

The “mdgtest” program will stop and wait for the modeli@m. In the example, the <Enter>
key was hit for N/A.

Choose the model options Cuse the indices,. hit Enter to end or skip:
(If more than one option applies. separate the indices hy commas.
e.g.z 1, 2, 3>

1> Radio

Model Options: _

Figure 5-5: Select model options for static test

5-7

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

The “mdgtest” program will stop and wait for the protocdis.the example, “1, 2, 4” was typed
in following the prompt for “Protocols: " indicating ti&CP, UDP, and Ethernet protocols are to
be used.

"2 NETWARS Console - mdgtest

Choose the protocols (use the indices, hit Enter to end or skip):
{If more than one protocol applies, separate the indices by commas .
e.g.= 1. 2, 3>

TGP

UDp

IP
Ethernet
ATH

Frame Relay
FDDI
Token Ring
SLIP

18> Mot Applicahle

Protocols: 1.2.4

Figure 5-6: Select protocols for static test

The “mdgtest” program will stop and wait for the nametled report file. In the example,

“C:\test.txt” was typed in following the prompt for “Repd-ile: " indicating that is where the

output from the static test will be placed. Afterezimg the report file name, the question to
confirm the answers is asked. If the answers are cargctyou want to continue, then a “c”
may be typed in.

"< NETWARS Console - mdgtest

Enter name of Report File:
Report File: C:istest.txt

nw_ethernet_wkstn will be evaluated as a End System.
Options: MNone

Protocols: TCP,. UDP. Ethernet

Report File: C:wtest.txt

Confirm that the above information is correct.
Enter "c' to continue, or “pr" to restart (c/pi:

Figure 5-7: Select report file name and confirm answerof static test

5-8

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

The “mdgtest” program will finish with a summary andoanpletion message.

"% NETWARS Console

Summary: nw_ethernet_uwkstn evaluated as a End System
Total Tests: B

OK: 8

Recommendation Warnings:

Test Failuresz: @

Figure 5-8: Summary and completion message for static test

5-9

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

In order to see the static test report generated thisrexample, type in “notepad C:\test.txt” at
the “C:\>" prompt. The “notepad” program will displalyet static test report generated by the
“mdgtest” program.

P test.txt - Notepad
Eile Edit Format View Help

-~
Aug 15 2007 - 09:49:12 i

NETWARS Model Development Guide (MDG) Testing Software Report
Report: mw_ethernet_wkstn evaluated as a End System

options: None

Protocols: TCP, UDP, Ethernet

< Node Description: ok

The Node Description found i vided below.

Ver ¢ € requirements givem in NETWARS MDG 1.7.

The static test software expects input node models upgraded to or built in OPNET 10.5 working with

NETWARS 2004-1 =
section 1

mModel Name: me_ethernet_wkstn

Communication Device Model Description:

05I Layer:
Layer 3

NETWARS Component Class:
Layer 3

General Description:
Nofe

model History:
Nore

Interface List:

1 ethernet interface.
This interface supports a data rate of 10, 100, or 1000 mbps.

routing and Transport:

RIP, UDP, IP, TCP, IEEE 802.3 (Ethernet,
Fast Ethernet, Gigabit Ethernet), OSPF

Supported Multi-access Schemes:

None

supported multiplexing Schemes:

Mone

configurable Attributes:

Figure 5-9: Static test report

5-10

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

test.txt - Notepad
Ele Edit Format View Help

configurable attributes: ~

Client Custom Application, Client
Database Application, Client Email,
Client Ftp, Client Remote Login, Client X
windows, Client Video Conferencing,
Cljent Start Time: These attributes
allow for the specification of
apg11catﬁon traffic generation in the
node.

Transport Address: This attribute allows
for the specification of the address of
the node.

"IP Forwarding Rate": specifies the rate
{in packets/second) at which the node can
perform a routing decision for an
arriving packet and transfer it to the
appropriate output interface.

"IP Gateway Function": specifies whether

the Tocal IP node is acting as a gateway.

workstations should not act as gateways, -
as they only have one network interface.

"RIP Process Mode": specifies whether the
RIP process is silent or active. Silent
RIP processes do not send any routing
updates but simply receive updates. A1l
RIP processes in a workstation should be
s5ilent RIP processes.

"TCP Connection Information": specifies
whether diagnostic information about TCP
connections from this node will be
displayed at the end of the simulation.

"TCP Maximum Segment Size": determines
the size of segments sent by TCP. This
value should be set to largest segment
size that the underlying network can
carry unfragmented.

"TCP Receive Buffer Capacity”: specifies
the size of the buffer used to hold
received data before it is forwarded to
the application.

supported Traffic:

NETWARS Standard Traffic:

Figure 5-10: Static test report 2

5-11

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

B test.txt - Notepad
Fil t

supported Traffic: ~
N ard Traffic:

Transmits Voice, Data, VTC IER, COTS traffic and NETWARS sStandard Flows

Transmits ACE Traffic:
yes

Section 2:
Failure Recovery Support

Section 3:
Developer Notes

External Files:
None

Header Files:
N/A

Process Models:
rip_v3

sa_udp
rip_udp_v3
server_mgr
se_trafgen

rsvp
gna_clsvr_mgr
tpal_v3
tcp_manager_v3 =
ip_encap_wv4
ip_dispatch
ip_arp_v4
ethernet_mac_v2

Pipeline stages:
None

Section 4:
Model Fidelity

section 5:
military analyst Notes

Model Usage:
The ethernet_wkstn_adv node model T

Figure 5-11: Static test report 3

5-12

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

B test.txt - Notepad

File Edit Format WVew Help

section 5:
Military analyst Notes

Model Usage:

The ethernet_wkstn_adv node model
represents a workstation with
client-server applications running over
TCP/IP and ubP/IP. The workstation
supports one underlying Ethernet
cgnnection at 10 Mbps, 100 Mbps, or 1000
Mbps.

This workstation requires a fixed amount
of time to route each packet, as
determined by the "IP Forwarding Rate”
attribute of the node. Packets are routed
on a first-come-first-serve basis and may
encounter gqueuing at the Tower protocol
layers, depending on the transmission
rates of the corresponding output
interfaces.

Exceptions and Elaborations:
None

Military Analyst Comments:
None
Section 6:

Comments

Full Edit History:
Nore

External Documentation:
None

references and specifications used:
Nore
End System Tests

1 Minimum Attributes: OK
The reguired minimum attributes are present and are of the correct type.

. Tx/RX Naming: OK
ATl Tx/rRx follow the recommended naming convention.

3. SE module: OK
The SE module is present and named : se_tcp, se_udp

Figure 5-12: Static test report 4

5-13

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

P test.txt - Notepad
Ele Edit Format View Help

Comments

Full Edit History:
None

External Documentation:
None

references and specifications used:
None

(:: End System Tests

1. Minimum Attributes: oK
The required minimum attributes are present and are of the correct type.
o Tx/Rx Naming: OK
All Tx/Rx follow the recommended naming conventiom.
3. SE module: QK
The SE module is present and named : se_tcp, se_udp
4, rRequired mModules: OK
A1l required modules are present.
TCP: OK
uppP: oK
Ethernet: oK
5. Squorteq Packet Formats: OK
ATl required packet formats are present.
TCP: OK
upP: oK
Ethernet: oK
G. Interfacinﬁ with Networking Equipment: OK
All Tx/Rx have data rate set to unspecified, as recommended by the

NETWARS MDG 1.7 (for auto-sensing ports).

7. Hand1ing Fai]ure/Recover¥: oK
At least one of the modules in the device is set up for explicit handling of
Failure/Recovery.

Test summary

Total Tests: §

oK: B

Recommendation wWarnings: 0
Test Failures: 0

Figure 5-13: Static test report 5

The preceding was an example of how to perform a d>ic both the input for the static test

and the output that can be expected from running the static

The developer should test their models in CP to ensureethered model attributes and CP
APIs are implemented into their models. For furth@orimation, please see the individual

sections on model development that relate to CP irdtgsment.

5-14

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

5.2.5 DoD/Joint VV&A Documentation Tool (DVDT/JVDT)

DVDT/JVDT is a tool that assists the user in creatind aaintaining four major documents
required in the VV&A process:

* Accreditation Plan

* VV&A Plan

* VV&A Report

* Accreditation Report.

This tool is not part of OPNET, nor is it part of NET\RS&, however, it is being presented here
as a reference to assist in MDG Developers task AV

5-15

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

REFERENCES

1. DoD Standard Practice: Documentation of VerificatidMalidation and Accreditation
(VV&A) for Models and Simulations. (MIL-STD-XXX002, Dfaof 5 December 2006).
It is headed by this caveat:

NOTE: This draft, dated 5 December 2006, prepared by the Defense ipdeli
and Simulation Coordination Office, has not been approved and is subject to
modification. DO NOT USE PRIOR TO APPROVAL (Project M2865-002)

5-16

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX A: ACRONYMS

Acronym Definition
ACE Applications Characterization Environment
ACK ACK
AEHF Advanced Extremely High Frequency
ALE Automatic Link Establishment
AODV Ad Hoc on Demand Distance Vector
API Application Programming Interface
ATM Asynchronous Transfer Mode
BER Bit Error Rate
BGP Border Gateway Protocol
C4l Joint Command, Control, Communications, Computers and Intelligence
CJCSM Chairman of the Joint Chiefs of Staff Manual
CLEO Cisco Router Low Earth Orbit
CM Configuration Management
CNR Combat Network Radio
COE Common Operating Environment
COl Community of Interest
COTS Commercial Off-the-Shelf
CP Capacity Planner
CPC Communications Planning Coordinator
CPU Central Processing Unit
Csv Comma Separated Value
DAMA Demand-Assigned Multiple Access
DE Deployment Editor
DES Discrete Event Simulation
DHCP Dynamic Host Configuration Protocol
DISA Defense Information Systems Agency
DMSO Defense Modeling Simulation Office
DNVT Digital Non-Secure Voice Terminal
DoD Department of Defense
DoDAF DoD Architecture Framework
DoDD DoD Directive
DoDlI DoD Instruction
DSL Digital Subscriber Line
DSR Dynamic Source Routing
DTED Digital Terrain Elevation Data
DTG Digital Transmission Group
DVDT DoD VV&A Documentation Tool
ECC Error Correction Calculation
EIGRP Extended Interior Gateway Routing Protocol
EMA External Model Access
EPLRS Enhanced Position Location Reporting System
ETSSP Enhanced TSSP
FAQ Frequently Asked Questions

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Acronym Definition
FCC Federal Communication Commission
FDDI Fiber Distributed Data Interface
FDMA Frequency Division Mutiple Access
FR Frame Relay
FTP File Transfer Protocol
GBS Global Broadcast Service
GOE Generic Organization Editor
GOTS Government Off-the-Shelf
GUI Graphical User Interface
HDR High Data Rate
HF High Frequency
HLA High-Level Architecture (IEEE Standard 1516)
HTTP Hypertext Transport Protocol
ICI Interface Control Information
IEEE Institute of Electrical and Electronics Engineers
IER Information Exchange Requirement
IGRP Interior Gateway Routing Protocol
IMEP Internet MANET Encapsulation Protocol
INC Internet Controller
INE Inline Network Encryptor
IP Internet Protocol
ISDN Integrated Services Digital Network
JTIDS Joint Tactical Information Distribution System
JVDT Joint VV&V Documentation Tool
KP Kernel Process
LAN Local Area Network
LDR Low Data Rate
LDW Link Deployment Wizard
LOS Line of Site
M&S Modeling and Simulation
MAC Medium Access Control
MANET Mobile Ad Hoc Network
MDG Model Development Guide
MILSAR Military Strategic, Tactical and Relay
MIL-STD Military Standard
MOP Measure of Performance
MPLS Multiprotocol Label Switching
MSE Mobile Subscriber Equipment
NACK Negative Acknowledgment
NCES Net-Centric Enterprise Service
NCS Network Control Center
NETWARS Network Warfare Simulation
NPG Network Participation Group
OE Operational Element
OLSR Optimized Link State Routing

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Definition

Acronym

OMS OPNET Model Support

OPFAC Operational Facility

OPSIT Operational Scenario in Time

Org Organization

(O8] Open Systems Interconnect

OSPF Open Shortest Path Forwarding

oV Output Vector

PNNI Private Network-to-Network Interface
POTS Plain Old Telephone Service

PPP Point-to-Point Protocol

QAE Quality Assurance Engineer

QDR Quadrennial Defense Review

QoS Quality of Service

RF Radio Frequency

RIP Routing Information Protocol

RP Resource Planner

RPG Recommended Practices Guide
RSVP Resource Reservation Protocol
SATCOM Satellite Communications

SB Scenario Builder

SCM Scenario Conversion Module

SDF Simulation Description File

SE System Element

SHF Super High Frequency

SINCGARS Single-Channel Ground and Airborne Radio System
SLIP Serial Line Internet Protocol

SME Subject Matter Expert

SMU Switch Multiplexer Unit

SNR Signal-to-Noise Ratio

SOA Service-Oriented Architecture
SPAWAR Space & Naval Warfare Systems Command
STD State Transition Diagram

STEP Standardized Tactical Entry Point
STU-llI Secure Telephone Units 1l

T&E Testing and Evaluation

TACSIT Tactical Situation

TCP Transmission Control Protocol
TDMA Time Division Multiple Access
TIREM Terrain Integrated Rough Earth Model
TMM Terrain Modeling Module

TORA Temporally Oriented Routing Algorithm
TPAL Transport Protocol Adaptation Layer
TRC Transmission Release Code
Troposcatter Tropospheric Scatter

TSSP Tactical Satellite Signal Processing

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Acronym

Definition

UDP User Datagram Protocol

UHF Ultra High Frequency

UML Unified Modeling Language

USGS DEM United States Geological Survey Digital Elevation Model
V&V Validation and Verification

VHF Very High Frequency

VOACAP Voice of America Communications, Analysis, and Prediction
VTC Video Teleconferencing

VVE&A Verification, Validation, and Accreditation

WAN Wide Area Network

WiFi Wireless Fidelity

WIMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

XML Extended Markup Language

A4

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX B: GLOSSARY

Deployment Editor: A tool used by the study analyst to deploy organizatiossemario and
run simulations. This has been replaced by what is ndedcacenario Builder in NETWARS.

Generic organization: This is a hierarchical collection of OPFACs, organaadj and
communications infrastructure. It can be thought of &gplate organization that can be
instantiated in a scenario. For example, the studysinedn create a generic organization called
“Platoon” and use this in another organization called “Gamy” or in a scenario.

Kernel procedure: An OPNET-provided function that supports the developmeptaibcols
and algorithms. All kernel procedures start with op_.

mod_dirs: An environment attribute that tells OPNET in which fesd® look for locating files.
The mod_dirs attribute is found under Edit->Preferences.

Online documentation: An Adobe Acrobat manual that has information aboet@PNET
models, kernel procedures, modeling concepts, etc. The naanubé launched from Modeler
by choosing the Online Documentation option under téip Fhenu.

Process registry:This is a model-wide registry where any process modeezgaster itself and
any process model can obtain information about otherepsomodels that are registered. For a
list of kernel procedures available for using the processtrg, refer to the OPNET Modeler
online documentation, General Models manual, “OPNET M8debort” chapter, and “Process
Registry” section.

Scenario: This is a collection of organizations and communicetimfrastructure. The
organizations in a scenario have trajectories and posidesigned to them. After a scenario has
been created, the study analyst can run simulatioits on

Scenario Builder: A tool used by the study analyst to deploy organizatioassicenario and run
simulations.

Scenario Builder GUI: This provides a means of creating libraries of OPFA@s an
organization, importing from these libraries, and impgrtieRs from the IER database.

Simulation domain: This consists of the Simulation Engine and the Sa@@onversion
Module.

Simulation Engine: The COTS OPNET Modeler tool. It takes the scenaricesgmtation
produced by the Scenario Conversion Module, processasshé&tion events, and provides the
output to the Results Analyzer.

Unified Modeling Language: UML is an industry standard set of graphical notationdescribe
a system from an object-oriented approach. Diagrams inelse¢ of static notations (class
diagrams and use case diagrams) and a set of dynamaimnst(state diagrams and sequence
diagrams). UML does not require a specific design procesgd@es not require implementation

B-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

with any specific object-oriented languages or tools. Tée sliagrams, for example, are
consistent with OPNET Modeler’s process model notation

B-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX C: ENUMERATED VALUES

The enumerated data types in Table C-1 are provided in NERS\as public attribute
definitions. This provides a mechanism for sharing any chgagleltions) to enumerated values
that are used as attributes.

Table C-1: Attributes for Enumerated Data Types

Attribute ‘ Values

Computer

Radio

Phone

JTIDS

Switch, router
Satellite

LOS radio
Promina
Satellite terminal
OE

CellXpress
Encryptor
Multiplexer
Patch Panel
Layer 1Radio
Layer 1 Satellite
Accelerator
Generic Device
VTC Terminal
Media Gateway
Voice

traffic type Data

VTC

TCP

UDP

transport protocol AALS

None (if no transport protocol is used)
Other (user specified)

equipment_type

C-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX D: PACKET FORMATS

Table D-1 lists the packet formats used by the NETWARSdaral models. These packet
formats may be required for interoperability with thHETNVARS Standard models and
protocols.

In order to examine the contents of the packet foryaat,will need to open the *.pk.m files
using OPNET Modeler. It is easy to perform a searcthemirectory structure for NETWARS
to locate the Packet Format files. However, if youroghese files up using a text editor like
Wordpad or Notepad, you will quickly discover that they aonbinary information that will
make it difficult to read.

rch Results D@

Fle Edit View Favortes Tools Help
Q-0 & ‘}Uﬁarmh Folders | [T37]~
igdress |) Search Results v B e
Search Companion X Name In Folder Size | Type Date Modified -~
B abort_sim.pkm C:\Program Files\Netwars\Sim_Domain'\op_models\netwars_std_models\miscla 1KE MFie 4f2/2007 3:13 PM
[absolute_move.pk.m C:\Proaram Files\Netwars\Sim_Domain\pp_models\netwars_std_modelsyrisc\ila 2KB MFie 4/2/2007 2:13PM
. 5 ale_word_data.pk.m € \Program Files\Netwars\Sim_Domain'op_modelsinetwars_std_modelstyadiolsinc. . 4KE MFle 4/2/2007 2:14PM
" N [Bsle_word lga.pkm C:\Program Files\Netwars\Sim_Domain'\op_modelsinetwars_std_models'yadio\sinc. .. 4KB MFile 42/2007 8:14PM
Search by any or all of the criteria below. ale_word_std.pk.m Ci\Program Files\Netwars\Sin_Demain'op_modelsinetwars_std_medelsYadiosinc. . 4K MFie 4/2/2007 2:14PM
2 or part of the.fie name: ckswpkt.pk.m Ci\Program F \sim_Domain'op_m _std_models\mse 5KE MFie 4/2/2007 9:13 P
IFon)] [H data.pkm C:\Program f \sim_Domain'ap_ma _std_models\nwstd 4KB MFile 4f2/2007 %:13 PM
dummy_multiplexer_pk.pk.m Ci'\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\promina 2KB MFie apo07e13eM
A pord or phrase in the file: {2 dummy_veice_pk.pkm C:\Program Files\Netwars\Sim_Domain\op_models\netwars_std_models\mse LKE MFie 4/2/2007 9:13PM
| | | & eprs_eot_packet.pkm C:\Program Flles\Netwars\Sim_Domainon_modelsinetwars_std_models\yadiolephs KB MFie 4/2/2007 : 14PM
o eplrs_inc_packet.pkm € \Program Files\Netwars\Sim_Domain'op_modelsinetwars_std_modelstyadiolsine. . 1KE MFie 4/2/2007 2:14PM
63 Sm_Domain 5 | =) ephrs_packet 0.pkm C:\Program Files\Netwars\Sim_Domain'\op_models\netwars_std_models\radio\epirs 2KB MFie 42/2007 8:14PM
L = eplrs_packet_t.pk.m C:\Program Files Netwars\Sim_Domain\op_models\netwars_std_modelsyadioleplrs 2KB MFile 4/2/2007 %14 PM
When was it modified? v epirs_packet_2.pk.m Ci\Program f \Sim_Domain'op_m . std_models'\radio\epirs 2KB MFie 4202007 8:14PM
B ephs_packet_3.pkm C:\Program Files\Netwars\Sim_Domain'\op_models\netwars_std_modelsyadio\eplrs 2KB MFie 4f2/2007 2:14PM
What size is it2 ¥ epirs_packet_4.pk.m C:\Program Files\ietwarsisim_Domain\pp_models\netwars_std_modelsyadiolepirs IKB MFie 4/2/2007 9:14PM
S arhvansl aptiins v @ eplrs_packet_5.pk.m C:\Program Files\Netwars\Sim_Domain'\op_models\netwars_std_models\adio\eplrs 2KE MFie 4f2/2007 3:14PM
= epls_packet_6.pkum Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\radio\eplrs 2KB MFie 4/2/2007 2:14PM
eplrs_packet_7.pkm € \Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\adio\eplrs 2K8 MFie 4/2/2007 :14PM
=) epirs_routing_pk.pk.m C:\Program Files\Netwars\Sim_Domain\op_models\netwars_std_modelsadio\epirs 2KB MFie 42/2007 3:14PM
4 eplrs_xmt_unit.pl.m C:\Program FilesNetwars\Sim_Domain\op_models\netwars_std_modelsyadioleplrs 2KB MFile 4/2/2007 %:14PM
gen_sim_info,pk.m C:\Program f \Sim_Domaintop_m . std_models\miscifla 2KB MFie 41202007 8:13 PM
B havequids_packet.pkm C:\Program Files\Netwars\Sim_Domain'\op_models\netwars_std_modelsyadiothav. .. 2KB MFie 4/2/2007 3:14PM
ier_description.pk.m C:\Program FilesYetwars\Sim_Domain\op_models\netwars_std_models\miscila 4KB MFile 4f2/2007 8:13 PM
LHIFR Fire. n!{ m £ \Pronram Files\Netwars\Sim NDomainian modelsinetwars std models\miscihla 2 K'RI M File 4f2/2007 8:13 PM 5 V

Figure D-1: Packet Format Files

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

A better way to look at these files is through OPNEddeler. Select File and then Open to get
to the Open Dialog box. Set the “Files of type:” fiedd'Packet Format Files (*.pk.m).” The
example below shows the Open Dialog box for the NE'R8Aolder of “eplrs”.

Look i |_:} eplrs _'_l - ﬁ EE-

2 I eplrs_eot_packet.pk.m
..—J @eplrsgackﬁt_ﬂ.pk.m
op_models eplrsgacket_l.pk.m
- eplrsgackﬁt_&pk.m
eplrsgacket_S.pk.m

zhd @ eplrs_packet_4.pk.m

eplrsgacket_S.pk.m
@eplrsgackﬁt_ﬁ.pk.m
My Documentz @eplrsgack&t_?.pk.m

= @eplrs_rnutingjk.pk.m
Pi_! eplrs_xmt_unit.pk.m

File hame: |eplrs_eot_packel.pk _f_] Open |
Files of bype: |F'acket Farmat Files [, pk.m] L] Cancel

Figure D-2: Open Packet File

Select “eplrs_packet_0.” A dialog box is displayed wité format.

1‘] Packet Format: eplrs_packet_0
File Edit Fields Interfaces ‘Windows Help

e EEH

L[]

encap_pkt
[inherited bitz)

segment_nurnbe
[0 bits]
zource_eplr:
[0 bits]
Its
[0 bits]

Figure D-3: Packet Format Layout

D-2

NETWARS MobDEL DEVELOPMENT GUIDE V3.0

By right clicking on the field and selecting “Edit Atitites,” you can list out the attributes for
the particular field, as is the case below for “enggp.”

I] Packet Format: eplrs_packet 0

REIE

File Edit Fields Interfaces ‘Windows Help

(heited bis)

ek arutos ||

| +|encap_pkt) Attributes

E@

;

HE

default value
s2l al creation

OB e
e, By s s e i e |

¥
il

Comments | Edi Conversion Method
[~ Apply changes to selected objects

[ExdNew [

e -

Ii..‘_

oK Cancel |

Figure D-4: Packet Format Attribute Editing

Appendix E: Interfaces and Packet Formats contains af MAC technologies currently
supported by OPNET Modeler and the corresponding packet frrise Appendix E to

supplement the information found here in Appendix D.

D-3

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table D-1: Packet Formats

Packet Format Description

abort_sim Netwars\Sim_Domain\op_models\netwars_std_model8ifaisc
absolute_move Netwars\Sim_Domain\op_models\netwars_std_madelbla
ale_word_data Netwars\Sim_Domain\op_models\netwars_std_modesirciars
ale_word_lga Netwars\Sim_Domain\op_models\netwars_std_model®adiars
ale_word_std Netwars\Sim_Domain\op_models\netwars_std_modelSinactiars
ckswpkt Netwars\Sim_Domain\op_models\netwars_std_models\mse
data Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
dummy_multiplexer_pk Netwars\Sim_Domain\op_models\netwars_std_nurdehsha
dummy_voice_pk Netwars\Sim_Domain\op_models\netwars_std_models\mse
eplrs_eot_packet Netwars\Sim_Domain\op_models\netwars_std_madiel€plrs
eplrs_inc_packet Netwars\Sim_Domain\op_models\netwars_std_madel®incgars
eplrs_packet 0 Netwars\Sim_Domain\op_models\netwars_std_modelephdi
eplrs_packet_1 Netwars\Sim_Domain\op_models\netwars_std_model@phdi
eplrs_packet_2 Netwars\Sim_Domain\op_models\netwars_std_model@phdi
eplrs_packet_3 Netwars\Sim_Domain\op_models\netwars_std_model@phdi
eplrs_packet_4 Netwars\Sim_Domain\op_models\netwars_std_model@phdi
eplrs_packet 5 Netwars\Sim_Domain\op_models\netwars_std_modelephdi
eplrs_packet_6 Netwars\Sim_Domain\op_models\netwars_std_model@phdi
eplrs_packet_7 Netwars\Sim_Domain\op_models\netwars_std_model@phdi
eplrs_routing_pk Netwars\Sim_Domain\op_models\netwars_std_modelgrs
eplrs_xmt_unit Netwars\Sim_Domain\op_models\netwars_std_modiisalrs
gen_sim_info Netwars\Sim_Domain\op_models\netwars_std_modedgifais
havequick_packet Netwars\Sim_Domain\op_models\netwars_std_matdielslaaequick
ier_description Netwars\Sim_Domain\op_models\netwars_std_mmikdiila
IER_Fire Netwars\Sim_Domain\op_models\netwars_std_modelshiaisc\
ier_info Netwars\Sim_Domain\op_models\netwars_std_models\nasc\hl
ip_dgram_v4 Netwars\Sim_Domain\op_models\modified_opnet_std_madels\i
isdn_packet Netwars\Sim_Domain\op_models\netwars_std_models\vtc

JREAP_application_free_text _encoded Netwars\Sim_Domain\op_numigifyuted _models\link_16_models
JREAP_application_free_text _uncoded Netwars\Sim_Domain\op_maugreted _models\link_16_models

JREAP_application_header Netwars\Sim_Domain\op_models\contribubedlsiiink_16_models
JREAP_application_J_series Netwars\Sim_Domain\op_modelstmatei models\link_16_models
JREAP_full_stack_message_group Netwars\Sim_Domain\op_modelgdatedr models\link_16_models
JREAP_full_stack_transmission_block| Netwars\Sim_Domain\op_modetsibuted_models\link_16_models
JREAP_mgmt_message Netwars\Sim_Domain\op_models\contributddistiok_16_models
JTIDS_packed_frame Netwars\Sim_Domain\op_models\contributed_niimitels6_models
jtids_pk Netwars\Sim_Domain\op_models\netwars_std_models\radbo\jti

KG194 19 Netwars\Sim_Domain\op_models\netwars_std_models\crypto
KG84 7 Netwars\Sim_Domain\op_models\netwars_std_models\crypto
layer 1 circuit_data Netwars\Sim_Domain\op_models\contributed Is\odey spawar_models
Link_16 free text_message Netwars\Sim_Domain\op_models\contfibmtelels\link_16_models
Link_16_J series_message Netwars\Sim_Domain\op_models\contribotielsitink_16_models
link_info Netwars\Sim_Domain\op_models\netwars_std_models\mésc\

link11 data Netwars\Sim_Domain\op_models\contributed models\nawyaspaodels|
MIL_STD 1553 packet Netwars\Sim_Domain\op_models\contributed _madel$\6_models
mop_data Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
mop_info Netwars\Sim_Domain\op_models\netwars_std_models\misc\hla
move_opfac_by Netwars\Sim_Domain\op_models\netwars_std_modelsimis
move_opfac_by bearing Netwars\Sim_Domain\op_models\netwars_stdsinoselhla
move_opfac_to Netwars\Sim_Domain\op_models\netwars_std_modelsimis
mse_data_packet Netwars\Sim_Domain\op_models\netwars_std_models\ms
mse_hello_packet Netwars\Sim_Domain\op_models\netwars_std_magtels\m
new_ier_description Netwars\Sim_Domain\op_models\netwars_stdIs\mide\hla

NIMA Netwars\Sim_Domain\op_models\contributed_models\navy spamaiels
nw_voatm_hello_pkt Netwars\Sim_Domain\op_models\netwars_std_moddia\rgateway
nw_voip_hello_pkt Netwars\Sim_Domain\op_models\netwars_std_modela\rgateway

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

opfac_damage

Netwars\Sim_Domain\op_models\netwars_std_modelskais

opfac_init

Netwars\Sim_Domain\op_models\netwars_std_modelshiaisc\

opfac_repair

Netwars\Sim_Domain\op_models\netwars_std_modeléitais

phone_switch

Netwars\Sim_Domain\op_models\netwars_std_models\mse

positional_move

Netwars\Sim_Domain\op_models\netwars_std_nmodefgila

Netwars\Sim_Domain\op_models\netwars_std_models\promina

pro_cx_pk

pro_hello_pk Netwars\Sim_Domain\op_models\netwars_std_models\promina
pro_wan_pk Netwars\Sim_Domain\op_models\netwars_std_models\promina
radio_packet Netwars\Sim_Domain\op_models\netwars_std_modalsmadijars
satellite_pk Netwars\Sim_Domain\op_models\netwars_std_modelbisat

sincgars_inc_packet

Netwars\Sim_Domain\op_models\netwars_std sirmdiehsincgars

SRAP_application

Netwars\Sim_Domain\op_models\netwars_std_nsadelkie

SRAP_application_v2

Netwars\Sim_Domain\op_models\netwars_std_nsadiellite

Netwars\Sim_Domain\op_models\netwars_std_modstshta

trigger_ier
trigger_new_ier Netwars\Sim_Domain\op_models\netwars_std_rmikdthla
tssp_frame Netwars\Sim_Domain\op_models\netwars_std_modédlisésate

UHF_SATCOM_Sat Packet

Netwars\Sim_Domain\op_models\netwars_ctiéls\satellite

USMTF

Netwars\Sim_Domain\op_models\contributed_models\navy_spawdels

vector_move

Netwars\Sim_Domain\op_models\netwars_std_model¢itais

vtc_packet

Netwars\Sim_Domain\op_models\netwars_std_models\vtc

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX E: INTERFACES AND PACKET FORMATS

This section provides a list of MAC technologies curgestipported by OPNET Modeler and
the corresponding packet formats (see Table E-1). Thisnslyna list of OPNET Standard
(COTS) MAC-level packet formats. Users can, and shasid their own packet formats for
implementing other interface technologies.

Please refer to Appendix D: Packet Formats for morelsletgarding the Supported Packet
Formats listed below.

Table E-1: Interfaces and Packet Formats

Interface Technology ‘ Supported Packet Formats
Ethernet ethernet v2
ATM ams_atm_cell
FDDI fddi_llc_fr, fddi_mac _fr, fddi_mac_tk
SLIP (DSL, ISDN) ip_dgram_v4
Frame Relay frms_admin_frame, frms_frame_fmt, frms_tpal_setup _frame
Token Ring tk_llc_fr, tk mac fr, tk mac tk
Wireless LAN wlan_control, wlan_mac

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX F: INTERFACE CONTROL INFORMATION (ICI) FOR MATS

The ICI Format Files work in a similar fashion to acket Format Files.
the contents of the ICI format you will need to open‘tlic.m files using OPNET Modeler. 1t is
easy to perform a search on the directory structurRElI' WARS to locate the ICI Format files.
However, if you open these files up using a text ediker\Wordpad or Notepad, you will
quickly discover that they contain binary informattbat will make it difficult to read.

B Search Results
Fle Edit Vew Favorites Tooks Help

Q- ¥ ‘)-—\ SEar\:h|;‘r_ Folders | [T21)-

B

Address | £ search Results

Search Companion x

Search by any or all of the criteria below.
#ll or part of the file name:

[|
A word or phrase in the fle:

Lookiin:

|2 sim_Domain v |
When was it modified? ¥
What size is it? ¥
More advanced options ¥

Name
call_established.ic.m
) data_switch_info.ic.m
[Eearth_tdm_bautilic.m

end_call_iciicm

| [Bepuu_to_eprsicm

fai_rec.icm
from_data_switch.ic.m
B for_initiate.icm
gss_inport_id.ic.m

{2 gss_packet_iciicm
[Hier_ackicm
ier_pkt_info.ic.m

= il_oe.ic.m
inform_data_switch.ic.m
inform_mus.ic.m

|2 me_mgricm
link_stat_ici.ic.m
[Hmse_icicm
[Ejnw_HLA_aBSOLUTE.ie.m
NW_HLA_IER_FIRE.icm
[Ejnw_HLa_NEW_TER FIRE.iem
NW_HLA_POSITIONAL.ic.m
MW_HLA_VECTOR.ic.m
B nw_vostm.icm

B oe_seicm

[ne thread ieric m

<

InFlder

Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\nstd
Ci\Program Files\Wetwars\Sin_Demain'on_models\netwars_std_modelsimse
Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\satelite

C:\Program Files\Netwars\Sim_Domain\op_modelsinetwars_std_modelsmedia_gat...

Ci\Program Files\Netwars\Sim_Domainiop_madelsinetwars_std_modelsradioeplrs
Ci\Program Files\etwars\Sim_Domainop_madels\netwars_std_models\mse
Ci\Program f \Sim_Domain'op_m _std_models\mse
Ci\Program FilesNetwars\Sin_Domainop_madels\netwars_std_modelsmse
Ci'\Program Files\etwars\Sim_Domain'on_models\netwars_std_models\deprecated
Ci\Program Files\Wetwars\Sim_Demain'on_medsls\netwars_std_models\deprecated
Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\nwstd
€:\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_modelstwistd
Ci\Program Files\Netwars\Sim_Domainiop_madelsinetwars_std_models\nwistd
Ci\Program Filesetwars\Sim_Domainop_madels\netwars_std_modelsmse
Ci\Program f \Sim_Domain'op_m _std_models\mse

C:\Program Files\Netwars\Sim_Domain\op_madels\contributed_modelsVink_15_ma...

Ci'\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\nstd
Ci\Program Files\Wetwars\Sin_Demain'on_models\netwars_std_modelsimse
Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_modelsmisciHls
€:\Program Files\Netwars\Sim_Domain'op_modelsinetwars_std_models\miscila
Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_modelsimisc\hla
Ci\Program Files\Netwars\Sim_Domain'op_modelsinetwars_std_models\miscihla
Ci\Program f \Sim_Domain'op_m - std_models\miscihls

C:\Program Files\Netwars\Sim_Domain\op_models\netwars_std_modelsinedia_gat...

Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\nistd

\Pranram FleeiNehuaralSim Mamainian madslsinetwars atd mdeleinmetd

Type
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
M File
MFile

Date Modified

4/2/2007 9:13PM
4/2/2007 9:13PM
4/2/2007 9:14PM
4/2/2007 9:13PM
4/2/2007 9: 14 PM
4/2/2007 9:13PM
4/2/2007 9:13 P
4/2/2007 9:13 PM
4/2/2007 9:13PM
4/2/2007 9:13PM
4/2/2007 9:13PM
4/2/2007 9:13PM
4/2/2007 9: 13 PM
4/2/2007 9:13PM
4/2/2007 9:13 P
4/2/2007 9:12PM
4/2/2007 9:13PM
4/2/2007 9:13PM
4/2/2007 3:13PM
4/2/2007 9:13PM
4/2/2007 9:13 PM
4/2/2007 9:13PM
4/2/2007 9:13 P
4/2/2007 9:13 PM
4/2/2007 9:13PM
412/007 813 PM

v B

In order to examine

s
"

A~

|2

Figure F-1: ICI Format Files

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

A better way to look at these files is through OPNEddeler. Select File and then Open to get
to the Open Dialog box. Set the “Files of type:” fiedd'kCl Format Files (*.ic.m).” The
example below shows the Open Dialog box for the NE'R8Aolder of “nwstd.”

Open @E|

Lok j; |;‘j ristd :J o ﬁ Ea-
4 E_«Tl call_established.ic.m
.—J @ ier_ack.ic.m
op_rodels ieu:kl:_info.ic.m
__J il_oe.ic.m
ztd
__J' :@ oe_thread_start.ic.m

My Documents |§T| release_bandwidth.ic.m

;-! @ reserve_bandwidth_Failure.ic.m
=

tpal_se.ic.m

File name: |oe_se.ic _:J Open |
Files of type: |11 Format Files [~ ic.m) -] Cancel

Figure F-2: Open ICI Format

Select “oe_se.ic.m” file, to display a dialog box wtie ICI format Attribute Names, Type,
Default Value, and Description (if any).

] ICI Format: oe_se

File Edit ‘Windows Help
|.t’-‘n.ttrihute Hame Tupe Default Walue | Description J
ier_parameters_plr structure 0
conzumer_pl_addr integer 00
conzumer_dy_addr integer 00
meszage structure (0
conzumer_ides integer 00
canzumer_node_id integer 00
ier_proc_delay double]
=
Opened File: [D:WOPMET ModelersMETWBRS op_modelshnetwars_std_modelshrmetdhoe_zeicr

Figure F-3: ICI Format Attributes

F-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table F-1: Interfaces and Packet Formats

ICI Format Location

call_established

Netwars\Sim_Domain\op_models\netwars_std_nmudsts

data_switch_info

Netwars\Sim_Domain\op_models\netwars_std_mmodels\

earth_tdm_bgutil

Netwars\Sim_Domain\op_models\netwars_std_nezateltie

end_call ici

Netwars\Sim_Domain\op_models\netwars_std_modelig\ngateway

epuu_to_eplrs

Netwars\Sim_Domain\op_models\netwars_std_models piic

fail_rec

Netwars\Sim_Domain\op_models\netwars_std_models\mse

from_data_switch

Netwars\Sim_Domain\op_models\netwars_std_rirodels

fsr_initiate

Netwars\Sim_Domain\op_models\netwars_std_modeds\ms

gss_inport_ici

Netwars\Sim_Domain\op_models\netwars_std modeistdéed

gss_packet ici

Netwars\Sim_Domain\op_models\netwars_std_modetsaler

ier_ack Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
ier_pkt_info Netwars\Sim_Domain\op_models\netwars_std_modelsinwst
il_oe Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

inform_data_switch

Netwars\Sim_Domain\op_models\netwars_std_rirodels

inform_mux Netwars\Sim_Domain\op_models\netwars_std_models\mse
JRE_mgr Netwars\Sim_Domain\op_models\contributed models\link_Id&lso
link_stat_ici Netwars\Sim_Domain\op_models\netwars_std_modedginw
mse_ici Netwars\Sim_Domain\op_models\netwars_std_models\mse

NW HLA ABSOLUTE

Netwars\Sim_Domain\op_models\netwars_std_nstmiéc\hla

NW HLA IER FIRE

Netwars\Sim_Domain\op_models\netwars_std_mimdisishla

NW HLA NEW IER FIRE

Netwars\Sim_Domain\op_models\netwars_stdetabnisc\hla

NW_HLA POSITIONAL

Netwars\Sim_Domain\op_models\netwars_std_istdisc\hla

NW HLA VECTOR

Netwars\Sim_Domain\op_models\netwars_std_modsistra

nw_voatm

Netwars\Sim_Domain\op_models\netwars_std_models\matiway

oe_se

Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

oe_thread_ier

Netwars\Sim_Domain\op_models\netwars_std _modéts\nws

oe_thread_start

Netwars\Sim_Domain\op_models\netwars_std_modss\

pro_perm_bgutil

Netwars\Sim_Domain\op_models\netwars_std_modetsiaro

release_bandwidth

Netwars\Sim_Domain\op_models\netwars_std_nedts

reserve_bandwidth_failure

Netwars\Sim_Domain\op_models\netwarsnadels\nwstd

tpal_req

Netwars\Sim_Domain\op_models\modified _opnet_std mgqudgls\t

tpal_se

Netwars\Sim_Domain\op_models\netwars_std_models\nwstd

UHF_SATCOM DAMA Info

Netwars\Sim_Domain\op_models\netward stodels\satellite

UHF _SATCOM_Entity Config

Netwars\Sim_Domain\op_models\netwéadls nsodels\satellite

UHF_SATCOM_Entity Registration

Netwars\Sim_Domain\op_modets¥ars_std_models\satellite

UHF_SATCOM Hello

Netwars\Sim_Domain\op_models\netwars_std_rsisdétllite

UHF_SATCOM_Terminal Rev Info

Netwars\Sim_Domain\op_models\rstveédd_models\satellite

UHF_SATCOM_Token_ Passing

Netwars\Sim_Domain\op_models\netwarsmatlels\satellite

voice_pkt

Netwars\Sim_Domain\op_models\netwars_std_models\iadgass

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX G: CONSTANTS
Table G-1 outlines constants, values, and accompanyingk&ma

In cases where a constant is available, great carddshe used to make sure the Constant Name
is used and not the Constant Value. While either wouldkwmsing the Constant Name provides
for cross referencing work and simplifying changes.

Table G-1: Constants

Constant Name Constant Value Remarks

File Name: oe se.h

This is an interrupt code used by the OE to

OE_SE_IER_SEND OX7FFFFFED inform the SE to fire an IER.
No longer used in NETWARS models. Model
developer is strongly recommended to not use
SE_OE_IER_RECEIVED Ox7FFFFFDO this any more because it will not be compatible
with the latest OE models.
This is an interrupt code used by the OE to
OE_SE_MOVED Ox7FFFFFEL inform an OPFAC SE(s) about a movement.
INTER_PLATFORM_WIRE OXTE7TE7ETE Obsolete. No longer used in NETWARS

models.

File Name: oe_threads

The OE uses this interrupt code for
communicating between “oe_threads” and
“oe_iers” process models when an IER is to be
fired.

The OE uses this interrupt code for
communicating between “oe_threads” and
“oe_iers” process models when an IER is
received.

This is an interrupt code used by the “se” of an
NWC_INFORM_DEST_OE_FAIL -112 IER destination end device to inform its OE of
an IER failure.

This is an interrupt code used by the “se” of an
NWC_INFORM_DEST OE_RCVD | -111 IER destination end device to inform its OE of
an IER reception.

This is an interrupt code used by the “se” of an
NWC _INFORM_SRC OE RCVD | -113 IER source end device to inform its OE of an
IER reception.

This is an interrupt code used by the “se” of an

NWC_FIRE_IER -444

NWC_OE_SE -555

NWC_INFORM_SRC OE_FAIL -114 IER source end device to inform its OE of an
IER failure.
This is an interrupt code used by the OE to
NWC TIME_TO_FIRE_RXN -115 inform itself that it is time to fire a reaction IER

for a particular thread segment.

This defines the size of the thread ID of an IER,
NWC_THID_LENGTH 13 which belongs to a thread as opposed to normal
traffic.

G-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Constant Name Constant Value Remarks

This is a string value used by the OE to
distinguish the condition of a thread segment
from the segments that have conditions as other
segments.

NWC_THID_CONDITION_START | “Start”

File name: netwars_support.hpp

This is an interrupt code used by TPAL to inform

TPAL_SE_APP_SEND 1111 the SE to fire an application call.

Typed Files

Thetyped fileattribute is used to specify file names for intrindie iypes recognized inside the
OPNET environment. Table G-2 lists typed file functions.

Table G-2: Typed File Attribute

File Suffix | File Function

A1 trajectory for a mobile node or subnet

.orb orbit for a satellite node

.pr.m process model for a module

.nd.m node model

.nd.d derived node model

.pk.m packet format

ic.m ICI format

dk.m link model

k.d derived link model
Network model file. The scenarios, organizations, and OPFACs created by

.nt.m the study analyst using the Scenario Builder GUI are stored on disk as .nt.m
files.

.gdf Generic data file

.ex.0 External object file (created from .ex.c or .ex.cpp)

G-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX H: OTHER FILE FORMATS

Table H-1 lists other file formats and functions.

Table H-1: Other File Formats

File Suffix File Function

Platform definition file. Provides the device specification for an OPFAC. This

.pdef is a text file representation of an OPFAC, which is used by the NETWARS
Scenario Builder.

.sdf Simulation description file

.ex.Cc ANSI C external code file

.ex.cpp ANSI CPP external code file

.h C/CPP header file

xsd XML Schema Document

xml XML data file

H-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX I: MEASURES OF PERFORMANCE IN NETWARS

Table I-1 lists the measures of performance reported bn@ENETWARS scenario. All MOPs
are reported for the source OE. These statisticeepmted in the OV format and can be

collected locally, globally, or both.

Statistics Name

Table I-1: MOPs Reported by OE

Method of Calculation

1 Call Completion Percentage of voice IERs sent that were Local and Global
Rate successfully completed
2 Grade of Service | Percentage of IERs received at the destination | Local and Global
within the perishability duration
3 IERs Sent Count | Number of IERs sent Local and Global
4 IERs Received Number of IERs received Local and Global
Count
5 Message Percentage of data IERs sent that were Local and Global
Completion Rate | successfully received
6 Message Error Percentage of the data IERs sent that failed Local and Global
Rate
7 Perishability for A cumulative count of IERs that are received Local and Global
the rcvd IERs for which the delay (IER received time—IER
start time) is greater than the IER perishability
duration
8 Speed of Service | The delay (IER received time—IER start time) Local and Global
(in sec) for the value collected for each IER
rcvd IERs
9 End-to-End Delay | The latency (IER received time—IER sent time) | Local and Global
value for each IER
10 Connection The time difference between the IER sent time | Local and Global
Latency and IER start time (or Speed of Service—End-
to-End Delay)
11 Blocking The ratio of the IERs that were blocked at least | Local and Global
Probability once to the number that were sent
12 Number of Blocks | Number of times an IER is blocked Local and Global
for each IER Sent

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table I-2 details the various statistics groups colleaethe statistics listed above. The Local
scope means that this statistic is relevant only t@#mcular OE, whereas the Global scope
means that the simulation (DES) writes this statistithe complete network as opposed to an
individual network entity.

Table 1-2: Statistics Groups

Statistics Name Statistics Groups
1 IER Sent IER Statistics Local
Total Traffic Sent Global
Total Routine Traffic Global
Total Priority Traffic Global
Total Immediate Traffic Global
Total Flash Traffic Global
Total Flash Override Global
Total Data Traffic Global
Total Voice Traffic Global

Note: These statistics are also written per IER basisngigi complete analysis for individual
IERs in addition to the groups/categories discussed above.

Device-Level MOPs

The ability to collect device-level MOPs in NETWAR3oals the model developer and user to
collect any OPNET node-level statistic in a NETWAR@dation. Any statistic promoted to the
node level will appear when the user chooses stat@tiesy OPFAC in the Scenario Builder
editor. These statistics are written out to an @y OPNET simulation kernel, which are then
converted to the corresponding VEC files during simulgpiost-processing. The results can
subsequently be viewed using the Results Analyzer in NET®/AR

All the networking and end devices support device-level MOPs.

Device-level MOPs include protocol (ATM, IP, EtherneGH, OSPF, IGMP, EIGRP, BGP)-
specific statistics such as IP.Traffic Sent (packety/$B.Traffic Received (packets/sec),
TCP.Active Connection Count, and OSPF.Traffic Sentgsésec) and low-level statistics such
as transmitter throughput and queuing delay. For modelsupabrt standard voice and video
applications over circuit switch, the device-level MGRsuld include “Application Calls
Generated” and “Application Calls Succeeded” statisTibere are a large number of other
statistics, including the custom statistics that caa be collected.

MOPs for Links
The following MOPs are recorded for links in NETWARS.:

* Voice throughput

» Data throughput (recorded in both forward and reverse airecseparately for wireline
links)

* Link utilization (recorded in both forward and reversediions separately for wireline
links)

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

* Channel utilization.

MOPs for Broadcast Radio Networks

The following MOP is recorded for radio broadcast network:
* Broadcast network utilization

Table I-3 lists the modules that write the OV-basetissizs (please refer to the notes above on
Generic Statistics for other nodes that can be sti opllect statistics).

Table I-3: Modules That Write OV Statistics

Statistic ‘ Component ‘ Module
Voice Throughput (in bits/sec.) Layer 2 Networking Device circuit_switch
connected to the link
Channel Utilization (percent) Layer 2 Networking Device circuit_switch
connected to the link
Broadcast Network Utilization Radio Device mac

Note that a link probe set up on the link for wireline $imkcords the data_throughput and
utilization statistics for the External link. Wirelgssint-to-point links must record this statistic
themselves.

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX J: NODE MODEL DOCUMENTATION

A node model, such as end-system devices, networking deamee€)E and Utility Nodes, is
documented by providing the following information in the Comtaesection of the Node
Interfaces option in the Node Editor.

General Description of the Device

For an end-system device, the functions and its seclaigitication are documented in this
section.

For networking equipment, the functions of the networkiggipment are documented in this
section.

Notes to the Military Analyst

This section includes two- to three-sentence descriptionseousage of the device itself. This
will also include any special behavior or exceptions tiiiatdevice model may have.

Notes to the Model Developer

This section documents the technical details that reayf nterest to a model developer.
Technical details to be covered in the specific sectief®y should not be reiterated here.

Last Edit
Version Number, Date, Author
Supported Traffic Types

Specifies the types of traffic the networking equipmemtdtes. The traffic type can be voice,
data, or both.

Supported Protocols
The list of protocols supported by this networking device.
Interface Specification

Table J-1 contains sample data. The Interface # cofjpmcifies the numeric index of the
interface. The Interface Type column specifies the tfgaterface, such as Ethernet, ATM, or
FR. The Number of Channels column specifies the numbehrasfnels supported by this
interface. The Data Rate and Packet Formats colustrthid data rate and packet formats
supported by the individual channels on this interface.

For every interface, there are as many rows unddddbe Rate and Packet Formats columns as
there are number of channels in that interface.

J-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table J-1: Wired Interface Specifications

Interface Interface Number of Data Rate (bps) Packet Formats
Type Channels

0 ATM 1 155,520,000 ams_atm_cell

1 ATM 1 155,520,000 ams_atm_cell

The example networking equipment in Table J-1 has two Altetfaces, each with one channel
and operating at a data rate of 155.52 Mbps. The interfacerssippokets of type
ams_atm_cell.

For radio devices the interfaces are documented diffgrexst shown in Table J-2.

Table J-2: Radio Device Interface Specifications

Intf T 5 PRI Minimum Spreadin FOUES
Modulation of Formats Bandwidth | °P 9
Frequency Code
Channels
0 Bpsk 2 1,024 | wlan_mac, 30 MHz 10 KHz disabled 100W
wlan_control
2,048 | wlan_mac, 30 MHz 10 KHz disabled 100W
wlan_control

The table specifies sample data for a transmittes ffansmitter has two channels, one with a
data rate of 1Mbps and the other with a data rate of 2 MBmb channels support packet
formats of type wlan_mac and wlan_control. The charnmal® a minimum frequency of 30
MHz with a bandwidth of 10 KHz and transmitting powefd 60 W.

Process Models

All the process models that are invoked within the cdrdéshis node are documented in the
following format. Table J-3 contains sample data.

Table J-3: Process Models

Location ‘ Description

Generates the various circuit-switch signaling packets in

dnvt_se dnvt response to VOICE IERSs.

The Name column refers to the name of the process ptbddlocation column to the node
model within which the process model resides or is invokdatiek description of what this
process model does is provided in the Description column.

External Files Needed

All external files (header files, C files) needed hg process models in this node are
documented in this section. Table J-4 contains sample data

J-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table J-4: External Files Needed

Name of Process Model ‘ List of Files Used
se_computer netwars_support.ex.c, netwars_nato.ex.c
Ip opnet.h, ip_addr_v4.h, ip_auto_address.ex.c

Handling Failure/Recovery

This section documents which modules in this node hdatilee/recovery interrupts explicitly
and how the interrupts are handled.

Pipeline Stages Used (Radio/Satellite Only)

This section documents the transceiver pipeline stageadm/satellite devices. This section is
not required for wired devices.

Orbit Specification (Satellite Only)
This section documents the orbit file used by the #atelkvice.
Comments

This section must be used to document any additional eggeimts or restrictions in using this
device.

Full Edit History
Version Number, Date, Author
External Documentation

Author, Date, Title, Optional Comments

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX K: MODEL NAMING CONVENTIONS

The following is a proposed naming convention to promot&yland reduce the chances of
naming conflicts. The naming convention for NETWARS ukescommunications system name
as the base prefix. For example, all MSE models dateckfiles should begin their namase .
This name should be unique and distinct from existing NETWAR®dard models:

Node Models:Node models should use a two-part name consisting of the
communications prefix and a device type separated by undesstbthe same base
model will be used for multiple derived device models, a&gerunction type should
replace the device type.

Derived Node Models:If a generic base model was developed to allow multjpdeisc
devices to be modeled with the same model, it should lneahasing the above standard,
that is, prefix followed by device type (replacing the gentemction).

Process ModelsThe process model should be named using the conventiba pfefix
of device name or device classification followed by thecgss function, all separated by
underscores. Some of the process models perform a gémeiion that is common to
more than one device. These process models can be niaamid svith a prefix
signifying their technology, followed again by their functiGome of the typical
examples of process model naming are discussed below:
— pro_portmap_utility: Here thero part signifies the category of the device (Promina)
andportmap_ utilitysignifies its function of handling port map configurations
— ams_atm_call_control: Here thens_atnsignifies the ATM technology, whereas the
call_controlsignifies the ATM call control functions performed Ing tprocess
model.

External Files: External files are named with the prefix followed by tlesice (or
function), if applicable, followed by descriptive narterminated with the extensioaor
.cpp For example: netwars_satellite_support.ex.c

Header Files:Header files are used to declare externally callalvletiions, shared type
definitions, defines, and simulation-wide global variablésose header files declaring
functions should use the same file name as the ek(€if@++) file but with extension
.h. If the header file does not contain declarationsxtérnally callable functions, it
should be given a name descriptive of the communicasigstem in which it is used,
optionally a function of that communications systama the extensiomn. For example:
netwars_stat_support.h

Link Models: Link models should be named using the protocol and, offiotize link
speed. For example: wire_ptp

Derived Link Models: Derived link models should be named using the same conmentio
as link models.

Transmitters and Receivers:The transmitter and the receiver should be namedawith
substring “txindexX and “rx_index” included in the name. Thedexshould start from
an integer value of 0 and be numbered sequentially. Exawiplieessmitter names

K-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

include tx_1, inc_tx_ 2, and atm_tx_3 0. Receivers could be namedlasnx rx_2,
atm_tx_3 0, and so on. Note that the name should not inaldeore tx or rx
substrings. Names that are not acceptable, for exaamelentx_tx_0 and rtx_tx_5.

» Externally Callable Functions: Externally callable functions should be named using an
abbreviation for the external file in which it residebowed by a short phrase describing
the function.

For example: nw_sdf sup_init() function in netwars_sdf supgoc file

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX L: NETWARS SIMULATION API AND HELPER FUNCTI

ONS

Table L-1 lists an example of an APl and some ofdimetions with input parameters that are
available in NETWARS. The following discussion willrdenstrate how to locate the APIs and
determine what functions are available to be called mvitet particular API, as well as provide

an example of how the Table L-1 was started. Finalyle L-2 will provide a list of all the

APIls available and their location within the directetgucture.

The APIs are the External Files, which end in eithex.c” for C source code files or “.ex.cpp”
for C++ source code files work in a similar fashionite Packet Format Files. Unlike the files
ending in “.m” (e.g., Packet Formats and ICl Formatgsehare text files and can be viewed
using a text editor such as Notepad or Wordpad. The APlsasilly be found by searching the
NETWARS model files looking for those files that end.iex.c*”, which would include both C

and C++ APIs.

B Search Results E

Ele Edt Vew Favortes Tools Help

Q-0 & ‘;U 555rd‘||‘3 Folders | [T37]~

[=E3)
&+

address |) Search Resuits

Search Companion X Name

[E] arypto_support.ex.c
jood_search_routing.ex.c
Na_SUp_COnn_support.ex.c
na_sup_lib.ex.c
_oe.ex.c
_suto_addr_sup_v4.ex.c
_rte_support.ex.c
ink_16.ex.
etwars_cktsw_support.ex.c
etwars_logical_link_support.ex.c
etwars_satelite_support.ex.c

Search by any or all of the criteria below.
Al or part of the file name:
| =ex.c® |

Aword or phrase in the file: |

Lol -

Sp— 3| etwars_sdf_support.ex.c
etwiars_stat_support.ex.c

When was it modified? etwars_suppart.ex.c
w_accelerator_sup.ex.c

What size is it2 ¥ cireuit_stat.ex.c

DS avimced oty = W_custom_ip_auto_addr.ex.c

w_ip_modification_support.ex.c
w_medel_modification_support.ex.c
w_tracer_pkt_support.ex.c

e _stat_suppart.ex.c
ms_buffer_bautil.ex.c

€0 _2pp_support.ex.c
roming_rte.ex.c

[Z] aramina sunnortev.c

InFolder
Ci\Program Files\Wetwars\Sim_Demain'on_medsls\netwars_std_models\arypto
Ci\Program Files\Netwars\Sim_Domain'op_modelsinetwars_std_modelsimse

€ \Program Files\Netwars\Sim_Domain'op_models\modified_opnet_std_modzlsap. .
Ci\Program Files\Netwars\Sim_Domain'op_models\modified_opnet_std_modelsiap...

Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\wistd
Ci\Program f \Sim_Domain'op_madels\modified_opnet_std_modelsip
i \Program FilesNetwars\Sin_Demainon_madels\modified_opnet_std_madelslip

Ci\Program Files\Netwars\Sim_Domain'op_madelsicantributed_modelslink_15_mo...

Ci\Program Files\Netwars\Sim_Demain'op_modelsinetwars_std_medels\wistd
Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\nwstd
€:\Program Files\Netwars\Sim_Domain'op_modelsinetwars_std_models\satelite
Ci\Program Files\Netwars\Sim_Domainiop_madelsinetwars_std_models\nwistd
Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\wistd
Ci\Program f \Sim_Domain'op_models) _std_models\uistd
€ \Program FilesMNetwars\Sin_Domainop_madels\netwars_std_modelsyouter
Ci'\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\nstd

C:VProgram Files\Netwars\Sim_Domain'op_modelsinetwars_std_medels\misc\cots ...
Ct\Program Flles\Netwarsisim_Domain\op_modelsinetwars_std_models!riscicots_...
C:VProgram Files\Netwars\Sim_Domain‘op_modelsinetwars_std_models\misc\cots_...

Ci\Program Files\Netwars\Sim_Domainiop_madelsinetwars_std_models\nwistd
Ci\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\vistd
Ci\Program Files\Netwars\Sim_Domain'op_models\modified_opnet_std_modelsioms
€ \Program Files\Netwars\Sim_Domain'ap_madelsinetwars_std_models\en
Ci'\Program Files\Netwars\Sim_Domain'op_madelsinetwars_std_models\promina
C:\Pronram Files\NetwarsiSim Nomaintan modelsinetwars std madelsinromina

Type
CFile
C File
CFile
C File
CFile
C File
CFile
C File
CFile
C File
CFile
C File
CFile
C File
CFile
C File
CFile
C File
CFile
C File
CFile
C File
CFile
C File

€ File
|

Date Modified

4/2/2007 9:13PM
4/2/2007 9:13PM
4/2/2007 9:13PM
4/2/2007 9:13 PM
4/2/2007 9:13PM
4/2/2007 9:13 P
4/2/2007 9:13 PM
4/2/2007 9:12 PM
4/2/2007 9:13PM
4/2/2007 9:13PM
4/2/2007 9:14PM
4/2/2007 9: 13 PM
4/2/2007 9:13PM
4/2/2007 9:13 P
4/2/2007 9:14PM
4/2/2007 9:13PM
4/2/2007 9:13PM
4/2/2007 3:13PM
4/2/2007 9:13PM
4/2/2007 9:13 PM
4/2/2007 9:13PM
4/2/2007 9:13 P
4/2/2007 9:13 PM
4/2/2007 9: 14 PM
4f2/2007 8:14 PM

v B e

-~

Figure L-1: API Files

L-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

A preferred method of looking at these files is through BPMNModeler, since its editor will
color-code portions of code and make certain thingglsbat, in particular, the API function
names will be of interest. Select File and then Qpeget the Open Dialog box. Set the “Files of
type:” field to either “External Source (C code) Filegx.c)” or “External Source (C++ code)
Files (*.ex.cpp).” Currently, none of the NETWARS ARI® coded in C++, but there are
OPNET APIs that are coded in C++. Specifically withsi@n 12.0.A, 62 C++ files were located
out of 414 total External Source Files. The examplevibshows the Open Dialog box for the
NETWARS folder of “nwstd.”

Lok in: |_; rivstd j e B~

e E] il_oe.ex
.—J @] niekar s _ckksiw_support, e

op_models E] netwars_logical_link_suppork,ex
|§_°°] nietwars_sdf_support.ex

.--J I?] netwars_stat_support,ex

std F:_“] nekwars_suppork.ex

AN I?] nw_circuit_skak,ex
__,_/ F;] rw_tracer_pkk_support.ex
Fdy Documents I?J oe_stat_support,ex

=T E] trace_suppork, ex
|
3
tdy Computer
?_..%
Dezktop
File: name: | j Open |
Files of type: |External Sovrce [C code] Files [* ex.c) ﬂ Cancel
External Source [C code] Fil A
Estemnal Source [C++ code] PR B
Header file [C/C++,] Files [F h)

Header file [C++, hpp) Filez [*.hpp)

Pipeline Stage [C code] Files [*.ps.c)

Pipeline Stage [C++ code] Files [* ps.cpp)
Metwork Model Files [*.nt.m] —
Probe Madel Files [*.pb.rm)

Simulation Sequence Files [*.seq)

E=ternal Systern Definition Files [esd.m) l

Figure L-2: Open API File

L-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Select “oe_stat_support.ex.c” file to have the OPNET Néwdeditor display the file, as seen
below.

| External Source {C code): oe_stat_support
File Edit ©Options Compie Windows Help

GAI 1L

1 lfﬂ-wfnnrwn-n-n-wwwn-wn-wn-wn-wn—wn-n-wwn-wwn-wn-wn-wwn-www;’ :J
2 Vi Copyright (c) 1987 - 2002 Eef
3 A by OFNET Technologies, Inc. oy
3 bt (A Delaware Corporationd e
b 7255 woodmont Aw., Suite 250 b
Vi gethesda, MO 20814, U.S.A. L7
E ¥l A1l Rights Reserwed. B
B ,,‘*****ﬂ.—******ﬂ.—ﬂ.—******w******w************‘f

widd

mw_oe_sent_stat_write (const IER_Farameters *ierparms,
stathandle® opfac_ier_stathandle,
double* opfac_ier_statistics_walues,
FraT_string_Hash_Table* ind_jer_stat_hash_table_ptr,
ProT_string_Hash_Table* dind_jer_stat_walue_hash_table_ptr,
const char® actijon_str

A* Purpose: Functioh tneant to update the sent statistics for IER */
FIN [nw oe_sent_stat write [ierparmsl];

A* First do OPFAC lewe] IER stat update */f

A* and alongside do the indw. IER stat */f

A% update as well. b2

nw_oe_opfac_and_indv_ier_sent_stat_write (ierparms, opfac_ier_stathandle,
opfac_ier_statistics_walues,

12 ind_ier_stat_hash_table_ptr,

13 ind_ier_stat_ walue_hash_table_ptr,

action_strl;

36 FOUT;
1

wind d
mw_oe_opfac_and_indv_ier_sent_stat_write (cConst IER_Parameters*® ierparms,
stathandle* opfac_ier_stathandle,
double* opfac_ier_statistics_walues,
FroT_String_Hash_Table® ind_ier_stat_hash_table_ptr,
FroT_String_Hash_Table® dind_ier_stat_walue_hash_table_
i3 const char® action_str)

Py

A* Purpose: Function meant to update the global, opfac and indiwvidual IER stats =/
an Stathandle* indv_ier_stat_handle_ptr = OPC_NIL;
13 double*® jer_stat_walues_ptr = OPC_MIL;

3l IerT_alobal_sStats* qder_traffic_type;
52 IerT_Global_stats* jer_priority;

1l double*= global_traffic_type_stat_walues;

35 double*® global_traffic_prio_stat_walues;

67 Eoolean ierid_found = OFC_TRUE;

3

3% FIN [nw_oe_opfac_and_indv_ier_sent_stat_write (...]0

&1 A* Get the entries in the hash table =/

g2 indv_ier_stat_handle_ptr = (stathandle*) prg_string_hash_table_item_get (ind_ier_s

3 ierpar

jer_stat_walues_ptr = (double=®) prg_string_hash_table_item_get (ind_ier_stat_walue

&5 1erparms —=

EE : : ; -
[« | b
\Opened File: [D:AOPNET Modele\WETWARS op.modelshnetwars_std modelsh\nwstdboe stat_supportex |Line: 1

Figure L-3: oe_stat_support API

The functions in the oe_stat_support API that can bectalle in the source code. The first is
“nw_oe_sent_stat_write.” While there may not be a comrtwedescribe all the functions

L-3

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

within an API, this particular one has a purpose thstr&ght to the point; “Function meant to
update the sent statistics for IER”. If you need to upttetesent statistics for an IER, this would
be the function to call and the API to include. Th®ing table is an example of how a list of
API Functions can be developed using this information.

Table L-1: Example of API Function Table

API API Functions Purpose Parameters
oe_stat_support| nw_oe_sent_stat_write Update the sent ierparms
statistics for IER opfac_ier_stathandle

opfac_ier_statistics_values

ind_ier_stat_hash_table_ptr
ind_ier_stat_value_hash_table_pt
action_str

=

nw_oe_opfac_and_indv_ier_sent_stat wfite Update the Global,| ierparms

OPFAC and Individual | opfac_ier_stathandle

IER stats opfac_ier_statistics_values
ind_ier_stat_hash_table_ptr
ind_ier_stat_value_hash_table_ptr
action_str

(continued) (continued) (continued)

There are currently 44 NETWARS APIs, and that listxjseeted to grow. It would be difficult
at best to develop Table L-1 for all of the functions wittinese APIs, but included below in
Table L-2 is a list of the APIs and their locations.

Table L-2: NETWARS APIs and Locations

API List Location

crypto_support Netwars\Sim_Domain\op_models\netwars_std_modpts\cry
flood_search_routing Netwars\Sim_Domain\op_models\netwars_std gimsel
gnha_sup_conn_support Netwars\Sim_Domain\op_models\modified _opnet_stts\apgleations
gna_sup_lib Netwars\Sim_Domain\op_models\modified_opnet_std_mqgbdilsdtions
il_oe Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
ip_auto_addr_sup v4 Netwars\Sim_Domain\op_models\modified_opnet_stelship
ip_rte_support Netwars\Sim_Domain\op_models\modified_opnet_stdIskipde
Link_16 Netwars\Sim_Domain\op_models\contributed models\link_16 _models
netwars_cktsw_support Netwars\Sim_Domain\op_models\netwars_ stdlshnavstd
netwars_logical_link_support Netwars\Sim_Domain\op_models\ngtsttk models\nwstd
netwars_satellite_support Netwars\Sim_Domain\op_models\netstdrsnodels\satellite
netwars_sdf support Netwars\Sim_Domain\op_models\netwars_std_masédis\
netwars_stat_support Netwars\Sim_Domain\op_models\netwars_stds\modtd
netwars_support Netwars\Sim_Domain\op_models\netwars_std_modsts\nw
nw_accelerator_sup Netwars\Sim_Domain\op_models\netwars_ std sinoglelr
nw_circuit_stat Netwars\Sim_Domain\op_models\netwars_std_modste\nw
nw_custom_ip_auto_addr Netwars\Sim_Domain\op_models\netwars_stds\mistscots support
nw_ip_modification_support Netwars\Sim_Domain\op_models\netwarsmsidels\misc\cots_support
nw_model_modification_support Netwars\Sim_Domain\op_models\netstdranodels\misc\cots_support
nw_tracer pkt support Netwars\Sim_Domain\op_models\netwars_std shnodst
oe_stat_support Netwars\Sim_Domain\op_models\netwars_std_modgds\nws
oms_buffer_bgutil Netwars\Sim_Domain\op_models\modified_opnet_stielsloms
pep_app_support Netwars\Sim_Domain\op_models\netwars_std_models\pep
promina_rte Netwars\Sim_Domain\op_models\netwars_std_modelsarom

L-4

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

promina_support Netwars\Sim_Domain\op_models\netwars_std_modeisipro
promina_support_alt Netwars\Sim_Domain\op_models\netwars_std_hpodeisa
promina_topo Netwars\Sim_Domain\op_models\netwars_std_model@yarom
promina_voice_support Netwars\Sim_Domain\op_models\netwars_stdskpooi@ina
rtp_support Netwars\Sim_Domain\op_models\modified_opnet_std rwbdels
sincgars\radio_support Netwars\Sim_Domain\op_models\netwars_ stdlstnadio

tcp_api Netwars\Sim_Domain\op_models\modified_opnet_std_mogbels\tc
tirem_support Netwars\Sim_Domain\op_models\netwars_std_modstineim
tpal_api Netwars\Sim_Domain\op_models\modified_opnet_std_modeéls\tpa
tpal_app_support Netwars\Sim_Domain\op_models\modified_opnet_std shapgdications
trace_support Netwars\Sim_Domain\op_models\netwars_std_modsits\nw
UHF_SATCOM_CPS_Entity Netwars\Sim_Domain\op_models\netwatsngidels\satellite

UHF_SATCOM_CPS_ServicePlan_Parger Netwars\Sim_Domain\op_shoelelars_std_models\satellite
UHF SATCOM_CPS TextManipulation] Netwars\Sim_Domain\op_madetwars std _models\satellite

UHF_SATCOM_Noise Area Netwars\Sim_Domain\op_models\netwarsmaidels\satellite
UHF_SATCOM_Orderwires Netwars\Sim_Domain\op_models\netwatsngidels\satellite
UHF_SATCOM_Platform Netwars\Sim_Domain\op_models\netwars_gidelsi\satellite
UHF_SATCOM_Platform_Utilization Netwars\Sim_Domain\op_mallettwars_std_models\satellite
UHF_SATCOM_Port Map Netwars\Sim_Domain\op_models\netwars_suklsisatellite
USN_ckt_supp Netwars\Sim_Domain\op_models\contributed models\nawarspaodels

Note: The NETWARS XML Schema defines the official input andpoitifile for NETWARS
Scenario Builder. The SDF file format is now obselek traffic XML file has replaced it, which
contains the IER and threaded IER information for tle@mado.

L-5

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX M: ATTRIBUTE TYPE DEFINITIONS

This appendix describes the various attribute types useBTWMRS. For more information,
refer to OPNET Modeler Online documentation, Modeling Cpte#anual, “Modeling
Framework” chapter, “Fram.3.3, Attributes” section.

Toggle

When a variable takes Boolean values such as On/@Qftluded/Not Included, it is defined as a
Toggle variable. An example of a Toggle variablaviailability statusof a node, which is “1”
to indicate that it is available for communicatior'@t to indicate that it is not available.

Integer

When a variable takes whole-number values, it is detasesh integer variable. An example of
an integer variable imax_active_calléor a phone, which cannot be defined in fractions of the
number of supported calls.

Double

When a variable needs to represent a precise numeuiaatity, it is defined as a double
variable. An example of a double variablexigositionof a node, which could take a value such
as “38.324.”

String

When a variable is used to hold a set of charactassgéfined as a string variable. An example
of a string variable is theameattribute of a node.

Enumerated

When a variable takes only a set of pre-defined valuesrapresented as an enumerated
variable. The value for an enumerated variable is repted as a string during specification and
as an integer during simulation.

An example of an enumerated value isclassificationattribute of a node. This variable takes a
certain number of pre-defined values such as “classiffed¢lassified,” or “secret.” These are
typically loaded as public attribute definition files amshde shared across models, for example,
the classification.ad.m file.

The NETWARS Standard enumerated types have been defipedblasattributes, and these are
defined in Appendix C.

Compound

When a variable cannot be represented by one of thdestfafa types described above, it is
represented by a compound data type. A compound data typellsciiao of simple data types
and other complex data types. A compound data type carahaitrary levels of nesting.

M-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

An example of a compound variable is thennelattribute of a transmitter module. The
channelattribute is a combination of two simple data types—tager calledlata rateand an
enumerated field callgoiacket format

Typed file

This is a character string that represents the naradilef A typed file could be a trajectory file
for a mobile node, an orbit file for a satellite nodeany of the other supported file formats. For
a full listing of the supported typed files, refer to App&r@.

Structure

This is similar to theompoundattribute type. While theompoundhattribute type is used in the
node model attributes, tis¢ructureattribute is used in packet format attributes.

Information

Theinformationattribute type is used in packet fields. These fields dazor@ain any actual
value, and they are used only as padding for the packetsmtdbe packet can have a certain
number of bits.

Objid

An object ID is used to uniquely identify a simulation objé&ndes, modules inside of nodes,
and compound attributes are all examples of simulatipects. The data typ@bijid is used to
declare these identifiers. This value is not modifiable.

M-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX N: EXAMPLES OF NETWARS MODELS

This appendix will go through an example of locating a NEBERS Model and the information
relevant to the model. Table N-1 provides a list ofredNETWARS Models in alphabetic
order to use as a reference in locating a specific model.

Node Models end in “.nd.m.” While it is easy to geistadf the files in Microsoft Windows
Explorer, the files contain binary data and will notalde to be opened and easily read with a
text editor, e.g., Notepad or Wordpad. The Node Model®aaity be found by searching the
NETWARS model files looking for those files that end.imd.m,” as shown in Figure N-1

B Search Results Q@@
;,!

Ele Edit View Favorites Took Help
@ Bk () j‘ ‘)_‘1 Search | " Folders | [171]-
Adress |] search Resuits ¥ ked G
Séarchy Compeion X Name In Folder Size | Type Date Modified ~
— < [Accelerator4000.nd.m Ci\Program f \Sim_Domain'op_m _std_modelsrauter 43KB MFie 4/2/2007 3: 14PM
Search by any or all of the criteria below. & || [Alcatel7270_adv.nd.m € \Program Files\Netwars\Sim_Domain'op_medelsinetwars_std_models\usfk_madels 228K8 MFle afzpo0r eaem
— | B astei7ar0_sdv.ndm Ci'\Program Files\NetwarsiSim_Domain'on_models\netwars_std_models\router 228KE MFie 4242007 3:14PM
e o 3 e i o) Alcatel77505R 1_adv.nd.m €1\Program Flles\Netwars\Sim_Domain\op_models\netwars _std_models'youter 1,006KE M File 4/2/2007 9:14PM
| ot ‘ |2 Aleatel77505R7_adv.nd.m C:\Program Files\etwars\Sim_Domain\op_models\netwars_std_models\router 1,008KB M File 4/2/2007 3:14PM
A word or phrase in the fle: I Alcate!77505R 12_adv.nd.m €:\Program Files\Netwars\Sim_Domainop_madelsnetwars_std_models youter 1,010K8 MFie 4/2/2007 2:14PM
I I = sle_config.ndm Ci\Program Files\Netwars\Sim_Domain'op_modelsinetwars_std_models\radio'sinc. . 5KB MFle 4242007 3:14PM
=) cB_s5_2200.0d.m Ci\Program Files\Netwars\Sim_Demainop_madels\netwars_std_modelsyouter 102K8 Ml 4/2/2007 2:14PM
L‘_’“‘k i : CB_55_6000.nd.m Ci\Program F \Sim_Domain\op_m - std_modelsiyoutsr 165KB MFie 4/2/2007 9:14PM
|23 netwars_std_models | =) cB_ss_s000_adv.nd.m €:\Program Files\Wetwars\Sim_Domainlop_models\netwars_std_modelsyouter 482K MFie 4/2/2007 9:14PM
i - = cos.nd.m Ci'\Program Files\etwars\Sim_Domain'on_models\netwars_std_models\deprecated 43KB MFie 4242007 3:13PM
D ¥) celiXpress_PvC_Config.nd.m €1\Program Flles\Netwars\Sim_Domain\sp_models\netwars_std_models'\promina SKE MFie 4/2/2007 9:13PM
What size is it? ¥ = cisco2514_adv.ndm Ci\Program Files\Netwars\Sim_Domain'op_modelsinetwars_std_models\router TOKB MFie 4/2/2007 2:14PM
) = cisco4500_adv.nd.m €:\Program Files\Netwars\Sim_Domain{op_madelsnetwars_std_models router 108K8 MFie 4/2/2007 2:14PM
More advanced options & =) cisco7505_adv.nd.m C:\Program Files\etwars\sim_Damain\op_models\netwars._std_modelsyouter 153KB M File 4/2/2007 9:14PM
Type of file; @ Cisco7513_adv.nd.m C:\Program Files\Wetwars\Sim_Domain'op_models\netwars_std_models'\router 170KB MFile 4/2{2007 9:14PM
| (Al Files and Folders) e CI5C0 2505.ndm Ci\Program f \Sim_Domain'op_m _std_modelsrauter S0KB MFie 4/2/2007 3 14PM
= 2 s = || Basco zs07.ndim € \Program FilesNetwars\Sin_Domainop_madels\netwars_std_modelsyouter 130K8 MFle 4f2/2007 2:14PM
= c1sco 2509.ndim Ci'\Program Files\NetwarsiSim_Domain'on_models\netwars_std_models\router 82KB MFie 4/2/2007 3:14PM
[H c1sco 2511ndim Ci\Program Files\etwars\Sin_Demain'on_madels\netwars_std_models\youter 101K MFie 4f2/2007 2:14PM
4 [B)csco 2512.0dim Ci\Program Files\Netwars\Sim_Domain'op_modelsinetwars_std_models\router %6KB MFie 4/2/2007 3:14PM
CISCO 2514ndm € \Program Files\Netwars\Sim_Domainon_models\netwars_std_models|deprecated 89KE MFie 4/2/2007 2:13PM
B c1sco 2516.ndim Ci\Program Files\Netwars\Sim_Domain'pp_models\netwars_std_modelsirouter 12268 MFile 42/2007 3:14PM
[c1sco 2524.0dim Ci\Program Files\Netwars\Sim_Domainop_madels\netwars_std_modelsyouter 73KB MFie 4/2/2007 2:14PM
@CTSFO 2621.nd.m C:\Proaram \Sim Namainion mar std madelaironter &0 K'RI M File 40212007 G: 14 PM 2 %
|
I Folder: C:\Program f \Sim_Domain'op_t _std_models\deprecated Type: M File Date Modified: 4/2/20079:1

Figure N-1: List of Node Models

N-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

These files can be examined through OPNET Modeler by ogéhém as shown in Figure N-2.
Once the Node Model is displayed, then you can exar@nesisuch as Model Attributes, Node
Interfaces, Node Statistics, Self Description an@ssbciated Process Models that pertain to all
the modules within the NETWARS Models.

GPNET Modeler 12.0 ElB/]
Ope ?)%]
Loak in: | () netwars_std_models j (= |‘=_°F v
-'_J'- Hame Size Twpe Date £
} crypka File: Folder s/z1f;
op_madels deprecated File Folder 5iz1/:
—'—J- lirks File Folder slz1f;
L [Jmedia_gateway File Folder Siz1f
std misc File Folder 521
A Imse File Folder 5130/
.d-/ [File: Falder siz1f
My Documents) rwstd File Folder 5/21)
b] pep File: Falder 5iz1/;
0 Jpromina File Folder Sl21f:
ty Compuiter radio File Folder siz1fi
V- [_Jrouter File Folder 521
L% hsatelite File Folder 5iz1f;
Desktop) switches File: Faolder 5121
< | >
File name: |rnuter\CISED 2524 nd.ml ﬂ Open |
Files of type: |Node Madel Files [*.nd.m) j Cancel

Figure N-2: Open NETWARS Model

A valuable section within the Node Interfaces is the @emts. The comments may follow a

template that contains information such as;

1. Section One — General Information
Model Name

Interface List

Routing and Transport
Supported Multi-access schemes
Supported multiplexing schemes
Configurable attributes

. Supported traffic

Section Two - Failure recovery support
Section Three - Developer notes.

ICI Formats

b. External Files

c. Header Files

d. Process Models

e. Pipeline Stages

S@~oo0oTp

wn
o

Communications Device Model Description

N-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

4. Section Four - Model Fidelity
5. Section Five — Military Analyst Nodes
a. Model Usage
b. Exceptions and Elaborations
c. Military Analyst Comments
6. Section Six - Comments
a. Full Edit History
b. External Documentation
c. References and Specifications Used

The following table is a complete list of the NETWAR®dels in alphabetical order.

Table N-1: List of NETWARS Models (Alphabetic)

Accelerator4000 Netwars\Sim_Domain\op_models\netwars_std_nrodébs\
Alcatel7270_adv Netwars\Sim_Domain\op_models\netwars_std_modklshafels
Alcatel7470_adv Netwars\Sim_Domain\op_models\netwars_std_modéts\ro
Alcatel7750SR1_adv Netwars\Sim_Domain\op_models\netwars_std_fnodtels
Alcatel7750SR12_adv Netwars\Sim_Domain\op_models\netwars_std_ inaalkels
Alcatel7750SR7_adv Netwars\Sim_Domain\op_models\netwars_std_fnodtels

ale_config Netwars\Sim_Domain\op_models\netwars_std_modeld¥iadgars
AN_FCC_100_V Netwars\Sim_Domain\op_models\contributed_models\navyaspaadels
AN_URC_131_V_BB_Transmitter Netwars\Sim_Domain\op_models\contdbutedels\navy_spawar_models
AN_URC_131_V_NB_Transmitter Netwars\Sim_Domain\op_models\contdbutedels\navy_spawar_models
AN_URC_131_V_Receiver Netwars\Sim_Domain\op_models\contributed_s\odey spawar_models
AN_URC_139_V Netwars\Sim_Domain\op_models\contributed_models\navyaspgaadels
AN_USC_38 MDR Netwars\Sim_Domain\op_models\contributed_models\raaayas_models

AN_WSC_3 V11
AN_WSC_3 V14
AN_WSC 3 V15
AN_WSC_3 V17
AN_WSC 3 V18

Netwars\Sim_Domain\op_models\contributed_models\navyaspaadels
Netwars\Sim_Domain\op_models\contributed_models\navyaspaadels
Netwars\Sim_Domain\op_models\contributed_models\navyaspaadels
Netwars\Sim_Domain\op_models\contributed_models\navyaspaadels
Netwars\Sim_Domain\op_models\contributed_models\navyaspaadels

AN_WSC_3_V2 Netwars\Sim_Domain\op_models\contributed_models\navyaspaadels
AN_WSC_3 V3 Netwars\Sim_Domain\op_models\contributed_models\navyaspgaadels
AN_WSC_3_V6 Netwars\Sim_Domain\op_models\contributed_models\navyaspgaadels
AN_WSC_3_V7 Netwars\Sim_Domain\op_models\contributed_models\navyaspgaadels
AN_WSC_3_V9 Netwars\Sim_Domain\op_models\contributed_models\navyaspgaadels
AN_WSC 5 V Netwars\Sim_Domain\op_models\contributed_models\navyaspamdels
AN_WSC _6_V2 Netwars\Sim_Domain\op_models\contributed_models\navyaspgaadels
AN_WSC _6_V4 Netwars\Sim_Domain\op_models\contributed_models\navyaspgaadels
AN_WSC_6_V5 Netwars\Sim_Domain\op_models\contributed_models\navyaspgaadels
AN_WSC_6_V7 Netwars\Sim_Domain\op_models\contributed_models\navyaspaadels

AN_WSC_6_V9_C
AN_WSC_6_V9_X

Netwars\Sim_Domain\op_models\contributed_models\nawyaispaodels
Netwars\Sim_Domain\op_models\contributed_models\nawyasgaodels

AN_WSC_8 V1 Netwars\Sim_Domain\op_models\contributed_models\navyaspgaadels
AN_WSC_8 V2 Netwars\Sim_Domain\op_models\contributed_models\navyaspgaadels
CA_Satellite Netwars\Sim_Domain\op_models\contributed_modaelg\ispawar_models
CB_SS_2200 Netwars\Sim_Domain\op_models\netwars_std_models\router
CB_SS_6000 Netwars\Sim_Domain\op_models\netwars_std_models\router

CB_SS_9000_adv

CDS

CellXpress_PVC_Config

Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Netwars\Sim_Domain\op_models\netwars_stiklsypromina

CISCO 2505 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2507 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2509 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2511 Netwars\Sim_Domain\op_models\netwars_std_models\router
CISCO 2512 Netwars\Sim_Domain\op_models\netwars_std_models\router

N-3

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

CISCO 2514
CISCO 2516
CISCO 2524
CISCO 2621
CISCO 2916
CISCO 2924
CISCO 2950G 24 ElI
CISCO 2950G 24 El_adv
CISCO 3000
CISCO 3620
CISCO 3640
CISCO 3660
CISCO 3725_adv
CISCO 3745

CISCO 3745_adv
Cisco 3750_adv
CISCO 4006

CISCO 4500-M
CISCO 4700-M
CISCO 7010

CISCO 7206

CISCO 7505

CISCO 7507

CISCO 7513
Cisco_LS_1010
cisco2514 adv
cisco4500_adv
cisco7505_adv
Cisco7513_adv
computer_adv
computer_ethernet_adv
computer_TCP_adv
computer_TCP_ethernet_adv

Definity Prologic
dnvt

DPA

DPM

DSCS SLEP
DSCS_llI_Satellite
DSS-1

DSS-2

DSS-3

DTA

DVS-G Bridge
Testing_Module
EPLRS
Falcon_lI
FCC-100 V7
FCC-100 V9
FCC-100Vv9
Firewall_2NIC
Firewall_3NIC
Firewall_4Slot
FLBCST

FoundryFastlron1500Switch_adv
FoundryFastlron2402Switch_adv
FoundryFastlron400Switch_adv
FoundryFastlron4802Switch_adv
FoundryFastlron800Switch_adv
FoundryFastlron9604Switch_adv
FoundryNetlron1500Router_adv

Netwars\Sim_Domain\op_models\netwars_std_models\deprecat
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_nmodes\
Netwars\Sim_Domain\op_models\netwars_std sinodier
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\route
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\route
Netwars\Sim_Domain\op_models\netwars_std_models\rout
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\route
Netwars\Sim_Domain\op_models\netwars_std_models\route
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\deprecat
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\deprecat
Netwars\Sim_Domain\op_models\netwars_std_modelleswitc
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\router
Netwars\Sim_Domain\op_models\netwars_std_models\degreca
Netwars\Sim_Domain\op_models\netwars_stds\uepetcated
Netwars\Sim_Domain\op_models\netwars_std_mopiedsated
Netwars\Sim_Domain\op_models\netidarmoslels\deprecated
Netwars\Sim_Domain\op_models\netwars_stdletstimse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_modelsaliepnte
Netwars\Sim_Domain\op_models\contributediefstnavy_spawar_models
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_mottels\v
Netwars\Sim_Domain\op_models\netwars_std_models\misc\dynastingtesoftw
are
Netwars\Sim_Domain\op_models\netwars_std_models\radso\epl
Netwars\Sim_Domain\op_models\netwars_std_modelssadigars
Netwars\Sim_Domain\op_models\netwars_std_models\deutecat
Netwars\Sim_Domain\op_models\netwars_std_models\deputecat
Netwars\Sim_Domain\op_models\netwars_std_models\deprecate
Netwars\Sim_Domain\op_models\netwars_std_maodetst
Netwars\Sim_Domain\op_models\netwars_std_maodetst
Netwars\Sim_Domain\op_models\netwars_std_ mooletisr
Netwars\Sim_Domain\op_models\contributed_models\navy sspawdels
Netwars\Sim_Domain\op_models\netveamnagtels\usfk_models
Netwars\Sim_Domain\op_models\netveamnagtels\usfk_models
Netwars\Sim_Domain\op_models\netvehrsalels\usfk_models
Netwars\Sim_Domain\op_models\netveamnagtels\usfk_models
Netwars\Sim_Domain\op_models\netvehrsalels\usfk_models
Netwars\Sim_Domain\op_models\netveamnagtels\usfk_models
Netwars\Sim_Domain\op_models\netwars ostelsknsfk_models

N-4

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

FoundryNetlron400Router_adv
FoundryNetlron800Router_adv
FSC-78
gen_sat_earth_term
Generic ATM Switch
Generic C Band Trml
Generic Ckt Switch
Generic H 320 Bridge
Generic Hub

Generic IDS

Generic IP Data Switch_adv
Generic Ku Band Trml
Generic Layer 2 Switch_adv
Generic Layer 3 Switch_adv
Generic MW LOS

Generic Router

Generic Server

Generic Smart Mux
Generic TDM Mux
Generic Telephone
Generic UFO

Generic VTC Trml
generic_broadcast_satellite
generic_space_segment
GSC-39

GSC-52

Harris_6010_adv
Harris_Megastar_155
havequick_rt

hf_rt

IDNX-20

IDNX-90

ier_loader

INMARSAT _B_HSD
INMARSAT_B_ Satellite
Intelsat
IP_ATM_TACLANE
ISDN_MCU
ISDN_VTC_Trml

JRE Gateway

JRE Gateway_adv
JRE_Gateway

jtids

JTIDS_Terminal

KG_194

KG_84

KG-175 ATM

KG-175 E-100

KG-175 IP

KG175-E_10

KG175-E10

KG175-E100
KG194_crypto_base
KG-235

KG-250
KG84_crypto_base
KIV7_crypto_base

KY68

LAN WAN IP network_adv
layer_1_crypto_base

len

Link_11

Netwars\Sim_Domain\op_models\netwarsatels\usfk_models
Netwars\Sim_Domain\op_models\netwarsatels\usfk_models
Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Netwars\Sim_Domain\op_models\netwars_stdstdepetcated
Netwars\Sim_Domain\op_models\netwars_stdelsinouter
Netwars\Sim_Domain\op_models\netwars_stdkls\deprecated
Netwars\Sim_Domain\op_models\netwars_stdkls\mse
Netwars\Sim_Domain\op_models\netwars_ sti&lsivic
Netwars\Sim_Domain\op_models\netwars_std_modet$iesiit
Netwars\Sim_Domain\op_models\netwars_std_modés'r
Netwars\Sim_Domain\op_modelsangetatd _models\router
Netwars\Sim_Domain\op_models\netwatsngidels\deprecated
Netwars\Sim_Domain\op_models\netat_models\switches
Netwars\Sim_Domain\op_models\nretata_models\router
Netwars\Sim_Domain\op_models\netwars_std_nw@atbtitrc170
Netwars\Sim_Domain\op_models\netwars_std_nrodé&ts\
Netwars\Sim_Domain\op_models\netwars_std_niadgen
Netwars\Sim_Domain\op_models\netwars_std_shdej@lecated
Netwars\Sim_Domain\op_models\netwars_std_mdeéplgicated
Netwars\Sim_Domain\op_models\netwars_std_nuskels
Netwars\Sim_Domain\op_models\netwars_std_model#sa
Netwars\Sim_Domain\op_models\netwars_std_Is\utie
Netwars\Sim_Domain\op_modelsireetstd_models\satellite
Netwars\Sim_Domain\op_models\netwars_dts\deprecated
Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Netwars\Sim_Domain\op_models\netwars_std_modesirciars
Netwars\Sim_Domain\op_models\netwars_stdstnsfle models
Netwars\Sim_Domain\op_models\netwars_std_model§hagiquick
Netwars\Sim_Domain\op_models\netwars_std_models\radicsscg
Netwars\Sim_Domain\op_models\netwars_std_models\promina
Netwars\Sim_Domain\op_models\netwars_std_models\promina
Netwars\Sim_Domain\op_models\netwars_std_modeld\nwst
Netwars\Sim_Domain\op_models\contributed_modals\ spawar_models
Netwars\Sim_Domain\op_models\contriduteodels\navy _spawar_models
Netwars\Sim_Domain\op_models\netwars_std_modelkisatel
Netwars\Sim_Domain\op_models\netwars_std_macigjsto
Netwars\Sim_Domain\op_models\netwars_std_models\vtc
Netwars\Sim_Domain\op_models\netwars_std_models\v
Netwars\Sim_Domain\op_models\netwars_std_mogetidd
Netwars\Sim_Domain\op_models\netwars_std_kdegetcated
Netwars\Sim_Domain\op_models\contributed_modkls\6_models
Netwars\Sim_Domain\op_models\netwars_std_models\radgo\jti
Netwars\Sim_Domain\op_models\contributed_mdidklsl6_models
Netwars\Sim_Domain\op_models\contributed_models\navy_spavdelsmo
Netwars\Sim_Domain\op_models\contributed_models\navy spawdelsno
Netwars\Sim_Domain\op_models\netwars_std_models\crypto
Netwars\Sim_Domain\op_models\netwars_std_models\deprecat
Netwars\Sim_Domain\op_models\netwars_std_models\crypto
Netwars\Sim_Domain\op_models\netwars_std_models\crypto
Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Netwars\Sim_Domain\op_models\netwars_std_models\crypto
Netwars\Sim_Domain\op_models\netwars_std_maoghts\cr
Netwars\Sim_Domain\op_models\netwars_std_models\crypto
Netwars\Sim_Domain\op_models\netwars_std_models\crypto
Netwars\Sim_Domain\op_models\netwars_std_mogsts\cr
Netwars\Sim_Domain\op_models\netwars_std_magipts\c
Netwars\Sim_Domain\op_models\contributed_models\navy_spawdelsno
Netwars\Sim_Domain\op_models\netwads rsodels\trafgen
Netwars\Sim_Domain\op_models\netwars_std_Yoggiets
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\contributed_models\navy_spawdelsno

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Link_16_Config
Link_16_Host_Processor
Live PCS-100
Marconi_ASX1000
Marconi_ASX1200
Marconi_ASX200BX
Marconi_PH6000_adv
Marconi_PH7000_adv
Marconi_PH8000_adv
Marconi_TNX1100
MC-6000
media_gateway
MilStar_2_Satellite

MMT

Motorola NES

MRC-142
MSE_Switch_a6_e25_sI38
multiplexer_utility
mux_12inputs
mux_16inputs
mux_2inputs
mux_4inputs
mux_8inputs
mux_etssp_nodal
NAVMACS

ncs

NES

NIMA
nw_eth_switched_lan_adv
nw_ethernet_server
nw_ethernet_wkstn
nw_generic_device
nw_hla_interaction
nw_jam_pulsed
nw_jam_sb
nw_jam_swept
NW_KG-194
NW_KG-84

NW_KIV-7
nw_multihommed_server
nw_multihommed_wkstn
nw_ppp_server
nw_ppp_wkstn
Nw_QoS_Attribute_Config
Nw_Sink

oe

Omni Switch 3WX

Omni Switch 5WX

Omni Switch 9WX
Patch_Panel_48
Patch_Panel_96
pro_cell_express_adv
pro_portmap_ utility
Promina

PROMINA 200
PROMINA 400
PROMINA 800

Promina_10l_5w_2eth_2sclx_2cx_adv

Promina-100
Promina-200
Promina-400
Promina400_e180_sI180

Netwars\Sim_Domain\op_models\contributed_models\link_déels
Netwars\Sim_Domain\op_models\contributedIstiotte 16 _models
Netwars\Sim_Domain\op_models\netwars_std_models\vtc
Netwars\Sim_Domain\op_models\netwars_std_modets\rout
Netwars\Sim_Domain\op_models\netwars_std_modets\rout
Netwars\Sim_Domain\op_models\netwars_std_maoieskr
Netwars\Sim_Domain\op_models\netwars_std_modies\r
Netwars\Sim_Domain\op_models\netwars_std_modils\r
Netwars\Sim_Domain\op_models\netwars_std_modils\r
Netwars\Sim_Domain\op_models\netwars_std_modetsirout
Netwars\Sim_Domain\op_models\netwars_std_models\vtc
Netwars\Sim_Domain\op_models\netwars_std_moeldis\mgateway
Netwars\Sim_Domain\op_models\contributediefstnavy_spawar_models
Netwars\Sim_Domain\op_models\contributed_models\navy_spaveaels
Netwars\Sim_Domain\op_models\netwars_std_modgl
Netwars\Sim_Domain\op_models\netwars_std_models\raditfitrc
Netwars\Sim_Domain\op_models\netwars_stds\msee
Netwars\Sim_Domain\op_models\netwars_sttlgts\misc\utility
Netwars\Sim_Domain\op_models\netwars_std_models\mux
Netwars\Sim_Domain\op_models\netwars_std_models\mux
Netwars\Sim_Domain\op_models\netwars_std_models\mux
Netwars\Sim_Domain\op_models\netwars_std_models\mux
Netwars\Sim_Domain\op_models\netwars_std_models\mux
Netwars\Sim_Domain\op_models\netwars_std_modelstisprec
Netwars\Sim_Domain\op_models\contributed _models\navyvapanodels
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\crypto
Netwars\Sim_Domain\op_models\contributed_models\navy spamadels
Netwars\Sim_Domain\op_models\netwars_stds\imafin
Netwars\Sim_Domain\op_models\netwars_std_Ymafgs
Netwars\Sim_Domain\op_models\netwars_std_madgésit
Netwars\Sim_Domain\op_models\netwars_std_modsis\
Netwars\Sim_Domain\op_models\netwars_std_nrodsel$ila
Netwars\Sim_Domain\op_models\netwars_std_model§&atihers
Netwars\Sim_Domain\op_models\netwars_std_models\aaatiodrs
Netwars\Sim_Domain\op_models\netwars_std_moda&§ammers
Netwars\Sim_Domain\op_models\netwars_std_models\deptecate
Netwars\Sim_Domain\op_models\netwars_std_models\deptecate
Netwars\Sim_Domain\op_models\netwars_std_models\deprecat
Netwars\Sim_Domain\op_models\netwars_stdsitradigen
Netwars\Sim_Domain\op_models\netwars_std_nhiadgksh
Netwars\Sim_Domain\op_models\netwars_std_modgksitraf
Netwars\Sim_Domain\op_models\netwars_std_models\trafgen
Netwars\Sim_Domain\op_models\netwatsnsidels\misc\utility
Netwars\Sim_Domain\op_models\netwars_std_models\migg\util
Netwars\Sim_Domain\op_models\netwars_std_models\nwstd
Netwars\Sim_Domain\op_models\netwars_std_medéiches
Netwars\Sim_Domain\op_models\netwars_std_medéiches
Netwars\Sim_Domain\op_models\netwars_std_medéiches
Netwars\Sim_Domain\op_models\contributed_models\mewar smodels
Netwars\Sim_Domain\op_models\contributed_models\mawar smodels
Netwars\Sim_Domain\op_models\netwars_ stdlsipoomina
Netwars\Sim_Domain\op_models\netwars_std_sipdaiina
Netwars\Sim_Domain\op_models\netwars_std_models\promina
Netwars\Sim_Domain\op_models\netwars_std_models\dépdec
Netwars\Sim_Domain\op_models\netwars_std_models\dépdec
Netwars\Sim_Domain\op_models\netwars_std_models\dépdec
Netwars\Sim_Domain\op_models\netd@amodels\promina
Netwars\Sim_Domain\op_models\netwars_std_models\gromin
Netwars\Sim_Domain\op_models\netwars_std_models\gromin
Netwars\Sim_Domain\op_models\netwars_std_models\gromin
Netwars\Sim_Domain\op_models\netwars_std_modaisipr

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Promina-800

Proteon CNX 500
Proteon CNX 600
RadVision Bridge
RadVision VTC Suite
REDCOM HDX
REDCOM IGX 1 Shelf
REDCOM IGX 10 Shelf
REDCOM IGX 16 Shelf
REDCOM IGX 2 Shelf
REDCOM IGX 3 Shelf
REDCOM IGX 4 Shelf
REDCOM IGX 5 Shelf
REDCOM IGX 6 Shelf
REDCOM IGX 7 Shelf
REDCOM IGX 8 Shelf
RedEagle_INE-100
sat_term_basic
sat_term_etssp_nodal
sat_term_etssp_non_nodal
sat_term_etsspG3_nodal
sat_term_etsspG3_non_nodal
sat_term_generic_1port
sat_term_generic_8port
sat_term_tssp_nodal
sat_term_tssp_non_nodal
satellite_generic
SB-3865 1 Stack
SB-3865 2 Stack
SB-3865 3 Stack

sen

Server_4Slot
SHM-1337
sincgars_inc_adv
sincgars_rt

SMU
SRAP_application_v2
SRC-57

STU-II

TACINTEL
TCDL_Radio
tcp_pep_adv

TD1271
Thales_SONET_Datacryptor
Timeplex_CX-1500
Timeplex_Link_100
Timeplex_Link_2
trc-170

TRC-170 V2

TRC-170 V3

TRC-170 V5
TRC-173B

trpak_gen

TSC-100A

TSC-152 w ETSSP
TSC-152 w TSSP
TSC-152 wo TSSP
TSC-152_C_Band
TSC-152_Ku_Band
TSC-152_X_Band
TSC-154
TSC-161_C_Band

Netwars\Sim_Domain\op_models\netwars_std_models\gromin
Netwars\Sim_Domain\op_models\netwars_std_modéts\r
Netwars\Sim_Domain\op_models\netwars_std_modéts\r
Netwars\Sim_Domain\op_models\netwars_std_nhedels
Netwars\Sim_Domain\op_models\netwars_sidelsivtc
Netwars\Sim_Domain\op_models\netwars_std_modets\ms
Netwars\Sim_Domain\op_models\netwars_sbdets\mse
Netwars\Sim_Domain\op_models\netwars_stdelsionse
Netwars\Sim_Domain\op_models\netwars_stdelsionse
Netwars\Sim_Domain\op_models\netwars_sbdets\mse
Netwars\Sim_Domain\op_models\netwars_sbdets\mse
Netwars\Sim_Domain\op_models\netwars_sbdets\mse
Netwars\Sim_Domain\op_models\netwars_sbdets\mse
Netwars\Sim_Domain\op_models\netwars_sbdets\mse
Netwars\Sim_Domain\op_models\netwars_sbdets\mse
Netwars\Sim_Domain\op_models\netwars nsbdiels\mse
Netwars\Sim_Domain\op_models\netwars_std_mogjgis\c
Netwars\Sim_Domain\op_models\netwars_std_ndegpettated
Netwars\Sim_Domain\op_models\netwars_sgklssatellite
Netwars\Sim_Domain\op_models\netwarsodédis\satellite
Netwars\Sim_Domain\op_models\netwarsodtdssatellite
Netwars\Sim_Domain\op_models\netdiansodels\satellite
Netwars\Sim_Domain\op_models\netwars catdistsatellite
Netwars\Sim_Domain\op_models\netwars catdistsatellite
Netwars\Sim_Domain\op_models\netwars_stds\saiddlite
Netwars\Sim_Domain\op_models\netwars_ stts\saveléite
Netwars\Sim_Domain\op_models\netwars_stdIsisadellite
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_maoaligjskt
Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Netwars\Sim_Domain\op_models\netwars_std_madielsincgars
Netwars\Sim_Domain\op_models\netwars_std_modasiacgars
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_nsadelite
Netwars\Sim_Domain\op_models\netwars_std_models\ratif@trc
Netwars\Sim_Domain\op_models\contributed _models\navyvapanodels
Netwars\Sim_Domain\op_models\contributed_models\ngawar_models
Netwars\Sim_Domain\op_models\contributed_models\npawas_models
Netwars\Sim_Domain\op_models\netwars_std_models\pep
Netwars\Sim_Domain\op_models\contributed_models\navy spavdelsmo
Netwars\Sim_Domain\op_models\netstdrsnodels\usfk_models
Netwars\Sim_Domain\op_models\netwars_std_matiétsiss
Netwars\Sim_Domain\op_models\contributed_models\spawar_models
Netwars\Sim_Domain\op_models\contributed_models\spawar_models
Netwars\Sim_Domain\op_models\netwars_std_models\raditfitrc
Netwars\Sim_Domain\op_models\netwars_std_models\radiitit
Netwars\Sim_Domain\op_models\netwars_std_models\radiitit
Netwars\Sim_Domain\op_models\netwars_std_models\radiitit
Netwars\Sim_Domain\op_models\netwars_std_models\radlitftr
Netwars\Sim_Domain\op_models\netwars_std_models\ifityc\ut
Netwars\Sim_Domain\op_models\netwars_std_modelsteatelli
Netwars\Sim_Domain\op_models\netwars_std_nsatiellite
Netwars\Sim_Domain\op_models\netwars_std_matklgEs
Netwars\Sim_Domain\op_models\netwars_std_nsatiellie
Netwars\Sim_Domain\op_models\netwars_std_models\tieghreca
Netwars\Sim_Domain\op_models\netwars_std_models\tepreca
Netwars\Sim_Domain\op_models\netwars_std_models\degreca
Netwars\Sim_Domain\op_models\netwars_std_models\eatellit
Netwars\Sim_Domain\op_models\netwars_std_models\tieghreca

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

TSC-161_Ka_Band
TSC-161_Ku_Band
TSC-161_X_Band
TSC-85B

TSC-85C

TSC-85C w ETSSP
TSC-93B

TSC-93C

TSC-93C w ETSSP
tsc-94

TSC-94A

TSQ-190

ttc-39

TTC-39A V3
TTC-39A V4
TTC-39D

TTC-39E

TTC-42

TTC-46 LEN
TTC-48 SEN
TTC-56
udp_comp_adv
udp_comp_ethernet_adv
uhf_rt
UHF_SATCOM_CPS

UHF_SATCOM_NCS_Platform
UHF_SATCOM_Satellite FLTSATCO

M

UHF_SATCOM_Satellite_ UFO
UHF_SATCOM_Terminal_Platform

USC-59 w ETSSP
USC-59 w TSSP
USC-59 wo TSSP
USC-60A w ETSSP
USC-60A w TSSP
USC-60A wo TSSP
USC-60A_C_Band
USC-60A_Ku_Band
USC-60A_X_Band
USC-65 V1_C Band
USC-65_V1_Ku_Band
USC-65_V1_X_Band
USC-65_V2_C_Band
USC-65_V2_Ku_Band
USC-65_V2_X Band
Venue 2000

vhf_rt

VIXS Bridge
voice_config
voip_phone
Wireless_Configuration
WSC-6 V5

WSC-6 V6

WSC-6 V7

WSC-6 V9 C Band
WSC-6 V9 X Band
WSC-8

Zydacron

Netwars\Sim_Domain\op_models\netwars_std_modelsategrec
Netwars\Sim_Domain\op_models\netwars_std_models\tepreca
Netwars\Sim_Domain\op_models\netwars_std_models\degreca
Netwars\Sim_Domain\op_models\netwars_std_modelsteatelli
Netwars\Sim_Domain\op_models\netwars_std_modelstsatelli
Netwars\Sim_Domain\op_models\netwars_std_hsatiellie
Netwars\Sim_Domain\op_models\netwars_std_modelsteatelli
Netwars\Sim_Domain\op_models\netwars_std_modelstsatelli
Netwars\Sim_Domain\op_models\netwars_std_hsatiellge
Netwars\Sim_Domain\op_models\netwars_std_models\deprecated
Netwars\Sim_Domain\op_models\netwars_std_models'®atelli
Netwars\Sim_Domain\op_models\netwars_std_models\eatellit
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\mse
Netwars\Sim_Domain\op_models\netwars_std_models\deprecate
Netwars\Sim_Domain\op_models\netwars_stds\ahepielcated
Netwars\Sim_Domain\op_models\netwars_std_models\radicsscg
Netwars\Sim_Domain\op_models\netwars_std_nemateltte
Netwars\Sim_Domain\op_models\netwtds models\satellite

Netwars\Sim_Domain\op_models\netwars_std_models\satellite
Netwars\Sim_Domain\op_models\natvedd _models\satellite
Netwars\Sim_Domain\op_modelalaest_std_models\satellite
Netwars\Sim_Domain\op_models\netwars_std_nsadellie
Netwars\Sim_Domain\op_models\netwars_std_maetkiils
Netwars\Sim_Domain\op_models\netwars_std_nsadellie
Netwars\Sim_Domain\op_models\netwars_std_rsadelkte
Netwars\Sim_Domain\op_models\netwars_std_nsadelbie
Netwars\Sim_Domain\op_models\netwars_std_rsadelkte
Netwars\Sim_Domain\op_models\netwars_std_models@atedrec
Netwars\Sim_Domain\op_models\netwars_std_modelstateprec
Netwars\Sim_Domain\op_models\netwars_std_models\ateprec
Netwars\Sim_Domain\op_models\netwars_std_modelsategrec
Netwars\Sim_Domain\op_models\netwars_std_modelstdegdrec
Netwars\Sim_Domain\op_models\netwars_std_models@atedrec
Netwars\Sim_Domain\op_models\netwars_std_models&tegrec
Netwars\Sim_Domain\op_models\netwars_std_modelstdefdrec
Netwars\Sim_Domain\op_models\netwars_std_models@atedrec
Netwars\Sim_Domain\op_models\netwars_std_models\vtc

Netwars\Sim_Domain\op_models\netwars_std_models\radigésimc

Netwars\Sim_Domain\op_models\netwars_std_models\vt
Netwars\Sim_Domain\op_models\netwars_std_mods=l@ngateway
Netwars\Sim_Domain\op_models\netwars_std_models\mediaaga
Netwars\Sim_Domain\op_models\netwaksmsidels\miscutility
Netwars\Sim_Domain\op_models\netwars_std_modelstsatell
Netwars\Sim_Domain\op_models\netwars_std_modelstsatell
Netwars\Sim_Domain\op_models\netwars_std_modelstsatell
Netwars\Sim_Domain\op_models\netwars_std_maedelss
Netwars\Sim_Domain\op_models\netwars_std_matelBts
Netwars\Sim_Domain\op_models\netwars_std_models\satellit
Netwars\Sim_Domain\op_models\netwars_std_models\vtc

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX O: NETWARS DOCUMENTATION SET

Figure O-1 illustrates a NETWARS documentation set.

Mission Meed
Staterment
T Joint Stafff DISA
hAA,

Evolutionary Phase
Implementation Plan

— (EFIF}
Acguizgition Documents T e
[Phasze ||
ORD 1
| | Lirerayele Gost Ertimate Program Management
Plan
| FY 01
| Fvo2
[
| [
Functional Reguirernents Functional
Document Description WEM and M Plan Study Plans ’:I
| Diacurment Testing Plan
| | O | —
Software Version Model | VRN p|an;j | TestPlans Study
SRAHRE Developrment | Dpdates| Update= | | Software Release ot
Ll | | Documents
NETWARS | vev h Opdets
Developrment Flan Comm Model Reports IER
| Opdates Requirements Tpdates Database
pdates Usars' Wanual
METWARS B Manual
Desigh Document Cormim Model
[GEER Design
Document
Updates

Figure O-1: NETWARS Documentation Set

O-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX P: CREATING MODEL REPOSITORIES IN NETWARS

The repositories are the shared object files that septea set of models (model library). Using
the repositories precludes the necessity for dynamic lgrafisimulation. DES in NETWARS
supports dynamic binding of simulations implicitly in tlese that execution of a simulation
can automatically trigger the binding process. The underlyitiyahat automates this process
is calledop_runsim This utility can be used to execute simulations frodEEWARS console
on the host computer just as Scenario Builder launiciesn the Configure/Run Discrete Event
Simulationdialog.op_runsimis essentially the starting point for all dynamicddtund

simulation programs. It determines which component filsisnailation needs; it then uses the
host computer’s linker to load all the components and bind tbgether. Finally, it begins
executing the simulation.

To avoid the dynamic binding process of user-defined comp®dening simulation runtime,
use theop_mksautility to bind the user-defined components (such as procedsis) pipeline
stages, and external files) into a single larger olgeled arepository. Then use this repository
during simulation startup. From the linker’s point of vi@earepository exists as a shared object
file.

Building a Repository

On the OPNET Console (Start/Program/OPNET ModeleCRNET Console), type the
following command:

For building a development repository:

op_mkso -env_db

“<drive_letter>\Netwars..\Sim_Domain\op_admin\env_d b8.1" -type repos -
m NAME_OF_REPCSI TORY -pr_files ALL -ps_files ALL -ex_files ALL -

comp_trace_info TRUE -kernel_type development -c

For building a optimized repository:

op_mkso -env_db

“<drive_letter>\Netwars..\Sim_Domain\op_admin\env_d b8.1" -type repos -
m NAME_OF_REPCSI TORY -pr_files ALL -ps_files ALL -ex_files ALL -

comp_trace_info TRUE -kernel_type optimized —c

Using a Repository

» Make sure that repository iFAME_OF_REPOSITORY.i0.sid @®evelopment) or
NAME_OF_REPOSITORY.iO.sio.@ptimized)is in one of the directories listed in the
mod_dirs preference of your env_db file (located in
“<drive_letter>\Netwars..\Sim_Domain\op_admin” folder)

» Put this environment variable in the env_db file (located in
“<drive_letter>\Netwars..\Sim_Domain\op_admin” folder)
repositories : NAME_OF_REPOSITORY

P-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX Q: TROUBLESHOOTING NETW ARS SIMULATION

Refer to OPNET COTS documentation for troubleshootiBdg& in the “General Tutorials |
Troubleshooting Modeler Tutorials” section.

Q-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX R: FREQUENTLY ASKED QUESTIONS

Table R-1 outlines the solution to several frequently agkedtions (FAQ).

Question/Problem

How should | set the mod_dirs
environment variable for the
various env_db files for custom
model development?

Table R-1: FAQs

Solution

There are two environment database files that the developer needs to be
aware of when doing any development. One env_db file, which is used by
NETWARS, is located under the Scenario_Builder\op_admin folder of the
NETWARS installation. The other env_db file is the OPNET Modeler
env_db file. This file is located in the op_admin folder of the
opnet_user_home, and these environment settings are used when the
OPNET Modeler software is used. All the new models developed are
saved in the primary mod_dirs (first entry of the mod_dirs environment
variable). To use the custom models in the NETWARS environment the
user needs to include this mod_dirs entry in the NETWARS env_db files.
Please note that if the custom models are modified NETWARS or OPNET
Standard models, they must be placed before the NETWARS and
OPNET Standard model directories in both the env_db files.

How do | enable the debug mode
in my simulation? How can |
enable OPNET debugger in my
NETWARS simulation?

To enable the OPNET debugger (odb) for NETWARS simulation, check
the “Use OPNET Simulation Debugger” checkbox under Execution |
OPNET Debugger in the Configure/Run dialog box before running the
simulation.

| want to specify simulation
attributes. Where can | do that?

This can be done in the Configure/Run dialog box before running the
simulation. The simulation attribute can be defined under Inputs| Global
Attributes.

| want to see the routing tables
generated during the simulation.
How can | do that?

Simulation attribute “IP Routing Table Export/Import” under Inputs | Global
Attributes needs to be set in the Configure/Run dialog box. The integer
value 1 is used for this attribute to export the routes; 2 (import) and O are
not to be used.

| have the TIREM data files on
my system but still the TIREM is
not enabled. Why?

To enable TIREM in the simulation, please make sure that:

* Thefiles are WOTL format data files.

* These files are located in the primary mod_dirs.

* The “TIREM” checkbox is turned on. This checkbox is available in the
“Advanced Simulation Configuration” dialog box.

No traffic flows through the
network even though there are
IERSs specified in the text files?

There are two things that need to be checked:

* Make sure that the “Import IERS from Text Files” option is checked in
the General Description block.

» If the IER text files are changed with the scenario open in the editor,
make sure that the IER text files are refreshed from the File menu.

All my data IERs are failed or
reported miscellaneous. What
could be the reason?

There could be many reasons why the data IERs may not go through the

network, including the following:

* Routes were not determined: For some reason if the routes were not
determined by the routing protocol either because of configuration
issues or convergence problems the packets get dropped and hence
the IER is not received at the destination.

» Circuits were not set up: For Promina or Multiplexers if the circuits are
not set up correctly the traffic (IER) cannot flow.

» Large IERs: IERs of very large size can be dropped because of
several reasons (refer to the following question for details).

» Other protocol issues: These issues are logged in a simulation log file
per scenario. This file can be accessed via Results-> Simulation Log.

R-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Question/Problem

| have large data IERs (greater
than 20 Mb) and none of the
IERs go through? Why?

Solution

IERs of very large sizes can be dropped because of various reasons

including the following:

* Reassembly timeouts: If the time taken by the complete IER to reach
the destination is more than the reassembly time, the queue is
flushed.

» Buffer overflows: For IERs of such large sizes the queues at various
interfaces may overflow causing packet drops.

* Low processing speeds: If the IP processing speeds are low, the
servicing of the IP datagrams may be slower, causing reassembly
timeouts on the destination host.

» Transport layer: If the transport layer protocol is not reliable (e.g.,
UDP) or has a limit on the size of the application layer packets it can
handle, this may also be responsible for the drops at the transport
layer. In the case of the application layer in NETWARS, the size
limitation of the transport layer is handled by segmenting the
application layer packets.

What are Miscellaneous IERs?
How are they calculated?

The IERs are reported as Miscellaneous when they do not make it to the
destination before the simulation completes.

Miscellaneous IERs = IERs Sent — (IERs Received +slfalited)

| see some of the IERSs reported
as Miscellaneous. Where did
they go?

The IERs are reported as Miscellaneous when they do not make it to the
destination before the simulation completes. There can variety of reasons
for this including the following:

» Lossy networks: The packets are dropped in the network without
intimation to the host.

» Transport layer: If the transport layer is not reliable, the packets
dropped in the network are never retransmitted, and the IERs are
counted as miscellaneous.

» Delays: Higher delays in the network may cause the simulation to be
completed before some of the IERs can reach the destination. The
IER stop times can be changed so that the IER has ample time to
reach the destination before the simulation ends.

What are the Perished IERS?

These are the IERs that reached the destination after the perishability
time defined in the IER/Demand definition.

| see the IERs to be received at
the destination, but when | look
at the grade of service statistics |
see that it reports a lesser
percentage of IERS received.
Why?

The grade of service is the percentage of IERs sent that were received
within the perishability time limit. If an IER received takes more time than
the perishability value specified for it, it will not be counted for the grade of
service calculation.

R-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX S: MIGRATION FROM EARLIER OPNET VERSIONS

This Appendix will discuss the most important issuesndigg enhancements to the OPNET
product as they pertain to NETWARS Model Developmeimt: ac=comprehensive list of
enhancements, consult the Release Notes for the PiRdlgetse of interest. The following need
to be noted when upgrading models that were built usinggeadrsions of OPNET:

1) Modeler Release 1241
a) Functional Enhancements

i) Model Comparison

Model Comparison allows comparison of different vansiof models to see what
differences exist between versions. For examplengarison between a new
version of a standard model with a customized copyepthvious version to
estimate the work required to carry the customizationdoavin the new version.

Compare the following types of Models:

(1) Protocol Models (standard, specialized, and custom)

(2) Process Models

(3) Node, link, path, demand, and wireless domain models (bdsgeaned)
(4) Packet formats

(5) ICIs

(6) Text files (e.qg., .ef, .ets, .ex.c, and .gdf)

b) For additional enhancements, please see release notes
2) Modeler Release 12.0.Pt%and Modeler Release 12.0 PE£3
a) For enhancements, please see release notes
3) Modeler Release 12.0.PLO and Pt.1
a) Application Model Enhancements

i) Application Delay Tracking

This feature will identify the largest sources of appiwadelay during a discrete
event simulation.

The Standard Models’ GNA application models have been egdatsupport this
feature. To use this feature with custom-developed applicatodels, you will need
to modify your process models.

41 For additional information see the OPNET Modeler Suitede Notes for Product Release 12.1
42 For additional information see the OPNET Modeler Suitede Notes for Product Release 12.0

S-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Application Delay Tracking can answer the questions:

(1) What are my slowest applications?

(2) Did my application spend more time processing at theain layer or in the
network?

(3) What intermediate nodes or links were the largestdratks

(4) Where were application packets dropped?

b) BGP Model Enhancements

)

Attribute Organization

The BGP Attribute structure has been significantly reomgahi Support was added
for neighbor groups, address family groups, and session gréopsnore
information see the BGP Model User Guide.

i) IPv6 Support

(1) The BGP model now supports advertising of IPv6 routing in&ion in discrete
event simulations. All BGP features that are suppddelPv4 are now also
supported for IPv6.

These features include:

(a) BGP route selection process
(b) Communities

(c) Policies

(d) Route reflectors

(e) Confederations

(2) Note: MPLS-BGP VPNs are NOT supported for IPv6.

c) IP Model Enhancements

)

Implementation Change for IP Fragmentation

The IP model suite now uses the Segmentation and étebls(SAR) package (one
of the DES kernel APIS) in its implementation offtBgmentation. Fragmentation
was already modeled in the previous release and if ywusang the standard IP
model without modifications, this enhancement will nif¢@ the way you configure
the model or the simulation results you get in thisasé. If you have added custom
code to the IP model, you might need to modify your momedscount for the new
fragmentation architecture.

d) For additional enhancements, please see OPNET Modelerel@aBe notes

S-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX T: SUPPORTED CLASSIFICATION VALUES
Current public attribute definition of the classificatmitribute §tring) has the following values:

* Unclassified

e Classified
* Confidential
e Secret

 Top Secret.

Models can support additional custom, user-defined claggitsa

T-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX U: SELF-DESCRIPTION GUIDELINES

The self-description information for each model vadepending on factors such as the category
to which the model belongs (e.g., a network layer devicgugea datalink layer device) and the
technologies it can support. Among the most commonnmdtion that is looked for is the
information on the ports. The following discussion peiotit how this information is specified

for the NETWARS models. If the custom models do not sugphersame packet format
information as the NETWARS models, the developer halle to develop self-description
information based on the models developed.

The capacity planning feature uses the self-descriptiomnaftton. Refer to the Section 3,
“Compliance for Non-Discrete Event Simulation (Capa®ilanning)” subsection for details.

Port and Port Groups

For all the NETWARS models, each port category muge laeself-description port object. For
example, MRC-142 (NETWARS Standard device model) has tlosviag ports:

* Point-to-point ports: ptp_pt_0, ptp_pt_1
* Radio ports: radio_tx_0, radio_tx_1

Two port objects will be created, ptp_pt_<n> and radio_tx, #nth a range from 0 to 1 (see
Figure U-1).

+]self-Description: MRC-142

Fricrity; IIj Add Port Delete

Figure U-1: Self-Description Port Objects

Each port category needs antérface typécharacteristic defined for it. This interface type
defines the technologies that the set of ports support.die Thl technologies are defined
based on the packet formats for each port category, Dased on this definition, in Table U-2
interface types are defined for each port category depeadimghat packet formats they support
(see for details).

U-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Table U-1: Packet Formats to Interface Types

Packet Formats

ams_atm_cell

Suggested Technologies (Interface Type)
atm:OC1,atm:OC3,atm:0C12,atm:0C24,atm:0C48

Ckswpkt

Circuit_Switched:Voice WAN

ethernet v2

ethernet:10BaseT, ethernet:100BaseT, ethernet:1000BaseX

serial:DS0,serial:DS1,serial:DS3,serial: T1,serial:T3,serial:OC
3

ip_dgram_v4 serial:0C12,serial:0C36,serial:0C48,serial:0C192
KG194 19 Encryptor:KG194 KIV19
KG84 7 Encryptor:KG84 KIV7

mse_data_packet

Circuit_Switched:Data WAN

phone_switch

Circuit_Switched:Voice LAN

pro_cx_pk

Multiplexer:CellXpress

pro_hello_pk, pro wan_pk

Multiplexer:WAN

satellite_pk

Radio:Satellite

havequick packet

Radio_Wired:Sincgars INC Interface

sincgars_inc_packet

Radio Wired:EPLRS INC Interface

eplrs_inc_packet

Radio_RF:Sincgars

radio_packet

Radio_RF:EPLRS Routing

eplrs_packet_0,eplrs_packet_1,
eplrs_packet_2, eplrs_packet_3,
eplrs_packet_4, eplrs_packet_5,
eplrs_packet_6,
eplrs_packet_7,eplrs_eot_packet,
eplrs_routing_packet

Radio RF:EPLRS Broadcastl

ale_word_data, ale_word_lga,
ale_word_std

Radio RF:EPLRS Broadcast2

Packet Formats

Radio RF:EPLRS Broadcast3

ams_atm_cell Radio RF:EPLRS Broadcast4
Ckswpkt Radio_RF:EPLRS Broadcast5
ethernet v2 Radio RF:EPLRS Broadcast6
ip_dgram_v4 Radio RF:EPLRS Broadcast7
KG194 19 Radio RF:EPLRS Broadcast8

U-2

oS

o

M 76 TOM:101dAI0US Z6 TIBERS 87D 0:[e1BS ' 9ED 0 [B1BS ZTD O [eHas ‘€D O el
cl:[euss'Tl:elas 'ssa:euas TEI Bs d:[ellas Xxasego00T:1ouayla‘ 1 asegQ0T:1aulayia
‘1aseq|

T:19UIBYIS NV 82I0A:PaYIAMSIID ‘DO W yZD0:Wie ZTO0: Wi ‘€00 Wik TO0:Wwie

»d uem oud

‘»d ojlay oud ‘youms suoyd
loxoed ooy asw ‘19xoed elep asw
‘L 7803 ‘6T ¥6T ON '‘PA welbp d
‘2N 18UlBY10 ‘Pidmsy |99 wie swe

(¥6T OM) hul

‘el

el

NVM:Iaxajdinw‘ssaldgxajdiynu 3 uem oid Yd ojay oid ¥d x2 oid uem
NV 92I0A:PaYdIMS 1INJIID PAdmsyo ue)
LA PEIIdAIDUS G TAIM Y6 TOM:10)dAIoUS'Z6TDO:[eHIS 8YD0| 'L ¥8 OM ‘6T ¥6TOM ‘PA Wwelibp d
9S‘9eD0:[elBS 'ZTDO [eIIBS €D O [ellasglIas T 1 [elas S ellas TS [ellas 0sa: elas
LAY DEIIdAIDUS G TAIM Y6TOM:101dAI0US Z6TDO:[B1AS 8O0 L ¥8 OM ‘6T ¥6TOM ‘vA welbp di 1ep
9S‘9£D0:[elBS 'ZTDO [eIIBS €D O [ellasglIas T L [elas S ellas TS [ellas 0sa: [elas
NV 92I0A:PayduMS 1INd4ID youms suoyd PO
IV S3I0AIPaYIUMS 1NN NV | dmsyo‘1axoed eiep asw‘, #8 OM Bip
"ere@:payonms NI LA BEIMAAIOUS'ETAIN ¥6TOM:101dAI0Us'Z6TDO:[eUss 8700 ‘6T ¥6TOM ‘vA welbp di
9S‘9eD0:[elBS 'ZTDO [eIIBS €D O [ellasglIas T 1 [elas S ellas TS [ellas 0sa: elas
albojouyosa] pauoddnsg slewlo- 19y9ed bunioddng adA]l vod

AiobBare) 1104 Jad saibojouyosa] Bunioddns :z-n ajqel

0

€A 3AIND LNINJOT1IATIQ 13A0IN SHVYMNLIN

iseopeolg SY1d3:4 olpel

19xoed bunnos sijds]
19yoed 109 sJda‘s 19)oed sJda
‘9 19yoed sJda

‘G 19yoed sJqds ‘¢ 19)oed sJda
‘e 19yoed sJda ‘Zz 19)oed sJida
19)oed sJjda‘g 19)oed sido

d uq sy1d3 olpeld

Z6TO@RIBYD O[S 9ED0:[eI8S ZTD O eSS €D O [elIss
JelIasS T 1:[euas 'S [ellas TS elas oS a:jelias

A welbp di

44
hd s4143 olpel

siebouls:yu oipel

19x9ed olpel

4 siebouls olpel

29Il ONI Sd1d3:paim olpel 19y9ed our sijde EREIENT]
yul sida oipel

aoelIalW| Fiebouis:paim olpel 19y0ed oul siebouls EREIENT]
i siebouls olpeu

all||8res:olpes 3d 8uj81es sayl|[ares

NV M:18X3Iphiw ‘NV A\ BIe@:PaydliMs UNJIID‘ LA #89M:101dAIoua
‘BTAIM 6 TDM:101dA1I28ID O BISS ‘87D O:[BHBS'9EDO:[e1dS ' ZTD O [elas o
O:[el8s'€1:[ellas ' T1:[el8S'€SAPSUISA:[eI8S 0S A [RU8S NV M 92I0A:PaYINMS™ 1IN0

»d uem oud
dojjay ou4d ‘1ex0ed RIep BSW ‘. 8O
‘6T 76T OM ‘PA weibp™ di ‘Pdmsyo

leulwial aj|ares

NV/M 82I0A:RPIMS 1IN0 ‘NVT 82I0A:PayYdNMS 1IN LA pEmIdAIous

pdmsxo ‘youms euoyd 2189

(¥8 ©Y) oua

oS

H 76 TOM01dAIDUS ‘26 TDO:|BLAS Y RISS 9D 0:|eUAS ¢ TD O [eldS €D O [elas e L i[el)
TL1:[euas'eSQ:lelas 1SA:elasiBBEE X9sed000T:18ulayle’ 1asegQ0oT:19ulayia’ L1ased
18WIBYIR NV M~ 9010 AIPAYINNDIIN' YD O WIe 'y 2D O WIe'ZTO O W' €D 0 WIe‘ TO O Wie

d uem oud 3d ojjay ouad ‘youms auoyd
axoed ojj]ay” asw ‘19yoed elep asw

‘L ¥806% ‘6T ¥6T OM ‘pA” welbp di
‘ZAT18UIaY18 ‘Pdmsyo ‘|99 wie swe

(78 ©N) hul

NV 8210A:PBYIAE 1INJJIO'NYT 82I0A:PAYIUMS UNJID'GTAIM 76T DMAIOUS

PAMSO ‘Youms suoyd ‘6T ¥6TOM

(76T ON) ous

0'eA3AIND LNINJOTIATIQ 13A0IN SHVYMNLIN

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX V: IP AUTO ADDRESSING IN CUSTOM MODELS

Custom Node with Port Mappings Attribute

Overview

For nodes that have a direct mapping from one portdthan such as a multiplexer device,
custom model developers can define a particular compourtaltgtto facilitate IP auto
addressing in DES and in Scenario Builder.

Details

Define a compound model attribute at the node attributé ¢alled Custom Port Mappings
This attribute must have the following sub-attributes:

* Local Port (string). This serves as a string representation of the pateitocal device
that can connect to an IP device.

* Remote Ports (compound):

— Remote Device (string).This serves as a string representation of the remeoteete
hierarchical name, that is, the device to which the ldegice will connect either
directly or indirectly.

— Remote Port (string). This serves as a string representation of the porteorethote
device that can connect to an IP device.

It must also have a row for each port on the locaiogethat can connect to an IP device, so each
port name (based on the transmitter module’s name)dhppkar exactly once in the “Custom
Port Mappings” table under the “Local Port” column.

The file IP auto-addressing functionality of the NET®R& Standard model library has code that
will make use of these attributes on any device on wihiiids them.

Example

In this example a model developer has built a custom déwatdras two LAN-side ports, two
WAN-side ports, and one radio port. The device can coriisdcAN-side ports to IP devices, so
IP auto addressing needs a way to topowalk from the-E#il port on one device to the
associated LAN-side ports on other devices. Chstom Port Mappingattributes across all the
instances of the custom device map those LAN-side poeadio other (see Figure V-1 and
Figure V-2).

V-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

radio_tx 5 radio_rx_5

Figure V-1: Node Model Contents

ﬁ{ﬂustum Port Mappings) Table

Local Port lFiemlite Ports -
.l L= = = = = = = = | N B
*|lan_pt 0 . L
- 1a.n:p.t:-r n .. u T.-]. |
[l _>IJ
o Faws elete | |m=ert | [Muplizate I eve lE I I awe et I
[retals | Erammte | aE, I Cancel |
\ 4
i—](ﬂemnte Portzs) Table
Remote Device [hierarchical name] | Remote Port [Tx obj name of port] I-]
Mw_Top. Soldier? custom_device lar_pt_0
Hw_Top. Soldier3. custom_device lam_pt_00
z _>|_I
o Fais elete | |mzert [uplizate I eve lE I [=2 B | I

[Netas | Erammte | aE, I

Cancel |

Figure V-2: Custom Device Attribute Values in OPFAC Sdier 1

V-2

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

i

Soldier3

i i

Soldier] Soldier?

custom: device

. i‘](custum_device) Attribute)] |

Ian_pt_q : | Attribute | W allie =
on eaChi N o name custor_device
device |n @ |—m0del custorm_with_mappings : :
i i Custom Port Mappings DI | g
IT— . : '
Ld i:](Custnm Port Mappings) Tab'e il """
@ Fe [CocalPon ¥ | Remate Ports =
DA, o o o]
& Fu [E—— (W,
& |‘“ _ﬁ(ﬂemote Ports) Table |
.. I
® Ly Femate Device [hierarchical name) v | Fiemate Port [T+ abj name of port] =
@ |_ Ié Mws_Top.Soldier2. custom_device lan_pt_0
@ |_ Ié Mw_Top.Soldier3. custom_device lan_pt_0
& Fu
i @ R =
..................... A -
g H |—lc' |E
F
=l of
o Bz [elete | |zert [plieate | owe | ol B L Aty |
[VELail | Eramate | 0] I Cancel |

V-3

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

Custom IP Auto Addressing Implementation

Overview

For some cases, the makeup of a nhode model may not pleemise of either framework
described above. In those cases, model developers edltoenrite custom code in a file
reserved only for custom models.

Details

Add a node model attributéustom IP Auto Address ID (integéo)the node model for which
custom IP auto addressing implementation is wanted. Theedigpe must have a unique
attribute with respect to all other implementatioret tiready exist. Examine the file
nw_custom_ip_auto_addrfbr a list ofconst int declarations that define a unique ID for
device types that already exist. Add a new declaratioth@®new type to this file and assign that
value to theCustom IP Auto Address l&ttribute defined for the custom device.

Next, add the code needed to support the custom device rivttity the file
nw_custom_ip_auto_addr.ex:Ehat file contains a functiovoid
nw_custom_ip_traverse () that primarily serves to call the correct routinatth
implements custom IP auto addressing. It takes these garame

* ipaa_id. The IP auto addressing ID assigned to the node attribw#; use this to
determine which routine to call to perform the topologfwover custom devices.

* local_node_objid.Obijid of the node of the current iteration of the IPpiraalk.
* local_link_obijid. Objid of the link of the current iteration of the IP grajaiik.

* neighbor_node_link _objids_Iptr. List of ports (identified by node/link Objid pairs) that
have an IP graph connection to the passed port (iderbyi¢de passed local node and
link objids). This function must add entries to this lisbptd returning.

An entry needs to be added to Hwtch statement ofiw_custom_ip_traverse () to
call the custom routine, and of course it will neede@btded to the custom routine. This can be
considered an entry point of program flow into the custode.

Example

In this example, a model developer has added custom |IRddtessing code to support a
custom device model called “Custom_Device C” where custoaul® addressing code already
exists to support “Custom_Device_A" and “Custom_Device_B".

Step 1:Add aCustom IP Auto Address l&8ttribute to the node model.

V-4

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

i—]Nude Model: custom

File Edit | Interfface: Objectz Windows Help

D Model Attibutes

Mode Interfaces
Mode Statistics

I Self Dezcription
i‘]Mudel Attributes: custom

.-’-:.tgnl_:udt:: L\J_arﬁ cesenne LGru:uup| Type | Llnits| Default Walue
: Custom P Auto Address D |a integer 3

Step 2:Add a custom IP auto address ID constant and a funatedatype for the custom IP
auto addressing function to thev_custom_ip_auto_addrheader file.

#1Tndef WwW_CUSTOM_IF_aAUTO_aADOR_H
#define NW_CUSTOM_IF_AUTO_ADDR_H

typedet enum IpT_Custom_Dewice_Madel

IpZ_Custam_Device_Model_A =

5 n oS a S e GG B aMded -I-‘ rl i-:l EmEmEEE
s IpZ_Zustom_Dewice_Model_

-I?IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

woid ip_traverse_custom_node [int, Objid, Objid, Mw_neighbor_node_link_struct+];
woid ip_traverse_custom_dewice_type_a (Objid, Objid, Nw_neighbor_node_Tink_struct®];
JoiGTadn 8 T W B S okl ST W b el oL skl w e d; alabijsi il; w18 @b e Bacht o d 0l sSed b S R e
awnid ip_traverse_custom dewvice_type_c (Objid, Objid, Nw_neighbor_node_Tink_struct®]); =
-ll‘

Step 3:Add an entry to thewitch statement ofiw_custom_ip_traverse () and add a
custom function to the filaw_custom_ip_auto_addr.ex.c

V-5

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

wiodd

fw_CUStom_ip_traverse [

{
£

A
S REQUIRES:

int

ipaa_id,

objid local_node_objid,
objid local_link_objid,
List* neighbor_node_link_objids_1ptr])

FURPFPOSE @

EFFECTS &

Call the appropriate custom model IF auto addressing function.

"ipaa_id' - custom IF auto addressing ID
'Tocal_node_objid' - Objid of the node of an iteration of the IF graphwalk
'"Tocal_l1ink_objid' - Objid of the Tink of an iteration of the IF graphwalk
'neighbor_node_link_objids' - Tist of ports (identified by nodeslink objid pairs)
that hawve an IF graph connection to the passed port (identified by the
passed local node and T1ink objidsl, this function must add entries to this
Tist prior to returning

returns woid, populates the 'neighbor_node_link_objids' Tist with
nodeMink pairs that hawe IP associations with the port of the passed
Tocal node and 1ink objects.

FIN [hw_custom_ip_trawverse (ipaa_id, local_node_objid, local_link_objid, nbr_node_Tlink_objids)l;

switch (ipaa id)l
{

case IpC_cCustom_Dewice_Model_A:

mw_cus tom_ip_traverse_dewvice_model_a (local_node_objid, local_link_objid,

neighbor_node_link_objids_Tptrl;

break;

case IpC_custom _Device_Model_E:

mw_cus tom_ip_traverse_dewice_model_b (local_node_objid, local_link_objid,

neighbor_node_Tink_objids_Tptrl;

break;

Om
B

break;
lrll

FOUT;

mw_custom_ip_traverse_device_model_b (local_node_objid, Tocal_link_objid,

EEESR
e IpC_Custom_Dewvice_Model_B:

neighbor_node_Tink_objids_Tptr);

.IVTJ_IIJIII

Mw_Custom_ip_traverse_dewice_model_c

objid Tocal_node_objid,

objid local_link_objid,

List* neighbor_node_Tink_objids_Tptr)

Nw_neighbor_node_link_struct* neighbor_node_link_objids_ptr;

by
£

FURFOSE :
/4 REQUIRES:
EFFECTS :

FIN [hw_custom_ip_traverse_device_model_c (local_node_objid, local_link_objid, nbr_node_l1ink_objids)l;

neighbor_node_link_objids_ptr = prg_mem_alloc (sizeof ([(Nw_neighbor_node_Tink_structll;

prg_list_insert (neighbor_node_link_objids_1ptr, neighbor_node_link_objids_ptr, PRGC_LISTPOS_TAIL];

FOUT;

V-6

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX W: REFERENCES

* OPNET Modeler Online Documentation

* NETWARS Verification and Validation Testing Plan

* Introduction to the ACE Editors

* NETWARS Interface Control Document

* NETWARS User Manual.

* ACE Whiteboard Tutorial

* DoDD 5000.59 — DoD Modeling and Simulation (M&S) Management
http://www.dtic.mil/whs/directives/corres/html/500059.Hm

* DoDI 5000.61 — DoD Modeling and Simulation (M&S) Verificatiofalidation, and
Accreditation (VV&A) http://www.dtic.mil/whs/directives/corres/html/500061.htn

* VV&A Recommended Practices Guide — Build 3.0 / Septerab66http://vva.dmso.mil/

* NETWARS Communications Model Verification and Validati®lan

 DoD VV&A Documentation Tool

* NETWARS 2006-2 Communications Device Model Validation andfiéation Plan

* NETWARS Equipment Strings Version 1.1, June 2006

* NETWARS 2006-2 Equipment Strings Final Test Plan, OPNE® 3Dklivered August
25, 2006

» DoD Standard Practice: Documentation of Verificatidalidation and Accreditation
(VV&A) for Models and Simulations. (MIL-STD-XXX002, Drabf 5 December 2006)

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

APPENDIX X: NETWARS MODEL DEVELOPMENT GUIDE CHECKLIS T

The purpose of the checklist in Table X-1 is to help theldper and program managers
determine levels of effort to develop new NETWARS Stashaaodels or integrate existing

models to NETWARS.

Table X-1: NETWARS Model Development Guide Checklist

NETWARS Model Development Guide Checklist

Model Compliance

Does the model contain all the NETWARS required attributes? Please
refer to the NETWARS Model Development Guide to identify the
required device attributes associated with the model.

Yes/No Comments

Does the model work in capacity planner?

Does the model support logical view?

Does the model work in discrete event simulation?

Does the model support IP auto addressing?

Does the model work in the correct OPNET version that corresponds to
the most recent NETWARS version?

Does the model work with the following traffic-generation mechanisms?

1. Standard Application Models

2. IER

3. Flows

4. ACE or ACE Whiteboard

Was the model evaluated using the Static Testing Tools?

1. Was anything flagged?

2. Were all flags addressed and successfully mitigated?

Was the model evaluated using various equipment strings?

1. Transmission Networks (Pure Transmission Devices, Prominas,
Other Multiplexors)

2. Routers

3. Circuit Switched Voice

4. Layer-1 Encryptors

5. Tactical Radios

Was the model evaluated using Capacity Planner to obtain reasonable
and expected results within specifications?

1. Shortest-hop routing

2. Link and circuit utilizations

3. Bandwidth requirements

Does the model contain the following model documentations?

1. Embedded Documentation (BNF)

2. User Documentation

3. Test Plan

4. Static Testing Results (including parameters used to get the results)

X-1

NETWARS MoDEL DEVELOPMENT GUIDE V3.0

NETWARS Model Development Guide Checklist

Model Compliance

5. Node Self-Description, such as:
Portgroup—Interface Type
Portgroup—Max Port Data Rate (optional)
Coregroup—Machine Type

Yes/No Comments

Does the model interface to appropriate devices in NETWARS Standard
Pallet? What devices?

1. End System

. Layer 1 device

. Layer 2 device

. Circuit-switched device

2
3
4. Layer 3 device
5
6

. Wireless device

Do the model’s node modules use the correct port conventions? These
include:

1. Wired Ports Transmitter Names (end with <technology>_pt_<n>)

2. Wired Ports Receiver Names (end with <technology> pr_<n>)

3. Wireless Ports Transmitter Names (end with _tx_<n>)

4. Wireless Ports Receiver Names (end with _rx_<n>)

Does the model include the following modules? Applies only for end-
system models:

1. IER Traffic source node contains SE module

2. Traffic sink node contains SE module

3. Traffic source node contains application module

4. Traffic sink node contains application module

Does the model promote and add the following attributes? These are
only for models that support radio broadcast and point-to-point
operations:

. Are the transmitter and receiver named in a pair?

. Promote rx and tx (data rate)

. Promote rx and tx (min frequency)

. Promote rx and tx (bandwidth)

. Promote rx and tx (spreading code)

. Add extended Net ID attribute to tx and rx

~N (OO W (N |-

. Promote rx and tx (Net ID)

Does the model work with custom links? If yes, please answer the
following question:

Are the custom links added to the Linktypemap.gdf file and
documentation?

X-2

